Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network (OSTI)

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive for the industrial customer to alter their present operation. Utilities recognize that industry offers the greatest potential for peak load reduction.

Williams, M. M.

1981-01-01T23:59:59.000Z

2

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network (OSTI)

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms such as contract negotiations with the serving utility can also help keep unit costs of purchased power down. But regulatory policy by agencies governing the serving utility can also have a major impact on electric rate design, by imposing rate structures that require the industrial user to pay above-cost power prices. New trends in electricity ratemaking depart so radically from traditional cost-of-service standards that power-intensive manufacturers could soon end up paying up to 25% more for their electricity than it actually costs to generate and deliver it. Political pressure to mitigate the impact of high energy prices on residential customers led to enactment of the Public Utility Regulatory Policies Act of 1978 (PURPA), requiring every state to consider implementing alternatives to traditional cost-of-service ratemaking techniques. Increasingly, state legislation is also being introduced to achieve similar goals. The stakes for a manufacturing company can be great. If a company is small or unstable, or otherwise unable to absorb or pass on above cost energy prices, it may go out of business. Alternately, it may increase the price of its product in order to recover the new cost of electricity, plus all the administrative costs of handling what is in effect a straight cost pass-through. Traditionally, energy engineers have managed costs by securing favorable power contracts, and by using electricity efficiently. Increasingly, however, they will have to become involved in the public policy debate on electricity rate making in order to help assure that industry has equitable rates in the future.

Greenwood, R. W.

1981-01-01T23:59:59.000Z

3

Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint  

E-Print Network (OSTI)

A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit to your needs plus load increases under contract and anticipated residential and commercial load growth. If our studies show that we will have generating capacity available, then we should allow a minimum of two years for design and construction. Of course, you will need to plan to build and maintain your substation.' Today our response would be more like 'How soon can you be ready? Can we build and/or maintain your substation for you? Perhaps we can locate a transformer for you to use until permanent facilities are in place?' What has happened to utilities such as GSU to change our perspective so quickly? The turn around began around New Years of 82 with the realization by industry that the recession which had been developing for some 6 months in retail and construction areas was now affecting basic industry. Later we learned that this recession was the most severe and long lasting in this country since the great depression of the 1930's and that fundamental changes would be required by basic industry if it were to survive. Resulting plant reductions and closings severely impacted utilities heavily dependent on industrial business.

Richardson, J. A.

1984-01-01T23:59:59.000Z

4

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

5

Electric Power Industry Restructuring:  

U.S. Energy Information Administration (EIA)

Good morning. I was asked to speak to you today about EIAs data collection efforts in a more competitive electric power industry. I know that you want to hear ...

6

Electric Rate Alternatives to Cogeneration  

E-Print Network (OSTI)

This paper discusses electric rate alternatives to cogeneration for the industrial customer and attempts to identify the effects on the utility company, the industrial customer as well as remaining customers. It is written from the perspective of one company and its exposure to cogenerstion within its service territory.

Sandberg, K. R. Jr.

1988-09-01T23:59:59.000Z

7

electric rates | OpenEI  

Open Energy Info (EERE)

electric rates electric rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

8

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

9

OpenEI - electric rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

10

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

11

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

12

Barron Electric Cooperative - Commercial, Industrial, and Agricultural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program...

13

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network (OSTI)

E I A ) . "Status of Electricity Industry Restructuring." Electricity Industry Restructuring, andEmissions Trading, Electricity Industry Restructuring, and

Fowlie, Meredith

2005-01-01T23:59:59.000Z

14

U.S. Electricity Industry  

E-Print Network (OSTI)

Edison Electric Institute (EEI) is the association of U.S. shareholder-owned electric companies, international affiliates and industry associates worldwide. Our U.S. members serve over 90 percent of all customers served by the shareholder-owned segment of the industry. They generate approximately three-quarters of all the electricity generated by electric companies in the country and service about 70 percent of all ultimate customers in the nation. Organized in 1933 and incorporated in 1970, EEI works closely with its members, representing their interests and advocating equitable policies in legislative and regulatory arenas. In its leadership role, the Institute provides authoritative analysis and critical industry data to its members, Congress, government agencies, the financial community and other influential audiences. EEI provides forums for member company representatives to discuss issues and strategies to advance the industry and to ensure a competitive position in a changing marketplace. EEIs mission is to ensure members success in a new competitive environment by:

Eric Hirst; Brendan Kirby; Eric Hirst; Brendan Kirby

2001-01-01T23:59:59.000Z

15

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network (OSTI)

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some load management has been implemented already. Additional load management is possible; however, optimizing it will require close industry and electric utility company cooperation to develop new incentives and rate structures to make it economically attractive. The limitations of existing rate structures and needed improvements are presented.

Jackson, C. E.

1984-01-01T23:59:59.000Z

16

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

industry and suggest electricity tariff rates to the Stateof the ?coal-electricity tariff automatic mechanism? (designed the coal-electricity tariff automatic mechanism in

Tsai, Chung-min

2010-01-01T23:59:59.000Z

17

Status of State Electric Industry Restructuring Activity  

Reports and Publications (EIA)

Presents an overview of the status of electric industry restructuring in each state.. Restructuring means that a monopoly system of electric utilities has been replaced with competing sellers.

Channele Wirman

2010-09-01T23:59:59.000Z

18

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, Annual Survey of Alternative Fueled Vehicles; ...

19

Information Disclosure Policies: Evidence from the Electricity Industry  

E-Print Network (OSTI)

Evidence from the Electricity Industry Magali Delmas UCEvidence from the Electricity Industry May 2007 ABSTRACT A programs in the electricity industry achieve stated policy

Delmas, Magali A; SHIMSHACK, JAY P; Montes, Maria J.

2007-01-01T23:59:59.000Z

20

Property:IndustrialAvgRate | Open Energy Information  

Open Energy Info (EERE)

IndustrialAvgRate IndustrialAvgRate Jump to: navigation, search Property Name IndustrialAvgRate Property Type Number Description Industrial Average Rate Subproperties This property has the following 279 subproperties: A AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP APN Starfirst, L.P. Accent Energy Holdings, LLC Alabama Municipal Elec Authority Alaska Electric & Energy Coop Alaska Energy Authority Alaska Power and Telephone Co Allegheny Electric Coop Inc Alliant Energy Ameren Energy Marketing Ameren Illinois Company American Electric Power Co., Inc. American Mun Power-Ohio, Inc American Samoa Power Authority American Transmission Systems Inc Anoka Electric Coop Appalachian Power Co Aquila Inc Aquila Inc (Missouri) Arizona Electric Pwr Coop Inc

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Empire District Electric - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility...

22

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility...

23

Barron Electric Cooperative - Commercial and Industry Energy...  

Open Energy Info (EERE)

icon Barron Electric Cooperative - Commercial and Industry Energy Efficiency Lighting Rebates (Wisconsin) This is the approved revision of this page, as well as being the...

24

Science & Technology Principal Directo rate Industrial ...  

Erik Stenehjem Science & Technology Principal Directo rate Industrial Partnerships Office Erik Stenehjem Director----Roger Werne Deputy Director

25

Electricity Transmission in a Restructured Industry: Data Needs ...  

U.S. Energy Information Administration (EIA)

Electricity Transmission in a Restructured Industry: ... as is now happening in the electricity industry, alters the basic data needed to describe that industry.

26

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

27

Electrical safety in industrial plants  

Science Conference Proceedings (OSTI)

Most electrical engineers and electricians are aware that the principal danger from electricity is that of electrocution, but few really understand just how minute a quantity of electric energy is required for electrocution. Actually, the current drawn ...

Ralph H. Lee

1971-06-01T23:59:59.000Z

28

Intraclass Price Elasticity & Electric Rate Design  

E-Print Network (OSTI)

Electric rate design relies on cost incurrance for pricing and pricing structures. However, as utilities move into a marketing mode, rate design needs to respond more to customer reactions to pricing changes. Intraclass price elasticities aid rate designers by estimating customer behavior to change. Intraclass price elasticities vary with customer usage. The more energy used by a customer, the greater the amount of elasticity. For an industrial customer, this means that all energy consumed up to the amount necessary for base operations is relatively inelastic. All energy consumption beyond this becomes more elastic as usage increases. In the book "Innovative Electric Rates," John Chamberlin and Charles Dickson utilize an economic model to test conservation programs. This model utilizes intraclass price elasticities and has a direct use in current electric rate design. The model is a strong indicator of how best a company's electric prices and pricing structures manage demand-side growth, increase energy sales consumption, and aide in non-discriminatory economic development.

Gresham, K. E.

1987-09-01T23:59:59.000Z

29

Carnegie Mellon Electricity Industry Center  

E-Print Network (OSTI)

, Electric Power Research Institute Les Silverman, Director, McKinsey & Company Steve Specker, President

30

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

31

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

32

A Brief History of the Electricity Industry  

U.S. Energy Information Administration (EIA) Indexed Site

data and evaluating electricity data and evaluating electricity restructuring James Bushnell University of California Energy Inst. www.ucei.berkeley.edu Outline * Shameless flattery - Why EIA data are so important * Why are people so unhappy? - With electricity restructuring * What EIA data have helped us learn - Production efficiencies - Market efficiency - Market competition - Environmental compliance Why EIA is so important * Important industries undergoing historic changes - Restructuring/deregulation - Environmental regulation and markets * We know much more about these industries than others where data are not collected - And much more than the europeans know about their energy industries * Academics and economists flock to data - Much more "open source" knowledge about the functioning of these markets

33

Global forces shape the electricity industry  

SciTech Connect

Whatever scenario for electricity comes to pass - one that emphasizes richness in energy supply or productivity in demand - expect to see increased complexity in the industry and its structures. Technology will be a key subversive element of this process of Schumpeterian creation and destruction. There are powerful global forces at work that are transforming whole economies and industries. Today`s electricity industry, with a century of tradition behind it, is also likely to be transformed in terms of its structure, competitive nature and the fuels that it uses. The electricity demand-Gross Domestic Product (GDP) relationship also stems from the increased share of electricity in energy markets. Overall, energy demand is declining relative to GDP, driven by increased efficiency and economic restructuring. Eventually (as indeed is already discernible in OECD countries) electricity demand will show the same characteristics.

Rainbow, R.

1996-05-01T23:59:59.000Z

34

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

35

Sustainability Priorities in the Electric Power Industry  

Science Conference Proceedings (OSTI)

Improving sustainability performance has become an important indicator of corporate success, stewardship, and responsibility. Many companies publish annual sustainability and corporate responsibility reports to communicate their policies, goals, and ongoing performance on key sustainability issues. Notably, the sustainability priorities communicated through these reports vary considerably across the electric power industry. This study summarizes how the industry portrays its sustainability priorities thr...

2011-10-31T23:59:59.000Z

36

WESTERN ELECTRIC INDUSTRY LEADERS GROUP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WESTERN ELECTRIC INDUSTRY LEADERS GROUP WESTERN ELECTRIC INDUSTRY LEADERS GROUP Halting global warming and protecting the environment have properly moved high atop the...

37

Looking for Trouble: Competition Policy in the U.S. Electricity Industry  

E-Print Network (OSTI)

s Deregulated Electricity Industry. American Economicin a Deregulated Electricity Industry. Rand Journal ofanalysis in the electricity industry. FERC Docket No.

Bushnell, Jim

2003-01-01T23:59:59.000Z

38

An introduction to electric industry restructuring  

SciTech Connect

This paper briefly describes the electric industry, its residential markets, industry structure and current trends. Its purpose is to provide Weatherization grants managers with the background necessary to assess their leveraging opportunities in an industry that is experiencing sweeping changes, commonly known as electric industry restructuring. The study describes the terrain of a changing industry topography on a national and regional basis, with some state and local information also provided. Weatherization managers and subgrantees who read this paper should be better able to understand the leveraging opportunities that are emerging now in the electricity market place. The reader will be introduced to the basics of the electric industry as it presently operates, the nature of the changes that are in the process of occurring, and the driving forces that are behind those changes. The major industry players are described by type and their interests are explored in further depth. There will also be an overview of the regulatory process as it has operated historically, as well as the changes now underway at both the state and federal levels. Finally, the paper will conclude with a description of some of the assets and opportunities available to those who may be interested in participating in the restructuring process in order to expand or protect low-income programs in their own states.

Eisenberg, J.F.; Berry, L.G.

1997-09-01T23:59:59.000Z

39

Deregulation and Resource Reconfiguration In The Electric Utility Industry  

E-Print Network (OSTI)

and Scale Economies in Electric Power Production: Some Newand Delivery of Electric Power. Land Economics 62(4): 378-1998 Challenges of Electric Power Industry Restructuring for

Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

2005-01-01T23:59:59.000Z

40

Marketing Reordering of the Electric Utility Industry  

E-Print Network (OSTI)

ELCON is a group of large industrial consumers of electricity with facilities in most of the 50 states and many foreign countries. Our members produce a wide range of products including steel, aluminum, chemicals, industrial gases, glass, motor vehicles, textiles and food. ELCON members consume approximately ten percent of all electricity sold to industrial customers and nearly five percent of all electricity consumed in the United States. We require an adequate and reliable supply of electricity at reasonable prices, so as you can imagine, we have a continuing interest in all aspects of the production, pricing, and delivery of electricity. ELCON member companies believe strongly that the electric utility industry is undergoing a market reordering that is being shaped by technological, institutional and legal forces. We see technical developments that now make small-scale generation economically attractive, if not downright desirable. Key regulatory and consumer institutions are taking fresh, new looks at issues such as wheeling and access to the grid that used to be considered sacred and untouchable. Some states are passing laws and implementing regulations that will require new thinking and new operating procedures on the part of utilities and consumers. I see these developments as logical reactions to changes in market forces. Change will take place. The relevant questions are: How will regulators and policy makers be influenced by market forces in the future? And: Will utilities, consumers and regulators attempt to benefit from market pressures or, alternatively, try to oppose what I believe is inevitable evolution to a more market-oriented electric industry?

Anderson, J. A.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network (OSTI)

and Industrial Facilities to Dynamic Electricity Pricesand Industrial Facilities to Dynamic Electricity Prices

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

42

Electric rate structures for thermal energy storage evaluation  

DOE Green Energy (OSTI)

Future electric rate structures are critical to thermal energy storage (TES) technologies that are specifically designed to take advantage of electric energy costs that vary depending on the magnitude, duration, and timing of power demand (e.g., cool storage). In fact, rate structure characteristics may affect the TES system design and operating approach as well as economic feasibility. The objective of this study, conducted by the Pacific Northwest Laboratory for the US Department of Energy, was to define reference electric utility rate structures to be used in technical assessments of TES technologies. Electric rate structures were characterized for residential, commercial and industrial sectors. A range of conditions for several alternative rate structures was identified for each sector to capture the variability of likely conditions. Individual rate structure characteristics include demand charges and energy charges applicable during different months of the year, days of the week, and hours of the day. 7 refs., 21 tabs.

Brown, D R; Garrett, S M; Sedgewick, J M

1991-05-01T23:59:59.000Z

43

U.S. Electric Utility Companies and Rates: Look-up by Zipcode...  

Open Energy Info (EERE)

by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities....

44

Update on Energy Saving Opportunities in Industrial Electrical Power Systems  

E-Print Network (OSTI)

High electrical power costs, rising at a rate consistently above that of general inflation, force the industrial power user to continuously update and evaluate available means of saving electrical energy. This paper provides a survey of one company's experience with several methods of energy conservation in electrical distribution systems, and its present practices in this area. Topics covered include the location of large and reducible losses, the determination of the worth of these losses, and a survey of ways to reduce them in an economical manner.

Frasure, J. W.; Fredericks, C. J.

1986-06-01T23:59:59.000Z

45

NYSEG (Electric) - Commercial and Industrial Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount Lighting, HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

46

Restructuring the Philippine electric power industry  

Science Conference Proceedings (OSTI)

The Philippine electricity industry has shown it can change, and change quickly. In contrast with the crises and changes imposed on it in the past, the industry now has as opportunity to forge a progressive, forward-looking strategy, This opportunity is enhanced by the force of law - the Department of Energy Act of 1992 mandates privatization of the National Power Corporation (NPC) - and by the easing of the power crisis which has significantly diminished political interference. In order to position the industry for growth and rising investment requirements and to support the growing role of the Philippine economy in international markets, that strategy must address the structural deficiencies that continue to plague the industry. By addressing structural changes that need to be made now, it can build on the impetus gained from its privatization mandate to improve accountability, increase efficiency and reduce government risk.

Bowden, S.; Ellis, M.

1995-06-01T23:59:59.000Z

47

Estimating Industrial Electricity Conservation Potential in the Pacific Northwest  

E-Print Network (OSTI)

The Pacific Northwest is undergoing a transition in electricity generation from a predominantly hydro system to a combined hydro-thermal system. The high marginal costs of thermal generation relative to the low-cost hydropower base have made the search for alternatives very important. The cost of many conservation measures is less than the cost of new generation. This paper describes the results of an evaluation of industrial electricity conservation measures. Using a detailed end-use data base on industrial electricity consumption in the Pacific North west (PNW), nine most electricity intensive industry groups at the 4-digit SIC level were selected. An engineering economic analysis of conservation measures was performed for representative plants in each industry group. The plant level conservation estimates were extrapolated to the 4-digit and 2-digit SIC levels. An analysis of the market penetration of each conservation measure was performed using a distribution of desired rates of return. Government programs to encourage electricity conservation were identified, and their costs and effectiveness were assessed. The paper describes the methodology and significant findings of the study.

Limaye, D. R.; Hinkle, B. K.; Lang, K.

1982-01-01T23:59:59.000Z

48

The Spanish Electricity Industry: Plus a change  

E-Print Network (OSTI)

Crampes Universit de Toulouse (GREMAQ and IDEI) ccrampes@cict.fr Natalia Fabra Universidad Carlos III de Madrid and CEPR nfabra@eco.uc3m.es November 18, 2004 Abstract In this paper we describe the Spanish electricity industry and its... decrease hides the lack of a real reform. 1 Protocolo para el Establecimiento de una Nueva Regulacin del Sistema Elctrico Nacional, December 1996; (text, in Spanish, available at http...

Crampes, Claude; Fabra, Natalia

2006-03-14T23:59:59.000Z

49

Water Disclosure in the Electric Power Industry  

Science Conference Proceedings (OSTI)

This topical brief provides an overview of two of the prominent water disclosure mechanisms affecting the electric power industry, the Global Reporting Initiative (GRI) and Carbon Disclosure Project Water Disclosure (CDP Water), and identifies connections to relevant EPRI research. The document was developed through EPRI's Program 55 Strategic Water Issues, and the Energy Sustainability Interest Group. This collaborative interest group was launched in 2008 and is made up of nearly 30 companies representi...

2011-06-17T23:59:59.000Z

50

Demand Response is Focus of New Effort by Electricity Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by Electricity Industry Leaders Demand Response is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together...

51

Transmission and Generation Investment In a Competitive Electric Power Industry  

E-Print Network (OSTI)

PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James;PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell. Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell and Steven Stoft

California at Berkeley. University of

52

Volumetric Hedging in Electricity Procurement Department of Industrial Engineering  

E-Print Network (OSTI)

Volumetric Hedging in Electricity Procurement Yumi Oum Department of Industrial Engineering electricity service at regulated prices in restructured electricity markets, face price and quantity risk. We in the electricity industry has put high price risk on market partici- pants, particularly on load serving entities

53

Essays on exchange rates and electricity demand  

E-Print Network (OSTI)

This thesis examines two important issues in economic development: exchange rates and electricity demand and addresses methodological issues of using time series and panel data analysis to investigate important policy ...

Li, Xiangming, 1966-

1999-01-01T23:59:59.000Z

54

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

chanye (Chinas Electricity Industry at the Crossroad). ? InCapture in the Electricity Industry 2. Cross-Sectorals Telecoms and Electricity Industries. ? European Journal of

Tsai, Chung-min

2010-01-01T23:59:59.000Z

55

Impact of Electricity Deregulation on Industrial Assessment Strategies  

E-Print Network (OSTI)

This paper explores many of the changes in typical industrial assessment recommendations, which have resulted from deregulation of the electric and gas industries. While anticipating that energy efficiency would almost always be a good idea, changes in rate structures and indeed the very nature of how energy is purchased can put some energy efficiency technologies outside of normal economically acceptable ranges. A major focus will be changes in and the elimination of time-of-use rates for electricity. An entire generation of DSM'ers (people working in "Demand-Side Management") worked under the principle that there was economic benefit to load leveling. Time-of-use rates are changing throughout the country and in many cases disappearing. Bulk purchase of electricity has even resulted in cases where, with minimum consumption requirements, industrial plants need to find ways to increase their electrical use to avoid penalties. Energy storage devices including thermal energy storage must be re-examined in terms of this new paradigm. There are applications where they are advisable, but for different reasons then demand management. Another area of particular interest is fuel selection, multiply fuel capability, and contracting. An industrial assessment at two neighboring plants can result in entirely different recommendations based on how energy is purchased and billed. In many cases, an industrial plant may be better off spending resources on energy purchasing agents as opposed to anything like an energy efficiency project. Onsite generation of power and the changing rationales for its adoption has also experienced big changes. Energy security is becoming a strong motivation for industrial plants, options are increased, and third party funding is also starting to appear. Intermediate solutions like gas driven compressors bring these two areas together and leave industrial clients with more options but often more confusion than ever before. Finally, the paper discusses some of the new challenges facing an industrial assessment team in terms of information gathering. It is becoming necessary to examine many possible energy purchase options and each has ramifications on energy efficiency projects. Use of the Internet, computer tools and other information sources is presented.

Kasten, D. J.; Muller, M. R.; Pavlovic, F.

2002-04-01T23:59:59.000Z

56

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

57

Challenges of electric power industry restructuring for fuel suppliers  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

NONE

1998-09-01T23:59:59.000Z

58

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

59

Does EIA publish electric utility rate, tariff, and demand charge ...  

U.S. Energy Information Administration (EIA)

Does EIA publish electric utility rate, tariff, and demand charge data? No, EIA does not collect or publish data on electricity rates, or tariffs, for the sale or ...

60

"Annual Electric Power Industry Report (EIA-861 data file)  

Annual Energy Outlook 2012 (EIA)

Data Released: September 20, 2012 Data for: 2011 Next Release: September 2013 Re-Release Date: November 27, 2012 (CORRECTION) Survey form EIA-861 -- Annual Electric Power Industry...

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Appliances & Electronics Maximum Rebate Contact EEF Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Incentives Vary Widely Provider Connecticut Light and Power All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy

62

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

63

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

64

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

65

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

66

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

67

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

68

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

69

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

70

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

71

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

72

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

73

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

74

PPL Electric Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and...

75

Determining Levels of Productivity and Efficiency in the Electricity Industry  

Science Conference Proceedings (OSTI)

A few major themes run fairly consistently through the history of productivity and efficiency analysis of the electricity industry: environmental controls, economies of scale, and private versus government.

Abbott, Malcolm

2005-11-01T23:59:59.000Z

76

The electric power industry : deregulation and market structure  

E-Print Network (OSTI)

The US electricity industry currently consists of vertically integrated regional utilities welding monopolistic power over their own geographic markets under the supervision of state and federally appointed regulators. ...

Thomson, Robert George

1995-01-01T23:59:59.000Z

77

Industrial sector drives increase in North Dakota electricity ...  

U.S. Energy Information Administration (EIA)

Increased oil and natural gas production in North Dakota has driven the state's growth in industrial demand for electricity. Rising economic activity and population ...

78

Dakota Electric Association- Commercial and Industrial Energy Conservation Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Dakota Electric provides low-interest loans to help its commercial and industrial customers finance projects which will improve the energy efficiency of participating facilities. The minimum loan...

79

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and cooling equipment, motors, insulation,...

80

Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dakota Electric Association - Commercial and Industrial Custom Energy Grant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Electric Association - Commercial and Industrial Custom Dakota Electric Association - Commercial and Industrial Custom Energy Grant Program Dakota Electric Association - Commercial and Industrial Custom Energy Grant Program < Back Eligibility Commercial Industrial Savings Category Other Maximum Rebate 50% of total project costs and 100,000 annually in grants/rebates per member. Program Info State Minnesota Program Type Utility Grant Program Rebate Amount 50% of total project costs up to 100,000 Provider Dakota Electric Service Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in a reduction of electric use, when a specific rebate program is not currently available. Any energy

82

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

83

Industrial - Program Areas - Energy Efficiency & Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Animation The ORNL Industrial Technologies Program has made technological advances in industry that contribute to improved efficiency through decreased energy consumption, improved...

84

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

Chinese electric power industry). ? Zhongguo Dianliwang (in Chinese State Industry: An Analysis of Evidence onchanye (Chinas Electricity Industry at the Crossroad). ? In

Tsai, Chung-min

2010-01-01T23:59:59.000Z

85

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

2006). Beijing: China Electric Power Press. Zhu, Chengzhang.reform in the Chinese electric power industry). ? Zhongguoand Challenges for Chinas Electric Power Industry. ? The

Tsai, Chung-min

2010-01-01T23:59:59.000Z

86

Development of mobile workforce management system for electricity supply industries  

Science Conference Proceedings (OSTI)

This research paper presents the features of a proposed Mobile Workforce Management System (MWMS) that will be used for the Electricity Supply Industries (ESI). The paper wraps up the types of related works that has been executed; the study on problems ... Keywords: electricity supply industry, mobile workforce management system

Faridah Hani Mohamed Salleh; Zaihisma Che Cob; Mohana Shanmugam; Siti Salbiah Mohamed Shariff

2009-12-01T23:59:59.000Z

87

American Indian tribes and electric industry restructuring: Issues and opportunities  

Science Conference Proceedings (OSTI)

The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

Howarth, D. [Morse, Richard, and Weisenmiller, and Associates Inc., Oakland, CA (United States); Busch, J. [Lawrence Berkeley National Lab., CA (United States); Starrs, T. [Kelso, Starrs, and Associates LLC, Vashon, WA (United States)

1997-07-01T23:59:59.000Z

88

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

89

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

90

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

91

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

92

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

93

Public-policy responsibilities in a restructured electricity industry  

SciTech Connect

In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

Tonn, B.; Hirst, E.; Bauer, D.

1995-06-01T23:59:59.000Z

94

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

95

Industrial Powerhouse Optimization in the Deregulated Electricity Marketplace  

E-Print Network (OSTI)

The State of Delaware deregulated the retail sale of electricity in 2002, enabling buyers to procure power on a real-time price schedule and sell excess generated power to the grid. This initiative has prompted industrial sites, especially those with on-site generation capability, to evaluate the benefits and risks of the deregulated market. Deregulation can offer significant potential savings to industrial customers. However, with this opportunity comes exposure to turbulent fluctuations in electricity prices, which can sometimes reach $1,000/MW-hr. If a customer is unprepared for high electricity prices, an entire year of electricity cost savings can quickly be erased. This paper describes how one industrial site evaluated the risks and benefits of electricity deregulation and implemented real-time optimization of the electricity make-buy decision.

Hughes, P. D.; Bailey, W. F.

2003-05-01T23:59:59.000Z

96

The changing structure of the electric power industry: An update  

SciTech Connect

The U. S. electric power industry today is on the road to restructuring a road heretofore uncharted. While parallels can be drawn from similar journeys taken by the airline industry, the telecommunications industry, and, most recently, the natural gas industry, the electric power industry has its own unique set of critical issues that must be resolved along the way. The transition will be from a structure based on a vertically integrated and regulated monopoly to one equipped to function successfully in a competitive market. The long-standing traditional structure of the electric power industry is the result of a complex web of events that have been unfolding for over 100 years. Some of these events had far-reaching and widely publicized effects. Other major events took the form of legislation. Still other events had effects that are less obvious in comparison (e.g., the appearance of technologies such as transformers and steam and gas turbines, the invention of home appliances, the man-made fission of uranium), and it is likely that their significance in the history of the industry has been obscured by the passage of time. Nevertheless, they, too, hold a place in the underpinnings of today`s electric industry structure. The purpose of this report, which is intended for both lay and technical readers, is twofold. First, it is a basic reference document that provides a comprehensive delineation of the electric power industry and its traditional structure, which has been based upon its monopoly status. Second, it describes the industry`s transition to a competitive environment by providing a descriptive analysis of the factors that have contributed to the interest in a competitive market, proposed legislative and regulatory actions, and the steps being taken by the various components of the industry to meet the challenges of adapting to and prevailing in a competitive environment.

1996-12-01T23:59:59.000Z

97

Oncor Electric Delivery - Large Commercial and Industrial Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oncor Electric Delivery - Large Commercial and Industrial Rebate Oncor Electric Delivery - Large Commercial and Industrial Rebate Program Oncor Electric Delivery - Large Commercial and Industrial Rebate Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Windows, Doors, & Skylights Solar Buying & Making Electricity Water Heating Wind Maximum Rebate General: 20% of the incentive budget in a given budget year Contact Oncor for additional details Program Info State Texas Program Type Utility Rebate Program Rebate Amount DX Air Conditioning: $285.30/kW; $0.09/kWh

98

ConEd (Electric) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Electric) - Commercial and Industrial Energy Efficiency ConEd (Electric) - Commercial and Industrial Energy Efficiency Program ConEd (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Large Commercial Energy Study: $50,000 (electric); $67,000 (combined with gas) Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Lighting: Varies widely by type Small Business Energy Surveys: Free Small Business Equipment Upgrades: up to 70% of cost Large Commercial Energy Study: 50% of the cost

99

AN ECONOMETRIC ANALYSIS OF ZAMBIAN INDUSTRIAL ELECTRICITY DEMAND.  

E-Print Network (OSTI)

??The purpose of this thesis is twofold: to examine the electricity use in Zambias mining industry by focusing on own-price, cross price and index of (more)

Chama, Yoram Chama

2012-01-01T23:59:59.000Z

100

Sustainable Communities--Business Opportunities for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

The purposes of this study are to: develop and articulate a vision of sustainable communities of the future and identify and delineate resulting technology challenges and business opportunities facing the electric utility industry.

2006-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

102

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

103

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

104

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

105

Changing Structure of the Electric Power Industry: Selected Issues, 1998  

Reports and Publications (EIA)

Provides an analytical assessment of the changes taking place in the electric power industry, including market structure, consumer choice, and ratesetting and transition costs. Also presents Federal and State initiatives in promoting competition.

Information Center

1998-07-01T23:59:59.000Z

106

Changing Structure of the Electric Power Industry: An Update, The  

Reports and Publications (EIA)

Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

Information Center

1996-12-01T23:59:59.000Z

107

Electricity Transmission in a Restructured Industry: Data Needs...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Transmission in a Restructured Industry: Data Needs for Public Policy Analysis Speaker(s): Douglas Hale Date: February 24, 2005 - 12:00pm Location: Bldg. 90 Seminar...

108

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Commercial Weatherization Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate 50% of cost in many cases Commercial and Industrial: $50,000/facility per year Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom Incentives: 50% T8/T5 Fluorescent Fixtures: $3-$20 T5/T8 Fluorescent High Bay Fixtures: $55-$175 CFL High Bay Fixtures: $75

109

Strategies to address transition costs in the electricity industry  

SciTech Connect

Transition costs are the potential monetary losses that electric- utility shareholders, ratepayers, or other parties might experience because of structural changes in the electricity industry. Regulators, policy analysts, utilities, and consumer groups have proposed a number of strategies to address transition costs, such as immediately opening retail electricity markets or delaying retail competition. This report has 3 objectives: identify a wide range of strategies available to regulators and utilities; systematically examine effects of strategies; and identify potentially promising strategies that may provide benefits to more than one set of stakeholders. The many individual strategies are grouped into 6 major categories: market actions, depreciation options, rate-making actions, utility cost reductions, tax measures, and other options. Of the 34 individual strategies, retail ratepayers have primary or secondary responsibility for paying transition costs in 19 of the strategies, shareholders in 12, wheeling customers in 11, taxpayers in 8, and nonutility suppliers in 4. Most of the strategies shift costs among different segments of the economy, although utility cost reductions can be used to offset transition costs. Most of the strategies require cooperation of other parties, including regulators, to be implemented successfully; financial stakeholders must be engages in negotiations that hold the promise of shared benefits. Only by rejecting ``winner-take-all`` strategies will the transition-cost issue be expeditiously resolved.

Baxter, L.; Hadley, S.; Hirst, E.

1996-07-01T23:59:59.000Z

110

Specification, estimation, and forecasts of industrial demand and price of electricity  

Science Conference Proceedings (OSTI)

This paper discusses the specification of electricity-demand and price equations for manufacturing industries and presents empirical results based on the data for 16 Standard Industrial Classification (SIC) three-digit industries from 1959 to 1976. Performances of estimated equations are evaluated by sample-period simulation tests. The estimated coefficients are then used to forecast electricity demand by industry. Results show that most of the estimated coefficients have expected signs and are statistically significant. The estimated equations perform well in terms of sample-period simulation tests, registering small mean absolute percentage errors and mean square percentage errors for most of the industries studied. Forecasted results indicate that total electricity demand by manufacturing industries would grow at an average annual rate of 3.53% according to the baseline forecast, 2.39% in the high-price scenario, and 4.76% in the low-price scenario. The forecasted growth rates vary substantially among industries. The results also indicate that the price of electricity would continue to grow at a faster rate than the general price level in the forecasted period 1977 to 1990. 19 references, 6 tables.

Chang, H.S. (Univ. of Tennessee, Knoxville); Chern, W.S.

1981-01-01T23:59:59.000Z

111

Commercial & Industrial Demand Response Within Hawaiian Electric Company Service Territory  

Science Conference Proceedings (OSTI)

By reducing power usage during peak demand periods, demand response (DR) programs can help utilities manage power loads and complement energy efficiency activities while providing ratepayers an opportunity to substantially reduce their electric bills. This project assessed the costs and benefits of potential DR programs for Hawaiian Electric Company's (HECO's) commercial and industrial (CI) customers.

2007-06-04T23:59:59.000Z

112

Safety and Security Issues in Electric Power Industry  

Science Conference Proceedings (OSTI)

The paper presents, the main types of hazards for personnel, equipment and electric power systems which should be taken into consideration in the design of computer-based systems applied in electric power industry, as well as threats to the systems from ...

Zdzislaw Zurakowski

2000-10-01T23:59:59.000Z

113

Increasing Profits with Electric Industrial Vehicles: Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

Alabama Power Company's Electric Transportation Department has increased its bottom line through an innovative electric forklift incentive program. This presentation outlines the key points of an EPRI Case Study (EPRI report no. 1006013) that documents the utility's strategy, implementation, and results. The presentation demonstrates 1) the value of the industrial electric vehicle market to the utility, and 2) how the industrial market can benefit your bottom line.

2001-08-24T23:59:59.000Z

114

Tips: Time-Based Electricity Rates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Time-Based Electricity Rates Tips: Time-Based Electricity Rates Tips: Time-Based Electricity Rates July 2, 2012 - 8:09pm Addthis Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. What are the key facts? Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. Distributing the electricity demand more evenly ensures that a steady and reliable stream of electricity is available for everyone. To help reduce their peak power demands and save money, many utilities are

115

Tips: Time-Based Electricity Rates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Time-Based Electricity Rates Tips: Time-Based Electricity Rates Tips: Time-Based Electricity Rates July 2, 2012 - 8:09pm Addthis Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. What are the key facts? Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. Distributing the electricity demand more evenly ensures that a steady and reliable stream of electricity is available for everyone. To help reduce their peak power demands and save money, many utilities are

116

Electric Utility Industrial DSM and M&V Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydros large commercial and industrial non-transmission class customers. It is a direct energy acquisition program that is based on a partnering approach with BC Hydros business customers. A customer that commits to being a Power Smart Partner gains access to financial support and assistance with the identification and implementation of electricity savings projects. A direct financial incentive is provided to lower customers funding requirements and to improve the payback and/or investment criteria for energy efficiency projects. Projects are evaluated against established criteria set forth by BC Hydro. Projects which prove to be the most cost-effective on a $/kWh basis receive funds. For transmission-voltage customers, BC Hydro has recently implemented a new tariff designed to encourage energy reduction. The new tariff is an inclining block tariff and is known as the Stepped Rate. The customers consumption is compared against their Customer Baseline Load (CBL). The first 90% of the customers consumption is billed at a Tier 1 rate. The remaining consumption is billed at a Tier 2 rate, approximately two times the Tier 1 rate. There are mechanisms in place to adjust the customers CBL to account for activities such as customer-funded demand-side-management projects and customer plant expansion projects. This paper will discuss BC Hydros M&V program in terms of the process, operations and M&V results to date for the PSP. In addition, the paper will discuss the new Stepped Rate tariff intricacies in terms of CBL setting, CBL adjustments and transmission customer Impact Study guideline requirements.

Lau, K. P. K.

2008-01-01T23:59:59.000Z

117

Empire District Electric - Commercial and Industrial Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Efficiency Empire District Electric - Commercial and Industrial Efficiency Rebates Empire District Electric - Commercial and Industrial Efficiency Rebates < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 20,000 per program year per customer Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Lighting: 2 - 50 per fixture Lighting Power Density: 1 per watt per square foot Lighting Sensors: 20 - 50 per sensor Central AC: 73 - 92 per ton Motors: 50 - 130 per motor Energy Audit: 50% of cost Custom: Lesser of 50% of incremental cost; 2-year payback equivalent; or

118

Empire District Electric - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 5,000; additional funds may be available for final 3 months of program year Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Custom: lesser of $.30 per kWh savings, 50% of incremental cost, or buydown to two year payback Fluorescent Lamps/Fixtures: $0.50 - $16 High Performance T8 Systems: $9 - $18 High-Bay Fluorescent Lamps/Ballasts: $40 - $125 CFL Fixtures: $8 - $25 Pendant/Wall Mount/Recessed Indirect Fixtures: $16 - $24

119

Dakota Electric Association - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Electric Association - Commercial and Industrial Energy Dakota Electric Association - Commercial and Industrial Energy Efficiency Rebate Program Dakota Electric Association - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $100,000 Building Measures: 50% of project cost up to $20,000 Central Air Conditioning: $1,500 Compressed Air Evaluation: $2,000 - $15,000 depending on HP Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount HVAC Chillers: $10 - $20/Ton, plus $2/ton, per 0.1 above base efficiency Cooling Towers: $3/nominal tower ton Air Handling Systems (VAV): $170/VAV Box

120

Minnesota Valley Electric Cooperative - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Commercial and Industrial Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate For lighting, motors, and ASDs, there is a maximum of 50% of the project cost, or $5,000 Agriculture Ventilation: 50% of cost or $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies according to fixture type Rooftop/Split System A/C: $18/ton, plus bonus of $5/ton for each 0.1 above

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

1991-09-01T23:59:59.000Z

122

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

1991-09-01T23:59:59.000Z

123

Global Climate Change Electric Power Industry  

E-Print Network (OSTI)

-binding national targets have been set for the consumption of electricity from renewable sources and for biofuels - The United States - Developing nations · Biofuels targets · Biofuels policy overview by region - The European renewable fuels targets (gallons bn), 2006-2012 · Biofuels energy targets · Biofuel policy overview

Ford, Andrew

124

The Electricity Industry In Spain Edward Kahn  

E-Print Network (OSTI)

import of natural gas from Algeria. The 1994 electricity reform legislation mandated the creation, and the peculiar situation of nuclear power. In the future, natural gas will increase its role in Spain Energia (MIE), Protocolo de Intenciones para el Uso del Gas Natural en la Generacion de Energia Electrica

California at Berkeley. University of

125

Electric Utility Industry Experience with Geomagnetic Disturbances  

Science Conference Proceedings (OSTI)

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

Barnes, P.R.

1991-01-01T23:59:59.000Z

126

ELECTRICAL ENGINEER High growth industry career opportunity  

E-Print Network (OSTI)

shall be submitted in writing to the DCM Project Manager, using the KU Standards Variance Request Form Designers shall verify that all applicable portions of these standards are incorporated into the project,470-Volt power to the Lawrence main campus at two distribution substations. Electrical metering for billing

127

IRP and the electricity industry of the future: Workshop results  

SciTech Connect

During the next several years, the U.S. electricity industry is likely to change dramatically. Instead of an industry dominated by vertically integrated companies that are regulated primarily by state public utility commissions, we may see an industry with many more participants and less regulation. These new participants may include independent power producers, entities that dispatch and control power plants on a real-time basis, entities that build and maintain transmission networks, entities that build and maintain distribution systems and also sell electricity and related to services to some retail customers, and a variety of other organizations that sell electricity and other services to retail customers. Because markets are intended to be the primary determinant of success, the role of state and federal regulators might be less than it has been in the past. During the past decade, utilities and state regulators have developed new ways to meet customer energy-service needs, called integrated resource planning (IRP). IRP provides substantial societal benefits through the consideration and acquisition of a broad array of resources, including renewables and demand-side management (DSM) programs as well as traditional power plants-, explicit consideration of the environmental effects of electricity production and transmission; public participation in utility planning; and attention to the uncertainties associated with different resources, future demands for electricity, and other factors. IRP might evolve in different ways as the electricity industry is restructured (Table S-I). To explore these issues, we ran a Workshop on IRP and the Electricity Industry of the Future in July 1994. This report presents the wisdom and experience of the 30 workshop participants. To focus discussions, we created three scenarios to represent a few of the many ways that the electricity industry might develop.

Tonn, B.; Hirst, E.; Bauer, D.

1994-09-01T23:59:59.000Z

128

Assistance to States on Electric Industry Issues  

SciTech Connect

This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors staffs. NCSLs activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

Glen Andersen

2010-10-25T23:59:59.000Z

129

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

zhongguo dianli chanye (Chinas Electricity Industry at themulti_page.pdf. State Electricity Regulatory Commission.The Annual Report on Electricity Regulation (2006). Beijing:

Tsai, Chung-min

2010-01-01T23:59:59.000Z

130

Residential Customer Rate Options for Electric Vehicles and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper summarizes results of a survey conducted in the summer of 2006 that examined residential electric rates available to Californias electric vehicle EV and plug-in hybrid electric vehicle PHEV customers.

2008-03-31T23:59:59.000Z

131

Lighting Electricity Rates on OpenEI | OpenEI Community  

Open Energy Info (EERE)

Lighting Electricity Rates on OpenEI Lighting Electricity Rates on OpenEI Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 31 May, 2013 - 12:04 API Utility Rates I'm pleased to announce that a new lighting rate category and about 10,000 lighting rates are now officially offered in OpenEI's utility rate database! Streetlights and other similar electric lighting uses are typically billed using uniquely designed lighting rates. Illinois State University (ISU) had contributed approximately 10,000 lighting rates, and now these rates have been categorized under a new "lighting" category (in the same dropdown list that contains "residential", "commercial" and "industrial" categories). With the new categorization, users can now query

132

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

133

Efficient Electric Technologies for Industrial Heating: Emerging Activities  

Science Conference Proceedings (OSTI)

Industrial process heating is typically accomplished with fossil- and by-product fuels. However, new high-efficiency electric technologies for process heating applications are under development and commercially available, including three efficient electric process heating technologies covered in this Brief: Induction heating and melting Microwave (MW) heating, drying and curing Radio frequency (RF) heating, drying, and curing These technologies were selected for three reasons. First, in each case there a...

2007-12-18T23:59:59.000Z

134

EPRI Ergonomics Handbook for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Occupational Health and Safety (OHS) Program has provided ergonomic information to the electric energy industry workforce since 1999. This report specifically focuses on the design of substations and interventions for tasks performed by substation operators and maintenance workers as well as overhead and underground distribution workers. Substation and field distribution line work is physically strenuous and can expose workers to musculoskeletal disorders (MSD...

2010-10-20T23:59:59.000Z

135

Electric Energy Industry Workforce: Trends in Motor Vehicle Crashes  

Science Conference Proceedings (OSTI)

EPRI has established an ongoing injury/illness research programthe Occupational Health and Safety Database (OHSD) Programto provide information about the occurrence of workplace injury and illness among the electric energy industry workforce. Vehicles operated by electric utility workers typically include bucket trucks, digger/derrick trucks, washer trucks, pole and material trucks and trailers, and other vehicles used in line construction and maintenance. These vehicles are generally operated over low m...

2007-04-26T23:59:59.000Z

136

Electrical energy monitoring in an industrial plant  

E-Print Network (OSTI)

This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor on energy consumption and demand is covered, including installation of correction and the effect of increasing the power factor on demand and energy consumption block sizes. The installation of capacitance correction has increased the low power factor of this facility from the low 60% range to the mid-to-high 70% range. A method has been developed to predict savings based on precorrection monitored data in the event the exact amount of capacitance installed is unknown. Savings for the month of February, 1994, are found to be $1327.56. This method can be used as a diagnostic tool to determine the amount of active capacitance. In this plant, that amount was found to be 315 KVAC, which correlates reasonably well with the amount active in the plant. The monitoring installation is described, and other uses (besides that dealing with power factor correction) are covered. Those uses include monitoring plant and equipment performance and productivity, and savings due to missed opportunities for equipment turn off.

Dorhofer, Frank Joseph

1994-01-01T23:59:59.000Z

137

Electric top drives gain wide industry acceptance  

Science Conference Proceedings (OSTI)

Since its introduction, the top drive drilling system has gained acceptance as a productive and safe method for drilling oil and gas wells. Originally, the system was used mostly for offshore and higher cost land drilling, and it had to be installed as a permanent installation because of its enormous weight and size. Essentially, a top drive replaces the kelly and rotary table as the means of rotating drillpipe on oil, gas and geothermal rigs and is considered to be 15% to 40% more efficient than a kelly drive. Top drive systems allow the operator to drill and maintain directional orientation for triple stands and provide tripping efficiency because of the ability to ream and circulate with triple stands, to reduce the risk of stuck pipe or lost wells, and to improve well control and pipe handling safety. The paper describes electric top drives with DC motors, top drives with AC motors, top drives with permanent magnet motors, and top drives with permanent magnet brushless synchronous motors.

Riahi, M.L.

1998-05-01T23:59:59.000Z

138

The Role of Electricity Pricing Policy in Industrial Siting Decisions  

E-Print Network (OSTI)

One of the many reasons why industries tend to co-locate in a general vicinity is the availability of factors of production. A manufacturer can achieve great savings if his production facility is located near his major raw material supplier. Since many intermediate industrial products are extremely energy intensive, the producer of these products must locate in areas where low cost energy resources are abundant. In many instances, therefore, the existence of these industries will serve as an anchor to other manufacturing industries. Furthermore, industry has great inertia in its locational preferences. It takes a long time to establish a patent of growth or decay. But once it is set in motion it is very difficult to change. Since the pricing policy of electricity plays a significant role in the siting decisions of energy intensive industries, it is therefore imperative for the policy makers to understand the long term impact of their policies. This paper will examine the current pricing policy of the electric utility industry in Texas.

Tam, C. S.

1981-01-01T23:59:59.000Z

139

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Comprehensive energy management assistance within the industrial section is currently being offered by a growing number of electric utilities as part of their efforts to - provide additonal demand side services to their industrial customers. One of the keys to these enhanced services is the availability of a unique Industrial Energy Conservation and Management (EC&M) computer model that can be used to evaluate the technical and economic benefits of installing proposed process related energy management systems within an industrial plant. Details of an EPRI sponsored pilot program are summarized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportunities in HL&P's and other utility service areas. This capability is currently being offered to HL&P's industrial customers and is primarily concerned with identifying and evaluating possible process heat recovery and other energy management opportunities to show how a plant's energy related operating costs can be reduced.

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

1985-05-01T23:59:59.000Z

140

Does EIA publish electric utility rate, tariff, and demand charge ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... tariff, and demand charge data? No, EIA does not collect or publish data on electricity rates, or tariffs, ...

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation of Peak Heat Release Rates in Electrical Cabinet Fires  

Science Conference Proceedings (OSTI)

The purpose of this report is to reanalyze the peak heat release rates (HRRs) from fires occurring in electrical cabinets of nuclear power plants.

2012-02-23T23:59:59.000Z

142

Dynamic Line Rating Oncor Electric Delivery Smart Grid Program  

Science Conference Proceedings (OSTI)

Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operations State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar radiation on the stringing section, transmits the data to the Transmission Energy Management System, validates its integrity and passes it on to Oncor and ERCOT (Electric Reliability Council of Texas) respective system operations. The iDLR system is automatic and transparent to ERCOT System Operations, i.e., it operates in parallel with all other system status telemetry collected through Supervisory Control and Data Acquisition (SCADA) employed across the company.

Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

2013-05-04T23:59:59.000Z

143

Changing Structure of the Electric Power Industry: 1970-1991  

Reports and Publications (EIA)

The purpose of this report is to provide a comprehensive overview of the ownership of the U.S. electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects.

Information Center

1993-03-01T23:59:59.000Z

144

Performance issues for a changing electric power industry  

SciTech Connect

Extremely cold weather created record demands for electricity in the eastern two-thirds of the United States during the week of January 16, 1994. Fuel-related problems, mostly the result of transportation constraints resulting from ice accumulation on roads and water-ways, and unexpected generating capacity outages at utilities and nonutilities resulted in demand not being met. Some utilities asked nonessential customers along with State governments and a portion of the Federal Government to shut down. Two electric control areas, the Pennsylvania-New Jersey-Maryland Interconnection (PJM) and Virginia Electric & Power Company (VEPCO), instituted rolling blackouts. This disturbance was reported widely in the press and, along with other disturbances, peaked renewed interest in the reliability of the electric power system. The renewed interest in reliability has coincided with substantial changes that are beginning to occur in the structure and competitiveness of the electric power industry. Juxtaposing the question of reliability and the issue of changing industry structure leads to the central concern of this report: What effect, if any, will the changing structure of the industry have on the reliability of the system?

Not Available

1995-01-01T23:59:59.000Z

145

Electric utility restructuring and the California biomass energy industry  

Science Conference Proceedings (OSTI)

A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

146

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Payment limited to 25% of customers monthly kWh usage Program Info State Iowa Program Type Performance-Based Incentive Rebate Amount $0.20/kWh Provider Farmers Electric Cooperative Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a $0.20 per kilowatt-hour (kWh) production incentive for up to 10 years for energy production that offsets up to 25% of monthly energy usage.

147

Electric generating or transmission facility: determination of rate-making  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

148

Strong dependence of ultracold chemical rates on electric dipole moments  

E-Print Network (OSTI)

We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d^{4(L+1/2)} where L>0 is the orbital angular momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d^6. We also apply this model to pure two dimensional collisions and find that chemical rates vanish as d^{-4} for ultracold indistinguishable fermions. This model provides a quick and intuitive way ...

Qumner, Goulven

2010-01-01T23:59:59.000Z

149

Impact of Electric Industry Structure on High Wind Penetration Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

273 273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-46273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association

150

Electric Industry Restructuring in Five States: Final Report  

DOE Green Energy (OSTI)

The electric industry in the United States is undergoing fundamental changes; it is transitioning from regulated monopolies to competitive markets offering customer choice. In this process, the states have been in the forefront of considering the changes in the industry structure and regulation. The Energy Information Administration (EIA) spearheaded a project on electric restructuring in the United States. This is the final report prepared under the project. The purpose of the report is to describe and compare the overall restructuring processes that took place in five states through June 30, 1996. The five states are California, Massachusetts, Michigan, New York, and Wisconsin. These are the first major states to consider restructuring or retail wheeling.

Fang, J. M.

1996-10-31T23:59:59.000Z

151

The new electricity industry: What`s at stake?  

SciTech Connect

There is enough potential for value creation and growth in the emerging electric industry to overcome the very significant downside facing today`s utilities. In the transition to competition, electricity customers will gain lower prices, and new or retooled competitors will take market share. To emerge a winner, utilities will have to move quickly on three fronts-strategic, organizational, and regulatory. Market forces, now being accommodated by deregulation, are remaking the electric utility industry. As in banking and telecommunications before it, this industry is now in the early stages of a complete transformation. There will be mergers and massive consolidation. There will be new competitors who will redefine the economics and competitive dynamics of the business, as MCI did in telecom and Fidelity has done in banking. As in banking and telecom, there will be traditional players, like Citibank or ATT, who make and actually shape the transition, and others who dwindle, vanish or are subsumed. The winners will create significant value for their shareholders. The once vertically integrated electric industry will fragment into three distinct, but linked, businesses - generation, wires and power services - plus a dispatch function. Each will have its own competitors and particular competitive dynamics. Generation will be a highly competitive, cost-based commodity business. Wires businesses, comprised of transmission and distribution functions, will be regulated, open access networks. Power services, encompassing wholesale and retail commodity sales and including other energy and non-energy products, will be provided by a third set of services competitors. Scheduling and dispatch, grid control and price settlements will be provided by independent, regulated entities and are outside the scope of this article.

Heller, W. [McKinsey & Co., Los Angeles, CA (United States)] [McKinsey & Co., Los Angeles, CA (United States); Jansen, P. [McKinsey & Co., San Francisco, CA (United States)] [McKinsey & Co., San Francisco, CA (United States); Silverman, L. [McKinsey & Co., Washington, DC (United States)] [McKinsey & Co., Washington, DC (United States)

1996-08-01T23:59:59.000Z

152

U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) |  

Open Energy Info (EERE)

Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB)

153

Electric and Gas Industries Association | Open Energy Information  

Open Energy Info (EERE)

and Gas Industries Association and Gas Industries Association Jump to: navigation, search Name Electric and Gas Industries Association Place Sacramento, CA Zip 95821 Website http://www.egia.org/ Coordinates 38.6228166°, -121.3827505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6228166,"lon":-121.3827505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Energy Storage In a Restructured Electric Industry: Report on EPRI Think Tank III  

Science Conference Proceedings (OSTI)

This report -- "Energy Storage in a Restructured Electric Industry" -- summarizes the third of a series of Think Tanks sponsored by EPRI on energy storage in a deregulated electric utility industry.

2002-06-10T23:59:59.000Z

155

Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry  

SciTech Connect

This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

Akyol, Bora A.

2012-09-01T23:59:59.000Z

156

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

157

Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20  

SciTech Connect

Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

Ray, D. [Univ. of Wisconsin, Madison, WI (United States)

1997-01-01T23:59:59.000Z

158

OpenEI/PageKeyword Electricity Rates | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon OpenEIPageKeyword Electricity Rates Jump to: navigation, search A list of all pages that have property "OpenEI...

159

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network (OSTI)

Electric restructuring, currently proposed in California and being reviewed elsewhere, can produce many opportunities for large companies to reduce their electricity costs. As the electricity market changes, electric utilities and other potential suppliers are likely to develop a portfolio of options and creative pricing to attract customers in a competitive market. In attempting to be "energy neutral," i.e., to be indifferent to energy costs in one state or utility service area versus another, many companies are looking at a corporate approach to energy procurement, similar to the procurement of other products. Industrial customers may be looking for regional or even national energy suppliers for their facilities. Electric utilities, in an attempt to be competitive and retain customers, will likely work to be this regional or national energy supplier. The expectation will be that these suppliers can offer competitive pricing and a portfolio of options from which to choose. These options may resemble those that have developed in the natural gas market as a result of restructuring in the fuels industry.

Lowe, E. T.

1995-04-01T23:59:59.000Z

160

Electricity distribution industry restructuring, electrification, and competition in South Africa  

SciTech Connect

This paper reviews the status of the South African electricity supply industry (ESI) and proposals for reorienting and restructuring it. South Africa has been intensely examining its ESI for more than 4 years in an effort to determine whether and how it should be restructured to best support the country`s new economic development and social upliftment goals. The debate has been spirited and inclusive of most ESI stakeholders. The demands on and expectations for the ESI are many and varied. The debate has reflected this diversity of interests and views. In essence, however, there is a consensus on what is expected of the industry, namely, to extend provision of adequate, reliable, and affordable electricity service to all citizens and segments of the economy. This means a large-scale electrification program to reach as many of the nearly 50% of households currently without electricity service as soon as possible, tariff reform to promote equity and efficiency, and the upgrading of service quality now being provided by some of the newly consolidated municipal authorities. The issues involved are how best to achieve these results within the context of the national Reconstruction and Development Program, while accounting for time and resource constraints and balancing the interests of the various parties.

Galen, P S

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Commercial and Industrial Conservation and Load Management Programs at New England Electric  

E-Print Network (OSTI)

New England Electric has initiated, through its three retail subsidiaries, an ambitious load management and conservation program designed to reduce its projected 1991 summer peak by 230 megawatts and save 335,000 megawatthours per year. The effort is directed mainly toward the commercial and industrial classes, which make up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a storage cooling program, a standby generation program, residential programs and rate programs. This paper discusses the details of the commercial and industrial programs and why they are being implemented.

Gibson, P. H.

1987-09-01T23:59:59.000Z

162

What Does Industry Expect From An Electrical Utility  

E-Print Network (OSTI)

The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier quality programs we are developing include: 1. Performance and Delivery, 2. Conformance, 3. Responsiveness, 4. Communications, 5. Supplier Quality Efforts. The electric utility supplying each of our locations is our partner at that location. We do not have the same degree of flexibility to change electricity suppliers that we might have with other suppliers of goods and services. In order for our partnerships to work we must get to know each other better. We need to understand the other guys problems and then find ways to do business that are mutually beneficial to both of us. At Union Carbide our total quality process has started at the top of the corporation and is working its way throughout the organization. Our supplier quality programs are now beginning to take shape and we are relying upon our electric utility suppliers to become active in the final design and implementation of these programs.

Jensen, C. V.

1989-09-01T23:59:59.000Z

163

Electric field suppression of ultracold confined chemical rates  

E-Print Network (OSTI)

We consider ultracold collisions of polar molecules confined in a one dimensional optical lattice. Using a quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching rate constants for fermionic molecules. Taking KRb molecules as a prototype, we find that the rate of quenching collisions is enhanced at zero electric field as the confinement is increased, but that this rate is suppressed when the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities, and for achievable experimental electric fields and trap confinements, we predict lifetimes of KRb molecules of 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve efficient experimental evaporative cooling of polar KRb molecules.

Qumner, Goulven

2010-01-01T23:59:59.000Z

164

Region-specific study of the electric utility industry. Phases I and II. Executive summary  

Science Conference Proceedings (OSTI)

This report describes the problems either confronting or likely to confront the electric utility industry in the event of a return of high rates of inflation. It attempts to assess the future of this industry and makes recommendations to resolve fundamental problems. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of the willingness of a wide range of parties to participate and its representative mix of powerplants, for example coal, hydro, nuclear and oil. It was found that the future supply of reliable, economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the condition of the electricity industry was to make the present system work. The present system is sound and, with modifications, problems could be solved within the existing framework. A series of recommendations, developed through a consensus building effort involving state government officials, state regulators and investor-owned utility representatives, are presented. A discussion of the need for innovative solutions and one state's approach to the problem concludes the report.

Not Available

1986-03-01T23:59:59.000Z

165

Incentive regulation in the electric utility industry. Volume II. Final report  

SciTech Connect

On October 15, 1982, Resource Consulting Group, Inc. (RCG), submitted a draft report to the Federal Energy Regulatory Commission (FERC) titled, Incentive Regulation in the Electric Utility Industry. The FERC distributed the draft report to more than 60 individuals and organizations who were requested to review and comment on the various proposals and recommendations outlined in the report. In response to the FERC's request, 18 organizations submitted formal review comments. This report contains reviewers comments on each of the three programs recommended. The three major incentive programs are: (1) Rate Control Incentive program (RCIP); (2) Construction Cost Control Incentive Program (CCIP); and (3) Automatic Rate Adjustment Mechanism (ARAM).

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

166

National Electric Rate Book: Mississippi, North Dakota, South Carolina, and South Dakota  

SciTech Connect

Rate schedules for electric service in communities of 2,500 or more for residential, commercial, and industrial services are presented for Mississippi, South Carolina, South Dakota, and North Dakota. In addition to communities of 2,500 or more, all towns and villages with populations between 1,000 and 2,500 served under residential rate schedules available in the larger communities are listed. Rate schedules include customers for lighting, heating, power, and other purposes. Omitted are those applicable exclusively to resale service, railways, government bodies, agricultural, and rural service.

1977-10-01T23:59:59.000Z

167

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network (OSTI)

Economy of State-Level Electricity Restructuring. Resources109-129. [15] Bushnell, J. "Electricity Resource Adequacy:Version 1.0, 1999b. [33] Electricity for Identification

Fowlie, Meredith

2005-01-01T23:59:59.000Z

168

Control requirements for cogen and microgen plants in a deregulated electricity industry  

SciTech Connect

The deregulation of the electricity production and distribution industry provides opportunities and concerns to the end-users as well as to the electricity producing companies. The end-user objective is to get a reliable source of electrical energy at the lowest rate possible. On the other hand, the primary objective of the three providing companies--generation, transmission, and local distribution--is to profit while satisfying their customers' needs. These three companies may compete for the same customer, and new competitors may enter the arena. The existing technology of the cogeneration plant and the emergence of the microgenerating plant will be used by all the providers and by the end-users to achieve their objectives. The purpose of this paper is to introduce the concept of operation of the microgenerating plant, to identify the requirements of each interested player, and to introduce control strategies.

Shavit, G.

2000-07-01T23:59:59.000Z

169

Analysis of customer response to electricity rate structures which create an endogenous electricity price  

SciTech Connect

In the 1970's, concern over the availability and cost of fossil fuels led to use of electricity rates designed to conserve energy. Under several rates the marginal electricity price was endogenous. Two such rates were inverted block rates and voluntary time-of-use (TOU) rates. Both rates have the potential to alter welfare by changing electricity-usage patterns. Both require special methodological treatment. The problem of modeling demand under block rates was addressed in several fields. The most-sophisticated solution to date is a maximum likelihood approach first used in labor economics. However, as demonstrated in this thesis, this approach may cause misspecification of the likelihood function. In this thesis, a correctly specified maximum-likelihood model is developed, in which the simultaneous determination of usage and the marginal price resulting from the block rate are explicitly modeled in a unified framework. The resulting likelihood function is not continuously differentiable. However, maximization of this likelihood function is shown to produce asymptotically normal parameter estimates. The model is used to estimate the demand for electricity under a two-tier inverted block rate. Results show very small elasticities of demand with respect to each component of the rate structure. Comparison estimates using other methodologies demonstrate the problems which can arise if the endogenous price is not carefully treated.

Kuester, K.A.

1986-01-01T23:59:59.000Z

170

Will electricity market reform likely reduce retail rates?  

Science Conference Proceedings (OSTI)

To win public support, proponents for electricity market reform to introduce competition often promise that the post-reform retail rates will be lower than the average embedded cost rates that would have prevailed under the status quo of a regulated monopoly. A simple economic analysis shows that such a promise is unlikely to occur without the critical assumption that the post-reform market has marginal costs below average costs. (author)

Woo, C.K.; Zarnikau, Jay

2009-03-15T23:59:59.000Z

171

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal reports Coal reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

172

Transition-cost issues for a restructuring US electricity industry  

Science Conference Proceedings (OSTI)

Utilities regulators can use a variety of approaches to calculate transition costs. We categorized these approaches along three dimensions. The first dimension is the use of administrative vs. market procedures to value the assets in question. Administrative approaches use analytical techniques to estimate transition costs. Market valuation relies on the purchase price of particular assets to determine their market values. The second dimension concerns when the valuation is done, either before or after the restructuring of the electricity industry. The third dimension concerns the level of detail involved in the valuation, what is often called top-down vs. bottom-up valuation. This paper discusses estimation approaches, criteria to assess estimation methods, specific approaches to estimating transition costs, factors that affect transition-cost estimates, strategies to address transition costs, who should pay transition costs, and the integration of cost recovery with competitive markets.

NONE

1997-03-01T23:59:59.000Z

173

"Annual Electric Power Industry Report (EIA-861 data file)  

U.S. Energy Information Administration (EIA)

ELECTRICITY DETAILED SURVEY DATA FILES: Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files ...

174

A Case Study of Supply Chain Sustainability in the Electric Power Industry  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Energy Sustainability Interest Group, consisting of approximately 30 electric power companies, is working to identify best practices in order to improve sustainability performance in the electric power industry. One component of a comprehensive approach toward meeting this objective is to work with the industrys non-fuel supply chain to improve the environmental performance of producing and delivering their products and services. Many corporations and par...

2012-05-14T23:59:59.000Z

175

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports Rail Coal Transportation Rates to the Electric Power Sector Release Date: June 16, 2011 | Next Release Date: July 2012 | full report Introduction The U.S. Energy Information Administration (EIA) is releasing a series of estimated data based on the confidential, carload waybill sample obtained from the U.S. Surface Transportation Board (Carload Waybill Sample). These estimated data represent a continuation of EIA's data and analysis products related to coal rail transportation. These estimated data also address a need expressed by EIA's customers for more detailed coal transportation rate data. Having accurate coal rail transportation rate data is important to understanding the price of electricity for two main reasons. First,

176

U.S. natural gas consumption for electric power tops industrial ...  

U.S. Energy Information Administration (EIA)

tags: consumption demand electricity generation industrial natural gas. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

177

Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis  

SciTech Connect

Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

Berry, D.M.

1992-01-01T23:59:59.000Z

178

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

179

Status of State Electric Industry Restructuring Activity --as of February 2003 --  

E-Print Network (OSTI)

Status of State Electric Industry Restructuring Activity -- as of February 2003 -- (February 2003 Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming New Jersey #12;This site provides an overview of the status of electric industry restructuring in each state. Twenty-four states

Laughlin, Robert B.

180

Form EIA-861, "Annual Electric Power Industry Report." | OpenEI  

Open Energy Info (EERE)

1, "Annual Electric Power Industry Report." 1, "Annual Electric Power Industry Report." Dataset Summary Description This is an electric utility data file that includes such information as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and distributed generation capacity. The data source is the survey Form EIA-861, "Annual Electric Power Industry Report." Data for all years are final. The file F861yr09.exe is a file of data collected on the Form EIA-861, Annual Electric Power Industry Report, for the reporting period, calendar year 2009. The zipped .exe file contains 11 .xls files and one Word file, and a .pdf of the Form EIA-861. The data file structure detailed here also applies to data files for prior

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

182

Critical Issues Facing Federal Customers and the Electric Industry: A Call to Partnering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Facing Federal Issues Facing Federal Critical Issues Facing Federal Customers and the Electric Industry: Customers and the Electric Industry: A Call to Partnering A Call to Partnering Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG November 28, 2007 Overview  State of the industry  Review recent Energy Infrastructure Picture State of the Industry State of the Industry The Challenge of Balancing Core Drivers The Challenge of Balancing Core Drivers Rising Costs Rising Costs and Prices and Prices Climate Climate Change Change Energy Energy Efficiency Efficiency Enormous Enormous CapEx CapEx No longer a declining cost industry Fuel, infrastructure components, global industrialization and competition $ 750 Billion  $ 1.2 Trillion Exceeds current capitalization

183

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network (OSTI)

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity exists for selected industry groups to make cost-effective conversions to electric processes. Technological advances in high-efficiency electric process equipment increase the potential for energy substitution. This, in turn, is changing the market outlook for electric utilities. By and large, energy substitution decisions will be based on their economic and technical feasibility. In view of projections of the long-term price escalations of oil and natural gas, the economic of choosing electricity are looking good at present. This paper will describe certain industrial applications where the substitution of electricity for oil and natural gas appears economically advantageous.

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

184

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

185

Electricity matters: A new incentives approach for a changing electric industry  

SciTech Connect

The method of regulating a utility`s rates should be changed fundamentally to promote responses to competition. An approach that addresses price caps, profit sharing and affords flexibility in pricing can offer utilities and those they serve a {open_quotes}win-win{close_quotes} scenario. U.S. businesses face fiercely difficult challenges to compete in the global marketplace, requiring many firms to search for new and innovative competitive strategies. American business must make fundamental changes to cope with the forces of competition - or risk going out of business. Electricity suppliers can facilitate economic progress by providing cost-effective, high-quality and reliable service to their customers. But as many utility managers know too well, this goal is not easy to achieve. For regulators, it is important to frame and resolve the issues in a proactive way. At the outset, American electric utilities must have strong incentives to be efficient. The purpose of this paper is to explore some of the incentive regulation techniques, such as price-cap regulation, which U.S. and foreign electric utilities should use to facilitate change. These techniques can better accomodate the current mixed competitive and regulated environment while providing an appropriate transition to a dynamically competitive electric services market.

Olson, W.P.; Costello, K.W.

1995-01-01T23:59:59.000Z

186

An Empirical Analysis of the Potential for Market Power in California's Electricity Industry  

E-Print Network (OSTI)

PWP-044r An Empirical Analysis of the Potential for Market Power in California's Electricity's Electricity Industry Severin Borenstein and James Bushnell University of California Energy Institute 2539 the California electricity market after deregulation as a static Cournot market with a competitive fringe. Our

California at Berkeley. University of

187

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

State energy information, detailed and overviews. Maps. ... Table A6. Approximate Heat Rates for Electricity, and Heat Content of Electricity, 1949-2011

188

"Annual Electric Power Industry Report (EIA-861 data file)  

Gasoline and Diesel Fuel Update (EIA)

Electric Sales, Revenue, and Average Price CorrectionUpdate December 9, 2013 The re-release of the "Electric Sales, Revenue, and Average Price" data. Retail Sales was revised for...

189

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine Californias Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

CSEM WP 172 Electricity Rate Structures and the Economics of94720-5180 www.ucei.org Electricity Rate Structures and thefuture of California electricity rate levels and rate design

Borenstein, Severin

2007-01-01T23:59:59.000Z

190

Electrical conductivity and thermal dilepton rate from quenched lattice QCD  

E-Print Network (OSTI)

We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at $T\\simeq 1.45 T_c$ using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 $T_c$ will be presented.

Olaf Kaczmarek; Anthony Francis

2011-09-19T23:59:59.000Z

191

Electrical conductivity and thermal dilepton rate from quenched lattice QCD  

E-Print Network (OSTI)

We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at $T\\simeq 1.45 T_c$ using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 $T_c$ will be presented.

Kaczmarek, Olaf

2011-01-01T23:59:59.000Z

192

Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW  

DOE Green Energy (OSTI)

This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generating systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)

Not Available

1979-06-01T23:59:59.000Z

193

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

194

Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry  

SciTech Connect

The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

1995-12-31T23:59:59.000Z

195

The lithium-ion battery industry for electric vehicles.  

E-Print Network (OSTI)

??Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. (more)

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

196

Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY  

Annual Energy Outlook 2012 (EIA)

fee to purchase electricity generated from renewable sources. In addition, Renewable Energy Certificates (RECs), also known as green certificates, green tags, or tradable...

197

Challenges of Electric Power Industry Restructuring for Fuel ...  

U.S. Energy Information Administration (EIA)

Restructuring for Fuel Suppliers ... Office of Coal, Nuclear, Electric and Alternate Fuels Office of Oil and Gas ... Risk management will become an ...

198

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

199

Pricing Electricity for Default Customers: Pass Through or Performance-Based Rates?  

E-Print Network (OSTI)

PWP-066 Pricing Electricity for Default Customers: Pass Through or Performance-Based Rates? Carl;1 Pricing Electricity for Default Customers: Pass Through or Performance-Based Rates? Carl Blumstein1 August 1999 Abstract California electricity consumers can choose a retail electricity service provider

California at Berkeley. University of

200

Electricity in lieu of nautral gas and oil for industrial thermal energy: a preliminary survey  

SciTech Connect

In 1974, industrial processors accounted for nearly 50% of the nation's natural gas consumption and nearly 20% of its consumption of petroleum. This report is a preliminary assessment of the potential capability of the process industries to substitute utility-generated electricity for these scarce fuels. It is tacitly assumed that virtually all public utilities will soon be relying on coal or nuclear fission for primary energy. It was concluded that the existing technology will permit substitution of electricity for approximately 75% of the natural gas and petroleum now being consumed by industrial processors, which is equivalent to an annual usage of 800 million barrels of oil and 9 trillion cubic feet of gas at 1974 levels. Process steam generation, used throughout industry and representing 40% of its energy usage, offers the best near-term potential for conversion to electricity. Electric boilers and energy costs for steam are briefly discussed. Electrically driven heat pumps are considered as a possible method to save additional low-grade energy. Electrical reheating at high temperatures in the primary metals sector will be an effective way to conserve gas and oil. A wholesale shift by industry to electricity to replace gas and oil will produce impacts on the public utilities and, perhaps, those of a more general socio-economic nature. The principal bar to large-scale electrical substitution is economics, not technology. 174 references.

Tallackson, J. R.

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network (OSTI)

from the global cement industry, Ann. Rev. Energy Environ.were estimated. Cement industry BERs ranged from 205 kgCO 2carbon intensity, cement industry, Central America, electric

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

202

Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM)  

U.S. Energy Information Administration (EIA) Indexed Site

INDUSTRY REPORT (SHORT FORM) INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 2.01 Hours Page 1 Draft for Discussion only PURPOSE Form EIA-861S collects information on the status of selected electric power industry participants involved in the sale, and distribution of electric energy in the United States. The data collected on this form are used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS The Form EIA-861S is to be completed by all electric utilities with annual retail sales in the prior year of 100,000 megawatt-hours or less, with the following exceptions: 1. A respondent has retail sales of unbundled service; 2. A full set of data is required from the respondent to ensure that statistical estimates

203

Looking for Trouble: Competition Policy in the U.S. Electricity Industry  

E-Print Network (OSTI)

in the electricity industry. FERC Docket No. PL98-6-000.Market Design and Structure NOPR. FERC Docket RM01-12-000.Statement of Alfred E. Kahn. FERC Docket No. EL01-118-000.

Bushnell, Jim

2003-01-01T23:59:59.000Z

204

The risk of reform : privatisation and liberalisation in the Brazilian electric power industry  

E-Print Network (OSTI)

In 1996, when Brazil was well-underway to privatising and liberalising its electric power industry, few would have predicted that within five years the reforms would be a shambles. Like its neighbors Argentina and Chile, ...

Tankha, Sunil, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

205

Region-specific study of the electric utility industry. Phase I, final report  

SciTech Connect

This report describes the financial background of the electric utility industry in VACAR, reports on the present condition of the industry and then assesses the future of this industry. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of its cooperativeness and its representative mix of powerplants, for example coal, hydro, nuclear, oil. It was found that the supply of future economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the present condition of the electricity industry was to make the present system work. The present system is sound, and with modifications, problems could be solved within the existing framework. 8 figs., 4 tabs.

Wacaster, A.J. (ed.)

1985-07-01T23:59:59.000Z

206

Changing Structure of Electric Power Industry 1999: Mergers and Other Corporate Combinations, The  

Reports and Publications (EIA)

Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

Information Center

1999-12-01T23:59:59.000Z

207

Changing Structure of the Electric Power Industry 2000: An Update, The  

Reports and Publications (EIA)

Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects

Information Center

2000-10-01T23:59:59.000Z

208

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

209

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

210

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network (OSTI)

Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a growing number of utilities, however, such peak-reduction programs don't go far enough in the face of new problems and challenges, and hence are proving ineffective or counterproductive. For example, many of a utility's largest customers--especially industrial customers who may be "locked into" seemingly inflexible process activities--have limited ability to respond to load-management programs that employ price signals as a central peak-reduction tool. Moreover, utilities in general are finding that vigorous efforts to reduce electric load can result in underutilization of base-load generating facilities. In these and other instances, "load-shaping," which emphasizes a shift of electric load or demand from peak to off-peak periods and provides for greater customer flexibility, may be a more effective strategy. This paper explains the need for and presents the components of a load-shaping program, and describes Pacific Gas and Electric Company's (PGandE) recent experience in designing and pursuing an industrial-load-shaping program. The paper also outlines important obstacles and opportunities likely to confront other utilities and industrial customers interested in working together to develop such programs.

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

1986-06-01T23:59:59.000Z

211

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

212

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate - APS to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

213

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - NV Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on AddThis.com...

214

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on

215

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on AddThis.com...

216

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on AddThis.com...

217

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",76231696,85050801,907922...

218

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",4493024,4286431,4167054,...

219

The lithium-ion battery industry for electric vehicles  

E-Print Network (OSTI)

Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

220

Diagnosing and mitigating market power in Chile's electricity industry  

E-Print Network (OSTI)

This paper examines the incentives to exercise market power that generators would face and the different strategies that they would follow if all electricity supplies in Chile were traded in an hourly-unregulated spot ...

Arellano, Mara Soledad

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

03,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",1965,2162,2082,2269,2269,2239,2239,2277,2285,2285,985,184,58,58,58,194...

222

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

03,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",2638,2609,2507,2508,2500,2506,2512,2512,2292,2294,2290,1128,1105,1121,...

223

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

03,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",15511,15333,15300,15297,15507,15425,15686,15660,13995,14708,14781,1522...

224

"Annual Electric Power Industry Report (EIA-861 data file)  

Gasoline and Diesel Fuel Update (EIA)

0 DETAILED DATA Corrections for Annual Electric Generator Form EIA-860 detailed data files December 4, 2013 The re-release of the Survey form EIA-860 data. Data were corrected for...

225

Three essays on market power in Chile's electricity industry  

E-Print Network (OSTI)

This thesis examines the incentives to exercise market power that generators would face and the different strategies that they would follow if all electricity supplies in Chile were traded in an hourly-unregulated spot ...

Arellano, Mara Soledad, 1971-

2003-01-01T23:59:59.000Z

226

Heat Stress for Workers in the Electric Power Industry  

Science Conference Proceedings (OSTI)

Electric power workers can be exposed to the high temperatures and humidity of the coastal and Midwest regions of the United States during the summer or the hot, dry conditions typical for the Southwest of the United States. In addition, linesmen may be required to don personal protective equipment such as coveralls, a helmet, and rubber gloves as well as flame- and arc-resistant clothing that allow them to work electrical power transmission and distribution lines without service interruption. Personnel ...

2012-06-18T23:59:59.000Z

227

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

228

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

229

Non-road Electric Transportation Industry Advisory Council: July 28-29, 2009 Meeting Proceedings  

Science Conference Proceedings (OSTI)

EPRI's Non-road Electric Transportation Industry Advisory Council brings together industry's stakeholders to promote non-road electrification. The Council's July 28-29, 2009 meeting included stakeholders from utilities, public agencies and manufacturers. The presentations dealt with batteries, lift trucks, utility vehicles, agriculture vehicles, and ground support equipment.

2009-10-01T23:59:59.000Z

230

Utilizing cable winding and industrial robots to facilitate the manufacturing of electric machines  

Science Conference Proceedings (OSTI)

Cable wound electric machines are used mainly for high voltage and direct-drive applications. They can be found in areas such as wind power, hydropower, wave power and high-voltage motors. Compared to conventional winding techniques, cable winding includes ... Keywords: Automated production, Electric machine assembly, Industrial robot, Powerformer, Stator winding, Wave energy converter

Erik Hultman; Mats Leijon

2013-02-01T23:59:59.000Z

231

uring the 1990s, the elec-tricity supply industry in  

E-Print Network (OSTI)

D uring the 1990s, the elec- tricity supply industry in Latin America underwent profound, according to the Energy Information Administration, the average cost for electricity supply for a consumer by a government that wanted to introduce market-oriented reforms throughout society, electricity supply included

Rudnick, Hugh

232

The Environmental Impacts of Electric Bikes in Chinese Cities  

E-Print Network (OSTI)

rate of the entire steel industry, and might not reflect theliterature on Chinese steel and lead industries are used tosteel in electric bikes. Likewise the entire copper industry

Cherry, Christopher; Weinert, Jonathan; Ma, Chaktan

2007-01-01T23:59:59.000Z

233

Low-income energy policy in a restructuring electricity industry: an assessment of federal options  

SciTech Connect

This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

Baxter, L.W.

1997-07-01T23:59:59.000Z

234

Tips: Time-Based Electricity Rates | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2, 2012 - 8:09pm Addthis Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times....

235

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institutes (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

236

Assessment of factors affecting industrial electricity demand. Final report (revision version)  

Science Conference Proceedings (OSTI)

In Chapter 2, we identify those factors affecting the industrial product mix - taste, relative output prices, and relative input prices - and isolate several determinants which have not been adequately accounted for to date in industrial electricity demand forecasts. We discuss how the lower energy prices of foreign producers affect domestic producers and how the growth in the number of substitutes for intermediate products such as steel and aluminum with plastics and composites affects the composition of production and, hence, the demand for electricity. We also investigate how the changing age structure of the population brought on by the baby boom could change the mix of outputs produced by the industrial sector. In Chapter 3, we review the history of the 1970s with regard to changes in output mix and the manufacturing demand for electricity, and with regard to changes in the use of electricity vis-a-vis the other inputs in the production process. In Chapter 4, we generate forecasts using two models which control for efficiency changes, but in different ways. In this chapter we present the sensitivity of these projections using three sets of assumptions about product mix. The last chapter summarizes our results and draw from those results implications regarding public policy and industrial electricity demand. Two appendices present ISTUM2 results from selected electricity intensive industries, describes the ISTUM and ORIM models.

None

1983-07-01T23:59:59.000Z

237

RG&E (Electric) - Commercial and Industrial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RG&E (Electric) - Commercial and Industrial Efficiency Program RG&E (Electric) - Commercial and Industrial Efficiency Program RG&E (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

238

Natural Gas and Electric Industry Coordination in New England  

Science Conference Proceedings (OSTI)

Introduction of gas-fired generation will place unfamiliar operating requirements on the pipeline system in some parts of the country. Facing rapid growth in natural gas-fired generation in New England, regional gas and electric companies formed a group to improve operational coordination and understanding. This report documents the group's progress and procedures.

1993-11-01T23:59:59.000Z

239

Performance Issues for a Changing Electric Power Industry  

Reports and Publications (EIA)

Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

Information Center

1995-01-01T23:59:59.000Z

240

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network (OSTI)

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The changing structure of the electric power industry: Selected issues, 1998  

Science Conference Proceedings (OSTI)

More than 3,000 electric utilities in the United States provide electricity to sustain the Nation`s economic growth and promote the well-being of its inhabitants. At the end of 1996, the net generating capability of the electric power industry stood at more than 776,000 megawatts. Sales to ultimate consumers in 1996 exceeded 3.1 trillion kilowatthours at a total cost of more than $210 billion. In addition, the industry added over 9 million new customers during the period from 1990 through 1996. The above statistics provide an indication of the size of the electric power industry. Propelled by events of the recent past, the industry is currently in the midst of changing from a vertically integrated and regulated monopoly to a functionally unbundled industry with a competitive market for power generation. Advances in power generation technology, perceived inefficiencies in the industry, large variations in regional electricity prices, and the trend to competitive markets in other regulated industries have all contributed to the transition. Industry changes brought on by this movement are ongoing, and the industry will remain in a transitional state for the next few years or more. During the transition, many issues are being examined, evaluated, and debated. This report focuses on three of them: how wholesale and retail prices have changed since 1990; the power and ability of independent system operators (ISOs) to provide transmission services on a nondiscriminatory basis; and how issues that affect consumer choice, including stranded costs and the determination of retail prices, may be handled either by the US Congress or by State legislatures.

NONE

1998-07-01T23:59:59.000Z

242

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

243

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In

244

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

245

Water Resource Trends and Implications for the Electric Power Industry  

Science Conference Proceedings (OSTI)

Water resources, both surface and groundwater, are subject to significant variation and change with respect to volume, flow, and quality. This report evaluates observed water resource trends within the United States and their implications for electric power generation. The report also addresses how individual companies have responded to these changes. The report will be of value to environment, generation, and planning managers within power companies, government agencies, and water resource stakeholders ...

2010-12-23T23:59:59.000Z

246

"2012 Total Electric Industry- Customers"  

U.S. Energy Information Administration (EIA) Indexed Site

Customers" Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6203726,842773,34164,5,7080668 "Connecticut",1454651,150435,4647,2,1609735 "Maine",703770,89048,2780,0,795598 "Massachusetts",2699141,389272,21145,2,3109560 "New Hampshire",601697,104978,3444,0,710119 "Rhode Island",435448,57824,1927,1,495200 "Vermont",309019,51216,221,0,360456 "Middle Atlantic",15727423,2215961,45836,26,17989246 "New Jersey",3455302,489943,12729,6,3957980 "New York",7010740,1038268,8144,6,8057158

247

Hydrothermal industrialization electric-power systems development. Final report  

DOE Green Energy (OSTI)

The nature of hydrothermal resources, their associated temperatures, geographic locations, and developable capacity are described. The parties involved in development, required activities and phases of development, regulatory and permitting requirements, environmental considerations, and time required to complete development activities ae examined in detail. These activities are put in proper perspective by detailing development costs. A profile of the geothermal industry is presented by detailing the participants and their operating characteristics. The current development status of geothermal energy in the US is detailed. The work on market penetration is summarized briefly. Detailed development information is presented for 56 high temperature sites. (MHR)

Not Available

1982-03-01T23:59:59.000Z

248

The economic impact of state ordered avoided cost rates for photovoltaic generated electricity  

E-Print Network (OSTI)

The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

Bottaro, Drew

1981-01-01T23:59:59.000Z

249

Diagnosing and Mitigating Market Power in Chile's Electricity Industry  

E-Print Network (OSTI)

Universidad de Chile May 12, 2003 Abstract This paper examines the incentives to exercise market power that generators would face and the dierent strategies that they would follow if all electricity supplies in Chile were traded in an hourly-unregulated spot... at the Instituto de Economia, Universidad Catolica de Chile and Centro de Economia Aplicada, Universidad de Chile. Financial support from the MIT Center for Energy and Environmental Policy Research (CEEPR) is gratefully acknowledged. yCenter of Applied Economics...

Arellano, M Soledad

2004-06-16T23:59:59.000Z

250

Overview of the Chinese Electricity Industry and Its Current Issues  

E-Print Network (OSTI)

Unit: MW Data: (CED, 2004) Structure of generating capacity Chinas electricity generation relies heav ily on fossil fuel. Within the installed generating capacity, fossil-fired (mainly co al-fired) facilities o ccupy about 74 percent and hydro... fossil fuel used for power generation in China. Statistics shows that China is now the largest coal consuming country in the world. In 2001, the ratio of coal consumption in China to world total was about 27% (CED, 2004). No other larg e country relies...

Yang, Hongliang

2006-03-14T23:59:59.000Z

251

Managing Electricity Sourcing in Europe's Energy Intensive Industry: A Methodology to Develop an Electricity Sourcing Strategy.  

E-Print Network (OSTI)

??Several regulatory changes in Europe's electricity sector have stimulated competition in the market. National power companies, with monopolistic structures, have evolved into competitive entities, creating (more)

Trevio Villarreal, Luis

2011-01-01T23:59:59.000Z

252

Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present the data in a format that plant personnel find useful are discussed. These reports allow plant personnel to see how power factor correction in conjunction with production retrofits have reduced utility bills despite production capacity increases. The reports have also been useful in detecting maintenance problems and monitoring productivity. A method that allows the calculation of power factor correction savings after correction is discussed. This method requires some power factor versus demand history prior to correction, and is used to determine what the demand would have been if the correction equipment had not been installed, even if the real demand of the plant changes. Major plant electrical modifications and their impact on a monitoring system are also discussed. Such modifications increase the potential for technical problems with the monitoring equipment and result in hard-to-find problems. A future step to be examined is one that uses visual or audible warning devices in the plant to control demand. At least one plant has adopted this idea in the form of warning lights that inform employees to shut down unnecessary equipment. This concept appears to be potentially beneficial to all plants which have some type of demand monitoring device on-site.

Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

1995-04-01T23:59:59.000Z

253

"2012 Total Electric Industry- Sales (Thousand Megawatthours)"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Thousand Megawatthours)" Sales (Thousand Megawatthours)" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47207.696,44864.227,27817.984,566.173,120456.08 "Connecticut",12757.633,12976.05,3565.944,192.711,29492.338 "Maine",4480.736,4053.188,3027.135,0,11561.059 "Massachusetts",20313.469,17722.811,16927.205,349.839,55313.324 "New Hampshire",4439.208,4478.42,1952.633,0,10870.261 "Rhode Island",3121.367,3639.866,923.478,23.623,7708.334 "Vermont",2095.283,1993.892,1421.589,0,5510.764 "Middle Atlantic",132230.522,157278.208,69506.519,3910.06,362925.309

254

"2012 Total Electric Industry- Revenue (Thousands Dollars)"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue (Thousands Dollars)" Revenue (Thousands Dollars)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",7418025.1,6137400,3292222.3,37797.4,16885444.6 "Connecticut",2212594.3,1901294.3,451909.7,18679.5,4584477.8 "Maine",656822,467228,241624.4,0,1365674.3 "Massachusetts",3029291.6,2453106,2127180,17162,7626739.5 "New Hampshire",713388.2,598371.1,231041,0,1542800.3 "Rhode Island",449603.6,431951.9,98597.2,1955.9,982108.6 "Vermont",356325.4,285448.7,141870,0,783644.1 "Middle Atlantic",20195109.9,20394744.7,5206283.9,488944,46285082.4

255

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LADWP to someone by E-mail LADWP to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on AddThis.com... More in this section... Federal State

256

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

SCE to someone by E-mail SCE to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on AddThis.com... More in this section... Federal State Advanced Search

257

Assessing strategies to address transition costs in a restructuring electricity industry  

SciTech Connect

Restructuring the US electricity industry has become the nation`s central energy issue for the 1990s. Restructuring proposals at the federal and state levels focus on more competitive market structures for generation and the integration of transmission within those structures. The proposed move to more competitive generation markets will expose utility costs that are above those experienced by alternative suppliers. Debate about these above-market, or transition, costs (e.g., their size,who will pay for them and how) has played a prominent role in restructuring proceedings. This paper presents results from a project to systematically assess strategies to address transition costs exposed by restructuring the electricity industry.

Baxter, L.; Hadley, S.; Hirst, E.

1996-08-01T23:59:59.000Z

258

Cost Analysis of Proposed National Regulation of Coal Combustion Residuals from the Electric Generating Industry  

Science Conference Proceedings (OSTI)

This analysis quantifies the potential cost to the coal-fired electric generation industry from EPA's proposed rule on the disposal of coal combustion residuals. It includes an assessment of the incremental compliance costs of the Subtitle C proposed regulatory option. Costs for this analysis were developed at the individual generating unit and plant level and aggregated to develop a national industry cost estimate. The analytical model used to estimate the costs utilizes a Monte Carlo framework to accou...

2010-11-17T23:59:59.000Z

259

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

260

" and Electricity Generation by Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," 3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " "," ","Pulping Liquor",," ","Wood Harvested","and Byproducts","and","RSE" "SIC"," ","or","Biomass","Agricultural","Directly","from","Paper-Related","Row"

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 1617, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

262

Energy Storage in a Restructured Electric Utility Industry: Report on EPRI Think Tanks I and II  

Science Conference Proceedings (OSTI)

Energy storage will play an increasingly crucial role in the deregulated electric power industry, with future generation probably decreasing in size and becoming more distributed. EPRI sponsored two think tanks to explore the need for energy storage in a deregulated environment and to assess the state of development of energy storage technologies. The think tanks described the U.S. Federal Energy Regulatory Commission (FERC) view of deregulation and how electric utility deregulation compares to the dereg...

1997-09-30T23:59:59.000Z

263

Organisational occupational health and safety culture and behaviour in the electricity distribution / retail industry in New South Wales.  

E-Print Network (OSTI)

??While good progress has been made in the reduction of fatalities and serious incidents leading to injury in the electricity distribution industry in New South (more)

Rutter, Arthur E.

2010-01-01T23:59:59.000Z

264

Analyze of the influence of a static var compensator in operation of a electrical energy industrial system with a cogeneration.  

E-Print Network (OSTI)

??In this work is analyzed the influence of a static var compensator (SVC) on the electromechanical stability of the electrical energy system of the industrial (more)

GILSON SOARES DA SILVA JNIOR

2008-01-01T23:59:59.000Z

265

Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates  

DOE Green Energy (OSTI)

Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

Ong, S.; Denholm, P.

2011-07-01T23:59:59.000Z

266

Ultra-Efficient and Power Dense Electric Motors for U. S. Industry  

SciTech Connect

The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

2013-03-12T23:59:59.000Z

267

A Secure Web Service for Electricity Prepayment Vending in South Africa: A Case Study and Industry Specification  

Science Conference Proceedings (OSTI)

Current standardised offline vending systems play a critical role in supporting electricity prepayment-metering infrastructure by enabling convenient access to point of sales for customers to purchase prepaid electricity tokens. Electricity utilities ... Keywords: Electricity Vending, Interoperability, Industry specification, Client-server, Prepayment, Secure Socket layer, Web Service

K. P. Subramoney; G. P. Hancke

2007-05-01T23:59:59.000Z

268

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Borenstein, S. , 2007. Electricity Rate Structures and theEnvironmentally-Sound Electricity Rates for the Twenty-FirstCap-and-Trade for Electricity Rate Design, with Examples

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

269

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

2.2.1.1 Current Residential Electricity Rates PG&E and SCEhave total residential electricity rates that are similar toElectricity Rates .. 164 Residential

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

270

Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit  

E-Print Network (OSTI)

This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement opportunities for their industrial customers. To be meaningful, strategies for increasing industrial competitiveness must consider not only energy use, but also all other production inputs. To this end, the program focusses on three major areas: productivity, environmental protection, and efficiency. The effectiveness of the program will be gauged by its ability to keep utility customers "alive and well."

Jeffress, R. D.

1993-03-01T23:59:59.000Z

271

Energy Analysis Department Electricity Markets and Policy Group The Impact of Rate Design and Net  

E-Print Network (OSTI)

Energy Analysis Department Electricity Markets and Policy Group The Impact of Rate Design and Net of Energy #12;Energy Analysis Department Electricity Markets and Policy Group 2 Project Overview Context alternative compensation mechanisms #12;Energy Analysis Department Electricity Markets and Policy Group 3

272

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

273

Comments on the use of computer models for merger analysis in the electricity industry  

E-Print Network (OSTI)

, factors on which information in available in the electricity industry. 1 University of California Energy price. The ability to profitably pursue such a strategy is the primary concern of market power analysis designed to aid in analysis of market power must be able to incorporate strategic firm behavior

California at Berkeley. University of

274

HE ELECTRIC POWER INDUSTRY in the United States is facing a disquieting shortage  

E-Print Network (OSTI)

. "The power industry--both utilities and manufacturers--hires bright people [with college degrees] who & manufacturing technology 88 850 7 Signals & applications 87 000 8 Antennas & propagation 86 000 9 Signal of electric and hybrid vehicles. These activities are, in turn, leading to lecture top- ics and lab exercises

275

Implementation of relaxed ACID properties for distributed load management in the electrical power industry  

Science Conference Proceedings (OSTI)

The consistency of data in central databases is normally implemented by using the ACID (Atomicity, Consistency, Isolation and Durability) properties of a DBMS (Data Base Management System). Distributed databases with high performance and availability ... Keywords: ACID properties, automatic process control, distributed systems, electrical power industry, relaxed atomicity property, smart grid conceptual model

Lars Frank; Rasmus Ulslev Pedersen

2013-01-01T23:59:59.000Z

276

Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries  

Reports and Publications (EIA)

In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

Information Center

2002-10-01T23:59:59.000Z

277

Evaluation of conventional electric power generating industry quality assurance and reliability practices  

DOE Green Energy (OSTI)

The techniques and practices utilized in an allied industry (electric power generation) that might serve as a baseline for formulating Quality Assurance and Reliability (QA and R) procedures for photovoltaic solar energy systems were studied. The study results provide direct near-term input for establishing validation methods as part of the SERI performance criteria and test standards development task.

Anderson, R.T.; Lauffenburger, H.A.

1981-03-01T23:59:59.000Z

278

An Industrial Control System for the Supervision of the CERN Electrical Distribution Network  

E-Print Network (OSTI)

CERN operates a large distribution network for the supply of electricity to the particle accelerators, experiments and the associated infrastructure. The distribution network operates on voltage levels from 400 V to 400 kV with a total yearly consumption of near to 1000 GWh. In the past, the laboratory has developed an in-house control system for this network, using the technologies applied to the accelerator control system. However, CERN is now working on a project to purchase, configure and install an industrial Electrical Network Supervisor (ENS). This is a state-of-the-art industrial control system completely developed and supported by an external contractor. The system - based on a scalable and distributed architecture - will allow the installation to be performed gradually, and will be tested while the existing system is fully operational. Ultimately, the complete electrical distribution network will be supervised with this new system, the maintenance and further development of which will be the complet...

Poulsen, S

1999-01-01T23:59:59.000Z

279

The Use of Electricity in Industry and Energy Saving - The Gamma Co-Efficient  

E-Print Network (OSTI)

Use of electricity in manufacturing processes is not only limited to its specific utilizations as motion power, lighting, electrolysis. Worldwide energy troubles involve in France a great voluntee to substitute in industrial processes the nuclear electricity to the oil-burning one. The main part of these uses the replacement thermal ones. Of course, electrical processes which will develop are technically tested and economically justified. Energetic comparison of concurrent processes leads to the use of simple factors : the gamma factor. It is, when using energy, the number of thermies which are replaced by one kWh. Gamma is not a factor for measuring the oil saving but the using efficiency. For measuring the oil saving, the author uses 'the net gain of oil weight'. Examples of applications and main results are given in various industrial branches.

Wolf, R.; Froehlich, R.

1983-01-01T23:59:59.000Z

280

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Deregulation and R&D in Network Industries: The Case of the Electricity Industry  

E-Print Network (OSTI)

, this does not weaken the need for debating the role of government spending and R&D policy in promoting energy technology innovation. There is less data on energy R&D spending in the private sector as, since liberalisation, such information has become... ; Defeuilley and Furtado, 2000; Margolis and Kammen, 1999; Bell and Schneider, 1999; Dooley, 1997). Figures 2 and 3 show that these has been a marked decline in R&D spending by private electric utilities in the US and Japan in the post- liberalisation years...

Jamasb, Tooraj; Pollitt, Michael G.

2006-03-14T23:59:59.000Z

282

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

283

RATES AND RELIABILITY: INSIGHTS INTO THE NEW YORK ELECTRICITY MARKET .  

E-Print Network (OSTI)

??The lowering of rates for consumers and the continuing reliability of service were two of the major goals that the New York Public Service Commission (more)

Videbaek, Steen

2008-01-01T23:59:59.000Z

284

Impacts of Electric Industry Restructuring on Electric Generation and Fuel Markets: Analytical and Business Challenges  

Science Conference Proceedings (OSTI)

Restructuring and increasing competition are likely to have a major impact on electric generating companies and the individuals and organizations that buy, transport, market, or supply fuels. Restructuring may also affect the patterns of coal and gas use. This report, the first in a series by EPRI and the Gas Research Institute (GRI), describes the scope of these potential impacts.

1997-03-27T23:59:59.000Z

285

A System for Understanding Retail Electric Rate Structures  

Science Conference Proceedings (OSTI)

Due in part to rising concerns about global climate change and energy sustainability, there is renewed interest in the role that more efficient pricing can play in improving overall efficiency in the consumption and production of electricity. This increased interest is also related to the potential opportunities that investments in Smart Grid and Advanced Metering Infrastructure (AMI) would enable. A Smart Grid enables suppliers to offer dynamic pricing as part of a comprehensive portfolio of ways for co...

2011-07-28T23:59:59.000Z

286

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

287

The role of the US electric utility industry in the commercialization of renewable energy technologies for power generation  

SciTech Connect

A key element in the federal government's plan to commercialize R/As was to guarantee a market for the generated electric power at an attractive price. This was provided by the passage of the Public Utility Regulatory Policies Act of 1978, better known as PURPA. Under PURPA, utilities were required to buy all that was produced by Qualifying Facilities or QFs{sup 2} and were required to pay for QF power based on the utilities; avoided costs. Utilities were also required to interconnect with such producers and provide supplemental and backup power to them at fair and reasonable rates. This article reviews the reason behind the rapid rise, and the subsequent oversupply, of R. As over the past decade in the context of the way PURPA was implemented. The article focuses on the critical role of the electric power industry in the commercialization of R/A technologies and the implications.

Nola, S.J.; Sioshansi, F.P. (Southern California Edison Co., Rosemead, CA (US))

1990-01-01T23:59:59.000Z

288

Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington, DC, July 1, 2004) A new group formed to work on the important new electricity area known as demand response was announced today in Washington, DC. The United States Demand Response Coordinating Committee (DRCC) will bring together a number of parties to focus on developing information and tools needed to allow demand response to be another option employed to address national, regional and state electricity issues and challenges. The DRCC's efforts are the U.S. part of a larger, global demand response effort announced recently by the International Energy Agency's

289

U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry  

SciTech Connect

Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

Hsieh, B.C.B. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Wang Yingshi [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics

1997-11-01T23:59:59.000Z

290

Maintaining Generation Adequacy in a Restructuring U.S. Electricity Industry  

SciTech Connect

Historically, decisions on the amounts, locations, types, and timing of investments in new generation have been made by vertically integrated utilities with approval from state public utility commissions. As the U.S. electricity industry is restructured, these decisions are being fragmented and dispersed among a variety of organizations. As generation is deregulated and becomes increasingly competitive, decisions on whether to build new generators and to retire, maintain, or repower existing units will increasingly be made by unregulated for-profit corporations. These decisions will be based largely on investor assessments of future profitability and only secondarily on regional reliability requirements. In addition, some customers will choose to face real-time (spot) prices and will respond to the occasionally very high prices by reducing electricity use at those times. Market-determined generation levels will, relative to centrally mandated reserve margins, lead to: (1) more volatile energy prices; (2) lower electricity costs and prices; and (3) a generation mix with more baseload, and less peaking, capacity. During the transition from a vertically integrated, regulated industry to a deintegrated, competitive industry, government regulators and system operators may continue to impose minimum-installed-capacity requirements on load-serving entities. As the industry gains experience with customer responses to real-time pricing and with operation of competitive intrahour energy markets, these requirements will likely disappear. We quantitatively analyzed these issues with the Oak Ridge Competitive Electricity Dispatch model (ORCED). Model results show that the optimal reserve margin depends on various factors, including fuel prices, initial mix of generation capacity, and customer response to electricity prices (load shapes and system load factor). Because the correct reserve margin depends on these generally unpredictable factors, mandated reserve margins might be too high, leading to higher electricity costs and prices. Absent mandated reserve margins, electricity prices and costs decline with increasing customer response to prices during high-demand periods. The issues discussed here are primarily transitional rather than enduring. However, the transition from a highly regulated, vertically integrated industry to one dominated by competition is likely to take another five to ten years.

Hirst, E.; Hadley, S.

1999-10-01T23:59:59.000Z

291

Visioning the 21st Century Electricity Industry: Outcomes and Strategies for America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauren Azar Lauren Azar Senior Advisor to the Secretary U. S. Department of Energy 8 February 2012 Visioning the 21 st Century Electricity Industry: Strategies and Outcomes for America http://teeic.anl.gov/er/transmission/restech/dist/index.cfm We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Artist: Paolo Frattesi Artist: Paolo Frattesi DOE asks your help... Our Future? 1. Enable a seamless, cost-effective electricity

292

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 3, MARCH 2010 943 Electric Vehicle Using a Combination of  

E-Print Network (OSTI)

. The results also show that this alternative is cheaper than Li-ion powered electric cars. Index TermsIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 3, MARCH 2010 943 Electric Vehicle Using used for an experimental electric vehicle (EV). These batteries are cheaper than Li-ion cells and have

Rudnick, Hugh

293

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

294

Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction  

E-Print Network (OSTI)

We study the effects of a static electric field on the photoassociation of a heteronuclear atom-pair into a polar molecule. The interaction of permanent dipole moment with a static electric field largely affects the ground state continuum wave function of the atom-pair at short separations where photoassociation transitions occur according to Franck-Condon principle. Electric field induced anisotropic interaction between two heteronuclear ground state atoms leads to scattering resonances at some specific electric fields. Near such resonances the amplitude of scattering wave function at short separation increases by several orders of magnitude. As a result, photoaasociation rate is enhanced by several orders of magnitude near the resonances. We discuss in detail electric field modified atom-atom scattering properties and resonances. We calculate photoassociation rate that shows giant enhancement due to electric field tunable anisotropic resonances. We present selected results among which particularly important...

Chakraborty, Debashree; Deb, Bimalendu

2011-01-01T23:59:59.000Z

295

Priorities for Corrosion Research and Development for the Electric Power Industry  

Science Conference Proceedings (OSTI)

This report identifies the specific corrosion problems that result in the largest costs to the electric power industry. It describes the corrosion-related research and development (R&D) that is underway to address these problems and also discusses additional R&D that appears warranted. The report discusses several high-cost areas where new research is judged to be unnecessary as the problems are well understood, but where improved application of already available technology seems important.

2002-09-09T23:59:59.000Z

296

Program on Technology Innovation: Carbon Nanotube Technology for the Electric Power Industry  

Science Conference Proceedings (OSTI)

A couple decades ago, a new molecular form of carbon exhibiting extraordinary properties was discovered. This resulted in a frenzy of basic and applied research, and tremendous strides have been made. The technology that ensued is still relatively immature, but there is the prospect that the technology may be used in the future for a wide range of applications in the electric power industry. In fact, the three new materials discussed in this report (fullerenes, nanotubes, and graphene) have the potential...

2011-11-22T23:59:59.000Z

297

Program on Technology Innovation: Technology R&D Strategy for the Electric Power Industry: "Wild Cards"  

Science Conference Proceedings (OSTI)

To address the many challenges facing the electric power industry during the next 20 years, an effective process of technology R&D planning is needed. To augment recently completed scenario-based planning, this report identifies the technology and R&D needs that result from 21 additional institutional, political, financial, technical, or social changes ("wild cards") not addressed in the prior scenarios project (see EPRI Report 1014385). This report also identifies key R&D priorities that occur in multip...

2008-03-14T23:59:59.000Z

298

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

DOE Green Energy (OSTI)

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

299

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

300

Different approaches to estimating transition costs in the electric- utility industry  

SciTech Connect

The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

Baxter, L.W.

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

System average rates of U.S. investor-owned electric utilities : a statistical benchmark study  

E-Print Network (OSTI)

Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

Berndt, Ernst R.

1995-01-01T23:59:59.000Z

302

Residential electricity rates for the United States for Solcost Data Bank cities  

DOE Green Energy (OSTI)

Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

Smith, L. E.

1981-05-01T23:59:59.000Z

303

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

304

Toughened Graphite Electrode for High Heat Electric Arc ...  

Energy Innovation Portal Technologies. ... To reduce the failure rate, ... Applications and Industries. Electric arc furnace steel manufacturing;

305

The Efficacy of Electric Vehicle Time-of-Use Rates in Guiding Plug-in Hybrid Electric Vehicle Charging Behavior  

Science Conference Proceedings (OSTI)

This paper presents a series of analyses that seek to enhance understanding of the extent to which time-of-use (TOU) rates can economically incentivize off-peak charging of plug-in hybrid electric vehicles (PHEV). The total cost of fueling a PHEV under modeled and real-world TOU rates is compared to the total cost of fueling a PHEV under constant rates. Time-resolved vehicle energy consumption and fueling costs for a variety of PHEV designs are derived from travel survey data and charging behavior models...

2011-12-20T23:59:59.000Z

306

Introducing competition in the French electricity supply industry : the destabilisation of a public hierarchy in an open institutional environment  

E-Print Network (OSTI)

The introduction of market rules in a electricity supply industry characterized by a vertically integrated monopoly and public ownership is not inherently doomed to failure if characteristics of the reform or other elements ...

Finon, Dominique

2002-01-01T23:59:59.000Z

307

Methodological and Practical Considerations for DevelopingMultiproject Baselines for Electric Power and Cement Industry Projects inCentral America  

Science Conference Proceedings (OSTI)

The Lawrence Berkeley National Laboratory (Berkeley Lab) andthe Center for Sustainable Development in the Americas (CSDA) conductedtechnical studies and organized two training workshops to developcapacity in Central America for the evaluation of climate changeprojects. This paper describes the results of two baseline case studiesconducted for these workshops, one for the power sector and one for thecement industry, that were devised to illustrate certain approaches tobaseline setting. Multiproject baseline emission rates (BERs) for themain Guatemalan electricity grid were calculated from 2001 data. Inrecent years, the Guatemalan power sector has experienced rapid growth;thus, a sufficient number of new plants have been built to estimateviable BERs. We found that BERs for baseload plants offsetting additionalbaseload capacity ranged from 0.702 kgCO2/kWh (using a weighted averagestringency) to 0.507 kgCO2/kWh (using a 10th percentile stringency),while the baseline for plants offsetting load-followingcapacity is lowerat 0.567 kgCO2/kWh. For power displaced from existing load-followingplants, the rate is higher, 0.735 kgCO2/kWh, as a result of the age ofsome plants used for meeting peak loads and the infrequency of their use.The approved consolidated methodology for the Clean Development Mechanismyields a single rate of 0.753 kgCO2/kWh. Due to the relatively smallnumber of cement plants in the region and the regional nature of thecement market, all of Central America was chosen as the geographicboundary for setting cement industry BERs. Unfortunately, actualoperations and output data were unobtainable for most of the plants inthe region, and many data were estimated. Cement industry BERs rangedfrom 205 kgCO2 to 225 kgCO2 per metric ton of cement.

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion,Kristel

2004-09-02T23:59:59.000Z

308

Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20 years, an effective process of technology R&D planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report presents a comprehensive technology R&D strategy for the next two decades that spans the breadth and depth of challenges and opportunities facing the North American electric utility industry.

2006-12-14T23:59:59.000Z

309

Rate of Industrial Conservation - Petroleum Refining, Chemicals and Pulp and Paper Manufacture  

E-Print Network (OSTI)

This paper considers three related questions: 1) What are the primary economic driving forces which determine the rate of industrial energy conservation? 2) How much industrial energy conservation has been achieved over 1972-1973 levels? 3) What are the goals and expectations for decreases in industrial energy use during the next 10-20 years? The specific energy consumption (SEC) of a plant or industry, measured in BTU of fuel used/ton of product produced, can be used to monitor the energy conserved. The rate of SEC reduction is a function of five primary variables: the potential for reduction of the SEC, the unit cost of fuel, the capital available for implementation of conservation measures, the quantity of fuel available, and the availability: of equipment to implement needed conservation measures. A mathematical-economic model is proposed for the decrease in energy use, and permits calculation of dollars saved also. Conclusions from the study are: 1) Potential savings were estimated as 20-31% of 1972 levels; through 1978 a 13-20% actual reduction in energy use has been achieved. 2) The additional can be realized by; 1982 by "strong action", or by 1987 by "moderate action". To date moderate action has been taken. 3) Overall energy conservation pays out rapidly - dollars saved return dollars invested many fold!

Prengle, H. W. Jr.; Golden, S. A.

1979-01-01T23:59:59.000Z

310

Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives  

SciTech Connect

This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

Allison, T.; Griffes, P.; Edwards, B.K.

1995-03-01T23:59:59.000Z

311

The United States Industrial Electric Motor Systems Market Opportunities Assessment: Key Results  

E-Print Network (OSTI)

This paper summarizes the findings of the U. S. Industrial Electric Motor Systems Market Opportunities Assessment. The Market Assessment was sponsored by the U. S. Department of Energy. The project's principal objectives were to create a detailed portrait of the inventory of motor systems currently in use in US industrial facilities, estimate motor system energy use and potential for energy savings. The research and analysis to support these objectives consisted primarily of on-site motor system inventories of a probability sample of 254 manufacturing facilities nationwide. In addition to characterizing the motor systems in use, the research effort also gathered detailed information on motor system management and purchasing practices. This paper presents key findings from the Market Assessment in regard to patterns of motor energy use, saturation of energy efficiency measures such as efficient motors and adjustable speed drives, and motor system purchase and maintenance practices.

Rosenberg, M.

1999-05-01T23:59:59.000Z

312

Long-term Contracting in a Deregulated Electricity Industry: Simulation Results from a Hydro Management Model  

E-Print Network (OSTI)

The deregulation of electricity industry has introduced long-term contracting as a tool for hedging risk and strategy. A vital consideration for market participants is the relationship between behaviour in the spot market, and decisions taken in the contract market. We have developed a reservoir management model which integrates a Cournot spot market model into a Dual Dynamic Programming framework. Simulations using this model show that the market outcomes depend strongly upon the level of contracting undertaken by both competitors. We develop hypotheses for the dynamics involved, and present results from the simulation model reinforcing these. 1.

Stephen Batstone; Tristram Scott

1998-01-01T23:59:59.000Z

313

Photovoltaic industry proposed changes for the 1999 national electrical code for PV applications  

SciTech Connect

An industry supported task group has recently completed writing proposals for changes in bring Article 690 of the 1999 National Electrical Code (NEC{reg_sign}) up to the state-of-the-art in photovoltaic device and system technology. This paper summarizes proposed code changes, discusses background on both new and changed, and presents examples for the proposed changes. Topics such as the proposed new temperature compensation table for calculating maximum system voltage are analyzed. Procedures for calculating conductor sizes with the proposed changes are presented. Impacts on photovoltaic installations, building integrated systems, and AC module installations are also analyzed.

Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Institute

1997-06-01T23:59:59.000Z

314

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network (OSTI)

The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process of sintering billets which are made from a broad range of materials such as PTFE and other fluoropolymers, elastomers, themosets, themoplastics and composites. The purpose of this study was to compare the process parameters under similar conditions for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost savings of about $10,000 per oven can be achieved, with a simple payback period of less than two years. The results also show that additional energy savings will be realized if the oven size and exhaust flow are carefully selected. The data obtained from these experiments were used to calculate process efficiency. Design features and environmental issues are discussed.

Kosanovic, D.; Ambs, L.

2000-04-01T23:59:59.000Z

315

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network (OSTI)

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component of that wide-ranging program focused on industrial compressed air systems as the target for such electric use reductions. What stands out about the compressed air effort is that customer acceptance of the program was very high (8 out of 10 customer sites implemented at least some of the efficiency projects recommended in the program's air system audits) and overall savings levels were more than 3X the original program goal (550 kW vs. 1730 kW). XENERGY, Inc. designed and carried out the program on behalf of PG&E. Key features of the program included working with compressed air system distributors to identify and qualify good customer leads and post-audit technical assistance to help customer implement recommended projects. This paper reviews the project and outlines some of the lessons learned in completing the project."

Skelton, J.

2003-04-01T23:59:59.000Z

316

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

317

Reversible shear thickening at low shear rates of electrorheological fluids under electric fields  

E-Print Network (OSTI)

Shear thickening is a phenomenon of significant viscosity increase of colloidal suspensions. While electrorheological (ER) fluids can be turned into a solid-like material by applying an electric field, their shear strength is widely represented by the attractive electrostatic interaction between ER particles. By shearing ER fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (electric field strength (>100 V/mm), which could be characterized by a modified Mason number. Shear thickening and electrostatic particle interaction-induced inter-particle friction forces is considered to be the real origin of the high shear strength of ER fluids, while the applied electric field controls the extent of shear thickening. The electric field-controlled reversible shear thickening has implications for high-performance ER/magnetorheological (MR) fluid design, clutch fluids with high friction forces triggered by applying local electric field, other field-responsive materials and intelligent systems.

Yu Tian; Minliang Zhang; Jile Jiang; Noshir Pesika; Hongbo Zeng; Jacob Israelachvili; Yonggang Meng; Shizhu Wen

2010-08-24T23:59:59.000Z

318

Industry-Wide Error Rate Database in Power Switching: Switching Practices Survey  

Science Conference Proceedings (OSTI)

This report describes a survey that was conducted in 2013 to collect data on utility practices in operational power switching and on rates of switching errors. Over the years, the Electric Power Research Institute (EPRI) Switching Safety and Reliability (SS&R) project has developed two previous estimates of switching errors. These estimates were derived as part of research reported in the 1996 EPRI report Field Operation Power Switching Safety (TR-106465) and in the 2000 EPRI report ...

2013-11-19T23:59:59.000Z

319

EPRI Ergonomics Handbook for the Electric Power Industry: : Ergonomic Design and Specification of Turnkey and Upfitted Fleet Vehicles  

Science Conference Proceedings (OSTI)

The second of two Electric Power Research Institute (EPRI) ergonomics handbooks focusing on fleet vehicles used by electric power utilities, EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design and Specification of Turnkey and Upfitted Fleet Vehicles offers best practices and recommendations for specific design features of fleet vehicles. The first handbook presented information about the process for specifying and purchasing fleet vehicles. Both of these handbooks are ...

2012-11-07T23:59:59.000Z

320

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

322

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

of Carbon Cap-and-Trade for Electricity Rate Design, withmeet cap-and- trade regulations in the electricity sector:

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

323

Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration  

SciTech Connect

This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

James R. McFarland; Howard J. Herzog

2007-05-14T23:59:59.000Z

324

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

default electricity rate in the United States, especiallystates, including Washington, Louisiana, or Arkansas, have total residential electricity ratesStates are often compensated at the customers underlying retail electricity rate

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

325

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices  

E-Print Network (OSTI)

Combined heat and power (CHP) plants are widely used in industrial applications. In the aftermath of the recession, many of the associated production processes are under-utilized, which challenges the competitiveness of chemical companies. However, under-utilization can be a chance for tighter interaction with the power grid, which is in transition to the so-called smart grid, if the CHP plant can dynamically react to time-sensitive electricity prices. In this paper, we describe a generalized mode model on a component basis that addresses the operational optimization of industrial CHP plants. The mode formulation tracks the state of each plant component in a detailed manner and can account for different operating modes, e.g. fuel-switching for boilers and supplementary firing for gas turbines, and transitional behavior. Transitional behavior such as warm and cold start-ups, shutdowns and pre-computed start-up trajectories is modeled with modes as well. The feasible region of operation for each component is described based on input-output relationships that are thermodynamically sound, such as the Willans line for steam turbines. Furthermore, we emphasize the use of mathematically efficient logic constraints that allow solving the large-scale models fast. We provide an industrial case study and study the impact of different scenarios for under-utilization. 1

Sumit Mitra; Ignacioe. Grossmann

2012-01-01T23:59:59.000Z

326

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network (OSTI)

Distributed energy resources (DER) have been promoted as the least-cost approach to meeting steadily increasing energy demand. However, it is unclear whether DER deployment can maintain or improve the electric power supply reliability and quality currently available to consumers. This report address two key factors relating to this question: 1) characteristics of existing power supply reliability, and 2) costs resulting from supply interruptions characteristic of the existing power grid. Interruption cost data collected by the University of Saskatchewan was used in conjunction with data generated by the Census Bureaus Annual Survey of Manufacturers (Census Bureau, 1995), along with industry shares of gross domestic product (Bureau of Economic Analysis, 1995a) and gross output (Bureau of Economic Analysis, 1995b) to derive interruption cost estimates for U.S. industries at the 2-digit Standard Industrial Classification (SIC) level, as well as for broader sectors and the U.S. economy. Interruption cost estimates are presented as a function of outage duration (e.g., 20 minutes, 1-hour, 3-hour), and are normalized in terms of dollars per peak kW.

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

2003-05-01T23:59:59.000Z

327

Material Sustainability Issues for the North American Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report presents results of research regarding sustainability issues faced by the electric power industry. Specifically, the research effort was directed toward identifying which sustainability issues affecting the power companies in North America are considered to be the most relevant, or material, and gathering perspectives on those issues from the industry and its stakeholders.The research team collected information from three sources: direct interviews with utility managers and ...

2013-04-25T23:59:59.000Z

328

Strategic Activities to Address Material Sustainability Issues in the Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report discusses activities that electric utilities can take to address the 15 key material sustainability issues that were identified in Material Sustainability Issues for the North American Electric Power Industry (EPRI report 3002000920). This report adds insight to that previous analysis by considering activities and actions for addressing the 15 material sustainability issues. Overall, the research identified 145 possible activities across all 15 material issues, and ...

2013-12-03T23:59:59.000Z

329

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

Science Conference Proceedings (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

330

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics  

E-Print Network (OSTI)

The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

Massachusetts at Amherst, University of

331

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network (OSTI)

Energy-Efficiency and Electric Power Projects JayantEnergy-Efficiency and Electric Power Projects Table ofEnergy-Efficiency And Electric Power Projects The Impact Of

2001-01-01T23:59:59.000Z

332

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

333

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network (OSTI)

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Dubessy, Romain; Guidoni, Luca

2008-01-01T23:59:59.000Z

334

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network (OSTI)

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Romain Dubessy; Thomas Coudreau; Luca Guidoni

2008-12-17T23:59:59.000Z

335

Increasing Profits with Electric Industrial Vehicles: A Case Study on the Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

In 1998, Alabama Power Company's Electric Transportation Department implemented a unique program that offered a financial incentive to dealers and distributors of electric material handling equipment for every electric lift truck sold. The goal was to increase charging revenue and improve the Electric Transportation Department's profitability contribution. After three years, the program has delivered a 44-to-1 return on investment, resulting in increased gross revenues of more than 7 million dollars and ...

2001-06-26T23:59:59.000Z

336

Introducing Competition in the French Electricity Supply Industry: The Destabilisation of a Public Hierarchy in an Open Institutional Environment  

E-Print Network (OSTI)

.1 5.4 23. 8.1 22.2 * Railways (SHEM/SNCF) in hydro-production, small producers (minihydro, renewables) and self-producers (co-generation, etc). Source: Ministre de l'Industrie, Statistiques Gaz, Electricit,Charbon, Edition 2000... environment Dominique FINON Institut dEconomie et de Politique de lEnergie*, CNRS and Grenoble University, France ABSTRACT The introduction of market rules in a electricity supply industry characterized by a vertically integrated monopoly...

Finon, Dominique

2004-06-16T23:59:59.000Z

337

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

Science Conference Proceedings (OSTI)

Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

2011-08-16T23:59:59.000Z

338

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

339

Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them  

Science Conference Proceedings (OSTI)

Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. $13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

Not Available

1993-11-01T23:59:59.000Z

340

Program on Technology Innovation: Decision-Centered Guidelines for the Design of Human System Interfaces for Electric Power Industry Applications  

Science Conference Proceedings (OSTI)

Decision-centered guidelines support improved user decision making across a broad range of electric power industry application areas. The guidelines will aid in the design of user-centered human-system interfaces (HSIs), while increasing the beneficial uses of new technologies for electric power generation, transmission, and distribution (GTD) systems. Decision-centered guidelines are applicable to system designs involving new technology that will transform current user tasks, responsibilities, ...

2012-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Evaluation of the supply chain of key industrial sectors and its impact on the electricity demand for a regional distribution company.  

E-Print Network (OSTI)

??Considering the international scenario, in a recent past, the electrical industry was based on the concepts of monopolistic concessions and vertical utilities structures. In Brazil, (more)

Mariotoni, Thiago Arruda

2008-01-01T23:59:59.000Z

342

Incentive regulation in the electric utility industry. Volume I. Final report  

Science Conference Proceedings (OSTI)

This report describes the results of conducting a comprehensive analysis of the issues involved in formulating an incentive regulation program and to develop and evaluate an incentive regulation program to be considered for implementation by FERC. In conducting this study, the analysis was structured with the primary objective of designing an incentive regulation program that would encourage the provision of electrical service to customers at the lowest possible price, consistent with a satisfactory level of service quality. To facilitate structuring such a program, we identified and analyzed a set of fundamental issues that must be considered in designing and implementing an incentive regulation program. Three major incentive programs were recommended: (1) a rate contol incentive program; (2) a construction cost control incentive program; and (3) an automatic rate adjustment mechanism. 83 references, 21 figures.

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

343

California Electric Energy Crisis - Electricity Information  

U.S. Energy Information Administration (EIA)

Electricity Information Available Formats; Status of Electric Industry Restructuring Activity in California: html: California State Electricity Profil ...

344

Meriwether Lewis Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Meriwether Lewis Electric Coop Meriwether Lewis Electric Coop Place Tennessee Utility Id 12330 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Power Rate- Part 1 Commercial Commercial General Power Rate- Part 2 Commercial Commercial General Power Rate- Part 3 Commercial Industrial General Power Rate- Part 1 Industrial Industrial General Power Rate- Part 2 Industrial Industrial General Power Rate- Part 3 Industrial Industrial General Power SDE RATE (SGSB) Industrial MANUFACTURING TOU RATE (MSB) Industrial

345

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

supply to attract investment in the energy-intensive industries.industry to secure a stable supply of raw materials. In 2006, Huaneng Energy andsupply enables the local government to attract energy-intensive, heavy industries

Tsai, Chung-min

2010-01-01T23:59:59.000Z

346

Temperature dependence of electrical conductivity and dilepton rates from hot quenched lattice QCD  

E-Print Network (OSTI)

We present new results on the continuum extrapolation of the vector current correlation function in the deconfined phase for three temperatures close to the critical temperature utilizing quenched clover improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacing allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. These results provide constraints for the electrical conductivity and the thermal dilepton rates in the quark gluon plasma for the given temperature range. In addition results on the continuum extrapolation at finite momenta related to thermal photon rates are presented.

Kaczmarek, Olaf

2013-01-01T23:59:59.000Z

347

Temperature dependence of electrical conductivity and dilepton rates from hot quenched lattice QCD  

E-Print Network (OSTI)

We present new results on the continuum extrapolation of the vector current correlation function in the deconfined phase for three temperatures close to the critical temperature utilizing quenched clover improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacing allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. These results provide constraints for the electrical conductivity and the thermal dilepton rates in the quark gluon plasma for the given temperature range. In addition results on the continuum extrapolation at finite momenta related to thermal photon rates are presented.

Olaf Kaczmarek; Marcel Mller

2013-12-19T23:59:59.000Z

348

Industry  

E-Print Network (OSTI)

energy-conservation supply curve for the US iron and steel industryindustries include electricity savings. To prevent double counting with the energy supply

Bernstein, Lenny

2008-01-01T23:59:59.000Z

349

Ecosystem Services Decision Tree: A Decision-Support Tool for Consideration of Ecosystem Services in the Electric Power Industry  

Science Conference Proceedings (OSTI)

To support the electric power industry in more structured consideration of ecosystem services, EPRI has developed this Decision Tree to determine why, when, and how to consider ecosystem services. EPRI anticipates that this Decision Tree will facilitate more efficient decision-making and action relating to ecosystem services.

2012-12-31T23:59:59.000Z

350

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

the rising barriers to electricity trade across provinces. AEconomic and Trade Commission State Electricity Regulatoryand trade commissions (PETCs) and provincial development and planning commissions (PDPCs) took on the responsibilities of managing the electricity

Tsai, Chung-min

2010-01-01T23:59:59.000Z

351

Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems  

SciTech Connect

This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

Ong, S.; Denholm, P.; Doris, E.

2010-06-01T23:59:59.000Z

352

Table 7a. U.S. Electricity Industry Overview U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... and electrical sales or transfers to adjacent or colocated facilities ... Generation supplied by electricity-only and combined-heat-and-power ...

353

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

354

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

of Commercial Electric Utility Rate Structure Elements on1961. Principles of public utility rates, 2nd ed. ColumbiaPrinciples of Public Utility Rates, he cites the following

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

355

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

356

Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability  

SciTech Connect

Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

1995-03-01T23:59:59.000Z

357

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

358

Holston Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Holston Electric Coop, Inc Holston Electric Coop, Inc Jump to: navigation, search Name Holston Electric Coop, Inc Place Tennessee Utility Id 8764 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Power Rate 1 Commercial Commercial General Power rate 2 Commercial Commercial General Power rate 3 Commercial Industrial General Power Rate 1 Industrial Industrial General Power rate 2 Industrial Industrial General Power rate 3 Industrial Manufacturing General Power rate 3 Commercial Residential rates Residential

359

Southern California: The Detroit of Electric Cars?  

E-Print Network (OSTI)

by building a new electric-vehicle industry in Southerntime being, the electric vehicle industry electric-vehicleindustry into the electric-vehicle industry. Inclusion of

Scott, Allen J.

1993-01-01T23:59:59.000Z

360

Electricity Use and Management in the Municipal Water Supply and Wastewater Industries  

Science Conference Proceedings (OSTI)

The use of electricity for water and wastewater treatment is increasing due to demands for expanded service capacity and new regulations for upgraded treatment. Options available to control the electricity costs include technological changes, improved management, and participation in electric utility sponsored energy management programs. Appropriate options for a specific system will vary depending on the system characteristics, availability of electric utility programs to assist the water and ...

2013-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Electrinet: a Communications Architecture for a Competitive Electric Power Industry: Functional Specifications  

Science Conference Proceedings (OSTI)

The current electrical grid infrastructure is evolving into a highly interconnected, complex, and interactive network of power systems, telecommunications, Internet, and electronic commerce applications; but more competitive electricity markets will require a much more sophisticated infrastructure as an electricity value chain made up of independent members replaces the vertically integrated utility. This next-generation electrical infrastructure, the Electrinet, will provide the system with seamless int...

2004-03-18T23:59:59.000Z

362

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

363

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

364

High-Impact, Low-Frequency (HILF) Events in the Electric Power Industry: Potential Impacts, Mitigation, and Risk Management  

Science Conference Proceedings (OSTI)

Although the North American electricity grid is one of the most reliable power systems in the world, a class of rare but potentially catastrophically damaging risks is of growing concern in the industry. These so-called "high-impact, low-frequency" (HILF) events potentially include electromagnetic pulse (EMP) weapons, geomagnetic disturbances (GMDs), coordinated cyber and/or physical attacks, and pandemics. Some HILF events have never occurred, and the probability of their occurrence is ...

2013-08-20T23:59:59.000Z

365

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

industry, such as rising coal prices and rigid electricityagainst soaring coal prices, the central government designedadjustment of power prices when coal prices increase more

Tsai, Chung-min

2010-01-01T23:59:59.000Z

366

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

367

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

368

Case Study of the California Cement Industry  

E-Print Network (OSTI)

2 compares cement industry electricity and natural gas useTable 2. Cement Industry Electricity and Natural GasFigure 2. Cement Industry End Use Electricity Consumption

Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

2005-01-01T23:59:59.000Z

369

Regulation, Governance and Adaptation: Governance transformations in the Dutch and French liberalizing electricity industries.  

E-Print Network (OSTI)

??For more than a decade, the European governments have focused their energy policies on creating one European competitive electricity market. Several regulations are introduced into (more)

Niesten, E.M.M.I.

2009-01-01T23:59:59.000Z

370

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

371

Volunteer Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Volunteer Electric Coop Volunteer Electric Coop Jump to: navigation, search Name Volunteer Electric Coop Place Tennessee Utility Id 19898 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Power Rate part 1 Commercial Commercial General Power Rate part 2 Commercial Commercial General Power Rate part 3 Commercial Industrial General Power Rate part 1 Industrial Industrial General Power Rate part 2 Industrial Industrial General Power Rate part 3 Industrial

372

State electric retail choice programs are popular with commercial ...  

U.S. Energy Information Administration (EIA)

State electric retail choice programs are popular ... majority of industrial customers have signed up in 12 states. The highest participation rates are found in ...

373

Guntersville Electric Board | Open Energy Information  

Open Energy Info (EERE)

Guntersville Electric Board Guntersville Electric Board Jump to: navigation, search Name Guntersville Electric Board Place Alabama Utility Id 7827 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA 1 Commercial GSA 2 Commercial GSA 3 Commercial Outdoor Lighting Commercial Residential Rate Residential SDE SGSC Industrial SDE SGSD Industrial SDE SMSB Industrial SDE SMSC Industrial SDE SMSD Commercial TDGSA Industrial TDMSA Industrial TOU GSB Industrial TOU GSD Industrial TOU MSB Industrial TOU MSC Industrial

374

Benchmarking and Self-Assessment in the Wine Industry  

E-Print Network (OSTI)

industry. Besides electricity, the industry also consumeslargest electricity-consuming food industry in Californialargest electricity-consuming food industry in California

Galitsky, Christina; Radspieler, Anthony; Worrell, Ernst; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

375

Mining Electrification: An Investigation of the Use of Electric Equipment in the Mining Industry  

Science Conference Proceedings (OSTI)

Mining is a diverse industry that touches multiple industries with products extracted from the earth. Because of this, it is common to have one type of mining experiencing difficulty meeting demand, while another type may be cutting back operations due to poor market conditions. For example, recent economic conditions have had the sand and gravel industry in a slump because of cut backs in construction projects. At the very same time, the coal mining business was booming because there was a very high dem...

2010-12-02T23:59:59.000Z

376

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

377

Annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. [Includes about 400 abstracts and glossary  

SciTech Connect

This report presents a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end use; and the various methods of acquisition, analysis and implementation of electricity usage data. There are over 400 abstracts; 156 from the Load Research Committee of Association of Edison Illuminating Companies (LRC/AEIC) reports and 264 from the open literature. The abstracts over references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

1978-07-01T23:59:59.000Z

378

An annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. Final report  

SciTech Connect

The report is a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end-use; and the various methods of acquisition, analysis, and implementation of electricity usage data. There are over 400 abstracts; 156 from LRC/AEIC reports, and 264 from the open literature. The abstracts cover references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

Reznek, B.

1978-07-01T23:59:59.000Z

379

THE COMPETITIVENESS OF COMMERCIAL ELECTRIC VEHICLES IN THE LTL DELIVERY INDUSTRY: ????????????  

E-Print Network (OSTI)

We have developed a detailed model of the logistics performance, energy use, and costs of electric vehicles and comparable diesel internal-combustion engine vehicles. This effort is a novel study of commercial electric vehicles because the implications of routing constraints, route parameters, and electric truck characteristics are analyzed integrating three models: (a) a vehicle ownership cost minimization model, (b) a model to calculate the power consumption and maximum potential range of an electric or conventional truck as a function of average velocity and weight, and (c) a continuous approximation model to estimate fleet size, distance traveled, and ensure that practical routing constraints are satisfied. The model is applied to the study the competitiveness of three vehicles of similar weight and size in the USA market: a widely available conventional diesel truck and two electric trucks. Scenarios and breakeven points are calculated and analyzed for a large number of parameter combinations. The results provide new insights regarding the truck characteristics and logistical constraints that determine whether a conventional or electrical truck is more cost effective.

Brian A. Davis; Miguel A. Figliozzi

2012-01-01T23:59:59.000Z

380

http://www.sussex.ac.uk/spru / Constructing Success in the Electric Power Industry: Flexibility and the Gas Turbine  

E-Print Network (OSTI)

This paper explains the success and failure of two technologies that generate electricity from fossil fuels. Both the Combined Cycle Gas Turbine (CCGT) and fluidised bed boiler burn fossil fuels more cleanly than more traditional technologies. Whereas the CCGT has been used for an increasing number of new power plants during the past fifteen years, the latter has struggled to attract attention outside a small-scale niche. The paper draws on economic and social constructivist approaches to technical change. It shows how a combination of economic, institutional and political factors can be used to explain success and failure. It also demonstrates the importance of technological flexibility for the long term development of the CCGT and its acceptance as the power industrys current technology of choice.

Dr Jim Watson; Mantell Building

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Illinois Municipal Electric Agency - Electric Efficiency Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Agency - Electric Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Municipal Utility Nonprofit Schools Savings Category Home...

382

Methodology for ranking geothermal reservoirs in non-electric industrial applications  

DOE Green Energy (OSTI)

A large number of geothermal reservoirs exist and to perform a thorough study of each of these reservoirs to determine those most desirable for demonstration projects can be costly and time consuming. A methodology for assigning rankings to these reservoirs, given a limited amount of data, is presented. The top ranked reservoirs would then be studied more thoroughly. In addition, a methodology for ranking the large number of industries that could possibly utilize geothermal energy in nonelectric applications is given to determine those industries which will have the most impact on national energy demand if converted to geothermal use.

Farah, O.G.; Williams, F.

1976-05-01T23:59:59.000Z

383

Prospects for Boom/Bust in the U.S. Electric Power Industry  

Science Conference Proceedings (OSTI)

Deregulation, technology change, load growth, and time have all played a role in bringing the power industry to unprecedented expansion, nearly all gas-fired capacity. Right now, it seems the industry cannot add capacity fast enough to relieve tight reserve margins in much of the country. Yet between 2000 and 2004, over 150,000 MW of combined-cycle (CC) capacity additions are in prospect, and financial conditions that once looked compelling could rapidly turn sour. Boom-bust has implications for all face...

2000-12-07T23:59:59.000Z

384

Quality of Service, Efficiency and Scale in Network Industries: An analysis of European electricity distribution  

E-Print Network (OSTI)

supplied measured in Gigawatt-hours (GWh). The two out- put variables also reflect the structure of a two-part tariff, i.e. a fixed charge per cus- tomer as well as a variable part dependent on consumed energy. In addition, economies of scope between... and transformers), economies of scale in electricity supply, and economies of scope between the major services in electricity distribution, namely customer connection and energy delivery.3 In economic theory, a natural monopoly is described as a market...

Growitsch, Christian; Jamasb, Tooraj; Pollitt, Michael G.

2006-03-14T23:59:59.000Z

385

Demand-side management programs change along with the electric utility industry  

Science Conference Proceedings (OSTI)

They heyday of demand-side management may be over as far as utilities are concerned. The future path of utility demand-side management programs is obscured in a haze of important questions, especially questions regarding potential legislation and retail wheeling. Until recently, utility after utility was announcing new DSM programs, seemingly almost daily. But, as pointed out in our November issue by Robert Smock, Electric Light & Power`s editorial director, {open_quotes}Survivors of ruthless competition will not be doing much to reduce electricity sales. They`ll be doing their best to sell more of their product.

Stein, H. [ed.

1995-01-01T23:59:59.000Z

386

Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology  

Science Conference Proceedings (OSTI)

First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

1998-05-01T23:59:59.000Z

387

Introduction to the Minitrack on Restructuring the Electric Power Industry: Emerging Issues, Methods and Tools  

Science Conference Proceedings (OSTI)

The focus of papers accepted for this minitrack is on a cross-disciplinary look at a variety of issues associated with the worldwide movement to restructure electric power systems. The topic is timely and broad and will continue to be researched and ...

Robert J. Thomas

1999-01-01T23:59:59.000Z

388

Evaluation of Pen-Based and Hands-Free Computers for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

This report identifies the critical feature and design specifications of pen-based and hands-free computers for electric utility applications. The report concludes with results of a benchmark and field test designed to ensure vendor compliance with these product specifications.

1997-07-21T23:59:59.000Z

389

Assessment of reforms in the electricity supply industry: A review of some recent empirical studies  

SciTech Connect

An empirical review suggests that progress has been made in bringing competition into the inherently complex and challenging electricity market, generating substantial efficiency gains. But the large disconnect between the wholesale and retail markets indicates that much effort is needed to allow consumers to optimally reap those gains. (author)

Peerbocus, Nash

2007-03-15T23:59:59.000Z

390

Early, Cost-Effective Applications of Photovoltaics in the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Photovoltaic (PV)-powered systems can compete economically with conventional utility approaches such as distribution line extensions and step-down transformer installation for powering small electric loads. This study identified more than 60 cost-effective applications of PV-powered systems for utilities and their customers.

1994-01-01T23:59:59.000Z

391

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

to protect the electric vehicle industry and limit liabilityElectric Vehicle Workshop brought together leaders from industry,duty electric vehicles. To provide flexibility to industry

Lipman, Timothy

1994-01-01T23:59:59.000Z

392

Oligopoly Equilibria in Electricity Contract Markets  

E-Print Network (OSTI)

has focused on the electricity industry, in part because itresearch on the electricity industry also indicates theApplication to The Electricity Industry Experiences with

Bushnell, James

2005-01-01T23:59:59.000Z

393

Investment under Regulatory Uncertainty: U.S. Electricity Generation Investment Since 1996  

E-Print Network (OSTI)

Coordination in the Electricity Industry, especially Faridof their respective electricity industries. A key policywould implement their electricity industry restructuring. It

Ishii, Jun; Yan, Jingming

2004-01-01T23:59:59.000Z

394

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: March 2012 End Use: March 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

395

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: September 2011 End Use: September 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

396

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2013 End Use: October 2013 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

397

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: January 2012 End Use: January 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

398

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: December 2011 End Use: December 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

399

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: August 2011 End Use: August 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average revenue per kWh by state Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

400

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: November 2011 End Use: November 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: February 2012 End Use: February 2012 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by State regulators. However, a number of States have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

402

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

End Use: October 2011 End Use: October 2011 Retail Rates/Prices and Consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on retail sales revenues and volumes, we calculate average retail revenues per kWh as a proxy for retail rates and prices. Retail sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by State Percent Change ¢ Per KWh map showing U.S. electric industry percent change in average revenue

403

Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report  

SciTech Connect

There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

Grainger, J.J.; Lee, S.S.H.

1993-11-26T23:59:59.000Z

404

"Annual Electric Power Industry Report (EIA-861 data file)  

U.S. Energy Information Administration (EIA) Indexed Site

FILES FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date for 2012: October 29, 2013 Next Release date: October 29, 2014 Re-Release 2012 data: December 9, 2013 (CORRECTION) Data files include information such as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and distributed generation capacity. The EIA-861S (Short Form) was created in 2012. Approximately 1,100 utilities completed this form in lieu of the EIA-861. The short form has fewer questions and collects retail sales data as an aggregate and not by customer sector. EIA has estimated the customer sector breakdown for this data and has included under the file called "Retail Sales." Advanced metering data and time-of-use data are collected on both Form EIA-861 and Form EIA-861S.

405

Impact of Key Electric Power Industry Regulatory Issues on Opportunities in Water Quality Trading  

Science Conference Proceedings (OSTI)

Based on EPRI water quality trading (WQT) research on nutrients (i.e., nitrogen and phosphorus), this technical update explores potential application of WQT for other electric power generation waste streams and pollutants in addition to considering the potential impact of existing regulatory issues on the trading for nutrient credits. For each of the opportunities identified, a discussion of potential issues associated with that application is discussed. This document also identifies ...

2012-12-31T23:59:59.000Z

406

Financing arrangements and industrial organisation for new nuclear build in electricity markets  

E-Print Network (OSTI)

of the Finnish and French plants under construction , but rising fossil fuel and CO2 prices are reviving interest in nuclear power. A potential nuclear power renaissance in liberalised electricity markets will face a number of hurdles associated... with the CO2 price in Europe. The attractiveness of carbon free technologies such as nuclear plant for a power producer is reinforced by the additional cost placed on fossil fuel generation technologies by climate policies and CO2 emissions pricing...

Finon, Dominique; Roques, Fabien A

407

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

408

Electric Power Annual  

U.S. Energy Information Administration (EIA)

Electric Power Sector ; Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector; Annual Totals: ...

409

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

The Yemazhai power plant The growth rates were 13.2 per centto economic growth. Second, new power plants not only createpower plants and then reap profits in local revenues and economic growth.

Tsai, Chung-min

2010-01-01T23:59:59.000Z

410

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",39378154,38667162,41852352,40154595,42337169,39683722,40851631,40765087,44699071,42951057,44585709,43764015,42532420,42261405,43059537,44031568,42905244,43144350,43909400,43182207,44738543,98,93 " Coal",38681220,37862584,41153537,39301199,41380267,38804539,39551555,39315335,43287140,41718548,43355361,42560578,41685278,41490825,42372775,43112061,41948761,42204359,42900080,41040274,42126910,95.3,87.5 " Petroleum",45561,60850,54839,56970,47029,67673,59443,58765,42871,46197,35159,33744,38686,41567,43450,40311,44240,46116,43765,49958,55973,0.1,0.1

411

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",8617977,8281502,6260025,9022654,7303193,10062854,12230805,13511823,11978079,12456120,10114257,6666589,8164140,7732812,7765655,8032438,10495090,8611890,8893983,9977502,8589208,84.9,71.4 " Petroleum",615,311,475,103,31,311,245,95,253,155,2792,3723,65,116,136,5,144,134,120,41,74,"*","*" " Natural Gas","-","-","-","-","-","-","-","-","-","-","-","-",76168,61229,27775,73353,94504,240504,230189,286865,170231,"-",1.4

412

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",45063182,44850089,45942891,48810720,45380625,47955288,47544649,48380102,51454036,50278792,51403249,50413729,51218320,49776514,48298390,54250814,51917155,54177692,60074823,57516914,57421195,92.5,79.5 " Coal",25188557,26027968,27666494,28990113,27453911,29714368,31876730,33036688,31026837,30588375,32852645,32164601,33444114,34200128,31240478,33604628,32324391,31610751,33625415,31645255,29102532,59.1,40.3 " Petroleum",49422,18533,15180,14027,11456,77528,124951,12568,7541,7622,46637,146375,10311,111555,21008,13181,24187,139391,12600,12433,12606,0.1,"*"

413

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",89058681,94567383,82679444,92250107,83720636,92478772,95155261,89564616,85146307,87874695,89572141,97067330,100451718,96634055,99608512,104830689,97373706,96785842,94503953,82787341,89666874,86,80.4 " Coal",65295742,65138291,61434530,61558991,67538611,65425002,66097259,65552021,69142807,69118017,66980252,66931691,65389899,66448916,67253690,69158736,66654737,69406550,68421489,65867455,64766712,64.3,58.1 " Petroleum",689461,553863,498159,619777,655860,687264,651860,602053,1005170,1282696,993932,724313,1090767,883847,714881,788563,272106,445915,281604,215189,195180,1,0.2

414

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31497406,38215120,39586558,43488284,43765565,44658945,44380543,44552905,48513503,49323828,31783195,88150,30734,51722,30023,44235,11941,23712,5856,2294,2996,62.1,"*" " Coal",23299412,22622989,23625314,24890670,25394481,27369905,27780141,27394342,29077013,29352347,20353004,"-","-","-","-","-","-","-","-","-","-",39.8,"-" " Petroleum",3328080,3935221,2611820,3953777,4133533,1407598,1401195,1478623,3311978,3897208,1507860,87790,30734,51722,30023,44235,11941,23712,5856,2294,2832,2.9,"*"

415

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",36478610,35802358,32838301,28163544,27466049,26971667,27758877,33898697,26036881,4359511,1704653,1566491,1156651,2055622,1524169,1622208,942917,493885,507254,447912,802906,4.4,1.9 " Coal",11273069,11861344,10949228,9815909,10209727,10586608,11500536,12488802,8168608,1073628,1094848,1096681,"-",1074514,903789,1025141,"-","-","-","-","-",2.8,"-" " Petroleum",14556403,15612257,13282101,11112574,9561302,5848663,6221378,11586081,10019730,300040,123931,131797,220435,517767,290865,189211,29031,58456,57639,32698,42546,0.3,0.1

416

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",49171999,46298021,41220343,40743085,37490089,44031261,47883913,49068279,46352310,51698318,46059938,38059649,39731986,38577937,39092958,37407039,43068822,43202516,44590530,42703218,41142684,88.9,74.6 " Coal",1297978,2814199,3682715,3502742,3814009,1527874,1727583,1500879,3348089,3697900,3785462,4423843,3768531,4285697,3535764,3463644,2370628,4351624,4044319,3196902,4126435,7.3,7.5 " Petroleum",26809,9648,9212,32365,5398,4346,6631,10942,33127,7699,52038,92767,5893,44035,20305,47427,4323,5044,9974,2825,3330,0.1,"*"

417

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7099663,7603723,6267492,8306462,8501043,8324101,8121853,6578599,6317738,6239372,4137127,1872053,170994,31107,23751,25989,16558,47830,19068,12768,30059,69.1,0.5 " Coal",4904473,4598301,3813594,5185396,4754309,4226615,4225125,3925643,3811669,2762460,3319195,1626254,"-","-","-","-","-","-","-","-","-",55.4,"-" " Petroleum",1436186,1899201,1829938,2094383,1619659,917065,1188294,832577,1234464,1234121,398100,209088,154118,9863,10083,6442,113,4132,512,457,843,6.6,"*"

418

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",33440,33337,33446,33423,33675,33699,33723,33825,33781,25251,13394,4978,4887,4921,4968,455,455,455,455,455,455,36.3,1 " Coal",17543,16894,17515,17480,17492,17503,17463,17386,17386,10108,3133,2407,2360,2360,2407,"-","-","-","-","-","-",8.5,"-" " Petroleum",5031,5031,4845,4875,4881,4860,4881,3208,3374,3022,1999,3,3,"-","-","-","-","-","-","-","-",5.4,"-"

419

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2407,2417,2405,2402,2433,2432,2387,1498,1457,88,21,17,16,19,19,19,19,19,19,19,19,0.5,0.4 " Petroleum",1126,1126,1115,1111,1109,1109,1069,1064,1025,54,18,17,16,19,19,19,19,19,19,19,19,0.4,0.4 " Nuclear",860,870,870,870,870,870,870,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Hydroelectric",420,420,420,421,422,421,416,404,402,34,3,"-","-","-","-","-","-","-","-","-","-",0.1,"-"

420

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",591756,171457,109308,53740,68641,653076,3301111,3562833,2061351,9436,10823,"-",11836,11771,12402,10805,11008,11075,10612,10612,10827,0.2,0.1 " Petroleum",158154,54218,74715,28582,33836,50334,61675,16609,8827,9436,10823,"-",11836,11771,12402,10805,11008,11075,10612,10612,10827,0.2,0.1 " Natural Gas",433602,117239,34593,25158,34805,602742,3239436,3546224,2052524,"-","-","-","-","-","-","-","-","-","-","-","-","-","-"

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",165682846,162366875,166034292,166200686,169029050,168941707,175022081,177166516,173903236,161595988,97075771,27633966,30537243,30099444,33900004,1058313,1311434,1077389,1224597,1159659,1086500,48.1,0.5 " Coal",101996271,100359157,102198817,100390066,93951561,96799645,100857561,105445514,106516740,85580341,36704124,13863092,15935860,15944113,18396944,"-","-","-","-","-","-",18.2,"-" " Petroleum",4013814,3713606,2220932,4559186,5182491,3072153,3212502,2307411,4097006,3063268,1656505,21609,39420,34944,32129,7717,2942,"-",873,710,525,0.8,"*"

422

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",19286260,20922439,20962974,19820333,20519076,19997354,21362057,22869773,26552567,26485602,29341675,27896065,25008568,24634871,24246391,24112225,19686302,22376989,22979409,26095005,23710917,82.7,67.5 " Coal",15053277,16365730,16443169,15627860,15324714,13971824,14656868,15250606,17161341,16907530,18931521,17736970,16413025,17085959,18257265,18384261,7253521,7090911,6884521,6376887,5584370,53.4,15.9 " Petroleum",284108,238321,327585,246506,166446,26549,93811,31156,50285,35418,64614,911611,25472,16793,95766,20500,17347,11447,9865,8472,7675,0.2,"*"

423

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",41549628,40427575,37783876,41254101,40917280,42502869,41791506,40302526,43976935,44153826,46615673,44798014,48568719,49576276,47232462,46791349,46710674,47793039,46758314,44442211,45428599,90.7,84.6 " Coal",27587603,26186299,24443013,27110850,26399834,26820765,27329077,27081067,29884402,28366977,31731081,31037544,32200713,33157032,31477117,30514512,30600302,31199099,30771207,28582304,27176478,61.7,50.6 " Petroleum",440740,575916,638979,630166,596987,484708,640427,763764,649866,674398,440264,599557,640129,845239,752362,752774,484235,362765,211633,49502,25870,0.9,"*"

424

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9758,10723,10862,10709,10837,10957,10957,11101,10970,10955,753,70,69,70,79,79,79,80,80,80,80,7.2,0.6 " Coal",3975,4617,4617,4628,4631,4636,4636,4647,4647,4647,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",2479,2427,3040,2717,2648,1394,2618,2631,2516,2673,241,70,69,70,79,79,79,80,80,80,80,2.3,0.6 " Natural Gas",1225,1601,1127,1275,1353,2722,1498,1618,1602,1448,"-","-","-","-","-","-","-","-","-","-","-","-","-"

425

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7141,7060,6988,6754,6733,6722,6321,6294,5616,2919,2204,185,34,210,174,25,37,111,111,111,160,34.2,1.9 " Coal",385,385,385,385,385,385,385,385,385,"-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",3335,3263,3191,2957,2738,2728,2831,2801,2744,756,176,176,25,201,165,16,28,30,30,30,76,2.7,0.9 " Natural Gas","-","-","-","-",214,214,338,341,341,"-","-","-","-","-","-","-","-",71,71,71,75,"-",0.9

426

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" "Independent Power Producers and Combined Heat and Power",3,3,3,3,3,3,"-","-","-","-",804,806,806,806,806,806,806,806,790,790,790,100,100

427

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32155574,23552082,25153644,28714867,27201416,26931900,15773738,13227766,15122925,20484367,16992594,2816826,21463,59812,45095,41709,47612,37217,52334,47137,65570,51.5,0.2 " Coal",2351049,2117781,2148078,1907826,2104045,2269352,2367889,2557934,1482608,"-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",8632571,7890483,5297424,4206354,3353897,3397400,5255050,8431425,8608001,5793975,7726,11032,928,13955,9253,695,1282,3325,2597,2465,2604,"*","*"

428

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31312872,31038231,31899303,32687317,33324413,32673972,33971688,34375573,35471294,36167349,40108260,41957723,41509933,41226252,40436218,41014609,42055989,42353281,41176711,37467527,39584166,90.8,78 " Coal",29602738,28922906,30001882,30456351,31401250,30276010,31952337,32002082,33079201,32605202,35101982,35654162,35135198,35807527,35570358,35285966,36003331,35722617,34639561,31454143,34386818,79.5,67.8 " Petroleum",25129,37883,39164,8898,8913,10136,15539,14623,36736,32430,91320,158742,22519,33927,11797,15464,17646,14748,18092,12583,17424,0.2,"*"

429

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" " Petroleum",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" "Independent Power Producers and Combined Heat and Power","-","-","-","-","-","-","-","-","-","-",46951,123239,261980,74144,36487,226042,81467,75251,72316,35499,199858,32.5,100

430

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",114528000,104967938,119309725,125782063,126749186,121881402,114706047,112183063,114926213,87874809,85856285,70132656,74588271,81728209,75177122,89348213,100338454,87348589,83346844,85123706,96939535,41.3,47.5 " Petroleum",4385235,598489,325424,2007674,1862719,488530,674899,141872,121385,51769,144590,316691,43933,50996,51482,57974,58991,65296,58187,50625,40819,0.1,"*" " Natural Gas",45221848,43940427,56609607,46499103,61530357,39089723,30768135,36300778,26385452,13917748,12411961,11918703,8808012,9873371,10759580,12982348,19805412,22896497,26129803,25237449,31251994,6,15.3

431

Demand-side carbon reduction strategies in an era of electric industry competition  

SciTech Connect

With the national debate on the need for intensified research and development, supply-side mandates, and carbon taxes likely to continue for some time, the authors propose a five-point, integrated demand-side plan that is compatible with marketplace forces and can be implemented now. This paper presents a five-point, integrated demand-side plan designed to be compatible with marketplace forces in the competitive electricity era, while the nation continues to debate the need for intensified research and development, supply-side mandates, and carbon taxes.

Meyers, E.M.; Hu, G.M. [District of Columbia Public Service Commission, Washington, DC (United States)

1999-01-01T23:59:59.000Z

432

Chickasaw Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Chickasaw Electric Coop, Inc Chickasaw Electric Coop, Inc Jump to: navigation, search Name Chickasaw Electric Coop, Inc Place Tennessee Utility Id 40166 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA 3-Rate 54, 55,59 Commercial Commercial GSA-Rate 40,49 Commercial Commercial GSA-Rate 48 Commercial Commercial GSA2-RATES 50,57 Commercial Commercial GSA2-RATES 51 Commercial Commercial TOU TGSA 1 Commercial Commercial TOU TGSA 2 Commercial Industrial GSA 3-Rate 54, 55,59 Industrial Industrial GSA-Rate 40,49 Industrial

433

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network (OSTI)

energy-ef?ciency and electric power projects, Berkeley, CA,for evaluation of electric power projects, Energy PolicyCentral America, electric power, mitigation projects,

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

434

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine Californias Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

analysis produces annual electricity bills under ?at and TOUthe savings from reduced electricity bills, savings that aremonthly bills were calculated by combining the electricity

Borenstein, Severin

2007-01-01T23:59:59.000Z

435

Electric utility forecasting of customer cogeneration and the influence of special rates  

E-Print Network (OSTI)

Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

Pickel, Frederick H.

1979-01-01T23:59:59.000Z

436

To: Rebecca Peterson, ERS2014@eia.gov Re: Public Comments on Form EIA-861, ''Annual Electric Power Industry Report''  

Gasoline and Diesel Fuel Update (EIA)

To: Rebecca Peterson, ERS2014@eia.gov To: Rebecca Peterson, ERS2014@eia.gov Re: Public Comments on Form EIA-861, ''Annual Electric Power Industry Report'' From: Volunteer members of the Large Public Power Council Energy Efficiency Working Group (LPPC EEWG) Benchmarking Subcommittee, led by:  Subcommittee Chair Norman Muraya (Austin Energy) norman.muraya@austinenergy.com,  Member Tom Gross (Orlando Utilities Commission) tgross@ouc.com, and  Facilitated by Annika Brink (Alliance to Save Energy/Clean and Efficient Energy Program for Public Power) abrink@ase.org. Over the course of the past year, the LPPC EEWG's Benchmarking Subcommittee has leveraged data from Form EIA-861, Schedule 6 to benchmark the energy efficiency activities and performance of LPPC

437

Investigating the impacts of time-of-use electricity rates on lower-income and senior-headed households: A case study of Milton, Ontario (Canada).  

E-Print Network (OSTI)

??Through the Smart Metering Initiative in the Canadian province of Ontario, all residential electricity customers will be converted from a tiered rate regime to a (more)

Simmons, Sarah Ivy

2010-01-01T23:59:59.000Z

438

"2012 Total Electric Industry- Average Retail Price (cents/kWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Retail Price (cents/kWh)" Average Retail Price (cents/kWh)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",15.713593,13.679941,11.83487,6.6759453,14.017926 "Connecticut",17.343298,14.652335,12.672933,9.6930118,15.54464 "Maine",14.658797,11.52742,7.9819499,".",11.812709 "Massachusetts",14.912724,13.841518,12.566635,4.9056852,13.78825 "New Hampshire",16.070168,13.36121,11.83228,".",14.192854 "Rhode Island",14.404061,11.867247,10.676724,8.2796427,12.740867 "Vermont",17.006075,14.316157,9.9796777,".",14.220244

439

Independent transmission system operators and their role in maintaining reliability in a restructured electric power industry  

Science Conference Proceedings (OSTI)

This report summarizes the current status of proposals to form Independent System Operators (ISOs) to operate high-voltage transmission systems in the United States and reviews their potential role in maintaining bulk power system reliability. As background information, the likely new industry structure, nature of deregulated markets, and institutional framework for bulk power system reliability are reviewed. The report identifies issues related to the formation of ISOs and their roles in markets and in reliability, and describes potential policy directions for encouraging the formation of effective ISOs and ensuring bulk system reliability. Two appendices are provided, which address: (1) system operation arrangements in other countries, and (2) summaries of regional U.S. ISO proposals.

NONE

1998-01-01T23:59:59.000Z

440

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4992578,5258829,4698045,4300537,5293892,4839820,5004219,5323432,4393537,4734555,5307016,4734002,2971224,626337,643426,673607,802680,701474,752800,711507,720853,84.2,10.9 " Petroleum",2543,5244,2581,4805,5764,13357,3428,9816,41265,22392,60660,31740,9406,22607,17800,10179,7371,7811,4266,2439,4509,1,0.1 " Natural Gas",65281,95341,63120,20558,5806,6593,97,93,827,18291,90790,11000,3275,2029,3224,2240,1875,1889,2655,4431,3783,1.4,0.1 " Nuclear",3616268,4108314,3734594,3372148,4315544,3858509,3798790,4266866,3357696,4059107,4548065,4171120,2367209,"-","-","-","-","-","-","-","-",72.2,"-"

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",73902614,73931670,75396209,71614268,74853548,82277534,88647111,93293232,94142638,89682569,92311813,92937315,92570929,88678127,94371964,93942273,90960035,92474664,88262641,77432806,79816049,96.3,96.9 " Coal",50186951,46671234,49995747,59559596,52132070,57971909,55504189,58899058,55120297,55220519,60675314,58166973,58080553,53376149,56583558,57560600,59146323,58849255,55752210,40426487,42259569,63.3,51.3 " Petroleum",134397,160072,127282,234545,295961,252611,257586,192880,699233,502286,539784,379703,250325,379007,166943,201121,137187,155646,207233,182291,211654,0.6,0.3

442

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",11236,11236,11237,10133,10166,10446,10526,10537,10449,10293,10337,10354,10348,10338,9555,9839,9971,10502,10491,10683,10846,91.7,76.1 " Coal",530,530,508,508,508,508,508,508,528,530,557,557,557,556,556,585,585,585,585,585,585,4.9,4.1 " Petroleum",109,109,109,109,106,103,103,103,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Natural Gas",493,493,493,493,493,767,849,849,849,706,706,729,753,725,725,967,962,1354,1364,1341,1337,6.3,9.4

443

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" Wisconsin" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",45550958,47148818,46463756,47762861,49437481,51012390,51651435,48560127,52529065,54704370,55665471,54959426,54773666,56068698,56142364,55169108,51914755,44284480,45536712,41375366,45579970,93.3,70.9 " Coal",32144557,33489286,32740540,33558049,35282695,36863872,38144842,40819517,39785759,39899142,41057919,40185649,38583501,40579973,40981609,40506086,38866178,38719363,40452933,36238643,39185565,68.8,60.9 " Petroleum",47444,62162,54332,105173,171563,147493,124088,169863,200225,220944,191091,170443,162990,185625,494535,470219,591486,725019,647602,458848,478866,0.3,0.7

444

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",26824491,27535034,28592323,28499824,29003713,28842021,30769712,29719764,30518976,31259830,31122917,30135733,31147221,31075012,29526814,31512768,30328375,30402807,30852784,31375152,31343796,99.4,90.2 " Coal",25092696,25750792,26864520,27048924,27099914,26336456,27529906,26314471,28176015,28610457,28952976,28769721,29518865,29298347,27938264,30133242,28761820,29041826,29551647,29486194,28349079,92.5,81.6 " Petroleum",20682,27636,28951,35795,47340,49107,88834,85698,47091,40300,47457,33850,35728,45648,36565,32480,39269,47332,40977,41475,35855,0.2,0.1

445

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",73807286,75505081,77351259,84997718,84097034,86161578,88438224,91558046,86151121,81658150,81349922,83677982,80161524,80696982,82921402,85679912,86816479,85259079,86012151,90029962,97472144,87.5,99.2 " Coal",70500461,71713851,73476309,81722246,79897442,82539467,84659818,87875331,82412216,78544604,78598836,79381504,75308162,76367048,78574428,81188722,83068626,81877334,83197690,84037596,91053858,84.5,92.7 " Petroleum",118646,111558,83886,96727,154819,130598,135437,125625,127062,103755,118876,120418,135412,130280,93651,96557,79520,96733,106853,2016282,2284852,0.1,2.3

446

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",24173,24243,24221,24259,24255,24277,24276,25273,25235,25189,23840,24055,24141,24216,23878,24065,24303,24511,26243,26322,26498,91.5,86.9 " Coal",1310,1360,1360,1390,1390,1340,1390,1390,1390,1340,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",173,173,173,173,88,88,87,62,62,4,4,133,40,39,39,39,39,3,3,3,3,"*","*" " Natural Gas",590,590,590,590,590,590,590,838,838,955,955,987,1146,1153,1184,1141,1138,1111,2768,2782,2849,3.7,9.3

447

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",13730,13725,13824,13850,13500,13817,13645,13684,13390,12085,1244,1244,1244,1244,1005,1005,1005,558,477,466,460,7.5,2.5 " Coal",1652,1652,1629,1644,1634,1629,1629,1635,1658,1643,387,387,387,387,307,307,307,23,23,23,"-",2.3,"-" " Petroleum",3784,3480,3548,3212,2967,2890,2842,3915,3573,2373,286,286,286,286,232,232,232,69,54,43,49,1.7,0.3 " Natural Gas",4101,4410,4434,4761,4657,5056,4912,3872,3897,3807,171,171,171,171,66,66,66,66,"-","-","-",1,"-"

448

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",123623905,130743964,133976775,140066943,141790885,147156684,145140217,147983676,169447167,166914264,169888638,170966177,182346629,188034719,193383664,196096285,200015227,200533885,196524348,195063261,206062185,88.6,89.9 " Coal",59073203,61122819,61631012,61889050,60770030,61864438,65782399,66034628,65470151,62680522,67143257,63090794,60997142,62094661,60013823,57559411,60413597,62633944,59731231,49942611,56074369,35,24.5 " Petroleum",25092296,30115618,28176184,34277523,33330039,21583186,22890565,25742149,40952580,36697343,34337080,39075398,32449236,35545897,35824155,36122039,22508349,19841026,11830552,9028865,8867397,17.9,3.9

449

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",14908,16162,16314,16131,16691,16701,17173,17431,17627,17681,17716,18246,19101,19402,20406,20787,21019,21730,22152,22190,22172,94.8,92.5 " Coal",4818,4812,4812,4812,5352,5352,5471,5794,6007,6055,6054,6077,5925,5925,5968,5968,5984,6460,7060,7028,7048,32.4,29.4 " Petroleum",897,894,894,816,828,1192,1488,1192,1163,1163,957,955,955,970,684,689,682,682,699,663,664,5.1,2.8 " Natural Gas",301,396,396,328,336,345,345,585,576,576,779,1279,2150,2437,3712,3708,3923,3956,3919,3964,3966,4.2,16.5

450

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",263,261,156,153,148,442,441,441,7,7,6,7,9,9,9,6,8,8,7,7,7,0.5,0.4 " Petroleum",262,161,155,152,146,20,20,20,5,5,5,6,7,7,7,5,7,7,7,7,7,0.4,0.4 " Natural Gas","-",99,"-","-","-",420,420,420,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Hydroelectric",1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,"-","-","-",0.1,"-"

451

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",16996,16269,16294,16224,16482,16144,17253,17361,17546,17253,17893,18600,19137,19235,19239,19120,19768,19977,20456,20418,20968,92,97.9 " Coal",9289,8702,8683,8691,8615,8615,8615,8604,8604,8618,8618,8618,8602,8609,8623,8618,8585,8599,8624,8589,8589,44.3,40.1 " Petroleum",1152,1100,1080,1080,1982,1096,1096,1135,1252,784,800,836,56,56,56,58,58,58,58,58,58,4.1,0.3 " Natural Gas",516,480,488,488,"-",472,472,514,571,732,1344,1960,3116,3128,3137,3032,3659,3632,4082,4099,4639,6.9,21.7

452

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20731,20752,21399,21504,22039,22290,22782,23147,23390,23329,24860,24099,25821,24804,25404,26538,26542,26432,26462,26558,26639,89.6,72.7 " Coal",12952,12972,13104,13115,13164,12551,13234,13222,13540,13095,13470,13503,13498,13331,13215,13192,13192,13192,13129,13084,13103,48.5,35.8 " Petroleum",1488,1493,1635,1351,1341,1231,1228,1228,1172,1145,1145,1145,1145,1055,991,991,991,973,991,991,991,4.1,2.7 " Natural Gas",96,103,103,362,841,1274,1276,1281,1273,1564,2647,1974,3386,2827,3470,4618,4609,4577,4577,4652,4646,9.5,12.7

453

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

York" York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31224,31349,31108,32731,32824,32147,30060,29985,29585,17679,15806,11572,11675,11902,11386,11927,12046,12056,11784,11871,11032,44.4,28 " Coal",3887,3897,3897,3879,3879,3870,3891,3880,3891,668,668,302,302,302,297,297,297,297,45,45,"-",1.9,"-" " Petroleum",12349,9869,8992,8885,7684,7637,11500,12759,12530,4991,5035,3638,3638,3688,2642,2450,2468,2465,2467,2465,1607,14.1,4.1 " Natural Gas",5065,7634,8304,7895,9194,8469,4718,3249,3131,2600,2227,2682,2783,2908,3894,4628,4628,4644,4623,4629,4619,6.3,11.7

454

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9910,9771,9494,9461,9287,9288,9365,9442,3385,2214,996,993,1090,981,981,983,837,827,829,930,937,8.1,6.8 " Coal",1723,1692,1684,1679,1675,1707,1730,1737,328,146,145,145,145,145,145,144,"-","-","-","-","-",1.2,"-" " Petroleum",5216,5070,4913,5041,4132,4058,4030,4094,787,547,475,474,771,663,661,661,659,648,624,624,528,3.8,3.9 " Natural Gas",289,330,378,219,953,993,1082,1086,333,302,330,329,130,130,131,131,131,131,157,257,353,2.7,2.6

455

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20023,19902,19930,19972,19878,20463,20692,20840,21292,21462,22366,22532,23429,23007,23186,23252,23218,23182,23144,23285,23642,95,72.9 " Coal",11777,11589,11599,11579,11494,11669,11515,11286,11349,11349,11301,11362,11246,11217,11238,11500,11465,11452,11414,11401,11356,48,35 " Petroleum",65,18,18,18,388,18,20,16,16,30,34,34,34,34,34,34,34,34,34,34,34,0.1,0.1 " Natural Gas",400,530,544,586,202,987,1437,1706,1971,2076,3041,3157,4182,3550,3627,3471,3440,3440,3440,3593,3937,12.9,12.1

456

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",26996,27540,27130,27186,27192,27365,27278,26630,26768,27083,26302,27081,27885,27694,27684,19312,20147,20012,20340,20356,20179,92.3,61 " Coal",23086,23317,23060,23043,23058,23123,23033,22415,22456,22626,21675,21675,21599,21258,21366,16272,16296,16204,15909,15932,15733,76.1,47.6 " Petroleum",1151,1148,907,907,907,853,856,805,824,891,1031,1381,1000,1017,1008,588,588,596,575,575,577,3.6,1.7 " Natural Gas",501,817,902,980,976,1140,1140,1154,1232,1271,1300,1661,2921,3056,3074,2346,3156,3105,3749,3741,3760,4.6,11.4

457

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",16751,16795,16699,16885,16873,17019,17150,17079,17014,16339,14317,14165,14233,14090,14176,15137,15176,14756,15755,15615,16471,67.8,61.6 " Coal",3343,3343,3343,3343,3343,2843,3453,3453,3448,3453,1723,1723,1723,1723,1723,1723,1723,1739,1739,1739,1674,8.2,6.3 " Petroleum",17,17,228,212,231,35,35,16,16,11,16,20,16,16,26,239,239,240,240,240,775,0.1,2.9 " Natural Gas",11380,11424,11122,11324,11293,12130,11651,11599,11539,10864,10566,10350,10423,10284,10372,11051,11095,10650,11622,11494,11880,50,44.4

458

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32714,32708,33411,34814,35487,35857,36898,36727,36472,36536,37264,38240,40313,41996,42619,45196,45184,47224,47222,50781,50853,89.7,86 " Coal",9971,10001,10034,10030,10037,10069,10763,10823,10676,10770,10783,10783,11301,10223,9653,9634,9564,9528,9499,9495,9210,26,15.6 " Petroleum",11107,11117,11590,11598,14724,13478,13653,13493,12222,12153,12431,12552,10650,10063,10715,10611,10593,10586,12043,11549,10980,29.9,18.6 " Natural Gas",7775,7712,7909,9313,6857,8447,8560,8485,9655,9665,10102,10955,14401,17751,18290,20990,21065,23148,21698,25731,26424,24.3,44.7

459

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",62288980,66767347,70108979,68025039,71203728,68966538,70877043,78060498,81299241,83095924,88149792,85807868,81710063,80348246,81351521,82914964,84355976,88825573,94452931,89640192,91232664,99.1,81.6 " Coal",31636037,32306088,34602347,37020817,38072165,31710476,30780575,34219281,36225373,37994159,40662627,39731623,37957468,37739559,39419177,39750729,40056468,40911234,43505012,39464060,43347748,45.7,38.8 " Petroleum",116407,88935,72838,59875,128437,63610,65097,60927,61227,46287,189396,311787,51061,46706,39414,41127,71761,46137,48324,61381,63439,0.2,0.1

460

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7996096,7333192,6861255,6083815,6055087,6190584,6420195,6212643,6301169,6452068,6534692,6383088,7513051,6493205,6982469,6915159,7040473,6928397,6700636,6509550,6416068,61.7,59.2 " Petroleum",7967354,7312791,6851432,6070063,6036282,6174627,6402329,6193852,6287107,6429429,6516929,6362846,7502913,6489565,6971259,6904293,7015977,6913231,6682593,6262182,6178666,61.5,57 " Hydroelectric",22743,20401,9823,13752,18805,15957,17866,18791,13750,18844,15114,18132,8533,2078,9724,9169,23656,14729,17872,28608,16719,0.1,0.2

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",690465,693016,695059,699971,702229,706111,709942,711889,686692,639324,604319,549920,561074,547249,550550,556235,567523,571200,584908,596769,602076,74.4,57.9 " Coal",299781,299444,300385,300634,300941,300569,302420,302866,299739,277780,260990,244451,244056,236473,235976,229705,230644,231289,231857,234397,235707,32.2,22.7 " Petroleum",76390,72393,71266,69046,69549,64451,70421,69557,62704,49020,41032,38456,33876,32570,31415,30867,30419,29115,30657,30174,28972,5.1,2.8 " Natural Gas",121300,126837,128149,132427,133620,142295,139936,141713,130404,123192,123665,112841,127692,125612,131734,147752,157742,162756,173106,180571,184231,15.2,17.7

462

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1487,1521,1560,1602,1602,1602,1610,1595,1616,1608,1626,1622,1622,1624,1691,1705,1730,1730,1730,1859,1828,68.1,72.1 " Petroleum",1483,1518,1556,1598,1598,1598,1607,1592,1612,1605,1621,1616,1618,1620,1687,1699,1724,1724,1724,1740,1711,67.9,67.5 " Hydroelectric",3,3,3,3,3,3,3,3,4,4,4,3,2,2,2,4,4,4,4,4,4,0.1,0.2 " Other Renewables1","-","-","-","-","-","-","-","-","-","-",2,2,2,2,2,2,2,2,2,115,113,0.1,4.5

463

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",14906,14910,14973,15034,15098,15222,15147,15164,15084,15091,15140,15284,15699,16193,16141,18860,19566,19551,19717,20127,20115,98.9,76.2 " Coal",5116,5070,5070,5108,5119,5159,5201,5256,5286,5311,5336,5336,5336,5336,5336,5362,5762,5750,5750,6159,6165,34.9,23.4 " Petroleum",78,78,78,100,100,95,184,248,248,240,244,243,263,191,108,108,86,89,89,89,89,1.6,0.3 " Natural Gas",3306,3236,3236,3236,3236,3273,3126,2989,2924,2919,2939,3080,3444,3908,3955,6566,6897,6891,6987,6987,6969,19.2,26.4

464

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",21630677,22971934,22387247,22724286,21945525,25279277,27322697,28388030,28720209,29980967,29045739,30411669,31550226,30367879,31944127,31391643,31599046,32403289,32355676,33776062,36242921,99.8,98.9 " Coal",12658464,13562815,12402148,14739783,14002015,16079519,16040775,17209080,18335965,17794136,18424799,20193542,19899803,20907970,20414960,20772590,20632855,19611849,21479723,23307746,23214616,63.3,63.4 " Petroleum",12981,13459,9482,19035,18201,26679,19973,31059,41892,28807,53715,25154,18410,47971,21004,30026,18914,35552,34655,22869,30849,0.2,0.1

465

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7952,8090,8092,8074,8217,8237,8161,8238,8368,8435,8508,8352,8407,9093,9895,10090,9562,10669,11274,11479,11282,93.5,77.3 " Coal",5860,5912,5909,5818,5975,5995,5807,5573,5717,5702,5920,5668,5620,5666,5741,5705,5666,6535,6528,6529,6389,65.1,43.8 " Petroleum",659,723,714,746,755,755,861,872,877,932,1001,1012,980,912,908,936,935,930,924,921,915,11,6.3 " Natural Gas",779,816,829,870,847,825,835,913,906,938,932,916,1007,1710,2381,2376,2370,2401,2394,2345,2296,10.2,15.7 " Nuclear",530,515,515,515,515,528,520,535,520,520,520,520,566,562,563,581,"-","-","-","-","-",5.7,"-"

466

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina" South Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",69259815,69837984,71478648,75588386,74193685,78439814,76325556,78374450,84396897,87347364,90421081,86734778,93689257,91544429,94406828,99104373,95872763,99997011,97921204,97336653,100610887,96.9,96.6 " Coal",22874805,23165807,23013743,26532193,26993543,25801600,30307236,31042658,32377814,35246389,38664405,36302690,36490769,37065509,38516633,39352428,39140908,41270230,41184319,34146526,37340392,41.4,35.9 " Petroleum",71997,83385,68375,95193,108250,129854,125657,188326,331357,300739,265931,225008,205664,289474,690071,484181,135522,174663,160102,490911,178378,0.3,0.2

467

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5042,5045,5062,5062,5078,5078,5077,5183,5294,5299,5250,5250,5463,5398,5393,5692,6223,6324,6324,6344,6345,93.8,78 " Coal",3899,3901,3901,3901,3901,3901,3901,3901,3913,3942,3942,3942,3942,3942,3937,3957,3957,3957,3957,3977,3990,70.4,49.1 " Petroleum",24,24,24,24,24,44,24,23,15,"-","-","-",15,35,35,35,26,26,26,26,20,"-",0.2 " Natural Gas",1063,1063,1079,1079,1096,1076,1094,1200,1285,1275,1226,1226,1425,1339,1339,1619,2158,2259,2259,2259,2253,21.9,27.7

468

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",97565058,90809416,91779352,95737505,98752712,102015724,98729242,101780433,108716930,110536794,116176834,110564676,111855967,115755114,117918895,126444777,127367613,132831987,126031263,115074702,120425913,93.8,87.5 " Coal",67564750,59985395,58235454,63295811,64727519,65880095,63230856,66179551,69871150,74067633,79007166,73443695,77288328,77858022,79185166,86358096,85700960,89532913,84652246,68863420,72550375,63.8,52.7 " Petroleum",164987,107662,128485,237473,161235,218515,292018,200873,670924,662699,641415,275630,233940,278618,156672,189819,86798,82380,67971,64833,70781,0.5,0.1

469

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",28491171,25064613,27707513,28364368,30018011,29431903,29364389,30568142,31428332,31654480,32855587,32210683,29926241,31770151,32242728,33561875,35411074,34033374,33844547,34245148,30848406,96.6,85.1 " Coal",25826928,22129312,25348413,25507029,26752349,26121447,26357179,27078660,27537426,28067704,29065954,28402187,26902880,28812844,29263899,29947248,29859008,27603647,27014233,29117308,25617789,85.4,70.7 " Petroleum",34081,32240,35614,35337,22929,23073,22452,21075,23020,40133,29529,30210,30710,47860,30321,32528,40634,42969,52012,44599,49394,0.1,0.1

470

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2808151009,2825022865,2797219151,2882524766,2910712079,2994528592,3077442152,3122523144,3212170791,3173673550,3015383376,2629945673,2549457170,2462280615,2505231152,2474845558,2483655548,2504130899,2475366697,2372775997,2471632103,79.3,59.9 " Coal",1559605707,1551166838,1575895394,1639151186,1635492971,1652914466,1737453477,1787806344,1807479829,1767679446,1696619307,1560145542,1514669950,1500281112,1513640806,1484855188,1471421060,1490984698,1466395192,1322092036,1378028414,44.6,33.4 " Petroleum",117016961,111462979,88916308,99538857,91038583,60844256,67346095,77752652,110157895,86929098,72179917,78907846,59124871,69930457,73693695,69722196,40902849,40719414,28123785,25216814,26064909,1.9,0.6

471

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",12769,12848,12881,12859,12898,12928,13091,12931,12622,12861,13438,13436,13387,13463,13550,13992,14648,14495,15913,16187,16015,94.6,76.2 " Coal",4850,4865,4874,4874,4868,4831,4848,4848,4837,4808,4856,4856,4896,4941,4949,4964,4981,4975,4912,4940,4940,34.2,23.5 " Petroleum",58,58,58,58,58,58,64,62,61,61,61,60,60,62,68,68,72,68,69,69,67,0.4,0.3 " Natural Gas",6858,6870,6888,6866,6885,6952,7007,6934,6634,6887,7411,7410,7314,7340,7427,7899,8364,8221,9701,9842,9669,52.2,46 " Other Gases1","-",52,52,52,52,52,52,52,55,63,57,57,61,61,58,"-","-","-","-","-","-",0.4,"-"

472

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",22315,22275,22374,22412,22413,21981,21985,21909,21943,22374,22752,22831,23279,23345,23314,23029,22734,21894,21885,21759,21639,88.3,72.5 " Coal",11931,11960,11976,11929,11928,11794,11793,11796,11840,11573,11636,11638,11627,11636,11623,11633,11534,11533,11543,11431,11218,45.1,37.6 " Petroleum",3460,3171,3184,3235,3235,2618,2620,2617,2632,2634,1831,1860,1654,1685,1649,1647,1397,616,610,612,568,7.1,1.9 " Natural Gas",702,727,798,800,800,1434,1436,1435,1439,2131,3244,3302,3958,3964,3982,3669,3695,4461,4447,4446,4618,12.6,15.5

473

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1065,1091,1094,1094,1093,1090,1092,1094,774,782,777,262,261,260,251,258,259,258,259,257,260,79,23 " Petroleum",117,117,120,120,120,118,119,119,117,117,112,111,107,107,101,100,101,101,101,100,100,11.4,8.9 " Nuclear",496,496,496,496,496,496,496,496,500,506,506,"-","-","-","-","-","-","-","-","-","-",51.4,"-" " Hydroelectric",404,430,430,430,430,426,427,423,103,107,106,99,102,96,93,100,101,99,100,100,103,10.8,9.1

474

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5809,5826,5847,5869,5874,5970,5966,6044,6018,6011,6048,6052,6122,6088,6086,6241,6137,6142,6450,6713,6931,97.1,86.8 " Coal",5525,5545,5545,5567,5567,5662,5662,5737,5710,5709,5710,5710,5692,5692,5692,5817,5747,5747,5832,5829,5935,91.6,74.3 " Petroleum",15,15,15,15,15,15,10,10,10,"-","-",5,5,5,5,"-","-",5,5,5,5,"-",0.1 " Natural Gas","-","-","-","-","-","-","-","-","-","-",34,34,119,85,80,113,79,79,79,79,79,0.5,1

475

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",59010858,60120689,56627107,53202268,61519090,65400254,67827241,71073239,74894188,73504882,76283550,78990878,79796801,86102107,86419717,90159045,91118304,89925724,89178555,86704766,90176805,99.6,97.7 " Coal",48501751,47907503,46829678,40688696,48592766,53582211,57176084,59903073,62488551,61249846,62624807,65445161,67147996,73904272,74711159,77123580,77113165,74745712,73246599,71401581,74829029,81.8,81.1 " Petroleum",89342,118645,80522,634432,730820,682321,95980,125449,309734,280945,247622,637504,528353,155968,195098,168258,59958,59611,56620,87081,124866,0.3,0.1

476

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",43681,43599,43763,44313,43297,43302,43934,43709,30663,24323,24319,24405,24609,23223,23867,25248,26346,26334,26467,28021,28689,46.5,42.6 " Petroleum",2800,2473,1759,1553,1553,1692,1692,1072,737,526,526,524,296,297,297,297,245,226,222,204,174,1,0.3 " Natural Gas",21815,22074,22810,23285,22208,22040,22365,23193,10581,5671,5670,5733,5954,5042,5567,6850,7917,8188,8134,9629,10333,10.8,15.3 " Nuclear",4746,4746,4310,4310,4310,4310,4746,4310,4310,4310,4310,4324,4324,4324,4324,4324,4390,4390,4390,4390,4390,8.2,6.5

477

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina" North Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",79845217,83520063,83007307,88753614,91454784,96109819,102786590,107371092,113112235,109882388,114433191,109807278,115597653,118433112,118328694,121674733,117797331,123215621,118778090,112961309,121251138,93.6,94.2 " Coal",46631040,46762330,54011457,59383147,53234497,55698342,64097781,70181392,69000633,68569499,71719489,68775284,71223313,70630278,71956852,74915235,72311023,76611703,72625233,62765545,69274374,58.7,53.8 " Petroleum",186899,174136,147134,165175,199418,234263,259252,211974,285902,284400,468482,412765,376170,459947,250402,231141,219114,236042,232446,232119,245987,0.4,0.2

478

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",22923971,23305127,20487946,23234028,26222313,26395165,28838302,31227619,31991676,32212133,33896003,47550273,35099283,31358938,32838145,30619168,34158706,34426533,33796221,34759024,40841436,90.1,75 " Coal",9445584,8750253,7796112,8819755,8889624,9259980,12010196,12500586,11747963,13037100,13877065,19196065,12483658,13742273,14274786,13389906,14907777,14422788,14033627,9610808,10309709,36.9,18.9 " Petroleum",705474,370130,371568,3545055,1106209,23738,1173503,2633109,5417924,3141934,2970676,5120602,26357,1620395,2763630,1432077,395330,397080,71597,12475,76832,7.9,0.1

479

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9578,9609,9693,9706,9715,9675,9694,9786,9915,10020,10086,10223,10244,10731,10705,10734,10829,10944,11246,11733,11732,99.5,93.5 " Coal",5064,5091,5149,5189,5220,5244,5256,5364,5407,5325,5295,5295,5310,5265,5222,5250,5203,5208,5190,5180,5179,52.3,41.3 " Petroleum",622,602,613,611,613,579,578,510,494,520,522,652,546,564,587,583,565,569,564,564,550,5.2,4.4 " Natural Gas",2755,2784,2772,2772,2722,2685,2697,2749,2850,3005,3099,3106,3219,3735,3729,3734,3793,3900,4232,4580,4546,30.6,36.2

480

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20190,20131,20148,20182,19767,20597,20923,21054,21020,21182,22015,23478,23652,23726,23671,23822,24553,25500,25558,25529,25553,89.9,92.3 " Coal",12500,12500,12500,12503,12438,12440,12440,12440,12440,12440,12440,12440,12440,12440,12495,12487,12439,12394,12411,12294,12271,50.8,44.3 " Petroleum",760,773,773,804,804,1676,776,791,794,791,791,790,836,836,541,540,509,510,507,509,524,3.2,1.9 " Natural Gas",270,257,274,286,286,314,1514,1511,1511,1676,2509,3931,4010,4010,4035,4200,4975,5597,5660,5749,5773,10.2,20.9

Note: This page contains sample records for the topic "industrial electricity rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",15180,15308,15385,15433,15488,15724,15978,16212,16282,16755,17180,17726,18409,18587,18606,18970,19675,19570,19621,19600,20360,99.4,93.7 " Coal",10678,10722,10724,10738,10754,10540,10557,10920,10943,10889,11032,11032,11053,11172,11159,11172,11199,11165,11146,11137,11976,63.8,55.1 " Petroleum",1498,1533,1546,1569,1617,1710,1730,1200,1181,1181,1198,1616,1236,1259,1243,1241,1265,1274,1267,1257,1197,6.9,5.5 " Natural Gas",818,817,878,891,892,1240,1444,1839,1815,2359,2607,2736,3778,3806,3853,4158,4809,4728,4790,4790,4771,15.1,21.9

482

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",13661,13652,13772,14054,13763,14342,14806,15291,15314,15311,15606,15761,15818,17128,17567,18091,18166,18376,18828,19135,19434,80.4,80.6 " Coal",4225,4210,4215,4217,4217,5451,5099,5099,5099,5099,4796,4784,4789,4468,4468,4586,4586,4605,4587,4587,4594,24.7,19.1 " Petroleum",2753,2753,2753,2784,2689,1374,2192,2192,2213,2213,2175,2180,2083,2081,2098,2031,2027,2041,2041,2050,2048,11.2,8.5 " Natural Gas",192,198,377,595,400,995,994,1524,1524,1524,2083,2248,2097,3714,4101,4395,4395,4429,4897,5076,5122,10.7,21.2

483

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32602,32643,32636,32769,32952,33139,33164,33549,30367,16992,17495,4420,4151,3007,2994,3987,4742,4642,4691,4830,4800,48.1,10.9 " Coal",14912,14916,14947,15063,15090,14916,14931,15339,14250,5543,5473,2862,2862,1866,1859,1844,1844,1767,1833,1998,1993,15.1,4.5 " Petroleum",4480,4207,3928,2848,2448,2645,2648,2671,1569,989,867,700,406,368,401,399,399,377,381,372,372,2.4,0.8 " Natural Gas",591,901,1143,2236,2792,2963,2963,2917,4006,732,1229,846,871,761,722,1729,2485,2483,2462,2442,2417,3.4,5.5

484

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",37053436,38365135,37369823,38049072,39547768,39526825,43677535,42789637,43198908,44130705,41486451,44728133,42873364,41636514,45055455,40545220,42068467,45522928,45880232,45423149,47108063,94.6,77.2 " Coal",19160989,19573925,20030355,18025615,19780738,21506397,24339185,22760970,23140020,24612079,24073573,24678344,22986650,23422401,25248810,22940659,24095405,25642175,25993257,24986333,26421729,54.9,43.3 " Petroleum",73856,64278,49640,65624,96439,53208,98250,66622,143834,141475,206991,846105,136134,263982,476133,162961,135291,76212,57158,80962,37140,0.5,0.1

485

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4912,4828,4871,4871,4907,4943,4943,4943,4944,2997,3005,2232,2232,2274,2189,2186,2163,2179,2190,2232,2340,58.2,39.9 " Coal",2260,2260,2260,2260,2260,2260,2260,2294,2300,792,792,52,52,52,52,52,52,52,52,52,52,15.4,0.9 " Petroleum","-","-","-","-","-","-",5,5,5,5,5,"-","-","-","-",2,2,2,2,2,2,0.1,"*" " Natural Gas",120,120,120,120,120,120,120,53,52,53,58,58,58,97,98,100,100,100,100,102,186,1.1,3.2

486

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",8834,8884,8880,8864,8951,8923,9180,9216,9089,8987,9067,10110,10329,10162,10179,10543,10458,10719,11432,11639,11547,88.4,78.5 " Coal",5757,5786,5771,5708,5742,5630,5779,5811,5657,5605,5613,5729,5726,5342,5260,5087,5083,5048,5077,4667,4630,54.7,31.5 " Petroleum",1004,1020,1026,1070,1065,1044,1112,1102,1056,1013,1019,1051,1020,669,699,711,718,728,746,759,748,9.9,5.1 " Natural Gas",307,305,305,302,353,454,457,464,461,459,475,1373,1637,2276,2336,2852,2719,2974,3528,4118,3929,4.6,26.7

487

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",97738497,98199986,97299582,99951149,103485409,105188892,105557018,110466291,112771878,114182827,119721399,114666355,112029989,112395725,114690471,117373699,117643504,116727908,115887993,103594020,107852560,93.7,86.2 " Coal",96012872,96526976,95745949,98776088,102043025,103774522,104413600,108911799,110696190,112336883,117619535,113135350,109441044,109839659,11