National Library of Energy BETA

Sample records for industrial electricity-only plants

  1. Automating An Industrial Power Plant 

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    1987-01-01

    ,OOO/year. The upgrading process began with a search for a design/ build contractor that could provide complete turn key capability, beginning with a site survey and ending with operator acceptanoe. The contractor was selected through. a group...ATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant at the John Deere Component Works...

  2. Practical Procedures for Auditing Industrial Boiler Plants 

    E-Print Network [OSTI]

    O'Neil, J. P.

    1980-01-01

    Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis...

  3. Waste Management Trends in Texas Industrial Plants 

    E-Print Network [OSTI]

    Smith, C. S.; Heffington, W. M.

    1995-01-01

    , including reporting. Some reporting is required of all industrial plants, but the reporting requirements and procedures differ in accordance with the type and amount of waste generated. Future changes in federal and state laws regarding waste management...

  4. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

  5. Electrical Energy Monitoring in an Industrial Plant 

    E-Print Network [OSTI]

    Dorhofer, F. J.; Heffington, W. M.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-04 REPRINTED WITH PERMISSION ELECTRICAL ENERGY MONITORING IN AN INDUSTRIAL PLANT Frank J. Dorhofer and Warren M. Heffington Energy Systems Laboratory Department of Mechanical Engineering Texas A...&M University College Station, Texas ABSTRACT The Energy Systems Laboratory (ESL) at Texas A&M University is currently monitoring the electrical energy use of a metal fabrication facility in Houston, Texas. This paper deals with the installation of the data...

  6. SOFTWARE AGENTS IN HANDLING ABNORMAL SITUATIONS IN INDUSTRIAL PLANTS

    E-Print Network [OSTI]

    SOFTWARE AGENTS IN HANDLING ABNORMAL SITUATIONS IN INDUSTRIAL PLANTS Sami Syrjälä and Seppo Kuikka Institute of Automation and Control Department of Automation Tampere University of Technology. The abnormal situation handling in industrial plants is a challenging application area due to the complexity

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    R.R. ,et al. , 2004: Eco-industrial park initiatives in theCHP plant) form an eco-industrial park that serves as an ex-

  8. Motor Energy Saving Opportunities in an Industrial Plant 

    E-Print Network [OSTI]

    Kumar, B.; Elwell, A.

    1999-01-01

    Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor...

  9. An Evaluation of Thermal Storage at Two Industrial Plants 

    E-Print Network [OSTI]

    Brown, M. L.; Gurta, M. E.

    1991-01-01

    Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

  10. Benchmarking Variable Cost Performance in an Industrial Power Plant 

    E-Print Network [OSTI]

    Kane, J. F.; Bailey, W. F.

    1998-01-01

    One of the most perplexing problems for industrial power plants committed to improving competitiveness is measuring variable cost performance over time. Because variable costs like fuel and electricity represent the overwhelming majority of power...

  11. The Industrial Power Plant Management System - An Engineering Approach 

    E-Print Network [OSTI]

    Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

    1979-01-01

    Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel...

  12. Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Saman, N. F.; Nutter, D. W.

    1994-01-01

    INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE 1994 ESL-PA-94/04-03 REPRINTED WITH PERMISSION ENERGY CONSERVATION THROUGH IMPROVED INDUSTRIAL VENTILATION IN SMALL AND MEDIUM-SIZED INDUSTRIAL PLANTS Namir Saman, Ph.D., P.E. Visiting Assistant Professor Energy System... Laboratory Texas A&M University ABSTRACT This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium...

  13. Alternate Cooling Methods for Industrial Plants 

    E-Print Network [OSTI]

    Brown, M.; Moore, D.

    1990-01-01

    Cooling in industrial facilities has traditionally been performed by mechanical vapor compression units. While it remains the standard, recent concerns with the rising cost of electricity and environmental legislation restricting or outlawing CFC...

  14. Electrical energy monitoring in an industrial plant 

    E-Print Network [OSTI]

    Dorhofer, Frank Joseph

    1994-01-01

    This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor...

  15. Industrial Plant Objectives and Cogeneration System Development 

    E-Print Network [OSTI]

    Kovacik, J. M.

    1983-01-01

    The development of a cogeneration system requires a definition of plant management's objectives in addition to process energy demands. And, these objectives may not be compatible with options that will yield the most attractive rate of return...

  16. Tools for Assessing Building Energy Use in Industrial Plants 

    E-Print Network [OSTI]

    Martin, M.; MacDonald, M.

    2007-01-01

    . The nature and extent of building energy assessment tools will then be profiled, and the beneficial use of an appropriate subset of these tools for assessing energy savings in buildings at industrial plants will be described. Possible future tools that may...

  17. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  18. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  19. Conduct an In-Plant Pumping System Survey; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Pumping System Performance: A Sourcebook for Industry. Hydraulic Institute-HI is a non- profit industry association for pump and pump system manufacturers; it...

  20. EPRI Partnership for Industrial Competitiveness (EPIC): The Plant Survey Experience 

    E-Print Network [OSTI]

    Smith, W. M.; Appelbaum, B.

    1994-01-01

    EPRI's Partnership for Industrial Competitiveness (EPIC), comprised of over 15 EPRI member utilities, was established in 1992 to help electric utilities identify, develop, and implement competitiveness improvement opportunities for their industrial...

  1. Industrial Assessments and Why Your Plant Should Have One 

    E-Print Network [OSTI]

    Glaser, C. J.; Demetrops, J. P.

    1998-01-01

    The "in-depth" assessment of a plant site and its facilities, services and manufacturing operations can help you make your plant cleaner, more productive and more energy efficient. This paper discusses the components of a successful assessment, what...

  2. Determine the Cost of Compressed Air for Your Plant; Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air for your plant by periodically monitoring the compressor oper- ating hours and load duty cycle. * Use a systems approach while operating and maintaining a compressed air...

  3. Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1986-01-01

    A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence...

  4. Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant 

    E-Print Network [OSTI]

    Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

    1995-01-01

    The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present...

  5. Updated9January2003 DivisionofPlantIndustry

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    the biocontrol insects used to attack PHM. !!!!! Please provide our inspectors access to your property! All state contacting your local county extension agent. Biological control works! Fortunately, several natural enemies. If a biocontrol program is launched early enough during an infestation, most affected plants recover fully. PHM

  6. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    Planta- tion Products and Paper Industry Council, Paper Industry, Confederationof European Paper Industries, Brussels, March 2001. CESP,

  8. Solar industrial retrofit of a natural gas processing plant

    SciTech Connect (OSTI)

    Henry, R.L.; McDowell, J.H.

    1980-01-01

    This study was a joint effort by Northrup, Inc., and ARCO Oil and Gas Company to design a solar powered process heat system to be installed at the ARCO North Coles Levee Gas Processing Plant No. 8. Thermal energy for the process is supplied by a heat medium oil at temperatures of 301/sup 0/C (575 F) to 193/sup 0/C (380 F). Currently, this oil is being heated by two natural gas fired heaters and a heat recovery unit that operates on waste heat from a continuously operated gas turbine. The solar retrofit system is being designed to displace natural gas presently consumed in the heaters. The solar system will deliver solar energy to the process with an annual average efficiency of 58% and has been sized to yield an average solar fraction of 33% relative to the plant's normal annual usage of 83,450 MW/sub th/-hr.

  9. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  10. Cost-Effective Industrial Boiler Plant Efficiency Advancements 

    E-Print Network [OSTI]

    Fiorino, D. P.

    1997-01-01

    manufacturing complex. The "new" boiler plant began service in November, 1996 and consists of four 75,000 Ib/hr water-tube boilers burning natural gas and producing 210 psig saturated steam for heating and humidification. Efficiency advancements include...) in order to maintain cleanroom envirorunental conditions. Condensate losses are negligible and return condensate averages 200?F year-around. DESIGN CONCEPT A multiple-unit design incorporating four 75,000 lb/hr steam boilers was adopted in order...

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    CIPEC). (2001a). Boilers and Heaters, Improving EnergySteam Conservation and Boiler Plant Efficiency Advancements.Council of Industrial Boiler Owners, Burke, Virginia. 9.

  12. Industrial Plant Services Australia Pty Ltd IPS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant Services Australia Pty

  13. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  14. Targeting of Potential Industrial Cogeneration at the Plant Site 

    E-Print Network [OSTI]

    Toy, M. P.; Brown, H. L.; Hamel, B. B.; Hedman, B. A.

    1983-01-01

    .70 7.64 7.713.40 12.46 10.87 10.84 3.53 N. West 4.65 3.44 3.54 1.29 8.70 7.59 6.74 3.42 12.46 10.84 9.50 2.86 diesels, steam turbines and gas turbines. passed through heat recovery boilers producing pro cess steam for the plant. In combined... cycle gas The diesel systems utilize an internal combus turbines systems, the gas turbine is coupled with tion engine as the prime mover coupled to an alter heat recovery boilers and steam turbines to produce nator to produce electric power. Heat...

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    for the European Pulp and Paper Industry, Confederation ofin food and pulp and paper industry wastes, turbines tocement, and pulp and paper industries and in the control of

  16. Thermal Efficiency Optimization for Industrial Power Plants Under Load Fluctuations Using Fuzzy Logic 

    E-Print Network [OSTI]

    Steffenhagan, W.; de Sam Lazaro, A.

    1995-01-01

    to carry out the optimization. The results of this work will be published separately. 8. REFERENCES [1] Naccarino JR., Cheung RT., Briggs W., and Mayur N., Real-time monitoring, optimization and control of a hydroelectric generation complex. IEEE... OPTIMIZATION FOR INDUSTRIAL POWER PLANTS UNDER LOAD FLUCTUATIONS USING FUZZY LOGIC A. de Sam Lazaro and W. Steffenhagan, Department of Mechanical Engineering St Martin's College, Lacey WA 98503 1. INTRODUCTION The automation of the control to a power...

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    pp. IEA, 2006b: Industrial motor systems energy efficiency:industrial energy efficiency. Presented at Energy Efficiency in Motorenergy-efficient electric motors and motor-systems. These include: (1) industrial

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    and waste management that take place within industrialpolicies Waste management policies can reduce industrialWaste management policies.56 7.10 Co-benefits of industrial

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    cement and pulp and paper industries in China, and in thePulp and Paper Industry, Confederation of European Paper Industries, Brussels, March 2001. CESP, 2004: China’pulp and paper industries (GOI, 2005). There are 39.8 million SMEs in China,

  20. Use Spread-Sheet Based CHP Models to Identify and Evaluate Energy Cost Reduction Opportunities in Industrial Plants 

    E-Print Network [OSTI]

    Kumana, J. D.

    2001-01-01

    CHP (for Combined Heat and Power) is fast becoming the internationally accepted terminology for describing the energy utilities generation and distribution systems in industrial plants. The term is all inclusive -boilers, fired heaters, steam...

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    specified in the ‘Energy Technology List’ during the yearenergy consumers in the chemical industry, and list examples of technology

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    disposal routes, several countries have set incen- tives to promote the use of various wastes in industrial processes in direct

  3. Visit to Ishikawajima-Harima Heavy Industries (IHI) Aero-engines Div. Tanashi Plant, July 16, 1991

    E-Print Network [OSTI]

    Whitney, Daniel

    1 Visit to Ishikawajima-Harima Heavy Industries (IHI) Aero-engines Div. Tanashi Plant, July 16 of Production Engineering Departments at their respective plants. IHI's main business is shipbuilding and heavy of over $1 billion. IHI built Japan's first jet engine during the war, making the first test flight

  4. Fuelwood procurement for an industrial power plant: a case study of Dow Corning's program

    SciTech Connect (OSTI)

    Folger, A.G.; Sworden, P.G.; Bond, C.T.

    1984-08-01

    Dow Corning Corporation has developed effective procedures for meeting the fuelwood requirements of a 22.4 megawatt steam and electricity cogenerating power plant. The fuelwood procurement program of Dow Corning's Natural Resources Department involves special arrangements with private landowners, logging and hauling producers, and waste wood suppliers. The program's success is attributable to a favorable location, adequate allowance for advance planning, effective public relations, and flexible management. The program is significant because it demonstrates that industrial fuelwood requirements can be met and that improved production from nonindustrial private forests can be relied upon as a major source of fuelwood. 7 references, 7 figures.

  5. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    of Industrial Electrical Switchgear and Control Gear in the6 from use in electrical switchgear and magnesium processinggas insulated electrical switchgear, during the production

  9. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  10. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.conversions, such as combined heat and power and coke ovens,

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01

    developing countries, like India, adoption of efficient electricitydeveloping countries the sugar in- dustry uses bagasse and the edible oils industry uses byproduct wastes to generate steam and/or electricity (

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    the Future Program for Metal Casting. Information availablein engine plants. Metal casting is an energy-intensiveeffort focusing on the metal casting industry through its

  15. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    SciTech Connect (OSTI)

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  16. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  17. Energy Conservation Through Heating/Cooling Retrofits in Small and Medium-Sized Industrial Plants 

    E-Print Network [OSTI]

    Saman, N.; Eggebrecht, J.

    1996-01-01

    This paper discusses energy conservation projects in the area of industrial environment heating and cooling that have been recommended by the Texas A&M University Industrial Assessment Center (IAC) to small and medium-sized industries in Texas...

  18. Electrostatically charged spraying of a plant-an industrial and environmental flow problem (choice of flow process, design of device, dispersion in the environment, and impaction on

    E-Print Network [OSTI]

    Hunt, Julian

    Electrostatically charged spraying of a plant-an industrial and environmental flow problem (choice of flow process, design of device, dispersion in the environment, and impaction on the plant surface). wwwReviews Inc. All rights reserved INDUSTRIAL AND ENVIRONMENTAL FLUID MECHANICS J. C. R. Hunt Department

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  20. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

    2013-01-01

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Pharmaceutical Industry .17 5.1 Energy Managementthe U.S. pharmaceutical industry. General Energy managementpharmaceutical industry. A focused and strategic energy management

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Washington DC. Bristol Park Industries (2002). URL: http://loss of light. Bristol Park Industries has patented anothersaving results (Bristol Park Industries 2002). 5.5 Heat and

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and Trends in the Pulp and Paper Industry. Proceedings ofand in the pulp & paper, food, and lumber industries. Power

  5. Optimization of Industrial Refrigeration Plants: Including a Case Study at Stonyfield Farm Yogurt 

    E-Print Network [OSTI]

    Dixon, R.; McCowan, B.; Drake, L.; Epstein, G.; D'Antonio, M.; Moray, S.

    2006-01-01

    is then throttled to the high-pressure receiver (HPR). A portion of the high-pressure liquid ammonia is directed to the ice making system to remove heat from the chilled water system where the ammonia flashes to gas after extracting the heat from the ice storage... on the assessed data. This paper will: provide an overview of typical industrial ammonia refrigeration systems; discuss the various components of the system including the compressors, condensers, evaporators and controls that make up a refrigeration system...

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  7. Superfund Record of Decision (EPA Region 5): Naval Industrial Reserve Ordnance Plant, Fridley, MN. (First remedial action), September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    The 82.6-acre Naval Industrial Reserve Ordnance Plant (NIROP) site is a weapons system manufacturing facility in Fridley, Minnesota, which began operations in 1940. The site is a government-owned, contractor-operated, plant located just north of the FMC Corp. During the 1970s, paint sludge and chlorinated solvents were disposed of onsite in pits and trenches. In 1981, State investigations identified TCE in onsite water supply wells drawing from the Prairie DuChien/Jordan aquifer, and the wells were shut down. In 1983, EPA found drummed waste in the trenches or pits at the northern portion of the site, and as a result, during 1983 and 1984, the Navy authorized an installation restoration program, during which approximately 1,200 cubic yards of contaminated soil and 42 drums were excavated and landfilled offsite. The Record of Decision (ROD) addresses the remediation of a shallow ground water operable unit. The primary contaminants of concern affecting the ground water are VOCs including PCE, TCE, toluene, and xylene.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    reduce pollution. Cogeneration plants are significantly morethe plant. As Chapter 4 showed, the use of cogeneration in

  10. The Impact of Intellectual Property Rights in the Plant/Seed Industry Tirtha Dhar and Jeremy Foltz*

    E-Print Network [OSTI]

    Foltz, Jeremy D.

    monopoly rights to their inventions, provide economic incentives for research and development. In exchange of plants and animals as standard utility patents. In the case of plants certain forms of property rights, for plant seeds the Plant Variety Protection Act (PVPA) and for tubular form plants the Plant Protection Act

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Industrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy’Motor. Office of Energy Efficiency and Renewable Energy, Industrial

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    chemical processing industry, a pump impeller was reduceddata, 16% of pumps in use in industry are more than 20 yearsindustry/bestpractices/software.html Pump System Assessment

  13. Compilation of RCRA closure plan conditions applicable to boilers and industrial furnaces at cement plants

    SciTech Connect (OSTI)

    Raymond, A.N.

    1998-12-31

    A prudent approach to closure plan development will assist preparers of closure plans to ensure that a cement kiln BIF unit and associated Resources conservation and Recovery Act (RCRA) units are effectively closed in a manner that minimizes potential threats to human health and the environment, as well as facilitating closure in an economical and timely manner. Cement kilns burning hazardous waste-derived-fuel (HWDF) must comply with the general facility standards of Subpart G Closure and Post-Closure requirements of 40 CFR parts 264 or 265 in addition to the RCRA Part b permitting requirements of 40 CFR parts 270.13 and 270.22 (e) and (f). As a result, approved closure plans for BIF facilities (or individual BIF units) will contain general and site-specific permit conditions that will mandate numerous closure activities be conducted to successfully implement the partial or final closure of a permitted or interim status BIF unit or facility. Currently, a scarce amount of published information is available to the cement industry in the form of agency guidance documents that would assist facilities with BIF unit closures. A review of seven approved or implemented closure plans revealed significant differences between plans approved recently versus a few years ago as well as observed differences in acceptable closure criteria between EPA regions and various states agencies. The intent of this paper is to first familiarize readers with general closure plan requirements, followed by a detailed discussion of closure requirements that are pertinent to BIF unit facilities. Comparisons are presented to provide an overview of typical components of BIF unit closure plans.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Manufacturing Industries. Good Practice Guide 131. Unitedand their Controls. Good Practice Guide 252. United Kingdom.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Industrial Technologies, Washington, DC. Motor Systems Tip Sheet United States Department of Energy (Industrial Electric Motor Systems Market Opportunities Assessment. U.S. Department of Energy’Energy Now in Your Motor-Driven Systems. Office of Energy Efficiency and Renewable Energy, Industrial

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    industry/bestpractices/software.html Pump System AssessmentPumps, and Fans website at: http://www1.eere.energy.gov/industry/pump user Format: Downloadable software Contact: U.S. Department of Energy URL: http://www1.eere.energy.gov/industry/

  19. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    SciTech Connect (OSTI)

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and M. Kushler. (1997). Energy Efficiency in Automotive and22 nd National Industrial Energy Technology ConferenceJr. and G. P. Looby. (1996). Energy Conservation and Waste

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanConsortium for Energy Efficiency (CEE) (2007). Energy-

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    actions, develop an energy management plan for business; and38. Caffal, C. (1995). Energy Management in Industry. Centre23 5.1 Energy Management Systems and

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    2005). Guidelines for Energy Management. Washington, D.C.Caffal, C. (1995). Energy Management in Industry. Centre forfor improving your energy management practices. Resources

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    1984). Energy Use and Energy Efficiency in UK Manufacturingin Industry: Energy Use and Energy Efficiency ImprovementExpert System for Energy Efficiency and Pollution Abatement

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Farrell, J. (1998). New Belgium brewing Company Focuses onOpportunities in the Canadian Brewing Industry. Brewersat its G. Heileman Division brewing facility in La Crosse,

  6. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    plants with specific energy and cost savings data, when suchpartners. Typically, energy and cost savings are around 5%budgeted. In addition to energy and cost savings, proper

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    A Refrigeration Plant within a Brewery Efficiently StoringThe Efficiency of A Brewery's Cooling System. Office ofbeer cooling process, the Stroh Brewery Company analyzed the

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    23 5.1 Energy Management Systems andmelting 5.1 Energy Management Systems and Programs Althoughof a strategic energy management system vary from plant to

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    energy savings, such as roof insulation, air conditioning efficiency,Energy Efficiency Opportunities for the Pharmaceutical Industry .17 5.1 Energy Management Systems and Programs18 5.2 Heating, Ventilation, and Air Conditioning (

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Conservation (CIPEC) (2001a). Boilers and Heaters, ImprovingCouncil of Industrial Boiler Owners, Burke, Virginia. 8.steam in a waste-heat recovery boiler (for example for space

  12. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    in Exeter, New Hampshire, identified electricity savings ofNew Hampshire, opportunities were identified for saving 1.7 million kWh of electricityelectricity use at OSRAM Sylvania’s glass plant in Exeter, New Hampshire,

  14. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    of Energy (DOE) (2003). Industrial Heat Pumps for Steam andExperiences with Industrial Heat Pumps. Analyses Series #23.in the industrial sector. However, geothermal heat pumps may

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    xmt.html Bristol Park Industries. (2002). Website: http://loss of light. Bristol Park Industries has patented anotherresults (Bristol Park Industries, 2002). 5.6. Heating,

  17. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    are used, however, cogeneration plants are significantlyto implement cogeneration; in plants with little thermal

  19. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    R.R. ,et al . (2004) Eco-industrial park initiatives in thea CHP plant) form an eco-industrial park that serves as an

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    electricity are used, cogeneration plants are significantlyon Heat Recovery and Cogeneration during Plant-Wide Energy-PE plants. Using power and steam from cogeneration where

  1. Cotton Breeding of the Bureau of Plant Industry U.S. Department of Agriculture and the Texas Experiment Station. 

    E-Print Network [OSTI]

    Bennett, R. L. (Robert Love)

    1905-01-01

    and first fruit limbs are hivh up from ground. l'lw ~,larrt llas a colnpaet appesmnre b;lt that IS clue to the many primary'limbs. Plants of this type or structure are late, fru~t slo~\\~ly and are not ada~ted to boll weevil conditions. demand... that will have a greater per cent of lint t I to 33, which is now the general yield, is greatly desired and would gely increase the profits of the grower at no cost whatever. Corn- ,re a cotton that yields 33* per cent of lint or a 500-pound bale he small g...

  2. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01

    Cogeneration of electricity and heat in industrial plants iscogeneration, especially just now when long term electricity contracts hide the marginal cost of new power from existing plants.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    energy efficiency measures available for motors and pumps in industrialEnergy (DOE) (2002g). United States Industrial Electric MotorIndustrial Electric Motor Systems Market Opportunities Assessment. Prepared for the United States Department of Energy’

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Industrial Electric Motor Systems Market Opportunities Assessment. U.S. Department of Energy’Energy Now in Your Motor-Driven Systems. Office of Energy Efficiency and Renewable Energy, IndustrialMotor. Office of Energy Efficiency and Renewable Energy, Industrial

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    and Trends in the Pulp and Paper Industry. American Counciland others in the pulp and paper industry (Xenergy, 1998)in the pulp and paper, chemical and refinery industries. The

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    industry/bestpractices/software.html Pump System AssessmentPumps, and Fans website at: http://www1.eere.energy.gov/industry/processing industry: steam systems, motors and pumps,

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    and Trends in the Pulp and Paper Industry. American Councilpulp and paper (paper stock, lime kiln), petroleum refineries (process, site), and steel industries (

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01

    Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    in the iron and steel industry include pumps for circulatingindustry/bestpractices/software.html Pump System Assessmentvacuum pumps were introduced in the semiconductor industry

  12. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    Pump System Performance. Available at: http://www1.eere.energy.gov/industry/industry/bestpractices/pdfs/pumplcc_1001.pdf. Pump Systemsindustry/bestpractices/software_motormaster.html. Pump

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    used throughout the industry for pumps, compressors as wellIAC 2005). 11. Pumps In the chemical industry, about 26% ofindustry/bestpractices/software.html Pump System Assessment

  14. Results of Continuous Load Cell Monitoring Field Trial for UF6 Withdrawals at an Operating Industrial Plant

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Bell, Lisa S; Conchewski, Curtis A; Peters, Benjamin R; Pickett, Chris A; Richardson, Dave; Rowe, Nathan C; Younkin, James R

    2010-01-01

    Continuous load cell monitoring (CLCM) has been implemented and tested for use as a safeguards tool during a 2009 field trial in an operating UF6 transfer facility. The transfer facility is part of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, operated by the United States Enrichment Corporation. During the field trial, two process scales for UF{sub 6} cylinders were continuously monitored for a 6-month period as cylinders were being filled. The collected CLCM data were used in testing an event processor serving as a filter for highlighting measurements representing significant operational activities that are important in verifying declared operations. The collection of CLCM data, coupled with rules-based event processing, can provide inspectors with knowledge of a facility's feed and withdrawal activities occurring between site visits. Such process knowledge promises to enhance the effectiveness of safeguards by enabling inspectors to quantitatively compare declared activities directly with process measurements. Selected results of the field trial and event processing will be presented in the context of their value to an independent inspector and a facility operator.

  15. Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

  16. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  17. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  18. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the ...

  19. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    Industrial Technologies Program. Motor Challenge: Project Fact Sheet: New Water Booster Pump System Reduces Energy

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    V. (2001). Optimize energy efficiency of HRSG. HydrocarbonS.K. (1997). Conserve Energy in Distillation. Chemicalreduces ethylene plant’s energy needs. Oil and gas journal,

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    industry/bestpractices/software.html Pump System Assessmentpump user Format: Downloadable software Contact: U.S. Department of Energy URL: http://www1.eere.energy.gov/industry/

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    Programme (1998). Good Practice Guide 249: Energy Savings inProgramme (1999). Good Practice Guide 225: Industrial

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01

    in the development of ISO 50001, the International Standardswww.energystar.gov/industry ISO 50001 was published on June

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01

    Caffal, C. (1995). Energy Management in Industry. Centre forEnergy Management .Management. Federal Energy Management Program, Washington,

  5. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System....

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    Government. Glossary ASD CDA CHP CIPEC cfm CO 2 EIA ft 2 GBPCombined Heat and Power (CHP) plants and other parts of thein combined heat and power (CHP) plants. Steam production in

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    on Heat Recovery and Cogeneration during Plant-Wide Energyplant neighborhood offers opportunities for innovative collaborations. For cogeneration

  8. Changing Industrial Energy Behavior Via Education: Case Study of an Energy Efficiency Refrigeration Certification

    E-Print Network [OSTI]

    McClaren, Mersiha; Phoutrides, Steve; O'Neil, Nick; McRae, Marjorie

    2015-01-01

    Changing Industrial Energy Behavior Via Education: Casewith the operation of industrial refrigeration plants,aim was to encourage industrial refrigeration professionals

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    Processing (2005a). Petrochemical processes 2005. More info:in boilers and petrochemical process units have shownalmost every process in the petrochemical industry, whereas

  10. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    DOE Energy Efficiency & Renewable Energy (EERE), Office ofEfficiency and Renewable Energy, Industrial Technologiesby the National Renewable Energy Laboratory, Golden, CO.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    OIT), Efficiency and Renewable Energy, U. S. Department ofF. , “Charcoal, renewable energy source for steelmakingEfficiency and Renewable Energy, Industrial Technologies

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    thermal energy for space heating, industrial processthermal energy demand and availability profiles for the process9 on process integration). Recovering thermal energy in the

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    energy efficiency of motor systems. December 2001. Office of Industrialenergy management programs and Chapters 7 to 11 discuss the following cross- cutting industrial systems: steam systems, motor

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    industry with specific energy and cost savings data whenoperations. Typically, energy and cost savings are around 5%also identify potential energy and cost savings. Quick PEP

  15. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    accessed August 31, 2010. ) U.S. DOE Energy Efficiency &Renewable Energy (EERE), Office of Industrial Technologies.2010. ) Alliance to Save Energy, 2002, pp. 96-97. Available

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    Programme (1994). Good Practice Guide 141: Waste heatProgramme (1998). Good Practice Guide 249: Energy Savings inProgramme (1999a). Good Practice Guide 225: Industrial

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    opportunities, recommend energy efficiency actions, developStrategies to Promote Energy-Efficient Motor Systems in2000). Emerging Energy- Efficient Industrial Technologies.

  18. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01

    Best Practices for Energy- Efficient Buildings. Funded by2000. Emerging Energy-Efficient Industrial Technologies.American Council for an Energy- Efficient Economy (ACEEE)

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Caffal, C. (1995). Energy Management in Industry. Centre forPollution Prevention/Energy Management. General Motorsactions, develop an energy management plan for business; and

  20. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01

    at Caffal, C. (1995). Energy Management in Industry. CentrePollution Prevention/Energy Management. General MotorsZetmeelindustrie (Energy Management Measures in the Starch

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    Conservation (CIPEC) (2001). Boilers and Heaters, ImprovingCADDET) (2003). Steam Boiler House Modifications Give EnergyCouncil of Industrial Boiler Owners, Burke, Virginia.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    1998). Council of Industrial Boiler Owners (CIBO). PersonalCommunication CIPEC (2001). Boilers and Heaters, Improvingheat and power systems for boiler owners and operators, Oak

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    1998). Council of Industrial Boiler Owners (CIBO). PersonalCommunication CIPEC (2001). Boilers and Heaters, ImprovingConsider energy conservation in boiler systems. Hydrocarbon

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    Case Study 77: Heat recovery from a thermal oxidizer.Economizers for Waste Heat Recovery. Steam Tip Sheet 3.Guide 141: Waste heat recovery in the process industries.

  5. DOE Seeks Industry Participation for Engineering Services to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation...

  6. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    NONE

    1990-08-01

    Recent nuclear industry briefs are presented. These briefs include: Japan completes test plant for laser enrichment, Saskatchewan reveals buyer percentages; West German utilities to take over East German Utilities; Mexico studying construction of 20 new nuclear plants; Cogema signs reprocessing contracts for 15 West German reactors; DOE`s FY91 incentive price predicted; West Germany decommissions sale uranium processing plant; Argentina`s Atucha-2 may be closed or sold; West Germany to buy Nukem plant for plutonium storage; and Saskatchewan revises uranium royalty system.

  7. Improve the Energy Efficiency of Pump Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program Pumping System Assessment Tool (PSAT) can help industrial plants identify opportunities to save energy and money in pump systems.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    Combined Heat and PowerPotential for Combined Heat and Power in the Industrialequipment Boilers, Combined Heat and Power (CHP) plants and

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    plants with specific energy and cost savings data whenbudgeted. In addition to energy and cost savings, propera significant reduction in energy and costs. Generally, two

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    on Heat Recovery and Cogeneration during Plant-Wide Energy-alone boilers or via cogeneration of electricity and heat.generation (including cogeneration), compressors, as well as

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    audits in an energy management system helps to guaranteemodule in the energy management system of a plant inoptimum. New energy management systems that use artificial

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    the Development of Strip Casting Technology. Energy Policythe Implementation of Continuous Casting of Steel,” StahlundSteel’s commercial strip casting plant. Metallurgist 52, pp.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    In addition, the coking coal market began to deteriorateits permeability. Bituminous, or coking coal, is blended andmerchant coke plants, coking coal is heated in a low-oxygen,

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    Borras, T. (1998). Improving Boilers and Furnaces. ChemicalSteam Conservation and Boiler Plant Efficiency Advancements.CIPEC). (2001a). Boilers and Heaters, Improving Energy

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    and Blaustein, 2001). Heat Recovery. More than 85% of thePlant Focuses on Heat Recovery and Cogeneration duringwith coal injection, heat recovery, oxygen addition, and

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    Plant Focuses on Heat Recovery and Cogeneration duringand Blaustein, 2001). Heat Recovery. More than 85% of thewith coal injection, heat recovery, oxygen addition, and

  17. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    Potential for Combined Heat and Power in the Industrial41 10.3 Steam Supply - Combined Heat and Power (is produced in combined heat and power (CHP) systems and the

  19. Outsourcing Ownership, Operation and Management of Industrial Facility Power Plants for the Purpose of Reducing Future Risk and Capital Requirements of the Corporation 

    E-Print Network [OSTI]

    Sebesta, J. J.; Schubbe, T.

    1999-01-01

    For many industrial corporations, the availability of funds for maintaining and modernizing Central Utility systems is becoming more and more difficult to obtain. Total return on investments in facility infrastructure generally does not tend to meet...

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    saves $200,000 per Year with Energy-Efficient Motors. CopperStrategies to Promote Energy-Efficient Motor Systems in2000). Emerging Energy-Efficient Industrial Technologies.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    Caffal, C. (1995). Energy Management in Industry. Centre forU.S. DOE-OIT (2003a). Energy Management Program Benefits.actions, develop an energy management plan for business; and

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    actions, develop an energy management plan for business; andCaffal, C. (1995). Energy Management in Industry. Centre forMean Big Success: Corporate Energy Management at Frito-Lay.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    actions, develop an energy management plan for business; andFigure 8-1. Main elements of a strategic energy managementCaffal, C. (1995). Energy Management in Industry. Centre for

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    Cooling Through Waste Heat Recovery. Washington, D.C. March.Low-Temperature Waste-Heat Recovery in the Food Industry.Schneider Foods Savours Heat Recovery Benefits. Office of

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01

    Cooling Through Waste Heat Recovery. Washington, D.C. March.Low-Temperature Waste-Heat Recovery in the Food Industry.Canada (AAFC) (1984). Heat Recovery for Canadian Food and

  6. Industrial Relations

    E-Print Network [OSTI]

    Ulman, Lloyd

    1987-01-01

    S. Tannenbaum. Madison: Industrial 1955. The Rise of the N ai a Working Paper 8733 INDUSTRIAL RELATIONS L l o y d UlmanEconomic Theory and Doctrine INDUSTRIAL RELATIONS Two great

  7. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  8. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be beneficial. * Examine the compressed...

  9. Achieve Steam System Excellence: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in plant improvement projects. * Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries (1) defines the volume and...

  10. Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities 

    E-Print Network [OSTI]

    Mesko, J. E.

    1980-01-01

    . The plants analyzed employ fluidized bed boilers for generation of steam for process and building/heating/cooling demands, in conjunction with electric power co-generation. Results of the analysis are presented, using life cycle costs and investment payback...

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01

    W.R. Grace: Plant Uses Six Sigma Methodology and Traditionalsystem such as ISO 14001 or Six Sigma can help companies tosuch as ISO 14001 and Six Sigma, can be used to complement

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01

    significant source of water and energy use in a dairy plant.reduce the amount of water and energy used. Using reuse oruse copious quantities of water and energy in the cleaning

  13. Industrial Retrofits are Possible 

    E-Print Network [OSTI]

    Stobart, E. W.

    1990-01-01

    industries and our surveys to date have shown savings of 6% in electricity and 11% in natural gas. Over the first two years of the program, individual plants have or are intending to implement more than half of the energy analysis recommendations....

  14. Ford Cleveland: Inside-Out Analysis Identifies Energy and Cost Savings Opportunities at Metal Casting Plant; Industrial Technologies Program Metal Casting BestPractices Plant-Wide Assessment Case Study

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of$3.28 million per year. In addition, two long-term projects were identified that together would represent another$9.5 million in cost savings.

  15. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  16. Power Plant Power Plant

    E-Print Network [OSTI]

    Stillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area Lakeview Geothermal Area Raft River Geothermal Area Cove Fort Power Plant Roosevelt Power Plant Borax Lake

  17. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  18. Directory of Tennessee's forest industries 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A directory of primary and secondary forest industries is presented. Firm names and addresses are listed by county in alphabetical order. The following information is listed for each industry: type of plant, production and employee size class, products manufactured, and equipment. For the primary industries, the major species of trees used are listed. (MHR)

  19. Heat pumps in industrial cleaning applications

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing;Heat pumps in industrial washing applications Bjarke Paaske, bjpa@dti.dk, phone: +45 7220 2037, Energy

  20. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  1. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1990-04-01

    Recent nuclear industry briefs are presented. These briefs include: Soviet Union to build Iran nuclear plant; Dension announces cuts in Elliot Lake production; Soviet environmental study delays Rostov startup; Cogema closes two mines; Namibian sanctions lifted by USA and Canada; US Energy and Kennecott restructors joint venture; Australians reelect Hawke; China to buy Soviet nuclear plant; Olympic Dam`s first sale of concentrates to USA; Uranevz buys one-third of Cogema`s Rabbit Lake operations; East and West Germany forming joint nuclear law; and Nova Scotia extends uranium exploration plan.

  2. OTHER INDUSTRIES

    Office of Energy Efficiency and Renewable Energy (EERE)

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  3. DOE/OIT Plant-Wide Energy Assessment Experience Summary 

    E-Print Network [OSTI]

    Olszewski, M.; Leach, R.; McElhaney, K.

    2001-01-01

    The Department of Energy (DOE) Office of Industrial Technologies (OIT) is sponsoring cost-shared, plant-wide energy assessments of industrial facilities through its BestPractices Program. The purpose of these assessments is to examine plant utility...

  4. Industrial hygiene walk-through survey report of E. I. Dupont de Nemours and Company, Inc. , Chocolate Bayou Plant, Alvin, Texas

    SciTech Connect (OSTI)

    Fajen, J.M.

    1985-05-01

    A walkthrough survey of EI duPont deNemours and Company, Incorporated, Alvin, Texas was conducted in November, 1984. The purpose of the survey was to obtain information on the 1,3-butadiene monomer manufacturing process and the potential for exposure. The facility manufactured a crude product stream containing 1,3-butadiene as a coproduct of its ethylene process. The crude was refined to a 99.5% 1,3-butadiene product. The refining process occurred in a closed system, tightly maintained for economic, fire, and health-hazard reasons. The product was transferred by way of a pipeline to storage spheres for later transport off site. The facility used an open-loop cylinder (bomb) technique for quality control sampling. All pumps were equipped with single mechanical seals, which were in the process of being replaced by tandem seals. Since 1962, the facility had experienced process changes and three changes of ownership. Because of these changes, records from previous owners of industrial hygiene monitoring were not available. Job titles identified as having potential exposure were processors, wage employee supervisors, production engineers, and laboratory technicians. The author concludes that a closed-loop manual quality-control sampling system should be installed to reduce exposure from this source.

  5. EPRI's Industrial Energy Management Program 

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    1992-01-01

    supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity are of national importance... in municipal water and sewage treatment plants, field evaluation of advanced reverse osmosis to recycle electroplating waste water, and cross divisional analysis and assessment of EPRI-developed technology for industrial customer applications. SUMMARY...

  6. Applications of Ontologies for Assembling Simulation Models of Industrial Systems

    E-Print Network [OSTI]

    industrial plant man- ually, which is time-consuming and error-prone. We propose to use a semi-automated models, industrial automation, SPARQL querying, design and integration 1 Introduction Modern industrialApplications of Ontologies for Assembling Simulation Models of Industrial Systems Petr Nov´ak1

  7. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  8. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  9. High-Performance Renewable Base Oils for Industrial Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Renewable Base Oils for Industrial Lubricants Plant-Based Synthetic Lubricant Base Stock Reduces Emissions Dependence on foreign oil is a growing concern, as is...

  10. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Environmental Management (EM)

    Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction The 15,000 square-foot sustainably designed National Sequestration Education Center, located at Richland...

  11. US prep plant census 2008

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-10-15

    Each year Coal Age conducts a fairly comprehensive survey of the industry to produce the US coal preparation plant survey. This year's survey shows how many mergers and acquisitions have given coal operators more coal washing capacity. The plants are tabulated by state, giving basic details including company owner, plant name, raw feed, product ash %, quality, type of plant builder and year built. 1 tab., 1 photo.

  12. Best Practices: The Engineering Approach For Industrial Boilers 

    E-Print Network [OSTI]

    Blake, N. R.

    2001-01-01

    A plant's boilers represent a large capital investment, as well as a crucial portion of overall plant operations, regardless of the industry our customers are in. It is important to have systems and procedures in place to protect this investment...

  13. Using DOE Industrial Energy Audit Data for Utility Program Design 

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    1993-01-01

    The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information...

  14. Optimization of opportunistic replacement activities: A case study in the aircraft industry

    E-Print Network [OSTI]

    Patriksson, Michael

    examples are power plants (e.g., water and nuclear plants), processing industry (e.g., paper plantsOptimization of opportunistic replacement activities: A case study in the aircraft industry Torgny Svensson # Abstract In the aircraft industry maximizing availability is essential. Maintenance schedules

  15. Bayou Cogeneration Plant- A Case Study 

    E-Print Network [OSTI]

    Bray, M. E.; Mellor, R.; Bollinger, J. M.

    1985-01-01

    PLANT - A CASE STUDY Michael E. Bray Roy Mellor Joseph M. Bollinger ABSTRACT The Bayou Cogeneration Plant is a prime example of the high fuel efficiency and consequent energy savings an industrial company can realize from cogeneration. A joint..., General Electric was responsible for the entire project from cycle engineering through start up and is currently operating and maintain ing the plant. This paper describes the factors which led Big Three Industries to build a cogeneration power plant...

  16. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  17. Design Considerations for Large Industrial Cogeneration Systems 

    E-Print Network [OSTI]

    Kovacik, J. M.

    1979-01-01

    Cogeneration systems have been contributing to the profitability of many industrial plants for years. However, with the renewed interest in energy and conservation as the cornerstone of the National Energy Act, it is important that the alternatives...

  18. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  19. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore »investments.« less

  20. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  1. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    NONE

    1990-12-01

    Recent nuclear industry briefs are presented. These briefs include: uranium mine closures; all Ontario new reactor plans halted; B & W and GA form MHTGR fuel joint venture; Namibia seeks uranium sales in Japan; Minatco purchases remainder of Wolly Project; CGE agrees to relinquish control of Framatome; Oregon voter keep Trojan Nuclear Plant open; Soviets invited to Foratom meeting; court overrules NRC in licensing and training issues; Glencar exploration injoint venture with Hungarian mine; Soviet Union and Argentina to cooperate in breeder program; and German loads revive Atucha-2.

  2. Conditional sterility in plants

    DOE Patents [OSTI]

    Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

    2010-02-23

    The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

  3. Energy Conservation in China North Industries Corporation 

    E-Print Network [OSTI]

    You, W. T.; De, C. H.; Chu, J. X.; Fu, L. R.

    1985-01-01

    IN CHINA NORTH INDUSTRIES CORPORATION Wang Tian You, Chen Hua De, Jing Xing Chu, Ling Rui Fu, China North Industries Corporation Beijing, People's Republic of China ABSTRACT This paper describes an overview of the energy conservation in China... North Industries Corporation. It shows how the corporation improves energy effi ciencies and how it changes constitution of fuel-- converting oil consumption to coal. Energy management organization, energy balance in plants and several specific...

  4. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  5. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  6. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry and its suppliers

  7. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

  8. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  9. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logoInIndustry @ ALS

  10. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent Sign InIndustrial

  11. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent SignIndustrial Users -

  12. Industry Economists

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide toHighHowIndustry

  13. Introduction Actual Industrial Problems

    E-Print Network [OSTI]

    Nigam, Nilima

    Introduction Actual Industrial Problems What's needed? Is there really interesting mathematics in Industry? Can mathematicians contribute to society, and do we want to...? Nilima Nigam Department Mathematics in Industry #12;Introduction Actual Industrial Problems What's needed? Some controversial

  14. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  15. Argentina`s nuclear industry

    SciTech Connect (OSTI)

    NONE

    1988-02-01

    Argentina occupies a somewhat unusual position among the world`s nuclear nations, in that, while possessing a rather diverse nuclear industry, it has managed to remain largely outside the system of international controls, and is not a signatory of the Nuclear Non-Proliferation Treaty. Argentina currently has two operating reactors, Atucha Unit 1 (335-MWe PHWR) and Embalse (600-MWe CANDU), with another under unit, Atucha Unit 2 (698-MWe PHWR) under construction. Commercial nuclear development is primarily under the control of the Comision Nacional de Energia Atomica (CNEA), which also manages a modest uranium production industry. Fuel cycle facilities, notably an enrichment plant at Pilcaniyeu and a pilot reprocessing plant at Ezeiza, are under development.

  16. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  17. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

  18. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  19. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  20. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants Summary Report and Case Studies

    SciTech Connect (OSTI)

    none,

    2010-06-25

    Industrial Technologies Program’s BestPractices report based on a comprehensive plant assessment project with ITP’s Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  1. Industrial Engineering (IE) is concerned with the design, analysis and implementation of any production or service system with the goal of improving its quality and productivity. The system could be a manufacturing plant, a transportation or a distributio

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    and Analysis IEMS 385: Introduction to Health Systems Management RESEARCH AREAS Financial Engineering Healthcare Engineering Humanitarian Logistics Social and Organizational Networks Optimization Learn More 5, Engineers for a Sustainable World, Design for America, Formula SAE, Institute of Industrial Engineers

  2. Pinellas Plant Environmental Baseline Report

    SciTech Connect (OSTI)

    Not Available

    1997-06-01

    The Pinellas Plant has been part of the Department of Energy`s (DOE) nuclear weapons complex since the plant opened in 1957. In March 1995, the DOE sold the Pinellas Plant to the Pinellas County Industry Council (PCIC). DOE has leased back a large portion of the plant site to facilitate transition to alternate use and safe shutdown. The current mission is to achieve a safe transition of the facility from defense production and prepare the site for alternative uses as a community resource for economic development. Toward that effort, the Pinellas Plant Environmental Baseline Report (EBR) discusses the current and past environmental conditions of the plant site. Information for the EBR is obtained from plant records. Historical process and chemical usage information for each area is reviewed during area characterizations.

  3. What can I do with this degree? PLANT BIOLOGY

    E-Print Network [OSTI]

    Escher, Christine

    Industries including petrochemical, chemical, and lumber and paper Companiesincludingpharmaceutical computer skills. Joinrelatedprofessionalassociations. Learnfederalandstategovernmentjobapplication process agencies Applied Plant Science, Continued Learn federal, state and local government job application process

  4. Fossil Power Plant Applications of Expert Systems: An EPRI Perspective 

    E-Print Network [OSTI]

    Divakaruni, S. M.

    1989-01-01

    the role of expert systems in the electric power industry, with particular emphasis on six fossil power plant applications currently under development by the Electric Power Research Institute....

  5. Waste Heat Recovery in Cement Plants By Fluidized Beds 

    E-Print Network [OSTI]

    Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

    1984-01-01

    , the industry has reduced the fuel requirement per ton of cement from about 7 million Btu per ton in old plants to less than 3 million Btu per ton in the most modern plants....

  6. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  7. Encouraging Industrial Demonstrations of Fuel Cell Applications 

    E-Print Network [OSTI]

    Anderson, J. M.

    1986-01-01

    INDUSTRIAL DEMONSTRATIONS OF FUEL CELL APPLICATIONS Joseph M~ Anderson, P.E. INDUSTRIAL FUEL CELL ASSOCIATION Lake Charles, Louisiana ABSTRACT Fuel Cell technology has advanced from a space-age curiosity to near commercial status within the last few... years. Both the electric and the gas utilities in the United States have conducted ambitious programs to oemonstrate the practicality of fuel cell power plants in a number of applications. The Japanese have been equally active in promoting a fuel...

  8. Industrial and Corporate Change, pp. 132 doi:10.1093/icc/dtt039

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    of new industries: evidence from Brazil's bioethanol industry Santiago Mingo*,y and Tarun Khanna of the Brazilian bioethanol industry, focusing on the industrial policy program imple- mented by the Brazilian information about the history of bioethanol producers. Our findings show that plants founded during

  9. Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction 

    E-Print Network [OSTI]

    Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

    1991-01-01

    for ozone. Some people believe this classification leads to a bad environmental image. Such an image stifles further economic development and forces existing industries to renovate or close. Sixty four industrial plants located near Baton Rouge were ordered...

  10. Mechanical, Industrial & Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Mechanical, Industrial & Manufacturing Engineering (MIME) COLLEGE OF ENGINEERING FY2013 Oregon graduate degrees (MS, MEng, PhD) in mechanical engineering, industrial engineering, and materials science. We offer bachelor's degrees in mechanical, industrial, manufacturing, and energy systems engineering

  11. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  12. Industrial and Systems engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

  13. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  14. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  15. Industry Analysis February 2013

    E-Print Network [OSTI]

    Fletcher, Robin

    -Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green) · Business Source Complete - Company, market, industry news and articles · CBCA and Canadian Newsstand

  16. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  17. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  18. Saving Energy in Industrial Compressed Air Systems: Issues and Obstacles in DSM Program Design 

    E-Print Network [OSTI]

    Trojanowski, D.; Parfomak, P.

    1993-01-01

    Compressed air systems are among the most common and least efficient electrical end uses in industrial plants. Over 50% of plants use compressed air systems. According to various estimates, between 20% and 35% of the energy used in these systems...

  19. Improving pumping system efficiency at coal plants

    SciTech Connect (OSTI)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  20. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    Emissions from the Global Cement Industry, Annual Review ofBösche, A. , 1993. “Variable Speed Drives in Cement Plants,”World Cement 6 24 pp.2- Buzzi, S. 1997. Die Horomill® - Eine

  1. interfaces Alumni & Industry Magazine Chemical Engineering & Applied Chemistry

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    of Toronto Volume 9, Spring 2012 Industrial Water 4 Student News Plant Design Dives into Oil Sands Tailings this year, three groups were asked to propose remedies for the Athabasca Oil Sands Tailings Ponds. Currently

  2. Present and Future Uses of Industrial Absorption Heat Pumps 

    E-Print Network [OSTI]

    Erickson, D. C.; Davidson, W. F.

    1985-01-01

    This paper examines the present and projects the future uses of industrial absorption heat pumping. AHP technology is seen as an increasingly important component of plant and process heat integration for energy conservation. Existing installations...

  3. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  4. Estimating Industrial Electricity Conservation Potential in the Pacific Northwest 

    E-Print Network [OSTI]

    Limaye, D. R.; Hinkle, B. K.; Lang, K.

    1982-01-01

    in each industry group. The plant level conservation estimates were extrapolated to the 4-digit and 2-digit SIC levels. An analysis of the market penetration of each conservation measure was performed using a distribution of desired rates of return...

  5. Brownfields in China : how Cities recycle industrial land

    E-Print Network [OSTI]

    Li, Xin, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    Since around 2000, China has been experiencing a major shift in its industrial bases. Many cities have been relocating polluting and energy-intensive plants from urban areas to the less-developed periphery. In the summer ...

  6. Case Studies of Industrial Cogeneration in the U. S. 

    E-Print Network [OSTI]

    Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

    1980-01-01

    This paper describes the results of a survey and evaluation of plant-specific information on industrial cogeneration. The study was performed as part of a project sponsored by the Electric Power Research Institute to evaluate Dual Energy Use Systems...

  7. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

  8. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

  9. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Industry and Company research ­ they build on each other #12;Industry Studies Standard & Poor's Net of competitors Standard & Poor's NetAdvantage - See 'Industry Surveys' under the "Quick Links" #12;Where Common technologies are there industry standards, platforms manufacturing processes, outsourcing? #12

  10. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  11. Cogeneration: An Industrial Steam and Power Option 

    E-Print Network [OSTI]

    Orlando, J. A.; Stewart, M. M.; Roberts, J. R.

    1993-01-01

    , these internal use systems use the cogenerated power on-site to reduce power purchases. Ranging from a few hundred kilowatts to tens of megawatts, they are somewhat smaller than the Wholesale Power systems; system size is determined by the industrial plant...

  12. Alternatives to Industrial Cogeneration: A Pinch Technology Perspective 

    E-Print Network [OSTI]

    Karp, A.

    1988-01-01

    TO INDUSTRIAL COGENERATION: A PINCH TECHNOLOGY PERSPECTIVE ALAN KARP, Senior Consultant Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Pinch Technology studies across a broad spectrum of processes confirm that existing plants typically consume 15... industries, Pinch Technology has consistently shown that existing plants typically consume 15-40% more thermal energy than they should. This is true even among relatively new facilities which might be thought to be well optimized. Clearly, cogeneration...

  13. Industry Professional | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformationPlant ServicesIndustry

  14. Better Plants Progress Update Fall 2013

    SciTech Connect (OSTI)

    none,

    2013-09-23

    This Progress Update summarizes the significant energy saving achievements and cumulative cost savings made by these industry leaders from 2010-2012. The update also shares the plans and priorities over the next year for the Better Plants Program to continue to advance energy efficiency in the industrial sector.

  15. Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM

    E-Print Network [OSTI]

    Purpose-designed Crop Plants for Biofuels BIOENERGY PROGRAM The Texas AgriLife Research Center for the biofuels industry. This program recognizes that the ideal combination of traits required for an economically and energetically sustainable biofuels industry does not yet exist in a single plant spe- cies

  16. Physical Plant Power Plant - 32 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature...

  17. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect (OSTI)

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  18. The Industrial Electrification Program 

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  19. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  20. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  1. Industry Analysis January 2012

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    ;8 Conference Board E-Library ­ Canadian industries, economic trends & forecasts ­ national, provincial1 CHEE 906 Industry Analysis January 2012 Constance Adamson, Stauffer Library adamsonc for both Industry and Company research ­ they build on each other #12;3 Where are they? · Library website

  2. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role in designing and conducting industrial processes. The potential gains range from saving valuable resources over makers from industry and academia to initiate new projects and to foster new structured collaborations

  3. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  4. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  5. INDUSTRIAL RELATIONS 1. Agreements with Industry

    E-Print Network [OSTI]

    of the New Hampshire Industrial Research Center (NHIRC), a cooperative project of the New Hampshire Department of Resources and Economic Development (DRED), the University of New Hampshire (UNH), and Dartmouth

  6. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  7. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  8. Sensor Fault Detection in Power Plants Andrew Kusiak1

    E-Print Network [OSTI]

    Kusiak, Andrew

    Sensor Fault Detection in Power Plants Andrew Kusiak1 and Zhe Song2 Abstract: This paper presents models; Diagnosis; Combustion; Power plants; Probe instruments. Introduction Measurements in industrial and Soroush 2003 . Any false reading could lead to di- sastrous outcomes. In a coal-fired power plant, faulty

  9. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  10. Industry`s turnaround looks real

    SciTech Connect (OSTI)

    NONE

    1997-08-01

    The paper discusses the industry outlook for North American gas and oil industries. In a robust Canada, land sales are setting records, drilling is up, and output is rising beyond last year`s 21% growth. A perception among US operators that wellhead prices will remain stable is translating to increased spending. The USA, Canada, Mexico, Cuba are evaluated separately, with brief evaluations of Greenland, Guatemala, Belize, and Costa Rico. Data are presented on drilling activities.

  11. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  12. Economic analysis for controlling water pollution in the paint manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The document is the result of a study of the paint manufacturing industry. It will serve as guidance for State and local authorities in controlling the discharge of pollutants by plants within the paint manufacturing industry as the Agency has exempted the industry from regulation under Paragraph 8(a) (iv) of the Settlement Agreement.

  13. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  14. Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments

    E-Print Network [OSTI]

    Short, Daniel

    Chemical and isotopic properties and origin of coarse airborne particles collected by passive vehicle and industrial emissions, coal combustion (e.g. cooking, heating, power plants) represents

  15. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  16. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  17. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect (OSTI)

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  18. Evaluation of Impacts on Energy and Plant Profitability of Responses to Water Curtailment 

    E-Print Network [OSTI]

    Ferland, K.

    2015-01-01

    Curtailment on Energy Use and Plant Net Profitability June 4, 2015 Industrial Energy Technology Conference Kathey Ferland Texas Industries of the Future The University of Texas at Austin Peter Phelps Phelps Engineering ESL-IE-15-06-24 Proceedings... of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 Topics • Background • Water/energy Nexus in Process Industries • Reference Plant and Methodology • Curtailment Scenarios • Modeling Results • Conclusions • Next Steps...

  19. Energy Efficiency in the Microelectronics Industry 

    E-Print Network [OSTI]

    Bhatti, B.

    1998-01-01

    Distnbution and how a system approach to understanding these can result in developing energy efficient sites for this industry. OVERVIEW Almost all sites trend and trdck their electric demand KW and KWH profile along with their electric utility bill... selected buildings with utility rdtes and air and plant system simulated data generdting a variety of outputs to display total energy use information. We will use this to generdte KW, KWH profIles and then component annual electric costs. igure 3...

  20. Levels of metals from salt marsh plants from Southern California, USA

    E-Print Network [OSTI]

    Hoyt, Kimberly Ann

    2009-01-01

    canneries, industry, shipyards, and sewage overflows (Burke,manufacturing plants, shipyards, recreational boating withfuel combustion, shipyards, and the spillage from many

  1. CASL - Industry Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Member round Robin Discussion and New Action items Organization Senior Leadership Technical Leadership Outreach Board of Directors Industry Council Science Council One-Roof Culture...

  2. CASL - Industry Council Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 March 17, 2015 Upcoming Meeting Information Organization Senior Leadership Technical Leadership Outreach Board of Directors Industry Council Science Council One-Roof Culture...

  3. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  4. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  5. State Arboretum of Virginia at Blandy Experimental Farm Alien Invasive Landscape Plants in Virginia

    E-Print Network [OSTI]

    Huang, Wei

    State Arboretum of Virginia at Blandy Experimental Farm Alien Invasive Landscape Plants in Virginia The following list contains alien invasive plants that are grown and/or used in the landscape/nursery industry

  6. Physical Plant Power Plant - 43 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    with higher efficiency / R&D Climate friendly Power Plants Build coal fired Power Plants with CCS-technology 4 B a c k u p va W GGEHEN ESL-IC-08-10-27 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany..., October 20-22, 2008 RWE Energy / Energieeffizienz bei Immobilien / U. K?nig / ICEBO '08 SEITE 9 Electricity Production: All Energy Sources have to be included! Lignite Power Plant (BoA) produces 8,8 TWh = appr. 12% of the annual demand for electricity...

  7. NGV industry infrastructure

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Current natural gas vehicle (NGV) technology faces a number of problems that must be overcome before vehicles powered by compressed natural gas become accepted in the US. Among these impediments are regulatory uncertainties, codes, standards and the NGV industry infrastructure itself. The marketing/supply infrastructure necessary to support the NGV industry is described.

  8. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle, Undergraduate Program Director Office: 207C Engineering Lab Building Phone: (413) 545-2505 Head of Department

  9. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  10. Posted 3/2/13 Medline Industries Industrial Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

  11. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  12. INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

  13. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  14. CASL - Industry Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and end-users of CASL products. Members represent owneroperators of nuclear plants, fuel vendors, design engineering companies, engineering service providers, and...

  15. Analysis of curricular units of a graduate industrial hygiene program 

    E-Print Network [OSTI]

    Collier, Stephen Ward

    1983-01-01

    of Industrial Hygiene from its concep- tion has been concerned with the industrial hygiene man- power problem. Article II(a) of the AAIH Bylaws states: recruitment and training ? develop and conduct pro- grams of recruitment of graduates in the sciences... complexity, and less direction for the student. The fourth-ranked enabling objective, $8, is concerned with the storage o f hazardous chemicals w' thin th plant. Several respondents commented that the task/activity and requirements of the enabling...

  16. Creating Value Wood Products Industry

    E-Print Network [OSTI]

    1 Creating Value for the Wood Products Industry Creating Value for the Wood Products Industry for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all assistance to the primary and value-added processing wood products industries in Louisiana. Since its

  17. Pinch Retrofits Provide Cost-Effective Plant Uprating Potential 

    E-Print Network [OSTI]

    Rossiter, A. P.; Spriggs, H. D.; McMullan, A. S.

    1989-01-01

    In today's economic environment, the need for increased production rivals the desire for energy efficiency for plant operators in many sectors of the process industries. This, in turn, places additional demands on the retrofit studies that are being...

  18. Integrating Process Unit Energy Metrics into Plant Energy Management Systems 

    E-Print Network [OSTI]

    Davis, J. L.; Knight, N.

    2005-01-01

    As energy costs continue to rise across the process industry, many plants have responded by developing improved energy monitoring and reporting programs. At the center of such programs are typically spreadsheet or database applications that pull...

  19. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  20. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  1. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  2. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    industrial ecology projects (Hotta and Aoki-Suzuki 2010; Nakamura Japan’s Waste Managementand waste management measures), and comprehensive plant performance requirements (EC, 2011b). While requiring that industrial

  3. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01

    series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy...

  4. Innovative Energy Efficient Industrial Ventilation 

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01

    This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130...

  5. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  6. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01

    Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

  7. Industrial Assessment Center

    SciTech Connect (OSTI)

    J. Kelly Kissock; Becky Blust

    2007-04-17

    The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

  8. BTU Accounting for Industry 

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01

    Today, as never before, American industry needs to identify and control their most critical resources. One of these is energy. In 1973 and again in 1976, the American public and business was confronted with critical energy supply problems. As a...

  9. AI Industrial Engineering 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

  10. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  11. Load Management for Industry 

    E-Print Network [OSTI]

    Konsevick, W. J., Jr.

    1982-01-01

    categories: Thermal Energy Storage, Communication and Load Control, Interconnection and Operation of Power Systems, and Selective Load Promotions. The endeavors of the utility industry and Ohio Edison Company in three of the four categories are described...

  12. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2009-05-15

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  13. Utility and Industrial Partnerships 

    E-Print Network [OSTI]

    Sashihara, T. F.

    1989-01-01

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  14. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  15. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  16. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  17. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  18. Primitive Land Plants 37 PRIMITIVE LAND PLANTS

    E-Print Network [OSTI]

    Koptur, Suzanne

    appeared at this time. Both of these groups of plants had life cycles, involving two generations. One of the year these mosses will produce tiny sporophytes. Prior to this generation, the tiny plants producedPrimitive Land Plants 37 PRIMITIVE LAND PLANTS These are the plants that were present soon after

  19. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  20. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  1. Balance of Plant Needs and Integration of Stack Components for

    E-Print Network [OSTI]

    include vehicles, combined heat and power (CHP), industrial plants, and forklifts. #12;Who Needs Balance CONDENSER EXHAUST EXHAUST CHP LOAD WATER PUMP CATHODE BLOWER LS VALVE METERING VALVE COOLANT PUMP SIMPLIFIED/CHP Integrated Data System. Web. 2004-2007. #12;Reliability Industrial Motive Power Reliability is the top

  2. Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

  3. Industrial Cogeneration Application 

    E-Print Network [OSTI]

    Mozzo, M. A.

    1986-01-01

    reviewing the potential of cogeneration at some of our key facilities. Our plan is to begin with a Pilot Plant 500 KW steam turbine generator to be install~d and operating in 1986. Key points to be discuss~d in the paper are: 1. Relationship... will discuss a pilot plant planned f6r construction in 1986 at one of our key.facilities ~ith particular emphasis 9n .. American Standard's?cogeneration strategy, selection of the pilot plant site, engineering considerations, outside relationships...

  4. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

  5. industrial & systems Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

  6. industrial & systems Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

  7. MIT and Building/Construction & Related Industries MIT Industry Brief

    E-Print Network [OSTI]

    Kastner, Marc A.

    MIT and Building/Construction & Related Industries MIT Industry Brief MIT's Industrial Liaison-617-253-2691, e-mail us at liaison@ilp.mit.edu, or visit http://ilp.mit.edu. MIT and Building and education on topics important to build- ing, construction, and related areas and industries such as

  8. Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector 

    E-Print Network [OSTI]

    Garnik, S. P.; Martin, M.

    2014-01-01

    consumption (SEC) reduction targets for 478 DCs in eight industrial sectors like Cement, Pulp & Paper, Aluminium, Textile, Chlor-Alkali, Iron &Steel, Fertilizer and Thermal Power Plant. Different targets have been assigned to different DCs and to be achieved...

  9. Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques 

    E-Print Network [OSTI]

    Viar, W. L.

    1984-01-01

    Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed...

  10. New 3E Plus Computer Program- A Tool for Improving Industrial Energy Efficiency 

    E-Print Network [OSTI]

    Brayman, N. J.

    1997-01-01

    The task of determining how much insulation is necessary in the US industrial and manufacturing sector to save money, use less energy, reduce plant emissions and improve process efficiency has been greatly simplified thanks to a software program...

  11. Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing 

    E-Print Network [OSTI]

    Hart, M. N.; Bond, S. K.

    1979-01-01

    Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most...

  12. Improving Cooling System Immunity Supply Voltage Sags in Petroleum and Chemical Industries 

    E-Print Network [OSTI]

    Dorr, D. S.

    2000-01-01

    Electrical service faults and voltage discontinuities are of growing concern in process industries where individual sensitive equipment or controls can disrupt the entire plant. In fact, just a minor variation in power for a fraction of a second can...

  13. Process Waste Heat Recovery in the Food Industry - A System Analysis 

    E-Print Network [OSTI]

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  14. $3.6 Million in Savings Identified in AMCAST Assessment: Plant-Wide Assessment Summary--Metal Casting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2003-08-01

    Summary of AMCAST Industrial Corporation's plant-wide assessment to identify energy and cost saving opportunities at the corporation's facility in Wapakoneta, Ohio.

  15. Method of preparing and handling chopped plant materials

    DOE Patents [OSTI]

    Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  16. Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents an empirical and quantitative analysis of the misestimation of the capital costs and performance of innovative energy process plants and other chemical process facilities that create fundamental problems for government and industry in planning the development and commercialization of such plants.

  17. Understanding Process Plant Schedule Slippage and Startup Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study explores major factors causing schedule delays and problems often experienced in constructing and starting up new process plants. The results of this research provide new insights into the problems firms across the process industries encounter in planning major plant developments.

  18. Landscape Plants: Fertilizing & Watering

    E-Print Network [OSTI]

    Ishida, Yuko

    Landscape Plants: Fertilizing & Watering Landscape Plants: Fertilizing & Watering Prevent runoff and shrubs, either through directly killing plants or making them more prone to disease. Fertilizer runoff into storm drains pollutes waterways. Maintain plant health and protect water quality by fertilizing

  19. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  20. "Matrix/Modular" - An Approach to Analyzing Cogeneration Opportunities in Industry 

    E-Print Network [OSTI]

    Canty, W. R.

    1979-01-01

    /MODULAR" AN APPROACH TO ANALYZING COGENERATION OPPORTUNITIES IN INDUSTRY W. R. Canty Shell Oil Company Houston, Texas The petrochemical industry has long recognized that electrical and mechanical energy can be generated as a by-product of its process steam... units. In addition, economic incentives for the construction of cogeneration plants have been enacted in an effort to promote energy conservation. These government actions have led to renewed interest in the use of cogeneration plants which combine...

  1. Large-Scale Industrial Carbon Capture, Storage Plant Begins Constructi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from biologic fermentation, a significant feature of the project is its "negative carbon footprint," meaning that the sequestration results in a net reduction of...

  2. Optimum Heat Power Cycles for Process Industrial Plants 

    E-Print Network [OSTI]

    Waterland, A. F.

    1982-01-01

    Electric power cogeneration is compared with direct mechanical drives emphasizing the technical aspects having the greatest impact on energy economics. Both steam and gas turbine applications are discussed and practical methods of developing...

  3. Industrial Planting of E. viminalis in Mendocino County1

    E-Print Network [OSTI]

    Standiford, Richard B.

    's processing requirements. The latter criterion was provided by Masonite's wood technologists in Australia red color of the wood and Messmate stringybark (E. obliqua L'Herit.) because of fiber instability Australia using pelletized seed where fertilizer and peat was added to the seed and then cubed. However

  4. Industry - Specific Energy Conservation Opportunities in Chemical Plants 

    E-Print Network [OSTI]

    McBride, R. B.

    1979-01-01

    . ? Maximum utilization of available pressures to minimize feed gas and/or residue gas compressor require ments. Project "0" This multi-product refining project is, to some extent, an Ener~y Conservation Project since operations from several areas...

  5. Optimal Scheduling of Industrial Combined Heat and Power Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    , Aachen, Germany Corresponding author. Email address: grossmann@cmu.edu 1 #12;robustness of the energy adopted in national laws, e.g. in two steps in Europe's largest energy market, Germany. First of the associated production processes are under-utilized, which challenges the competitiveness of chemical

  6. Simulation of an Industrial Rankine Cycle Cogeneration Plant 

    E-Print Network [OSTI]

    Carattie, G.; Wepfer, W. J.

    1984-01-01

    Sophisticated designs of thermal systems may be evaluated, quickly and inexpensively, with the support of computer based system simulation techniques; i.e. CAD for thermal systems. Furthermore, the response of a thermal system to predicted periodic...

  7. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation StandardsEnergy

  8. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSitePost-Closure

  9. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage

  10. Industrial Heat Recovery - 1982 

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01

    Industrial Research HTFS Re search Programme HTFS/1S/R19, "Dryout and Flow in Horizontal and Horizontal Hairpin Tubes". 6 l\\rnerican Boiler I1anufacturers Assoc iation, "Lexicon, Boiler & Auxiliary Eauinment", 7 G:t=iffith P., book of I:eat senow N... RECOVERY - 1982 by Denis Csathy, Deltak Corn,oration, !1inneapolis, 11N Two years ago I summarized 20 years of ex perience on Industrial Heat Recovery for the Energy-source Technology Conference and Exhibition held in New Orleans, Louisiana. l...

  11. CHME SUMMER PRACTICE GUIDE 1. Our curriculum requires each student to have two summer practices in industrial

    E-Print Network [OSTI]

    Hasýrcý, Vasýf

    , water and waste treatment, others : Up to 1 week It is known that some plant managers have an attitude practices in industrial plants (CHME 300 and CHME 400), each for a duration of at least 20 working days. 2 themselves with all aspects of plant operation; from raw materials to final products, from management

  12. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in...

  13. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  14. e-Business W@tch European Commission, DG Enterprise & Industry

    E-Print Network [OSTI]

    . The company operates 36 pulp, paper and packaging mills, 132 converting and packaging plants, 35 wood products1 e-Business W@tch European Commission, DG Enterprise & Industry E-mail: entr publications and resources prepared by e-Business W@tch. The European Commission, Enterprise & Industry

  15. The Enbridge "Steam Saver" Program: Steam Boiler Plant Efficiency-Update to Year End 2005 

    E-Print Network [OSTI]

    Griffin, B.; Johnson, D.

    2006-01-01

    ” PROGRAM STEAM BOILER PLANT EFFICIENCY-UPDATE TO YEAR END, 2005 March 1, 2006 Bob Griffin, P.Eng., Energy Solutions Manager, Enbridge Gas Distribution Inc., Toronto, Ontario Daniel Johnson, B.A.Sc., Industrial Energy Engineer, Enbridge Gas Distribution... of Enbridge’s “Steam Saver” program first introduced in 1997. The goal of this program is to reduce fuel consumption in industrial steam plants and distribution systems. We have now completed 92 detailed boiler plant performance tests and audits...

  16. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  17. for Industry Manufacturing

    E-Print Network [OSTI]

    helps to reduce risk and accelerate the development and deployment of innovative energy-efficient Energy Research Nation's broadest portfolio of energy generation and efficiency programs ScienceA National Resource for Industry Manufacturing Demonstration Facility #12;As the nation's premier

  18. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  19. Spain`s uranium industry

    SciTech Connect (OSTI)

    Ferguson, M.P.

    1992-05-01

    Spain currently operates nine nuclear reactors totalling over 7,100 MWe of capacity, contributing about one-third of all electricity generated in Spain. Four reactors at advanced stages of construction remain mothballed as the result of a government-imposed moratorium, and a fire at Vandellos 1 in 1989 led to its premature closure and to a revival of anti-nuclear sentiment in the country. In the new national energy plan, which was sent to the Spanish Parliament on July 25, 1991, Spain opted to continue the nuclear moratorium that began in 1984 and rely upon conservation measures, additional natural gas imports, and electricity imports to meet expected demand. Under the new plan, nuclear power`s share of Spain`s total installed electrical generating capacity will fall from about 17 percent in 1990, to approximately 14 percent by the end of the century, as only the current nuclear facilities will continue to operate and no new nuclear plants will be built. Spain`s integration into the European Community also is affecting the country`s energy plans, prompting consolidation within the Spanish electricity sector in order to be more competitive in Europe. To supply the existing reactors, the government is supporting a major expansion of the country`s domestic uranium industry.

  20. Maintaining a competitive geothermal industry

    SciTech Connect (OSTI)

    Zodiaco, V.P.

    1996-04-10

    I come to this geothermal business with over 30 years of experience in the power generation industry. I have earned my spurs (so to speak) in the electric utility, nuclear power, coal and the gas-fired cogeneration power businesses. I have been employed by Oxbow Power for the past seven years and for the past 18 months I have been based in Reno and responsible for the operation, maintenance and management of Oxbow`s domestic power projects which include three geothermal and two gas-fired facilities. The Oxbow Power Group (consisting principally of Oxbow Power Corporation, Oxbow Geothermal Corporation, Oxbow Power of Beowawe, Oxbow Power International and Oxbow Power Services, Inc.) is based in West Palm Beach, Florida, and has regional offices in Reno, Hong Kong and Manila to support on-line geothermal projects in Nevada, other domestic power projects and a geothermal plant under construction in the Philippines. Oxbow Power employs approximately 30 professionals in the development and management of power projects and over 100 supervisors and technicians in the operation and maintenance of power facilities. Current ownership in independent power projects total 340 MW in the United States and 47 MW under construction in the Philippines. Oxbow is currently negotiating additional projects in several Asian and Central American countries.

  1. OIT Wireless Telemetry for Industrial Applications

    SciTech Connect (OSTI)

    Manges, WW

    2002-09-03

    The need for advanced wireless technology has been identified in the National Research Council publication (1) ''Manufacturing Process Controls for the Industries of the Future as a Critical Technology for the Future''. The deployment challenges to be overcome in order for wireless to be a viable option include: (1) eliminating interference (assuring reliable communications); (2) easing the deployment of intelligent, wireless sensors; (3) developing reliable networks (robust architectures); (4) developing remote power (long-lasting and reliable); and (5) developing standardized communication protocols. This project demonstrated the feasibility of robust wireless sensor networks that could meet these requirements for the harsh environments common to the DOE/OIT Industries of the Future. It resulted in a wireless test bed that was demonstrated in a paper mill and a steel plant. The test bed illustrated key protocols and components that would be required in a real-life, wireless network. The technologies for low power connectivity developed and demonstrated at the plant eased fears that the radios would interfere with existing control equipment. The same direct sequence, spread spectrum (DSSS) technology that helped assure the reliability of the connection also demonstrated that wireless communication was feasible in these plants without boosting the transmitted power to dangerous levels. Our experience and research have indicated that two key parameters are of ultimate importance: (1) reliability and (2) inter-system compatibility. Reliability is the key to immediate acceptance among industrial users. The importance cannot be overstated, because users will not tolerate an unreliable information network. A longer term issue that is at least as important as the reliability of a single system is the inter-system compatibility between these wireless sensor networks and other wireless systems that are part of our industries. In the long run, the ability of wireless sensor networks to operate cooperatively in an environment that includes wireless LANs, wireless headsets, RF heating, wireless crane controls and many other users of the electromagnetic spectrum will probably be the most important issue we can address. A network of units (Figure 1) has been developed that demonstrates the feasibility of direct-sequence spread spectrum wireless sensor networking for industrial environments. The hardware consists of a group of reprogrammable transceivers that can act as sensor nodes or network nodes or both. These units and the team that built them are the heart of a test bed development system that has been used successfully in demonstrations at various industrial sites. As previously reported, these units have been successfully tested at a paper mill. More recently, these units were utilized in a permanent installation at a steel mill. Both of these applications demonstrated the ease with which a new network could be installed, and the reality that DSSS units can operate successfully in plants where narrow band transmitters had previously caused interference with plant operations.

  2. Nebraska's Cattle Feeding Industry: Size, Structure and Related Industries

    E-Print Network [OSTI]

    Farritor, Shane

    growing production of distillers grains and other feed byproducts from bio-energy produc- tion plants

  3. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation | Center for GasPhysics Physics PrintPicturePlant

  4. Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries

    SciTech Connect (OSTI)

    2008-07-01

    The Shaw Industries carpet manufacturing plant #20 in Dalton, Georgia, optimized boiler operation and installed waste heat exchangers on two processes in the dye house and an economizer on one boiler, for a payback of 1.7 years. These results prompted plant #4, also located in Dalton, to participate in an assessment.

  5. ASSESSMENT OF OPTIONS FOR ATTRACTIVE COMMERCIAL AND DEMONSTRATION TOKAMAK FUSION POWER PLANTS

    E-Print Network [OSTI]

    ASSESSMENT OF OPTIONS FOR ATTRACTIVE COMMERCIAL AND DEMONSTRATION TOKAMAK FUSION POWER PLANTS Power Plant based on toka- mak confinement concept. It is obvious that the Fusion Demo should demonstrate that a commercial fusion power plant would be accepted by utility and industry (i

  6. Web-based Tool for Preliminary Assessment of Wind Power Plant Design

    E-Print Network [OSTI]

    Borissova, Daniela

    Web-based Tool for Preliminary Assessment of Wind Power Plant Design Daniela Borissova1 and Ivan. Designing of reliable and cost-effective industrial wind power plant is a prerequisite for the effective use of wind power as an alternative resource. The design of a wind power plant includes the determination

  7. Essays in the industrial organization of the pharmaceutical industry

    E-Print Network [OSTI]

    Shapiro, Bradley T. (Bradley Thomas)

    2014-01-01

    This dissertation comprises of three chapters, each exploring different issues in the industrial organization of the pharmaceutical industry. In the first chapter, I study the effects of television advertising of antidepressants ...

  8. MIT and the Building/Construction Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    /construction and related industries such as: · Building, infrastructure · Materials, energy · Architecture, design · Smart technologies, sensor systems · Housing, urban development/planning, real estate Following are brief structures, materials, industrialized building systems, energy and lighting in buildings, air quality control

  9. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor 

    E-Print Network [OSTI]

    Gross, T. J.

    1986-01-01

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  10. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  11. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  12. Industrial - Utility Cogeneration Systems 

    E-Print Network [OSTI]

    Harkins, H. L.

    1979-01-01

    electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise...

  13. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    hydroelectric power plant Pumped storage Geothermal power plant Solar power plant Waste-fired power plant Active solar heating Wind turbine generator

  14. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Solar Thermal Power Plants Fuel Gas Composition Comparisonanalysis: oil-fired power plants, gas turbine power plantst.O U. Combined cycle power plant Gas turbine power plant

  15. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Geothermal power plant Solar power plant Waste-fired power100 MWe Solar-Electric Power Plant . . . . . . . . . . . .Costs for Solar Thermal Power Plants Fuel Gas Composition

  16. SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program

    E-Print Network [OSTI]

    Van Stryland, Eric

    SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

  17. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  18. Electrotechnologies in Process Industries 

    E-Print Network [OSTI]

    Amarnath, K. R.

    1989-01-01

    applications of innovative electrotechnologies in these sectors. APPLICATIONS Electricity is predominantly used in three ways in process industries: 1. Motor Drives 2. Process Heating 3. Electrochemical Processes Motor drives are mainly used in prime..., infrared, and ultraviolet heating have found a variety of applications, and more are under development. ElectrOChemical processes for separation and synthesis (such as Chlor-Alkali production) are significant users of electricity. New processes...

  19. Industrial energy savers

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This is a series of technical bulletins developed as a quick reference to various energy-saving technologies. Each bulletin provides information on economics, benefits, and applications. Topics are chiller optimization and energy-efficient chillers, evaporative cooling, economizer cycles, thermal energy storage for cooling systems, boiler room energy conservation, cogeneration, industrial heat pumps, steam trap maintenance, energy-efficient motors, and variable speed drive motors.

  20. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  1. Industrial Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment of energy efficient

  2. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation StandardsEnergy In2008DepartmentIndustrial

  3. The impact of government policies on industrial evolution : the case of China's automotive industry

    E-Print Network [OSTI]

    Luo, Jianxi

    2006-01-01

    Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

  4. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect (OSTI)

    None

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  5. Clustering in the biotechnology industry

    E-Print Network [OSTI]

    Schoenberg, Frederic P

    2006-01-01

    the world to attract high-technology industry. The mostare attempts to create high-technology industrial clusters,institutes because high-technology firms frequently spin-off

  6. Shale Play Industry Transportation Challenges,

    E-Print Network [OSTI]

    Minnesota, University of

    Demand and Supply Factors ­Gas and Oil Commodity Pricing ­Finite Demand ­Rapid · It is three related, but yet independent industries: ­Fracture Sand Industry ­Oil ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil

  7. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01

    this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program...

  8. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  9. Empirical essays in industrial organization

    E-Print Network [OSTI]

    Chiou, Lesley C

    2005-01-01

    In this dissertation, I present three empirical essays that encompass topics in industrial organization. The first essay examines the degree of competition and spatial differentiation in the retail industry by exploiting ...

  10. Texas Industries of the Future 

    E-Print Network [OSTI]

    Ferland, K.

    2002-01-01

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  11. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  12. CEMI Industrial Efficiency (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.  

  13. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    continue to pursue nuclear expansion as part of an energythe rapid expansion of China’s nuclear industry requires a

  14. Design Editorial Industrial Research Contributions

    E-Print Network [OSTI]

    Papalambros, Panos

    Journal of Mechanical Design Editorial Industrial Research Contributions Would authors working in industry be welcome contributors to JMD? The answer is an emphatic "yes, indeed!" but the reality is that authors from industry are a small minority relative to authors from academia. There are some real reasons

  15. Industry/University Cooperative Research

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Industry/University Cooperative Research Center (I/UCRCs) Funded by the National Science Foundation capacity by developing long-term partnerships among industry, academe, and government. Leverage NSF funds with industry to support and train the next generation workforce within a global context. Mission: 1 #12;The I

  16. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  17. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  18. Pinellas Plant annual site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1996-05-01

    Lockheed Martin Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high-quality Environmental, Safety and Health Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholders the results of the Pinellas Plant`s environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the Environmental Monitoring, Waste Management, and Environmental Restoration Programs at the Pinellas Plant for 1995. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major Environmental, Safety and Health Program initiatives and accomplishments for 1995. As a result of the end of the Department of Energy`s Defense Programs mission (weapons production) on September 30, 1994, considerable changes at the Pinellas Plant are occurring. The Department of Energy`s Environmental Management is now the landlord of the Pinellas Plant to facilitate the plant`s new mission of transition to alternate use in support of economic development and safe shutdown. The Department of Energy sold the Pinellas Plant to the Pinellas County Industry Council in March 1995, and it is leasing back a portion of the plant through September 1997, to complete the safe shutdown and transition activities.

  19. Development of a Heavy Water Detritiation Plant for PIK Reactor

    SciTech Connect (OSTI)

    Alekseev, I.A.; Bondarenko, S.D.; Fedorchenko, O.A.; Konoplev, K.A.; Vasyanina, T.V.; Arkhipov, E.A.; Uborsky, V.V

    2005-07-15

    The research reactor PIK should be supplied with a Detritiation Plant (DP) to remove tritium from heavy water in order to reduce operator radiation dose and tritium emissions. The original design of the reactor PIK Detritiation Plant was completed several years ago. A number of investigations have been made to obtain data for the DP design. Nowadays the design of the DP is being revised on a basis of our investigations. The Combined Electrolysis and Catalytic Exchange (CECE) process will be used at the Detritiation Plant instead of Vapor Phase Catalytic Exchange. The experimental industrial plant for hydrogen isotope separation on the basis of the CECE process is under operation in Petersburg Nuclear Physics Institute. The plant was updated to provide a means for heavy water detritiation. Very high detritiation factors have been achieved in the plant. The use of the CECE process will allow the development of a more compact and less expensive detritiation plant for heavy water reactor PIK.

  20. Mining Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities, the primary metals industry, non-metallic minerals industry (glass, cement, lime), and the construction industry. Employment Mining operations are often the leading...

  1. Green Industrial Policy: Trade and Theory

    E-Print Network [OSTI]

    Karp, Larry; Stevenson, Megan

    2012-01-01

    Chang, H. -J. (2006): “Industrial policy in East Asia -foreign in- vestment and industrial policy for developing409. Lin, J. (2010): “Industrial policy comes out of the

  2. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    Stimulating R&D of industrial energy-efficient technology;Turnover, Retrofit and Industrial Energy Efficiency. Energyprograms perform at improving industrial energy efficiency.

  3. The Industrial Transformation of Subarctic Canada

    E-Print Network [OSTI]

    Mathoor, Vineeth

    2011-01-01

    the pace and impact of industrial transformation in theReview: The Industrial Transformation of Subarctic Canada ByIndia Piper, Liza. The Industrial Transformation of

  4. Electronic waste disassembly with industrial waste heat

    E-Print Network [OSTI]

    2013-01-01

    and for e?ective use of industrial exhaust heat is describedto scale up the process to industrial production levels.Waste Disassembly with Industrial Waste Heat Mengjun

  5. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01

    IEA) 7 July 2006 Industrial motor systems energy efficiency:of energy-efficient equipment in industrial motor systems isin industrial energy efficiency, especially motor, steam,

  6. Energy Intensity Indicators: Industrial Source Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE)

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  7. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This...

  8. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  9. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  10. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  11. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  12. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  13. Carbon Emissions: Chemicals Industry

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (MillionThousandChemicals Industry

  14. Carbon Emissions: Food Industry

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (MillionThousandChemicals IndustryFood

  15. Carbon Emissions: Paper Industry

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (MillionThousandChemicalsPaper Industry

  16. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable Landmimic keySystemssystems and industry

  17. Industrial Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial Energy Efficiency Report to

  18. 52 Industrial Engineer executive summaries : eDiteD By canDace yano anD josePh hartman

    E-Print Network [OSTI]

    Qiu, Peihua

    52 Industrial Engineer executive summaries : eDiteD By canDace yano anD josePh hartman research.S. industry spends more than $200 billion on reliability and plant maintenance. As companies increas- ingly Alaa Elwany and assistant professor Nagi Gebraeel of the Stewart School of Industrial and Systems

  19. EARLY ENTRANCE COPRODUCTION PLANT

    SciTech Connect (OSTI)

    Lalit S. Shah; William K. Davis

    2000-05-01

    The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which produces at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals. The objective is to have these products produced by technologies capable of using synthesis gas derived from coal or coal in combination with some other carbonaceous feedstock. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site and to develop a Research, Development, and Test Plan (RD and T) for implementation in Phase II. The objective of Phase II is to conduct RD and T as outlined in the Phase I RD and T Plan to enhance the development and commercial acceptance of Coproduction technology that produces high-value products, particularly those that are critical to our domestic fuel and power requirements. The project will resolve critical knowledge and technology gaps on the integration of gasification and downstream processing to coproduce some combination of power, fuels, and chemicals from coal and other feedstocks. The objective of Phase III is to develop an engineering design package and a financing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  20. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    power plants and one coal-fired power plant that would comegasification plants,coal-fired power plants and natural gasAlaska and Coal Coal-burning power plants may be located in

  1. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    on the future of China’s nuclear power. First, it highlightsas China builds more nuclear power plants. The challengesto manage, run, and inspect nuclear power plants across the

  2. Whitacre College of Engineering Industrial Engineering Department

    E-Print Network [OSTI]

    Gelfond, Michael

    Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

  3. Process Industries Division CALL FOR PAPERS

    E-Print Network [OSTI]

    Müller, Norbert

    Process Industries Division CALL FOR PAPERS The Process Industries Division of ASME is sponsoring a series of sessions on issues facing Process industries, such as Heat Exchangers Performance, Compression Technology, Water Purification / Treatment Technologies, Low Temperature Industrial Applications, etc

  4. Productivity benefits of industrial energy efficiency measures

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01

    installations in the paper industry. In: Proceedings 1995in the pulp and paper industry, food processing, industrialIndustry Number of case studies Food manufacturing Building materials Steel manufacturing Paper

  5. printed on recycled paper INDUSTRIAL ASSESSMENT CENTER

    E-Print Network [OSTI]

    printed on recycled paper INDUSTRIAL ASSESSMENT CENTER ENERGY EFFICIENCY, POLLUTION PREVENTION, AND PRODUCTIVITY IMPROVEMENT ASSISTANCE FOR INDUSTRY A U.S. DEPARTMENT OF ENERGY SPONSORED PROGRAM INDUSTRIAL STATE UNIVERSITY Industrial Assessment Center Department of Mechanical Engineering Fort Collins

  6. Comparison Study of Energy Intensity in the Textile Industry: A Case Study in Five Textile Sub-sectors 

    E-Print Network [OSTI]

    Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M.

    2011-01-01

    This paper contributes to the understanding of energy use in the textile industry by comparing the energy intensity of textile plants in five major sub-sectors, i.e. spinning, weaving, wet-processing, worsted fabric manufacturing, and carpet...

  7. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  8. industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles

    E-Print Network [OSTI]

    Rohs, Remo

    74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

  9. industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin-

    E-Print Network [OSTI]

    Rohs, Remo

    70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin to help companies compete in today's global marketplace. The Industrial and Systems Engineer's task Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial and Systems

  10. industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles

    E-Print Network [OSTI]

    Rohs, Remo

    70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

  11. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Feedstock Flexibility Workshop Results, December 2009 ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 feedstockworkshopreport.pdf More...

  12. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Environmental Management (EM)

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment...

  13. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  14. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  15. Academic-Industry Collaboration (AIC) - Synchrophasor Engineering...

    Energy Savers [EERE]

    Academic-Industry Collaboration (AIC) - Synchrophasor Engineering Education Program: Information Exchange Webinar (March 6, 2014) Academic-Industry Collaboration (AIC) -...

  16. Colorado State University Industrial Assessment Center Saves...

    Energy Savers [EERE]

    Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers Colorado State University Industrial Assessment Center Saves...

  17. Southeast Electronic Book of Industrial Resources

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  18. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  19. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  20. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  1. Contribution to environmental impact of different uses of industrial districts

    SciTech Connect (OSTI)

    Corti, A.; Carnevale, E.

    2000-05-01

    Industrial districts are highly characteristic of Italian industry structure, with energy implication due to both electrical and thermal energy demand. The present study represents an environmental methodology approach applied to an area in the Tuscany region characterized by the presence of a high net power output cogeneration plant connected to paper mill processes. The cogeneration unit is based on a innovative gas turbine characterized by low atmospheric environmental impact. Additional impact due to cogeneration plant installation was evaluated in comparison with pollutant concentration levels due to existent energy conversion processes, using atmospheric diffusional models. A comparison was also made with respect to pollutant concentration contribute due to ordinary road and highway traffic emissions existent in the area.

  2. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  3. Polyhydroxyalkanoate synthesis in plants

    DOE Patents [OSTI]

    Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

    2000-01-01

    Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

  4. Ethylene insensitive plants

    DOE Patents [OSTI]

    Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  5. Vortical and industrial interactions

    SciTech Connect (OSTI)

    Barr, P.K. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1995-05-01

    A vortex-dynamics-based model has been developed and used to study the importance of flame extinction by fluid dynamic strain that occurs in a pulse combustor. Results show that flame extinction by fluid dynamic stretch, which occurs during injection of the fresh charge, ensures the correct phase relation between the energy release and the resonant pressure wave. This phasing is required by Rayleigh`s criterion for stable combustion-driven oscillations. However, this model also showed that the vortex dynamics technique is not at a stage where design engineers can use it as a predictive tool, just as they would use experimental testing. This is in part because pulse combustor designs being developed today use three-dimensional geometries and complex operating conditions, whereas the vortex model simulates processes occurring only in the combustion chamber, and ignores the rest of the pulse combustor unit. Also, the model assumes two-dimensional flow, a simple combustor geometry, and premixed combustion. A successful in-house manufacturing design code must be able to perform a complete design study reliably, quickly and easily, and on computers that are readily available to industry. Instead, the insight gained from the vortex dynamics model is being incorporated into a computational tool to assist in pulse combustor design. This tool will be used by industrial engineers to design pulse combustors for specific applications. The design tool combines submodels for acoustics, injection and combustion, producing a pulse combustor model that dynamically couples the processes in the combustion chamber to the acoustic waves.

  6. Update on Energy Saving Opportunities in Industrial Electrical Power Systems 

    E-Print Network [OSTI]

    Frasure, J. W.; Fredericks, C. J.

    1986-01-01

    application of capacitors to improve plant power factors will raise voltage levels and reduce'line currents, yielding a reduction in system losses. Also, by reducing var demand, capacitors can reduce or eliminate utility power-factor or demand charges..., force the industrial power user to continuously update and evaluate available means of saving electrical energy. This paper provides a survey of one company's experience with several methods of energy conservation in electrical distribution systems...

  7. Regulatory risks paralyzing power industry while demand grows

    SciTech Connect (OSTI)

    Maize, K.; Peltier, R.

    2008-01-15

    2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

  8. Cool Storage Economic Feasibility Analysis for a Large Industrial Facility 

    E-Print Network [OSTI]

    Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

    1988-01-01

    of Arizona Helicopter Co. Tucson, Arizona. Tucson, Arizona. Mesa. Arizona. ABSTRACT The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2... thermal storage at McDonnell Douglas Helicopter CO. (MDH) in Mesa, Arimna [I]. MDH is a large assembly plant consisting of eleven air conditioned buildings totalling 2,000.000 square feet of diversified activities. The site has a central chilled water...

  9. The CAIR vacatur raises uncertainty in the power generation industry

    SciTech Connect (OSTI)

    Dan Weiss; John Kinsman

    2008-12-15

    On 11 July 2008, the U.S. Court of Appeals for the District of Columbia issued a unanimous decision vacating the entire Clean Air Interstate Rule (CAIR) and the associated federal implementation plan. The upset of this program to reduce power plant sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx) emissions in the eastern United States was a great surprise, creating operational and planning turmoil in the industry. 4 refs.

  10. Impact of an Export Subsidy on the Domestic Cotton Industry

    E-Print Network [OSTI]

    Wohlgenant, Michael K.

    1986-01-01

    was implemented to reduce large surpluses. In 1984, the PIK program was discontinued, but participating produc ers were required to reduce their acreage base and devote a portion of the planted acreage to conservation uses (USDA,1984). Trends in market prices... large surpluses and large treasury costs anticipated with the current target price-loan rate program. The following sections examine likely effects of export subsidies for the domestic cotton industry. A MODEL OF THE IMPACT OF AN EXPORT SUBSITY...

  11. Performance Evaluation of a Retrofit Industrial Heat Pump 

    E-Print Network [OSTI]

    Wagner, J.R.

    1986-01-01

    , and paper mill in the Gulf Coast. In most cases the software to perform these analyses can be used at no charge by contacting the local electrical utility that serves your plant. PERFORMANCE EVALUATION OF A RETROFIT INDUSTRIAL HEAT PUMP Joseph R. Wagner... Mechanical Technology Inc. Latham, NY This paper discusses the performance and economics of a mechanical vapor com? pression (MVC) heat pump that was retrofitted to a single-effect, recirculating? type evaporator. The evaporator is used for reducing...

  12. INDUST: An Industrial Data Base 

    E-Print Network [OSTI]

    Wilfert, G. L.; Moore, N. L.

    1987-01-01

    the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other fuels. As Figure 2 shows, natural gas... for the U.S. Department of Energy (DOE), has used INDUST in assessing industrial equipment and technology research for DOE's Office of Industrial Programs. Battelle has also used INDUST in some of its con tract research relating to industrial technology...

  13. Poisonous Plant Management. 

    E-Print Network [OSTI]

    McGinty, Allan

    1985-01-01

    range specialist, The Texas A&M University System . 2 DIAGNOSING POISONOOS PLANT PROBLEMS Accurate diagnosis of poisonous plant problems can be extremely difficult. Many cases of livestock poisoning by plants have been improperly diagnosed... Agricultural Extension Service ~-P~,IJ& H~iN!/ P~,IJ&--------------- poisonous Plant ___ Management_ ..... Texas Agricultural Extension Service. The Texas A&M University System. College Station, Texas POISONO(]S PLANT MANAGEMENT Allan McGinty* Poisonous...

  14. Plant fatty acid hydroxylases

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Lexington, KY)

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  15. Tobacco and the Movie Industry

    E-Print Network [OSTI]

    Charlesworth, Annemarie MA.; Glantz, Stanton A. Ph.D.

    2006-01-01

    General. Master settlement agreement. 1998. Available at:industry signed the Master Settlement Agreement with state2 years, the Master Settlement Agreement had little short-

  16. Industrial Feedstock Flexibility Workshop Results

    SciTech Connect (OSTI)

    Ozokwelu, Dickson; Margolis, Nancy; Justiniano, Mauricio; Monfort, Joe; Brueske, Sabine; Sabouni, Ridah

    2009-08-01

    This report (PDF 649 KB) summarizes the results of the 2009 Industrial Feedstock Flexibility Workshop, which took place in Atlanta, GA on August 19-20, 2009.

  17. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  18. Common Industrial Lighting Upgrade Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is used to regulate the ongoing electricity provided to the lamp. COMMON INDUSTRIAL LIGHTING UPGRADE TECHNOLOGIES Due to the phase-out of the incandescent bulb and magnetic...

  19. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  20. Industrial Partnerships | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2010 - Through new collaborations totaling 6.2 million, ORNL and American industry will tackle some of the most critical challenges facing lithium ion battery production....

  1. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  2. Industrial cogeneration case study No. 2: American Cyanamid Chemical Company, Bound Brook, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Within a project for evaluating the economics of cogeneration for industrial plants with an electrical capacity of 10,000 to 30,000 kW, the American Cyanamid plant at Bound Brook, NJ was selected for study. Built between 1915 and 1920 this power plant was converted in the 1960's from coal-fueling to oil and natural gas. Information is presented on the plant site, fuel usage, generation costs, comparative cost of purchasable electric power, equipment used, performance, and reliability and capital and maintenance costs. (LCL)

  3. LBB considerations for a new plant design

    SciTech Connect (OSTI)

    Swamy, S.A.; Mandava, P.R.; Bhowmick, D.C.; Prager, D.E.

    1997-04-01

    The leak-before-break (LBB) methodology is accepted as a technically justifiable approach for eliminating postulation of Double-Ended Guillotine Breaks (DEGB) in high energy piping systems. This is the result of extensive research, development, and rigorous evaluations by the NRC and the commercial nuclear power industry since the early 1970s. The DEGB postulation is responsible for the many hundreds of pipe whip restraints and jet shields found in commercial nuclear plants. These restraints and jet shields not only cost many millions of dollars, but also cause plant congestion leading to reduced reliability in inservice inspection and increased man-rem exposure. While use of leak-before-break technology saved hundreds of millions of dollars in backfit costs to many operating Westinghouse plants, value-impacts resulting from the application of this technology for future plants are greater on a per plant basis. These benefits will be highlighted in this paper. The LBB technology has been applied extensively to high energy piping systems in operating plants. However, there are differences between the application of LBB technology to an operating plant and to a new plant design. In this paper an approach is proposed which is suitable for application of LBB to a new plant design such as the Westinghouse AP600. The approach is based on generating Bounding Analyses Curves (BAC) for the candidate piping systems. The general methodology and criteria used for developing the BACs are based on modified GDC-4 and Standard Review Plan (SRP) 3.6.3. The BAC allows advance evaluation of the piping system from the LBB standpoint thereby assuring LBB conformance for the piping system. The piping designer can use the results of the BACs to determine acceptability of design loads and make modifications (in terms of piping layout and support configurations) as necessary at the design stage to assure LBB for the, piping systems under consideration.

  4. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    Broader source: Energy.gov [DOE]

    This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

  5. The Human Side of Efficiency: The Value of Training in Plant Systems Optimization 

    E-Print Network [OSTI]

    Madan, R.

    2002-01-01

    Is the best way to improve industrial plant energy efficiency through a technical overhaul or management structure? The answer is that neither is effective without the other. Unfortunately, many operators concentrate their energies on technical...

  6. Computers and Chemical Engineering 26 (2002) 5979 Energy efficient water utilization systems in process plants

    E-Print Network [OSTI]

    Savelski, Mariano J.

    2002-01-01

    a primary concern in most industrial sites. Wastewater treatment has al- ways focused on end deliver wastewater, which may contain several contaminants. Therefore, wastewater treatment constitutes. Keywords: Water utilization networks; Process plants; Energy minimization; Wastewater minimization

  7. Adaptive Optimization of Central Chiller Plant Equipment Sequencing 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1987-01-01

    the optimal sequence of central refrigeration equipment (chillers, cooling towers, pumps) to operate in an industrial plant. The control algorithm adapts the optimal equipaent sequence to reflect changes in the plant's cooling load and outside air... primary pumps totaling 625 horsepower and two chilled water booster pumps totaling 200 horsepower. Heat rejected by the chillers' vapor-compression cycles is rejected to the atmosphere by five cooling towers totaling 4,335 tons of refrigeration...

  8. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    by Type of Power Plant Scenario 2: Generating Capacity byType of Power Plant Scenario 3: Generating Capacity by Typeproblems of generating electrici electric power plants early

  9. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  10. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  11. Mesaba next-generation IGCC plant

    SciTech Connect (OSTI)

    NONE

    2006-01-01

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  12. Career Choices: Industry vs. Academia

    E-Print Network [OSTI]

    Rohs, Remo

    Career Choices: Industry vs. Academia Yan Liu Assistant Professor Computer Science Department, IBM TJ Watson Research Center · Now, USC #12;1) What career path did you consider most during your Ph industry, and where can one make the most impact? · Best virtues in all jobs ­ Hardworking ­ Good attitude

  13. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01

    The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

  14. on technology transfer, industry research +

    E-Print Network [OSTI]

    Cafarella, Michael J.

    on technology transfer, industry research + economic development annual report U N I V E R S I T Y and resources available at the University of Michigan as showcased in this year's Annual Report on Technology Transfer, Industry Research, and Economic Development. At the heart of the University's contributions

  15. Industrial Wastes as a Fuel 

    E-Print Network [OSTI]

    Richardson, G.; Hendrix, W.

    1980-01-01

    available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only...

  16. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  17. Department of Plant Sciences and Plant Pathology

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Crop Science Option The challenge for crop scientists is to implement crop and soil management systems, weed science, and entomology. Graduates find careers in farming and ranching; as crop productionDepartment of Plant Sciences and Plant Pathology Unique, hands-on study programs for students

  18. Plant Phenotype Characterization System

    SciTech Connect (OSTI)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  19. Barriers to Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sectors: thermal power plants, cement, iron and steel, aluminum, fertilizers, pulp and paper, chlor-alkali, and textiles. Experts estimate that if PAT is successful, it alone...

  20. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    power plants must meet nuclear safety standards and adoptapplications; review of nuclear safety regula- tions; andpower development plans. Nuclear safety was placed front and

  1. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    power plants and one coal-fired power plant that would comecoal gasification plants,coal-fired power plants and naturalplants, and one 800 MWe coal-fired power lars) and 39,000

  2. Geothermal Demonstration Plant

    Office of Scientific and Technical Information (OSTI)

    configuration by the preparation of process flow diagrams for the initial plant operating condition and the 1-2 mid-range plant operating condition. have been revised and expanded...

  3. Plant centromere compositions

    DOE Patents [OSTI]

    Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

    2011-11-22

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  4. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2006-06-26

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  5. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2011-08-02

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  6. Plant centromere compositions

    DOE Patents [OSTI]

    Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, RongGuan (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

    2007-06-05

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  7. Plant centromere compositions

    DOE Patents [OSTI]

    Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne

    2006-10-10

    The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  8. HYDROCARBONS & ENERGY FROM PLANTS

    E-Print Network [OSTI]

    Nemethy, E.K.

    2011-01-01

    LBL-8596 itr-t C,d.. HYDROCARBONS & ENERGY FROM PLANTS jmethods of isolating the hydrocarbon-like material from I.privatelyownedrights. HYDROCARBONS AND ENERGY FROM PLANTS

  9. AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A

    E-Print Network [OSTI]

    AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A Donald Bradley Morgan Bruns Adam Fleming Jay Ling on the automotive industry, specifically, large-scale manufacturers of automobiles. The automotive industry of the automotive industry. This is followed by an analysis of the industry's structural characteristics using

  10. UNDERGRADUATE DEGREES Industrial and Systems Engineering

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

  11. Market development directory for solar industrial process heat systems

    SciTech Connect (OSTI)

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  12. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  13. The feasibility of effluent trading in the energy industries

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all point sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.

  14. Plant biology research and training for the 21st century

    SciTech Connect (OSTI)

    Kelly, K.

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  15. Plant biology research and training for the 21st century

    SciTech Connect (OSTI)

    Kelly, K.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  16. Industrial Symbiosis and the Greening of the Industry in the UK: The Case of the National Industrial Symbiosis Programme 

    E-Print Network [OSTI]

    Albertini, Vivian

    2011-08-23

    Industrial Symbiosis is part of the emerging field of Industrial Ecology, a discipline that looks at natural ecosystems as models for the development of new industrial systems. As part of the recent efforts towards environmental sustainability, many...

  17. The industrial ecology of the iron casting industry

    E-Print Network [OSTI]

    Jones, Alissa J. (Alissa Jean)

    2007-01-01

    Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

  18. Plant evolution The Evolution

    E-Print Network [OSTI]

    Rieseberg, Loren

    Plant evolution The Evolution of Plants by Kathy J. Willis and Jenny C. McElwain. Oxford University Press, 2002. $40.00/£22.99 pbk (378 pages) ISBN 0 19 850065 3 Developmental Genetics and Plant Evolution is observed for treatments of evolution and development. Titles of major monographs on the subject imply

  19. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  20. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital