Sample records for industrial end-use sectors

  1. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

  2. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01T23:59:59.000Z

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  3. Table 3. Top Five Retailers of Electricity, with End Use Sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

  4. End-use matching for solar industrial process heat. Final report

    SciTech Connect (OSTI)

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01T23:59:59.000Z

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  5. Industrial Steam Power Cycles Final End-Use Classification

    E-Print Network [OSTI]

    Waterland, A. F.

    1983-01-01T23:59:59.000Z

    Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

  6. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  7. End-use electrification in the residential sector : a general equilibrium analysis of technology advancements

    E-Print Network [OSTI]

    Madan, Tanvir Singh

    2012-01-01T23:59:59.000Z

    The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

  8. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R. [and others

    1995-12-01T23:59:59.000Z

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtight oilU.S.

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtight oilU.S.Arkansas"

  11. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    End-Use Forecasting with EPRI-REEPS 2.1. Lawrence BerkeleyEnd-Use Forecasting with EPRI-REEPS 2.1. Lawrence BerkeleyPower Research Institute. EPRI Research Project Meier, Alan

  12. Integrated estimation of commercial sector end-use load shapes and energy use intensities in the PG&E service area

    SciTech Connect (OSTI)

    Akbari, H.; Eto, J.; Konopacki, S.; Afzal, A.; Heinemeier, K.; Rainer, L.

    1993-12-01T23:59:59.000Z

    This project represents a unique research effort to address the commercial sector end-use energy forecasting data needs of the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). The object of the project was to develop an updated set of commercial sector end-use energy use intensity (EUI) data that has been fully reconciled with measured data. The research was conducted in two stages. First, we developed reconciled electricity end-use EUIs and load shapes for each of the 11 building types in the inland and coastal regions of the PG&E service territory using information collected in 1986. Second, we developed procedures to translate these results into a consistent set of commercial sector forecasting model inputs recognizing the separate modeling conventions used by PG&E and CEC. EUIs have been developed for: II commercial building types; up to 10 end uses; up to 3 fuel types; 2 and 5 subservice territory forecasting regions (as specified by the PG&E and CEC forecasting models, respectively); and up to 2 distinct vintages corresponding to the period prior to and immediately following the adoption of the first generation of California building and equipment standards. For the electricity end uses, 36 sets of daily load shapes have been developed representing average weekday, average weekend, and peak weekday electricity use for each month of the year by building type for both the inland and coastal climate zones.

  13. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    Natural Gas Oil Lighting 0-1 hrs 1-2 his 2-3 hrs Usage levelNatural gas Oil Dishwasher End-Use Lighting 0-1 hrs 1-2 hrs UsageNatural gas Oil Dishwasher End-Use Lighting 0-1 hrs 1-2 hrs Usage

  14. Designing Effective State Programs for the Industrial Sector...

    Energy Savers [EERE]

    Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides...

  15. The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis

    SciTech Connect (OSTI)

    Schipper, L.; Ting, M.; Khrushch, M.; Unander, F.; Monahan, P.; Golove, W.

    1996-08-01T23:59:59.000Z

    There has been much attention drawn to plans for reductions or restraint in future C02 emissions, yet little analysis of the recent history of those emissions by end use or economic activity. Understanding the components of C02 emissions, particularly those related to combustion of fossil fuels, is important for judging the likely success of plans for dealing with future emissions. Knowing how fuel switching, changes in economic activity and its structure, or changes in energy-use efficiency affected emissions in the past, we can better judge both the realism of national proposals to restrain future emissions and the outcome as well. This study presents a first step in that analysis. The organization of this paper is as follows. We present a brief background and summarize previous work analyzing changes in energy use using the factorial method. We then describe our data sources and method. We then present a series of summary results, including a comparison of C02 emissions in 1991 by end use or sector. We show both aggregate change and change broken down by factor, highlighting briefly the main components of change. We then present detailed results, sector by sector. Next we highlight recent trends. Finally, we integrate our results, discussing -the most important factors driving change - evolution in economic structure, changes in energy intensities, and shifts in the fuel mix. We discuss briefly some of the likely causes of these changes - long- term technological changes, effects of rising incomes, the impact of overall changes in energy prices, as well as changes in the relative prices of energy forms.

  16. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01T23:59:59.000Z

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  17. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01T23:59:59.000Z

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  18. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

  19. Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies

    SciTech Connect (OSTI)

    Jones, E.; Eto, J.

    1997-09-01T23:59:59.000Z

    Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

  20. Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry

    E-Print Network [OSTI]

    Benenson, Peter

    2011-01-01T23:59:59.000Z

    CONAES) and FEA End Use Energy Consumption Data Base: 1978).and FEA End Use Energy Consumption Data Base: 1978). (3)CONAES) and FEA End Use Energy Consumption Data Base: 1978).

  1. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

  2. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect (OSTI)

    Morrow, William [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston] [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL] [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01T23:59:59.000Z

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  3. Energy Use and Savings in the Canadian Industrial Sector

    E-Print Network [OSTI]

    James, B.

    1982-01-01T23:59:59.000Z

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  4. Energy Use and Savings in the Canadian Industrial Sector 

    E-Print Network [OSTI]

    James, B.

    1982-01-01T23:59:59.000Z

    The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements...

  5. Analysis of fuel shares in the industrial sector

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.

    1986-06-01T23:59:59.000Z

    These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

  6. Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector

    E-Print Network [OSTI]

    Garnik, S. P.; Martin, M.

    2014-01-01T23:59:59.000Z

    On 31st March 2012, India quietly announced a historic regulation for industrial sector in a bid to ensure energy security of the country. The regulation, with an aim to enhance energy efficiency in energy intensive industrial sectors, is empowered...

  7. Efficient Energy Utilization in the Industrial Sector - Case Studies 

    E-Print Network [OSTI]

    Davis, S. R.

    1984-01-01T23:59:59.000Z

    . As indicated earlier, the industrial complex, w~ich uses 44 percent of the total energy, has the langest share in the balancing of energy supply and dem~nd. Because of this, many companies are finding that an organized energy conservation program can reduc... is now expen sive; therefore, the available supply of cheap oil and gas is being rapidly exhausted, and consumption cannot continue to grow at the pace to which we have become accustomed. Changes are taking place, espe cially in the industrial sector...

  8. Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry

    E-Print Network [OSTI]

    Benenson, Peter

    2011-01-01T23:59:59.000Z

    Ct3_ 3.of 6 UC-95c ENERGY CONSERVATION: POLICY ISSUES ANDBARRIERS TO INDUSTRIAL ENERGY CONSERVATION I. II. III.. IV.II. RETROFIT OF ENERGY CONSERVATION EQUIPMENT A. CONCEPT

  9. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10T23:59:59.000Z

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  10. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    Sector Market Study Report to Pacific Gas and Electric (Gas and Electric Company (PG&E) industrial audits [9], Industrial Sector Market Study of PG&E customers, (a report

  11. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    energy efficiency in the petrochemical industry,” Chapter 3steel, petroleum and petrochemical, chemical, non-ferrousintensive process in the petrochemical industry with an

  12. Climate VISION: PrivateSector Initiatives: Minerals - Industry...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations Industrial Minerals Association - North America The International Minerals Association - North America (IMA-NA) was formed in early 2002 to tap the benefits...

  13. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    of which: CHP ele generation Residential Nonspecified (OtherOther Services (CHP heat Fuel use) Residential End Use (non-Residential Nonspecified (Other Sector) NEW Office (CHP heat

  14. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    Energy Balance Update and Decomposition Analysis for the Industry and Building SectorsEnergy Balance Update and Decomposition Analysis for the Industry and Building SectorsEnergy Balance Update and Decomposition Analysis for the Industry and Building Sectors.

  15. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01T23:59:59.000Z

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  16. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  17. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15T23:59:59.000Z

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  18. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30T23:59:59.000Z

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  19. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01T23:59:59.000Z

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  20. BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006)

    E-Print Network [OSTI]

    Willis, P.; Wallace, K.

    2005-01-01T23:59:59.000Z

    BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

  1. A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure

    E-Print Network [OSTI]

    Roop, J. M.

    -duty vehicles and heavy-duty vehicles. The industrial sector is currently modeled as a single sector, using the latest Manufacturing Energy Consumption Survey (MECS) to calibrate energy consumption to end-use energy categories: boilers, process heating...

  2. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be key to "fastTwistTypes of Nuclear Industry

  3. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  4. he agricultural sector is rapidly being trans-formed into an industry of major importance

    E-Print Network [OSTI]

    Antsaklis, Panos

    T he agricultural sector is rapidly being trans- formed into an industry of major importance, with superior performance in most cases. To manage the increasing complexity of agricultural systems agri- culture, where the goal is to improve the efficiency of opera- tion of agricultural enterprises

  5. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4

  6. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of47

  7. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of478

  8. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4787

  9. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of47878

  10. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses

  11. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses8 End

  12. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  13. Economies of Scale and Scope in Network Industries: Lessons for the UK water and sewerage sectors

    E-Print Network [OSTI]

    Pollitt, Michael G.; Steer, Stephen J.

    means that water markets globally (and specifically the demand for water and sewerage services) will continue to grow well into the twenty-first century. Since 1960 the world population has doubled to approximately 7 billion today, and is projected... sectors1 Michael G. Pollitt Steven J. Steer ESRC Electricity Policy Research Group University of Cambridge August 2011 Abstract Many studies of the water and sewerage industries place significant importance on the benefits of economies...

  14. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    20april%202006.pdf ETSU, 1999. Industrial Sector CarbonSee discussion of this report in ETSU, AEA Technology, 2001.a report prepared by ETSU (now AEA Energy & Environment) on

  15. Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the

    E-Print Network [OSTI]

    Pennycook, Steve

    Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

  16. Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors

    E-Print Network [OSTI]

    Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

    2011-01-01T23:59:59.000Z

    This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

  17. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect (OSTI)

    Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

    1993-05-01T23:59:59.000Z

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  18. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01T23:59:59.000Z

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  19. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    4.50 Foreign LBL 7896 ENERGY CONSERVATION: POLICY ISSUES ANDBarriers to Industrial Energy Conservation 2) The Process ofs·------------- 6. END-USE ENERGY CONSERVATION DATA BASE AND

  20. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27T23:59:59.000Z

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  1. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21T23:59:59.000Z

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  2. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17T23:59:59.000Z

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  3. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect (OSTI)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05T23:59:59.000Z

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  4. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15T23:59:59.000Z

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  5. Stormwater Best Management Practices (BMPs) for Selected Industrial Sectors in the Lower Fraser Basin

    E-Print Network [OSTI]

    Concrete Industry Lime Industry Refined Petroleum Products (Bulk Storage) Other Petroleum and Coal Products and Planing Mill Products Industry Wire and Wire Products Industries Hydraulic Cernent Industry Ready Mixed

  6. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  7. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Sector Energy Demand On This Page End-use efficiency... Growth in electricity use... Core technologies... Improved interconnection... End-use efficiency improvements...

  8. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01T23:59:59.000Z

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  9. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30T23:59:59.000Z

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  10. How managing more efficiently substances in the design process of industrial products? An example from the aeronautics sector

    E-Print Network [OSTI]

    Lemagnen, Maud; Brissaud, Daniel

    2009-01-01T23:59:59.000Z

    Lowering environmental impacts of products, i.e. ecodesign, is considered today as a new and promising approach environment protection. This article focuses on ecodesign in the aeronautical sector through the analysis of the practices of a company that designs and produces engine equipments. Noise, gas emissions, fuel consumptions are the main environmental aspects which are targeted by aeronautics. From now on, chemical risk linked to the use of materials and production processes has to be traced, not only because of regulation pressure (e.g. REACh) but also because of customers requirements. So far, the aeronautical sector hasn't been focusing much on managing chemical risks at the design stage. However, new substances regulations notably require that chemical risk management should be by industries used as early as possible in their product development process. The aeronautics sector has therefore to elaborate new chemical risk management. The aim of this paper is to present a new method hat should be adap...

  11. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    from electricity generation, direct fuel combustion tofuel consumption in the commercial sector is assumed to be used entirely for back-up electricity generation.

  12. ENCUENTRO EMPRESA-UNIVERSIDAD OPORTUNIDADES DE NEGOCIO EN EL MBITO DEL SECTOR INDUSTRIAL MARINO E

    E-Print Network [OSTI]

    Escolano, Francisco

    . Producción industrial de biomasa de insectos, mediante la valorización de subproductos de origen vegetal

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of Fuel

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4 End

  16. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12T23:59:59.000Z

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  17. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  18. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    energy demand. The energy consumption mix i n China'sstructure and product mix in energy-intensive industries;Table 4). The sector's mix of energy sources that year was

  19. Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term

    E-Print Network [OSTI]

    Greening, L.

    2006-01-01T23:59:59.000Z

    -established industrial energy model, ITEMS (Industrial Technology and Energy Modeling System), and is calibrated to MECS 1994 and 1998. However, as compared to ITEMS, MARKAL is an optimization framework. And, this particular version of MARKAL has a forecast horizon...

  20. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Fuels used in the refinery sector were also collected fromof the emissions from the refinery sector are included incommitment of 44% and the refinery and food sectors

  1. Realizing Building End-Use Efficiency with Ermerging Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  2. Profile of the rubber and plastics industry. EPA Office of Compliance sector notebook project

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The rubber and miscellaneous plastics products industry, as defined by the Standard Industrial Classification (SIC) code 30, includes establishments that manufacture products from plastic resins, natural and synthetic rubber, reclaimed rubber, futta percha, balata, and gutta siak. The second section provides background information on the size, geographic distribution, employment, production, sales, and economic condition of the Rubber and Plastics Products industry. The type of facilities described within the document are also described in terms of their Standard Industrial Classification (SIC) codes. Additionally, this section contains a list of the largest companies in terms of sales.

  3. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    essential to monitor and study energy consumption trends.and study energy consumption trends. E.S. 3. Industry Themonitor and study energy consumption trends. From a policy

  4. Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use1995 End-Use

  5. Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    · Smart Grid · Building Technologies · Osram 2) Corporate functions Corporate Technology Corp. Finance Siemens is organized in 4 Sectors: Industry, Energy, Healthcare and Infrastructure & Cities Siemens: Facts ... Corp. Technology Corp. Development Infrastructure & Cities HealthcareEnergyIndustry ~ 14 bn.1) ~ 18 bn

  6. Public/private sector cooperation to promote industrial energy efficiency: Allied partners and the US Department of Energy

    SciTech Connect (OSTI)

    McKane, Aimee; Cockrill, Chris; Tutterow, Vestal; Radspieler, Anthony

    2003-05-18T23:59:59.000Z

    Since 1996, the US Department of Energy's Office of Industrial Technologies (USDOE) has been involved in a unique voluntary collaboration with industry called the Allied Partner program. Initially developed under the Motor Challenge program, the partnership concept continues as a central element of USDOE's BestPractices, which in 2001 integrated all of USDOE's near-term industrial program offerings including those in motors, compressed air, pump, fan, process heating and steam systems. Partnerships are sought with end use industrial companies as well as equipment suppliers and manufacturers, utilities, consultants, and state agencies that have extensive existing relationships with industrial customers. Partners are neither paid nor charged a fee for participation. Since the inception of Allied Partners, the assumption has been that these relationships could serve as the foundation for conveying a system energy-efficiency message to many more industrial facilities than could be reached through a typical government-to-end-user program model. An independent evaluation of the Motor Challenge program, reported at the last EEMODS conference, attributed US $16.9 million or nearly 67 percent of the total annual program energy savings to the efforts of Allied Partners in the first three years of operation. A recent evaluation of the Compressed Air Challenger, which grew out of the former Motor Challenger program, attribute additional energy savings from compressed air training alone at US $12.1 million per year. Since the reorganization under BestPractices, the Allied Partner program has been reshaped to extend the impact of all BestPractices program activities. This new model is more ambitious than the former Motor Challenge program concerning the level of collaborative activities negotiated with Allied Partners. This paper describes in detail two new types of program initiatives involving Allied Partners: Qualified Specialist Training and Energy Events. The Qualified Specialist activity was conceived as a way of engaging the supply side of industry, consultants, and utilities to greatly increase use of decision making software developed by USDOE to assist industrial facilities in assessing the energy efficiency of their energy-using systems. To date, USDOE has launched Qualified Specialist training with member companies of the Hydraulic Institute (HI) and with distributors and consultants associated with the Compressed Air Challenge. These activities train and qualify industry professionals to use and to train customers to use USDOE's Pumping System Assessment Tool (PSAT) and AIRMaster + software programs, respectively. The industry experts provide a public benefit by greatly increasing customer access to the software and assessment techniques. Participating Specialists anticipate a business benefit by providing a valuable service to key customers that is associated with USDOE. The Energy Event concept was developed in 2001 in cooperation with the California Energy Commission in response to the state's energy crisis and has been extended to other geographic areas during 2002. The three California events, named ''Energy Solutions for California Industry,'' relied on Allied Partners to provide system-based solutions to industrial companies as both speakers and exhibitors. These one-day events developed a model for a serious solutions-oriented format that avoids the typical trade show atmosphere through strict exhibitor guidelines, careful screening of speaker topics, and reliance on case studies to illustrate cost- and energy-saving opportunities from applying a systems approach. Future plans to use this activity model are discussed as well as lessons learned from the California series.

  7. Rank Residential Sector Commercial Sector Industrial Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 Weekly7a.7. Petroleum and3.

  8. Successful public sector enforcement of environmental standards in the Toritama Jeans industry in Pernambuco, Brazil

    E-Print Network [OSTI]

    Lazarte, Maria Ella J

    2005-01-01T23:59:59.000Z

    Non-observance of environmental standards among small firms in traditional industries such as garment, footwear, furniture and tanneries have caused major environmental degradation in many places throughout the world. ...

  9. The Importance of Natural Gas in the Industrial Sector With a Focus on Energy-Intensive Industries

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipalNumberAugust7,Biofuels:

  10. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  11. A State Regulator's View of 'PURPA' And Its Impact on Energy Conservation in the Industrial Sector

    E-Print Network [OSTI]

    Williams, M. L.

    1981-01-01T23:59:59.000Z

    improving utility production efficiency, lowering costs and possibly reducing the need for new high cost production facilities. On the other hand, time of use rates may ultimately cause some electric users, especially certain large industrial customers... and resources by electric utilities." Two types of efficiency are addressed here. The first, is economic efficiency, which in classical economics implies the setting of prices which result in the appropriate allocation and conservation of society...

  12. ,"New Mexico Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Consumption by End Use",6,"Monthly","12015","1151989" ,"Release...

  13. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    update to the California Energy Balance (LBNL, forthcoming). The comparison shows that Denmark’s manufacturing sector

  14. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01T23:59:59.000Z

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  15. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    Heavy industries (such as smelting, oil refining, glass andheavy industry (e.g. , iron and steel, oil refining, and

  16. Monitoring of Electrical End-Use Loads in Commercial Buildings

    E-Print Network [OSTI]

    Martinez, M.; Alereza, T.; Mort, D.

    1988-01-01T23:59:59.000Z

    Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing...

  17. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    example, the chemical and petrochemical sectors use largeoil (US EIA, 2009a), petrochemical fuel use (US EIA, 2009b)Metallic Minerals Chemical and Petrochemical Primary Metals

  19. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01T23:59:59.000Z

    of residential end use electricity consumption for Britishresidential electricity consumption by end use Apply theresidential end use electricity consumption using a

  20. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    of incandescent bulbs with more efficient compact fluorescent lighting and light-emitting diode (LED) lamps. Among electric end-use services in the residential sector,...

  1. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    1987b). 2.1. Unit Energy Consumptions Data on end-use unitresidential sector energy consumption data, and typicallyNational Interim Energy Consumption Survey Data, prepared

  2. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Administration, 2009c. EIA-906/920 Database: Monthly UtilityEIA), 2009. Form EIA-906/920 Database: Monthly Utility andEIA power sector annual database (EIA, 2009) and converting

  3. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect (OSTI)

    Levine, M.D.; Koomey, J.; Price, L. [Lawrence Berkeley Lab., CA (United States); Geller, H.; Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1992-03-01T23:59:59.000Z

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  4. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  5. End-use energy consumption estimates for US commercial buildings, 1989

    SciTech Connect (OSTI)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01T23:59:59.000Z

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.

  6. Table 3. Top Five Retailers of Electricity, with End Use Sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"Colorado River Comm of Nevada","Public",1886849,0,1102253,784596,0 4,"Shell Energy North America (US), L.P.","Investor-Owned",1020000,0,0,1020000,0 5,"Wells Rural...

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours" ,"Entity","Type of

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours" ,"Entity","Type ofArizona"

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours" ,"Entity","Type

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours" ,"Entity","TypeColorado"

  11. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware" "megawatthours"

  13. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware" "megawatthours"District of

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware" "megawatthours"District

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware"

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware"Hawaii" "megawatthours"

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware"Hawaii"

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware"Hawaii"Illinois"

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska" "megawatthours"Delaware"Hawaii"Illinois"Indiana"

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours" ,"Entity","Type of

  2. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours" ,"Entity","Type

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours" ,"Entity","TypeLouisiana"

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours"

  5. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours"Maryland" "megawatthours"

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours"Maryland"

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours"Maryland"Michigan"

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas" "megawatthours"Maryland"Michigan"Minnesota"

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours" ,"Entity","Type

  11. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours"

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours"Nebraska"

  13. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours"Nebraska"Total sales, top

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours"Nebraska"Total sales,

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours"Nebraska"Total

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri" "megawatthours"Nebraska"TotalMexico"

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina" "megawatthours"

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina" "megawatthours"Dakota"

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina"

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina"Oklahoma" "megawatthours"

  2. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina"Oklahoma"

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina"Oklahoma"Pennsylvania"

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrictAlaska"Kansas"Missouri"Carolina"Oklahoma"Pennsylvania"Rhode

  5. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type of provider","All

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type of provider","AllTennessee"

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type of

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type ofUnited States"

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type ofUnited States"Utah"

  11. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type ofUnited

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type ofUnitedVirginia"

  13. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type ofUnitedVirginia"Washington"

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type ofUnitedVirginia"Washington"West

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","Type

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota" "megawatthours" ,"Entity","TypeWyoming" "megawatthours"

  17. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: Total U.S..

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

  19. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    industry (iron foundries, cold storage and refrigeration,Energy management Cold storage and refrigeration ? Newelectric power; heat/cold storage; heat pumps using ambient

  20. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    energy monitoring system Paper and Paperboard industry ? Integrated energy management system ?monitoring was handled by “accredited organizations that certify the energy management systems” (

  1. 1999 Commercial Buildings Characteristics--Energy Sources and End Uses

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility PlantsEnd-Use

  2. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    to provide training and energy audits and to help industrial1997 to end of March - Energy audits have allow to avoidagrees to undertake an energy audit, develop a management

  3. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

  4. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses8 End1.

  5. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses8

  6. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses85 End

  7. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses85 End6

  8. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses85 End65

  9. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses85

  10. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses855 End

  11. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses855 End6

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  13. End-Use Load and Consumer Assessment Program: Characterizing residential thermal performance from high resolution end-use data

    SciTech Connect (OSTI)

    Miller, N.E.; Pearson, E.W.; Stokes, G.M.; Pratt, R.G.; Williamson, M.A.

    1991-01-01T23:59:59.000Z

    The Bonneville Power Administration (Bonneville) began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983. Prior to beginning the ELCAP, there was an abundance of information regarding total power consumption for residential structures in the Pacific Northwest and limited information regarding power consumption by various end uses. The purpose of ELCAP is to collect actual end-use load data from both residential and commercial buildings in the region. This report presents the methodology used in several statistical modeling studies carried out on the ELCAP data between 1986 and 1989. These studies involve the thermal characterization of homes and comparisons of building techniques and conservation measures by residential and commercial consumers within the Bonneville service area of the Pacific Northwest. Each data gathering technique was successful in extracting a specific set of consumer-related energy use information. The analytical techniques used in these studies are compiled in this methodology report and are to be used in conjunction with Volume 2 -- Analysis. This should facilitate ease of reference use during future analyses. It is anticipated that the data gathered on participating consumers could potentially be used to aid in decisions regarding the management of the Northwest's electrical energy resources. 7 refs., 6 figs., 2 tabs.

  14. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  15. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility PlantsEnd-Use Equipment

  16. Energy End-Use Intensities in Commercial Buildings 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use

  17. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses of

  18. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses of2

  19. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses

  20. Table 5.4 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses4

  1. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses45

  2. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses456

  3. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period:Dakota"Dakota"Nevada"Washington" "megawatthours" "Item",5.1 End Uses4567

  4. Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization

    E-Print Network [OSTI]

    Akbari, H.

    2008-01-01T23:59:59.000Z

    industry or plants could benefit from new technologies such as cold storagecold storage and space cooling systems technology has. The electricity use in these industriesindustries may also be able to take advan- tage of TES; however, the technology of integrating cold storage

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  6. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    5% of its reserve is coking coal used by the steel industry.imports around 70% of coking coal annually. More recently,

  7. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  8. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels......

  9. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy demand Manufacturing heat and power energy consumption increases modestly figure data Despite a 49-percent increase in industrial shipments, industrial...

  10. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments,...

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  12. End-Use Load and Consumer Assessment Program: Characterizing residential thermal performance from high resolution end-use data

    SciTech Connect (OSTI)

    Miller, N.E.; Williamson, M.A.; Bailey, S.A.; Pratt, R.G.; Stokes, G.M.; Sandusky, W.F.; Pearson, E.W.; Roberts, J.S.

    1991-06-01T23:59:59.000Z

    This document is part of a two-volume set describing a series of thermal analyses of the residential buildings monitored under the End-Use Load and Consumer Assessment Program. Volume 1 describes in detail the thermal analysis methodology employed. Volume 2 presents the results of applying the methodology in a series of four distinct analyses: (1) an analysis of the first monitored heating season, 1985--1986; (2) an analysis of the second monitored heating season, (3) a comparison of first- and second-year analyses showing changes in residential consumption with changes in weather and evaluating the ability of the analytical technique to discriminate those changes; and (4) a continuation of the previous analyses evaluating the effects of foundation type and heating system type on the results.

  13. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  16. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  17. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of...

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441. End

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441. End2.

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.

  1. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4. End

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4. End1

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3 End

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.31

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.312

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3123

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.31234

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18

  11. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

  12. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    Plans Organization and Implementation of Energy ConservationIndustrial Energy Conservation Investment Funding 3.Case Studies of Energy Conservation Investments by Industry

  13. The Role of the Sellafield Ltd Centres of Expertise in Engaging with the Science, Environment and Technology Supply Chain and University Sector to Support Site Operations and Decommissioning in the UK Nuclear Industry - 13018

    SciTech Connect (OSTI)

    Butcher, Ed [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Uranium and Reactive Metals Centre of Expertise Lead, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Connor, Donna [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Technical Capability Manager, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Keighley, Debbie [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)] [Head of Profession, Technical Directorate, Sellafield Ltd, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    The development and maintenance of the broad range of the highly technical skills required for safe and successful management of nuclear sites is of vital importance during routine operations, decommissioning and waste treatment activities.. In order to maintain a core team of technical experts, across all of the disciplines required for these tasks, the approach which has been taken by the Sellafield Ltd has been the formation of twenty five Centres of Expertise (CoE), each covering key aspects of the technical skills required for nuclear site operations. Links with the Specialist University Departments: The CoE leads are also responsible for establishing formal links with university departments with specialist skills and facilities relevant to their CoE areas. The objective of these links is to allow these very specialist capabilities within the university sector to be more effectively utilized by the nuclear industry, which benefits both sectors. In addition to the utilization of specialist skills, the university links are providing an important introduction to the nuclear industry for students and researchers. This is designed to develop the pipeline of potential staff, who will be required in the future by both the academic and industrial sectors. (authors)

  14. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

  15. Climate VISION: Private Sector Initiatives: Electric Power

    Office of Scientific and Technical Information (OSTI)

    Letters of IntentAgreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power...

  16. Climate VISION: Private Sector Initiatives: Cement

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the emissions expressed in million...

  17. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  18. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24T23:59:59.000Z

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  19. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  20. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    US DOE. 1995a. Annual Energy Outlook 1995, with ProjectionsAdministration (ELA) 1995 Annual Energy Outlook (AEO); 1990of Energy's Annual Energy Outlook ( US DOE 1995a). A l l

  1. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    of electric or gas water heater EFFIC Average householdfreezers, clothes dryers, water heaters, clothes washers,Freezers Refrigerators Water Heaters Dishwashers Clothes

  2. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    Description Prices for oil, gas, electricity, liquidElectric Electric Electric Gas Oil Electric ElectricElectric Gas Electric Gas Oil Electric Electric Gas Oil

  3. RESIDENTIAL SECTOR END-USE FORECASTING WITH EPRI-REEPS 2.1: SUMMARY INPUT ASSUMPTIONS AND RESULTS

    E-Print Network [OSTI]

    of Energy. We use the Electric Power Research Institute's (EPRI's) REEPS model, as reconfigured to reflect was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building ....................................................................................................1 2. OVERVIEW OF THE REEPS MODEL..............................................................1

  4. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    Type Equipment Market Shares Index Heating ElecFurnace GasType Equipment Market Shares Index Heating Elec Furnace Gas

  5. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    there are 10 primary heating technologies and two primaryThe combination of a heating technology, cooling technology,defined by a heating technology, cooling technology, and

  6. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    HVAC equipment as constrained by efficiency standards and marketand HVAC equipment as a result of the market; accounts foror HVAC system (by fuel type). New home market shares data

  7. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    2010, while electricity demand is projected to grow at aboutrates. Electricity demand is projected to grow at about 0.7%

  8. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    $/household 10e3 Site Energy Prices Electricity ElectricityAverage electricity price Average household disposableAverage price of electricity Average household disposable

  9. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01T23:59:59.000Z

    Sixth Annual Industrial Energy Technology Conference, VolumeBNL). 2001. The Energy Technology Systems AnalysisKramer Environmental Energy Technologies Division July 2012

  10. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    of crude oil and oil products; (iii) retrofitting existingof petroleum products, limit proliferation of oil usingand product mix in energy-intensive industries; converting oil-

  11. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    modeling framework of the Residential End-Use Energy Plamiing System (REEPS) developed for the Electric

  12. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01T23:59:59.000Z

    4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

  13. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  14. Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)

    SciTech Connect (OSTI)

    Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

    1990-07-01T23:59:59.000Z

    The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

  15. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    solid waste from landfill gas in electricity source data,and Wood Derived Fuels Landfill Gas GWh Other Biogas MSWFuels Industrial CHP Landfill Gas Other Biogas NAICS 22 CHP

  16. Climate VISION: Private Sector Initiatives: Mining: GHG Information

    Office of Scientific and Technical Information (OSTI)

    Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of...

  17. Climate VISION: Private Sector Initiatives: Aluminum: GHG Information...

    Office of Scientific and Technical Information (OSTI)

    Energy Footprints DOE developed a series of Energy Footprints to map the flow of energy supply and demand in U.S. manufacturing industries. Identifying the sources and end uses of...

  18. NOAA Helps the Construction Sector Build for a Changing Climate The construction industry is comprised of a wide range of business involved in engineering standards,

    E-Print Network [OSTI]

    million, and energy cost savings of 586,000 megawatt hours. Climate Information Reduces Construction Costs and Energy Consumption NOAA provides airfreezing data to the home building industry, which in annual building cost savings of $330 million and energy cost savings of 586,000 megawatthours. #12

  19. Analysis of PG E's residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  20. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31T23:59:59.000Z

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  1. Energy End-Use Intensities in Commercial Buildings 1995 - Index Page

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use1995 End-Use Data

  2. area industrial single: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Proc Heat Proc Cool HVAC Other Process Use Other HVAC Pumps BoilerIndustrial Energy Savings by End Use - 2016 Compressed Air Fans Pumps Drives Heating Refrigeration...

  3. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping [State Planning Commission, Beijing (China). Energy Research Inst.; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K. [Lawrence Berkeley Lab., CA (United States)

    1994-09-01T23:59:59.000Z

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  4. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  5. Climate VISION: Private Sector Initiatives: Mining: GHG Information

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  6. Industry Supply Chain Development (Ohio)

    Broader source: Energy.gov [DOE]

    Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

  7. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  8. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  9. Representation of Energy Use in the Food Products Industry 

    E-Print Network [OSTI]

    Elliott, N. R.

    2007-01-01T23:59:59.000Z

    Traditional representations of energy in the manufacturing sector have tended to represent energy end-uses rather than actual energy service demands. While this representation if quite adequate for understanding how energy is used today...

  10. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    Administration. April. EPRI. 1982. Residential End-UseInstitute. EA-2512. July. EPRI. 1990. REEPS 2.0 HVAC ModelInstitute. October 11. EPRI, Electric Power Research

  11. Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    Johnson, F.X.

    2010-01-01T23:59:59.000Z

    technologies. The heating technologies are: natural gasThe combination of a heating technology, cooling technologyCharacteristics End-Use Heating Technology Efficiency Units

  12. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  13. Engineer End Uses for Maximum Efficiency; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #10 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20 * August 2004

  14. Alternative Strategies for Low-Pressure End Uses; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #11 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton AboutDepartment of Energy1 *

  15. Canada's Voluntary Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Wolf, C. A., Jr.

    1980-01-01T23:59:59.000Z

    Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

  16. Energy End-Use Intensities in Commercial Buildings 1989 data -- Publication

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOriginand Tables End-Use Intensities

  17. Table E9. Total End-Use Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4.E9. Total End-Use

  18. Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1

    E-Print Network [OSTI]

    was developed by the Electric Power Research Institute (McMenamin et al. 1992). In this modeling framework the modeling framework of the Residential End-Use Energy Planning System (REEPS) developed for the Electric provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which

  19. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Jacobson, Mark

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  20. Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

  1. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  2. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.1

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    savings due to energy conservation. This report was done4.50 Foreign LBL 7896 ENERGY CONSERVATION: POLICY ISSUES ANDBarriere to Industrial Energy Conservation 2) The Process of

  3. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    's remote location far away from any infrastructure, planning focused on making it as self and its control components. If needed, the system is backed up by a combined heat and power (CHP) plant might be used up, necessitating a switch to LP gas, a scarce resource at this remote location. Desigo

  4. Geothermal: Sponsored by OSTI -- Industrial Sector Technology...

    Office of Scientific and Technical Information (OSTI)

    in the United States, 1974-2000. Volume 1. Primary model documentation. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  5. Quality of Power in the Industrial Sector

    E-Print Network [OSTI]

    Marchbanks, G. J.

    and assistance to upgrade the quality of power into the plant. Even though studies have shown only 20% of the problems identified are actually utility generated it is the responsibility of the utility to help the customer isolate and solve the problem.... The motto of the Oklahoma Gas and Electric Quality of Power program is "If a customer perceives he has a problem, we have a problem." The commitment has been made to assist the customer until he is satis fied the problem is in fact solved. INTRODUCTION...

  6. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01T23:59:59.000Z

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  7. E-Print Network 3.0 - air transportation industry Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and information that characterize the biomass industry, from the production of biomass feedstocks to their end use... of Energy Efficiency and Renewable Energy. Center for...

  8. Abstract--The profound change in the electric industry worldwide in the last twenty years assigns an increasing

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Value. I. INTRODUCTION He reformed electric industry scheme sets the transmission sector at the center

  9. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30T23:59:59.000Z

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  10. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  11. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04T23:59:59.000Z

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  12. Development of an Energy Savings Benchmark for All Residential End-Uses: Preprint

    SciTech Connect (OSTI)

    Hendron, R.; Anderson, R.; Christensen, C.; Eastment, M.; Reeves, P.

    2004-08-01T23:59:59.000Z

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in 2003. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines, with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a''standard'' set of occupants, was created for use in conjunction with the Benchmark. Finally, a set of tools was developed by NREL and other Building America partners to help analysts compare whole-house energy use for a Prototype house to the Benchmark in a fair and consistent manner.

  13. Sector 30 - useful links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Links Sector 30 Printing from your laptop at the beamline Data retrival onsite from ftp:ftp.xray.aps.anl.govpubsector30 Sector Orientation Form HERIX experiment header...

  14. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...

  15. The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004

    E-Print Network [OSTI]

    de Gispert, Adrià

    The Contribution of Services and other Sectors to Australian Productivity Growth 1980-2004 A Report pointers to the Australian literature on sectoral productivity growth. Finally, we would like to thank ................................................................................................................................6 Labour Productivity: Macroeconomic Trends and Industry Patterns

  16. Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study

    E-Print Network [OSTI]

    Masanet, Eric

    2010-01-01T23:59:59.000Z

    applicable to commercial sector electricity and naturalgas, industrial sector electricity, natural gas, coal, andin the agricultural sector, and electricity end uses in the

  17. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04T23:59:59.000Z

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  18. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  19. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01T23:59:59.000Z

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  20. Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

  1. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J. [Ferraro, Oliver, and Associates, Inc., Knoxville, TN (United States); McConnell, B.W. [Oak Ridge National Lab., TN (United States)

    1993-06-01T23:59:59.000Z

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  2. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts

    SciTech Connect (OSTI)

    Eto, J.H.; Moezzi, M.M.

    1992-06-01T23:59:59.000Z

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  3. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01T23:59:59.000Z

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  4. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume “a net cost” perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a...

  5. Energy intensity in China's iron and steel sector

    E-Print Network [OSTI]

    Xu, Jingsi, M.C.P. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    In this study, I examine the spatial and economic factors that influence energy intensity in China's iron and steel sector, namely industrial value added, renovation investment, coke consumption, and local coke supply. ...

  6. Climate VISION: Private Sector Initiatives: Iron and Steel

    Office of Scientific and Technical Information (OSTI)

    Climate VISION goal of achieving a 10 percent increase in sector-wide average energy efficiency by 2012 using a 2002 baseline. Read the U.S. Steel Industry Energy Efficiency Fact...

  7. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    vehicles. dDoes not include lease, plant, and pipeline fuel. eNatural gas consumed in the residential and commercial sectors. f Includes consumption for industrial combined heat...

  8. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    cDoes not includes lease, plant, and pipeline fuel. dNatural gas consumed in the residential and commercial sectors. eIncludes consumption for industrial combined heat and...

  9. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01T23:59:59.000Z

    heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

  10. Service Report Energy Information Administration Office of Energy Markets and End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April19. AverageForecastEnergy

  11. Service Report Enwgy Information Administration Office of Energy Markets and End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April19. AverageForecastEnergyEnwgy

  12. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal"1" "Shell Storage1.2.5.

  13. Robust ASR front-end using spectral-based and discriminant features: experiments on the Aurora tasks

    E-Print Network [OSTI]

    Dupont, Stéphane

    Robust ASR front-end using spectral-based and discriminant features: experiments on the Aurora was tested on the set of speech corpora used for the "Aurora" evaluation. Using the feature stream generated and server side ASR processing, a standartization initiative called "Aurora" was initiated within European

  14. Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0

    SciTech Connect (OSTI)

    Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

    1994-05-01T23:59:59.000Z

    End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

  15. Control Policy: End-User and End-Use Based Part 744--page 1 Export Administration Regulations October 1, 2001

    E-Print Network [OSTI]

    Bernstein, Daniel

    of items subject to the EAR to defined nuclear, missile, chemical and biological weapons, and nuclear nuclear, missile, chemical, or biological end- uses regardless of whether that support involves the export items for certain aircraft and vessels. In addition, these sections include license review standards

  16. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  17. IMPACTS OF GREENHOUSE GAS AND PARTICULATE EMISSIONS FROM WOODFUEL PRODUCTION AND END-USE IN SUB-SAHARAN AFRICA

    E-Print Network [OSTI]

    Kammen, Daniel M.

    the pollution associated with production, distribution and end-use of common household fuels and assess. At the household level, energy is derived primarily from solid biomass fuels burned in simple stoves with poor & African Center for Technology Studies, Nairobi, Kenya ABSTRACT: Household energy in sub-Saharan Africa

  18. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31T23:59:59.000Z

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  19. Deregulating and regulatory reform in the U.S. electric power sector

    E-Print Network [OSTI]

    Joskow, Paul L.

    2000-01-01T23:59:59.000Z

    This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

  20. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01T23:59:59.000Z

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  1. Economic Crisis and the Logistics Industry: Financial Insecurity for Warehouse Workers in the Inland Empire

    E-Print Network [OSTI]

    Bonacich, Edna; De Lara, Juan David

    2009-01-01T23:59:59.000Z

    Growing the SACOG Region’s Logistics Sector: How Much, HowEconomic Crisis and the Logistics Industry Acknowledgements13 Economic Crisis and the Logistics Industry: Financial

  2. Government and Industry a Force for Collaboration at the Energy...

    Office of Environmental Management (EM)

    and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Sept. 16, 2009 Energy sector leaders in the public and private sectors have once again come together to...

  3. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  5. Barriers to Industrial Energy Efficiency- Study (Appendix A), June 2015

    Broader source: Energy.gov [DOE]

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these...

  6. Barriers to Industrial Energy Efficiency- Report to Congress, June 2015

    Broader source: Energy.gov [DOE]

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome...

  7. China’s Defense Electronics Industry: Innovation, Adaptation, and Espionage

    E-Print Network [OSTI]

    Mulvenon, James; Luce, Matthew

    2010-01-01T23:59:59.000Z

    2010 China’s Defense Electronics Industry: Innovation,of the Chinese defense electronics sector can be attributedAdvanced defense electronics components and systems play a

  8. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Energy Savers [EERE]

    (1 slide) Develo Project Objecve Current StateChallenges Heavy industrial water utilization footprint Freshwater Withdrawals in the U.S. by Sector (2005) Domestic...

  9. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01T23:59:59.000Z

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  10. Energy Flow Models for the Steel Industry

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  11. applications radioprotecao industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 421 National Industrial Hemp Strategy ii March 2008Executive Summary Growth of the Canadian Industrial Hemp Sector...

  12. arab oil industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Impact and Strategies (3) TECH 562 Kostic, Milivoje M. 492 National Industrial Hemp Strategy ii March 2008Executive Summary Growth of the Canadian Industrial Hemp Sector...

  13. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  14. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  15. Opportunities, Barriers and Actions for Industrial Demand Response in

    E-Print Network [OSTI]

    LBNL-1335E Opportunities, Barriers and Actions for Industrial Demand Response in California A.T. Mc of Global Energy Partners. This work described in this report was coordinated by the Demand Response Demand Response in California. PIER Industrial/Agricultural/Water EndUse Energy Efficiency Program. CEC

  16. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26T23:59:59.000Z

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  17. Industrial Applications for Micropower: A Market Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. Based on the...

  18. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  19. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  20. Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry

    E-Print Network [OSTI]

    Benenson, Peter

    2011-01-01T23:59:59.000Z

    TECHNOLOGY, AND ECONOMIC EVALUATION DEPARTMENTS CONSTRUCTIONchannels. The Economic Evaluation and the Operations andinformation, banks for economic evaluations, etc. ). This

  1. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  2. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  3. Update of Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector

    SciTech Connect (OSTI)

    Mcmordie, Katherine; Solana, Amy E.; Elliott, Douglas B.; Sullivan, Gregory P.; Parker, Graham B.

    2005-09-08T23:59:59.000Z

    This updated market assessment for capturing water conservation opportunities in the Federal sector is based on a new analytical approach that utilizes newly available data and technologies. The new approach fine-tunes the original assessment by using actual Federal water use, which is now tracked by DOE (as compared to using estimated water use). Federal building inventory data is also used to disseminate water use by end-use technology in the Federal sector. In addition, this analysis also examines the current issues and obstacles that face performance contracting of water efficiency projects at Federal sites.

  4. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12T23:59:59.000Z

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  5. Multi-Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept ofActing Chiefof Inks andmulti-sector

  6. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13T23:59:59.000Z

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  7. Promoting Green Jobs in the Building and Construction Sector

    E-Print Network [OSTI]

    Promoting Green Jobs in the Building and Construction Sector BUILDING FOR ECOLOGICALLY RESPONSIVE Industries" SMX Convention Center, Pasay City CHRISTOPHER CRUZ DE LA CRUZ Philippine Green Building Council 8 the ability of future generations to meet their own needs" #12;· "The fastest growing regional green building

  8. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    electricity sector assets and prices to prevent de- industrialization and cushion the impact of hyperinflation on householdelectricity to “households and other socially-important consumer groups” at priceshousehold incomes, and price increases will not go unnoticed. 862 Russians also care about reliable electricity

  9. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  10. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

  11. Presentation 2.2: Biofuels -A Strategic Option for the Global Forest Sector? Michael Obersteiner

    E-Print Network [OSTI]

    Presentation 2.2: Biofuels - A Strategic Option for the Global Forest Sector? Michael Obersteiner Generation Biofuels. We will close with a SWOT analysis of the forest sector vis-à-vis the oil industry the emerging big player on the biofuels market. 117 #12;#12;Michael Obersteiner & Sten Nilsson International

  12. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  13. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01T23:59:59.000Z

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  14. Industrial energy efficiency policy in China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01T23:59:59.000Z

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  15. Public Sector Electric Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industrial sectors. Modern control systems are often notmay already have modern process control systems in place togrowing rapidly. Modern process control systems exist for

  17. ITL BULLETIN FOR AUGUST 2011 PROTECTING INDUSTRIAL CONTROL SYSTEMS KEY COMPONENTS OF

    E-Print Network [OSTI]

    , transportation, healthcare, and emergency services sectors. Federal agencies also operate critical production, handling, and distribution. ICS are used in many industries: electric, water, oil and gas

  18. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01T23:59:59.000Z

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  19. Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23...

  20. Efficient Energy Utilization in the Industrial Sector - Case Studies

    E-Print Network [OSTI]

    Davis, S. R.

    1984-01-01T23:59:59.000Z

    . Leakage and misuse of compressed air can normally be reduced by 10 percent, resulting in an annual savings of approximately $10,000 to $20,000. Heat recovery, using air compressor cooling water, can and is being used for space heating...

  1. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    feedstock, followed by heavy oil, which requires an averageammonia is made from heavy oil and coal, which is much lesspartial oxidization of heavy fuel oil, gasification of coal,

  2. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    in a back-pressure steam turbine to generate electricity (compressor uses a steam turbine, using internally generatedwith a gas turbine, producing steam and electricity. The hot

  3. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01T23:59:59.000Z

    Energy Supply Modeling Package EFOM-12C Mark 1 MathematicalEnergy Supply Modeling Package EFOM-12C Mark 1 User’s Guide,the Economy EU European Union EFOM Energy Flow Optimization

  4. Labor's Share By Sector And Industry, 1948-1965

    E-Print Network [OSTI]

    Close, Frank A.; Shulenburger, David E.

    1971-01-01T23:59:59.000Z

    .6548 0.8667 0.8742 0.6078 0.6050 0.4867 0.7133 0.7113 0.6700 0.6553 0.8821 0.8888 0.6007 0.5978 0.4652 0.7465 0.7445 0.6829 0.6641 0.8709 0.8760 0.5934 0.5909 0.4666 0.7409 0.7389 0.6809 0.6649 0.8686 0.8810 0.5784 0.5757 0.4640 0.7393 0.7372 0.6828 0...

  5. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    1996. COREX, Revolution in Ironmaking, Linz, Austria:VAI. ;GJ/t Material Preparation Ironmaking Sintering PelletizingGJ/t Material Preparation Ironmaking Sintering Pelletizing

  6. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    D.W. , M.T. Towers and T.C. Browne. 2002. Energy CostD.W. , M.T. Towers and T.C. Browne. 2002. Energy CostD.W. , M.T. Towers and T.C. Browne. 2002. Energy Cost

  7. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    recovered from the black liquor recovery process (combustingand development in black liquor gasification has not yetgreen liquor”, similar to the black liquor recovery process,

  8. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01T23:59:59.000Z

    INVESTMENT COST . anninvcost Annualized investment cost of a technology bound_Total of discounted investment costs discinvcost Discounted

  9. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    can be produced onsite at the smelter or in separate plants19, 20 The most efficient smelters consume 400-440 kg ofyears five aluminum smelter types have become widespread:

  10. Designing Effective State Programs for the Industrial Sector - New SEE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOEDepartment of EnergySmallDesign GuideAction

  11. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of EnergyEnergy 5: March 22, 2010Statistics

  12. Table E5. Industrial Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. ElectricE4.E5.

  13. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  14. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  15. The dynamics of technology di?usion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector

    E-Print Network [OSTI]

    Mercure, J.-F.; Pollitt, H.; Chewpreecha, U.; Salas, P.; Foley, A. M.; Holden, P. B.; Edwards, N. R.

    2014-07-16T23:59:59.000Z

    as exogenous trends of emissions for non-fuel-related sectors (e.g. land use), obtained from the EDGAR database. While the changes modelled include those in power sector emissions, they also include modest changes in other sectors (e.g. industry) occurring due...

  16. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  17. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  18. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  19. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  20. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  1. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  2. Market study for direct utilization of geothermal resources by selected sectors of economy

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  3. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    .4 Hydro Quebec 14 5.5 Energy Research Group, Simon Fraser University 14 5.6 CANMET 15 #12;Industrial. INDUSTRIAL PRIMARY ENERGY DATA COLLECTION FORMATS 27 9.1 Energy Audits 27 9.1.1 Methodology 29 9.1.2 Steps Involved in an Energy Audit 30 9.2 Surveys 31 9.2.1 Detailed Site Energy End-use Survey 32 9.2.2 Equipment

  4. Interfuel Substitution and Energy Use in the UK Manufacturing Sector

    E-Print Network [OSTI]

    Steinbuks, Jevgenijs

    of the following reasons. First, studies based on the aggregate data fail to account for large di¤erences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

  5. Welfare Impacts of Electricity Generation Sector Reform in the Philippines

    E-Print Network [OSTI]

    Toba, Natsuko

    2004-06-16T23:59:59.000Z

    -cost-benefit-analysis (SCBA) basically designs a behavioural and cost model of an industry and simulates it over the post privatization period with and without the sundry changes attributed to the privatization. Thus a counterfactual scenario (viz., enterprise without... ownership regime and those from the private sector participation/ownership. 4. The SCBA Methodology Galal, et al. (1994) identify three main groups in society, viz., consumers, private producers, and government as their framework in assessing...

  6. Energy-economy interactions revisited within a comprehensive sectoral model

    SciTech Connect (OSTI)

    Hanson, D. A.; Laitner, J. A.

    2000-07-24T23:59:59.000Z

    This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

  7. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  8. Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce

    E-Print Network [OSTI]

    Trombley, D.; Elliott, R. N.; Chittum, A.

    Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce Daniel Trombley Engineering Associate R. Neal Elliott, Ph.D., P.E. Associate Director of Research American Council for an Energy-Efficient... of access to technical information and trained workforce. One of the most successful programs for achieving energy efficiency savings in the manufacturing sector is the US Department of Energy (DOE)'s Industrial Assessment Center (IAC) program...

  9. "Greening" Industrial Steam Generation via On-demand Steam Systems 

    E-Print Network [OSTI]

    Smith, J. P.

    2010-01-01T23:59:59.000Z

    Both recent economic and environmental conditions in the U.S. have converged to bring about unprecedented attention to energy efficiency and sustainability in the country's industrial sector. Historically, energy costs in ...

  10. Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium 

    E-Print Network [OSTI]

    Harris, J.

    2011-01-01T23:59:59.000Z

    Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

  11. Charting a Path to Net Zero Energy: Public-Private Sector Perspectives of the Commercial Buildings Consortium

    E-Print Network [OSTI]

    Harris, J.

    2011-01-01T23:59:59.000Z

    Transforming the commercial buildings market to become "net-zero-energy-capable" will require dramatically lower levels of energy use sector wide. A comprehensive and concerted industry effort, partnering with utilities and government, must...

  12. Energy data sourcebook for the US residential sector

    SciTech Connect (OSTI)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01T23:59:59.000Z

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  13. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    nuclear Historical Primary Energy Consumption by sector Energy Use by Sector (EJ Services Transportation Agriculture

  14. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  15. Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)

    SciTech Connect (OSTI)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

    2013-02-01T23:59:59.000Z

    The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

  16. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  17. Emerging Opportunities in Industrial Electrification Technologies 

    E-Print Network [OSTI]

    Schmidt, P. S.

    1989-01-01T23:59:59.000Z

    in the manufacturing sector. Nearly half of manufacturing energy use was in the process industries, which include chemicals, petroleum products, pulp and paper, foods, textiles, and tobacco. Metals production, primarily aluminum and steel, accounted for about 21... %, and metals fabrication, including transportation, machinery, instrumentation and electronics, and other metal products, about 19%. The balance of about 14% was used in other non-metals industries, such as stone, clay, and glass, rubber and plastics...

  18. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  19. Sector 1 Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sector 1 Safety Plan (pdf) Useful X-Ray Related Numbers Si a0 5.4308 Angstrom CeO2 a05.411 Angstrom Cd-109 gamma 88.036 keV X-ray energywavelength conversion...

  20. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  1. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30T23:59:59.000Z

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  2. 3-D Characterization of the Structure of Paper and Paperboard and Their Application to Optimize Drying and Water Removal Processes and End-Use Applications

    SciTech Connect (OSTI)

    Shri Ramaswamy, University of Minnesota; B.V. Ramarao, State University of New York

    2004-08-29T23:59:59.000Z

    The three dimensional structure of paper materials plays a critical role in the paper manufacturing process especially via its impact on the transport properties for fluids. Dewatering of the wet web, pressing and drying will benefit from knowledge of the relationships between the web structure and its transport coefficients. The structure of the pore space within a paper sheet is imaged in serial sections using x-ray micro computed tomography. The three dimensional structure is reconstructed from these sections using digital image processing techniques. The structure is then analyzed by measuring traditional descriptors for the pore space such as specific surface area and porosity. A sequence of microtomographs was imaged at approximately 2 ?m intervals and the three-dimensional pore-fiber structure was reconstructed. The pore size distributions for both in-plane as well as transverse pores were measured. Significant differences in the in-plane (XY) and the transverse directions in pore characteristics are found and may help partly explain the different liquid and vapor transport properties in the in-plane and transverse directions. Results with varying sheet structures compare favorably with conventional mercury intrusion porosimetry data. Interestingly, the transverse pore structure appears to be more open with larger pore size distribution compared to the in plane pore structure. This may help explain the differences in liquid and vapor transport through the in plane and transverse structures during the paper manufacturing process and during end-use application. Comparison of Z-directional structural details of hand sheet and commercially made fine paper samples show a distinct difference in pore size distribution both in the in-plane and transverse direction. Method presented here may provide a useful tool to the papermaker to truly engineer the structure of paper and board tailored to specific end-use applications. The difference in surface structure between the top and bottom sides of the porous material, i.e. "two-sidedness" due to processing and raw material characteristics may lead to differences in end-use performance. The measurements of surface structure characteristics include thickness distribution, surface volume distribution, contact fraction distribution and surface pit distribution. This complements our earlier method to analyze the bulk structure and Z-D structure of porous materials. As one would expect, the surface structure characteristics will be critically dependent on the quality and resolution of the images. This presents a useful tool to characterize and engineer the surface structure of porous materials such as paper and board tailored to specific end-use applications. This will also help troubleshoot problems related to manufacturing and end-use applications. This study attempted to identify the optimal resolution through a comparison between 3D images obtained by monochromatic synchrotron radiation X-?CT in phase contrast mode (resolution ? 1 ?m) and polychromatic radiation X-?CT in absorption mode (res. ? 5 ?m). It was found that both resolutions have the ability to show the expected trends when comparing different paper samples. The low resolution technique shows fewer details resulting in lower specific surface area, larger pore channels, characterized as hydraulic radii, and lower tortuosities, where differences between samples and principal directions are more difficult to detect. The disadvantages of the high resolution images are high cost and limited availability of hard x-ray beam time as well as the small size of the sample volumes imaged. The results show that the low resolution images can be used for comparative studies, whereas the high resolution images may be better suited for fundamental research on the paper structure and its influence on paper properties, as one gets more accurate physical measurements. In addition, pore space diffusion model has been developed to simulate simultaneous diffusion in heterogeneous porous materials such as paper containing cellu

  3. Climate VISION: Private Sector Initiatives: Cement: Resources...

    Office of Scientific and Technical Information (OSTI)

    FederalState Programs DOE Industrial Materials of the Future Industrial Materials for the Future (IMF) is a crosscutting activity of the Industrial Technologies Program. The...

  4. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01T23:59:59.000Z

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  5. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  6. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  7. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01T23:59:59.000Z

    23. Wisconsin – Focus on Energy website: http://pageId =4 24. International Energy Agency (IEA) documents:index.html 16. Renewable Energy Equity Fund (REEF) website:

  8. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01T23:59:59.000Z

    sustainable energy system was begun, further supporting those goals of increased renewable energy sources and energy efficiency. Sweden

  9. Garnering the Industrial Sector: A Comparison of Cutting Edge Industrial DSM Programs

    E-Print Network [OSTI]

    Kyricopoulos, P. F.; Wikler, G. A.; Faruqui, A.; Wood, B. G.

    ~ p~oduct quality! greater relIability, or facl1ltatlOn of long-term environmental compliance. ? Minimizing risk. Changing production procedures is a risk. Customers are lookin f for proven technologies and procedures that e$ure smooth...

  10. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs |

  11. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs |Executive Summary

  12. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

  13. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

  14. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  15. Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute

    E-Print Network [OSTI]

    Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

    2012-01-01T23:59:59.000Z

    May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

  16. The Changing US Electric Sector Business Model

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01T23:59:59.000Z

    The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. • Fundamentals of the US Electric Sector Business Model • Today’s Challenges Faced by U.S. Electric Sector • The Math Does Not Lie: A Look into the Sector’s Future • Disruption to Today...

  17. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  18. User:GregZiebold/Sector test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and tools | Open EnergyCalpakGatewaySector

  19. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01T23:59:59.000Z

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  20. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-Sector Sign In About |

  1. External research and energy efficiency in the process industries

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01T23:59:59.000Z

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  2. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  3. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  4. INDUST: An Industrial Data Base

    E-Print Network [OSTI]

    Wilfert, G. L.; Moore, N. L.

    .5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

  5. Shrenik Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik Industries Jump to: navigation, search

  6. Ventower Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:ShreniksourceVentower Industries Jump to:

  7. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22T23:59:59.000Z

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  8. Macroscopic theory of dark sector

    E-Print Network [OSTI]

    Boris E. Meierovich

    2014-10-06T23:59:59.000Z

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

  9. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

  10. Crossing innovation & product projects management: A comparative analysis in automotive industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Crossing innovation & product projects management: A comparative analysis in automotive industry in automotive industry INTRODUCTION Projectification and platform approaches have been two main transformation in the automotive industry. This sector provides an interesting empirical opportunity to study this question, since

  11. The impact on photovoltaic worth of utulity rate and reform and of specific market, financial, and policy variables : a commercialindustrialinstitution sector analysis

    E-Print Network [OSTI]

    Dinwoodie, Thomas L.

    1980-01-01T23:59:59.000Z

    This work provides an assessment of the economic outlook for photovoltaic systems in the commercial, industrial and institutional sectors in the year 1986. We first summarize the expected cost and performance goals for ...

  12. Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report

    SciTech Connect (OSTI)

    Brouse, P.

    1997-05-01T23:59:59.000Z

    The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

  13. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  14. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    for energy policy assessments compared to those which more properly reflect a trade-off between new capital investment and end-use energy savings – as both capital and energy are used to satisfy a specific industrial service demand. The paper builds on a...

  15. Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat

    E-Print Network [OSTI]

    McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

    1982-01-01T23:59:59.000Z

    The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic...

  16. Public Sector New Construction and Retrofit Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  17. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

  18. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  19. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  20. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  1. Climate VISION: Private Sector Initiatives: Business Roundtable...

    Office of Scientific and Technical Information (OSTI)

    Results Every Sector, One RESOLVE: A Progress Report on Business Roundtable's Climate RESOLVE Program, September 2004 (PDF 1.8 MB) Download Acrobat Reader...

  2. Transforming Federal sector procurement of performance based energy services

    SciTech Connect (OSTI)

    Dahle, D.E.

    1998-07-01T23:59:59.000Z

    Federal agencies are mandated to reduce their energy use by 30% by 2005. The investment in energy projects required to achieve this reduction is estimated at $4 billion to $6 billion. The Department of Energy's (DOE's) Federal Energy Management Program (FEMP) has developed streamlined procurement vehicles to allow Federal agencies to acquire private-sector-financed, performance-based energy services for all Federal buildings. These procurement vehicles, called Super Energy Savings Performance Contracts (Super ESPCs) will be in place covering all regions of the US by summer 1998. The six regional DOE ESPC contracts will provide agencies the ability to contract for up to $4.5 billion in private sector financed energy services. This represents an estimated potential of $3 billion in private sector investments in Federal buildings for energy efficiency, renewable energy and water conservation projects. DOE has developed guidelines and unique project development tools that will allow Federal agencies to contract for ESPC services in months rather than in the years it used to take to develop and implement site specific ESPC projects. The Federal government's buying power has transformed the energy services and utilities industries by stimulating the formation of new cross-industry teams and partnerships to meet the breadth of capability and ability to respond to the needs of Federal facilities in large geographic regions. This paper presents results to date and describes the linkages between the Super ESPC Program and the US Climate Change Proposal. A key US strategy that calls for Federal leadership, and in particular for DOE to spearhead a comprehensive effort to reduce greenhouse gas emissions from Federal sources.

  3. The Department of Energy's Solar Industrial Program: New ideas for American industry

    SciTech Connect (OSTI)

    Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

    1991-07-01T23:59:59.000Z

    As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

  4. Climate VISION: Private Sector Initiatives: Semiconductors: Work...

    Office of Scientific and Technical Information (OSTI)

    of EPA. The plan describes actions the industry intends to take to achieve its Climate VISION goal by 2010. Read the Semiconductor Industry Association Work Plan (PDF 94...

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  6. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  7. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  8. EU, CHINA AND THE ENVIRONMENTAL CHALLENGE IN AFRICA A case study from timber industry in Gabon

    E-Print Network [OSTI]

    1 EU, CHINA AND THE ENVIRONMENTAL CHALLENGE IN AFRICA A case study from timber industry: .....................................................................................................................................................2 Part I: The EU, China and the external environmental dimension....................................................................3 1.1 China as a competitor normative power in the environmental sector

  9. Sustainability Policy and Green Growth of the South Korean Construction Industry 

    E-Print Network [OSTI]

    Jeong, Hwayeon

    2011-10-21T23:59:59.000Z

    South Korea is among a host of countries trying to achieve sustainable development across whole industry sectors by adopting "Green Growth" as the vision of the national development in the Korean government. The government has executed a vast effort...

  10. New 3E Plus Computer Program- A Tool for Improving Industrial Energy Efficiency

    E-Print Network [OSTI]

    Brayman, N. J.

    The task of determining how much insulation is necessary in the US industrial and manufacturing sector to save money, use less energy, reduce plant emissions and improve process efficiency has been greatly simplified thanks to a software program...

  11. 'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers 

    E-Print Network [OSTI]

    Greenwood, R. W.

    1981-01-01T23:59:59.000Z

    The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms...

  12. The Public Utility and Industry: A Customer- Supplier Relationship for Long-Term Survival

    E-Print Network [OSTI]

    Janson, J. R.

    The entire country is undergoing a significant change in customer attitide toward services and products. This change is geared toward a quality service/ product for the least cost. Industry and the utility sector need to apply the aspects of quality...

  13. Modeling ruminant methane emissions from the U.S. beef cattle industry

    E-Print Network [OSTI]

    Turk, Danny Carroll

    1993-01-01T23:59:59.000Z

    Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

  14. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  15. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30T23:59:59.000Z

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  16. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

  17. Managing Technical Risk: Understanding Private Sector

    E-Print Network [OSTI]

    action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

  18. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 7–9, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  19. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  20. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  1. Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector

    SciTech Connect (OSTI)

    Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

    1998-04-01T23:59:59.000Z

    The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

  2. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  3. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Efficiency) Scenario: Ref Region: All Regions Boiler GasEfficiencies End Use Technology District Heating Boiler GasCogen Boiler Stove Heat Pump Figure 48 Example of Efficiency

  5. Climate VISION: Private Sector Initiatives: Electric Power: Resources...

    Office of Scientific and Technical Information (OSTI)

    Plants Power Generation for Non-Fossil Sources End-Use Energy Efficiency Electricity Transmission and Distribution Carbon Sequestration Reducing non-CO2 GHG Emissions...

  6. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  7. Photovoltaic industry progress through 1984

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01T23:59:59.000Z

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  8. Broadening Industry Governance to Include Nonproliferation

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2008-11-11T23:59:59.000Z

    As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security that—through collaborative means—the effectiveness of the international nonproliferation system—can be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a company’s corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

  9. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  10. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  11. Private Sector Rates (FY 2015) Instrument Technique

    E-Print Network [OSTI]

    Bashir, Rashid

    Source Laser $150 $175 Nanophoton Raman 11 Raman Spectroscopy $150 $175 Newport Solar Simulator Solar Rates for the Material Research Laboratory Facilities Rates for Private Sector companies and researchers

  12. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect (OSTI)

    Schumacher, Katja

    1999-07-01T23:59:59.000Z

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  13. Activities to Secure Control Systems in the Energy Sector | Department...

    Office of Environmental Management (EM)

    Activities to Secure Control Systems in the Energy Sector Activities to Secure Control Systems in the Energy Sector Presentation-given at the Federal Utility Partnership Working...

  14. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and market assessment Energy Efficiency Services Sector: Workforce Size2008. “The Size of the U.S. Energy Efficiency Market. Reportmarket spending Energy Efficiency Services Sector: Workforce Size

  15. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  16. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  17. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

  18. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Transportation energy use grows slowly in comparison with historical trend figure data Transportation sector energy consumption grows at an...

  19. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

  20. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  1. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  2. The Economics of Public Sector Information

    E-Print Network [OSTI]

    Pollock, Rufus

    result in incentives for over-investment in quality and capacity improvements because, by over-investing, the PSIH stimulates demand and obtains a larger subsidy. In terms of responsiveness an organization operating a more ‘commercial’ pricing policy (e... area (building especially), or keeping up to date with the decisions of their elected representatives. While much data is supplied from outside the public sector, compared to many other areas of the economy, the public sector plays an unusually...

  3. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22T23:59:59.000Z

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  4. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19T23:59:59.000Z

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  5. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-06-01T23:59:59.000Z

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  6. Climate VISION: Private Sector Initiatives: Cement: Technology...

    Office of Scientific and Technical Information (OSTI)

    Technology Pathways The DOE's Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To...

  7. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  8. Industrial Structure and Monetary Policy in a Small Open Economy

    E-Print Network [OSTI]

    Niebur, Ernst

    Industrial Structure and Monetary Policy in a Small Open Economy Thomas A. Lubik Department supply which is empirically quite small. In principle, this link can be broken in a multisectoral economy sectors. This paper reinterprets this line of reasoning in a small open economy with a traded and a non

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  10. Centers for manufacturing technology: Industrial Advisory Committee Review

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  11. Climate VISION: Private Sector Initiatives: Mining: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise...

  12. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise...

  13. Climate VISION: Private Sector Initiatives: Magnesium: Resources...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Industry Associations FederalState Programs Technical Information Plant Assessments Software Tools Energy Management Expertise...

  14. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise...

  15. Climate VISION: Private Sector Initiatives: Forest Products:...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise...

  16. Climate VISION: Private Sector Initiatives: Cement - Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise...

  17. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  18. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01T23:59:59.000Z

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  19. Contracting Out of Service Activities and the Effects on Sectoral Employment Patterns in South Africa

    E-Print Network [OSTI]

    Tregenna, Fiona

    that it is government that is also responsible for upholding labour legislation). By way of background to the empirical analysis that follows, we have discussed outsourcing as a form of corporate restructuring, which has implications inter alia for the sectoral... outsourcing as a type of shift in corporate and industrial structure, and the specific dynamics of outsourcing in the South African case. This contextualises the empirical analysis of intersectoral shifts in the employment of these two occupations, which...

  20. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department Third Report to the President

  1. North Carolina State University | College of Engineering | Raleigh, NC | www.ncsc.ncsu.edu FOSTERING PRIVATE SECTOR JOB

    E-Print Network [OSTI]

    300 companies annually with project and industry development. The Solar Center is home.ncsc.ncsu.edu FOSTERING PRIVATE SECTOR JOB CREATION AND INVESTMENT The North Carolina Solar Center was founded in 1988 at NC State University. The Solar Center breaks down barriers for clean energy businesses who want

  2. Essays on sectoral shifts of labor demand: measurements and effects on the incidence and the duration of unemployment

    E-Print Network [OSTI]

    Byun, Yanggyu

    2009-05-15T23:59:59.000Z

    industries. Abraham and Katz (1984) point out that this as- 1 The idea of sectoral shifts hypothesis has also been used in recent studies to introduce persistent unemployment in a real business cycle model (Mikhail et al. (2003)), to study the macroeconomic e...

  3. Formulating a VET roadmap for the waste and recycling sector: A case study from Queensland, Australia

    SciTech Connect (OSTI)

    Davis, G., E-mail: gudavis@cytanet.com.cy [Dr Georgina Davis, ABN 12 744 598 837, Banksia Beach, Brisbane, QLD 4507 (Australia)

    2012-10-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Existing qualifications do not meet the needs of the sector in Queensland. Black-Right-Pointing-Pointer Businesses may not be best positioned to identify training needs. Black-Right-Pointing-Pointer Companies are developing training internally to meet their own specific needs. Black-Right-Pointing-Pointer Smaller companies lack the resources to develop internal training are disadvantaged. Black-Right-Pointing-Pointer There is industry support for an entry-level, minimum industry qualification. - Abstract: Vocational Education and Training (VET) is an essential tool for providing waste management and recycling workers with the necessary skills and knowledge needed to beneficially influence their own employment and career development; and to also ensure productivity and safe working conditions within the organisations in which they are employed. Current training opportunities within Queensland for the sector are limited and not widely communicated or marketed; with other States, particularly Victoria and New South Wales, realising higher numbers of VET enrollments for waste management courses. This paper presents current VET opportunities and trends for the Queensland waste management sector. Results from a facilitated workshop to identify workforce requirements and future training needs organised by the Waste Contractors and Recyclers Association of Queensland (WCRAQ) are also presented and discussion follows on the future training needs of the industry within Queensland.

  4. Dr. John M. Shaw NSERC Industrial Research Chair in Petroleum Thermodynamics

    E-Print Network [OSTI]

    Firestone, Jeremy

    to the hydrocarbon production, transport and refining sectors. Redefining Heavy Oil Characterization: A DissidentDr. John M. Shaw NSERC Industrial Research Chair in Petroleum Thermodynamics Department of Chemical industrial research chair in petroleum thermodynamics. During his career he has developed expertise

  5. Using E-Commerce in the Forest Products Industry Chapter 1.2.

    E-Print Network [OSTI]

    Using E-Commerce in the Forest Products Industry Chapter 1.2. Using E-Commerce in the Forest The forest products industry is rapidly adopting e-commerce solutions as it advances in the information age. In this chapter, the unique e-commerce needs of this sector's small businesses are discussed. Current experience

  6. Potential Impact of Adopting Maximum Technologies as Minimum Efficiency Performance Standards in the U.S. Residential Sector

    SciTech Connect (OSTI)

    Letschert, Virginie; Desroches, Louis-Benoit; McNeil, Michael; Saheb, Yamina

    2010-05-03T23:59:59.000Z

    The US Department of Energy (US DOE) has placed lighting and appliance standards at a very high priority of the U.S. energy policy. However, the maximum energy savings and CO2 emissions reduction achievable via minimum efficiency performance standards (MEPS) has not yet been fully characterized. The Bottom Up Energy Analysis System (BUENAS), first developed in 2007, is a global, generic, and modular tool designed to provide policy makers with estimates of potential impacts resulting from MEPS for a variety of products, at the international and/or regional level. Using the BUENAS framework, we estimated potential national energy savings and CO2 emissions mitigation in the US residential sector that would result from the most aggressive policy foreseeable: standards effective in 2014 set at the current maximum technology (Max Tech) available on the market. This represents the most likely characterization of what can be maximally achieved through MEPS in the US. The authors rely on the latest Technical Support Documents and Analytical Tools published by the U.S. Department of Energy as a source to determine appliance stock turnover and projected efficiency scenarios of what would occur in the absence of policy. In our analysis, national impacts are determined for the following end uses: lighting, television, refrigerator-freezers, central air conditioning, room air conditioning, residential furnaces, and water heating. The analyzed end uses cover approximately 65percent of site energy consumption in the residential sector (50percent of the electricity consumption and 80percent of the natural gas and LPG consumption). This paper uses this BUENAS methodology to calculate that energy savings from Max Tech for the U.S. residential sector products covered in this paper will reach an 18percent reduction in electricity demand compared to the base case and 11percent in Natural Gas and LPG consumption by 2030 The methodology results in reductions in CO2 emissions of a similar magnitude.

  7. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  8. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  9. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  10. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  11. Distributed Generation Potential of the U.S. Commercial Sector

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

  12. Varieties of innovation : the creation of wind and solar industries in China, Germany, and the United States

    E-Print Network [OSTI]

    Nahm, Jonas M

    2014-01-01T23:59:59.000Z

    Where and how does innovation take place in contemporary high-technology sectors? Theories of innovation presume a division of labor between firms in industrialized economies that invent and commercialize new technologies ...

  13. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    03/06/content_7729607.htm ETSU, 1999. Industrial SectorSee discussion of this report in ETSU, AEA Technology, 2001.environment/ccl/pdf/etsu-analysis.pdf Feng, F. , 2007. “

  14. Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry 

    E-Print Network [OSTI]

    Harris, J.; Bostrom, P.; Lung, R. B.

    2011-01-01T23:59:59.000Z

    operating practices. In the United States the industrial sector is impacted by many policies-fiscal and monetary, economic development, energy pricing, climate legislation, tax code, and direct subsidies, among others-all of which help shape the strategy...

  15. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  16. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  17. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  18. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01T23:59:59.000Z

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  19. ESCO market and industry trends: Updated results from the NAESCO database project

    SciTech Connect (OSTI)

    Osborn, Julie G.; Goldman, Charles A.; Hopper, Nicole C.

    2001-10-15T23:59:59.000Z

    Today's U.S. energy efficiency services industry is one of the most successful examples of private sector energy efficiency services in the world, yet little empirical information is available on the actual market activity of this industry. LBNL, together with the National Association of Energy Services Companies (NAESCO), has compiled the most comprehensive dataset of the energy efficiency services industry: nearly 1,500 case studies of energy efficiency projects. Our analysis of these projects helps shed light on some of the conventional wisdom regarding industry performance and evolution. We report key statistics about typical projects and industry trends that will aid state, federal, and international policymakers, and other investors interested in the development of a private sector energy efficiency services industry.

  20. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats