National Library of Energy BETA

Sample records for industrial dry production

  1. The U.S. Dry-Mill Ethanol Industry: Biobased Products and Bioenergy Initiative Success Stories

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet provides an overview of the history of ethanol production in the United States and describes innovations in dry-mill ethanol production.

  2. Virginia Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Virginia Dry Natural Gas Proved Reserves Dry ...

  3. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New York Dry Natural Gas Proved Reserves Dry ...

  4. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  5. West Virginia Dry Natural Gas Reserves Estimated Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production West Virginia Dry Natural Gas Proved ...

  6. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  7. New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves ...

  8. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  9. Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 Virginia Dry Natural Gas Proved Reserves ...

  10. West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) West Virginia Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 West Virginia Dry Natural Gas Proved ...

  11. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore ... Dry Natural Gas Proved Reserves as of Dec. 31 LA, State Offshore Dry Natural Gas Proved ...

  12. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  13. Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 TX, State Offshore Dry Natural Gas Proved ...

  14. New York Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New York Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New York Dry Natural Gas Proved Reserves Dry ...

  15. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  16. Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  17. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  18. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  19. New Mexico Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New Mexico Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New Mexico Dry Natural Gas Proved Reserves ...

  20. Forest Products Industry Profile

    Broader source: Energy.gov [DOE]

    Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection.

  1. ,"Nevada Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Dry Natural Gas Production (Million Cubic ... 1:11:52 AM" "Back to Contents","Data 1: Nevada Dry Natural Gas Production (Million Cubic ...

  2. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  3. Lower 48 States Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  4. Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  5. Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  6. Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  7. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Dry Natural Gas Expected Future Production ... 7:18:08 AM" "Back to Contents","Data 1: Texas Dry Natural Gas Expected Future Production ...

  8. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  9. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million ... 10:12:48 AM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Production (Million ...

  10. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Production (Million ... 10:12:49 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million ...

  11. New Mexico - West Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. New Mexico - East Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  14. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  15. Drying '86. Volume 1-2

    SciTech Connect (OSTI)

    Mujumdar, A.S. )

    1986-01-01

    These proceedings contain 123 papers grouped under the headings of: Drying theory and modelling; Drying of granular materials; Spray drying; Drying of paper and wood products; Drying of foodstuff and biomaterials; Drying of agricultural products and grains; Superheated steam drying; Industrial drying systems and novel dryers; Use of solar energy in drying; Measurement and control of humidity and moisture; and Dewatering.

  16. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  17. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  18. ,"Montana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  19. ,"Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  20. ,"Colorado Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  1. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  2. ,"Michigan Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  3. ,"Florida Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  4. ,"Lower 48 States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  5. ,"Wyoming Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  6. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  7. ,"Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  8. ,"Kentucky Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  9. ,"Mississippi Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  10. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  11. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  12. Michigan Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. Kentucky Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  17. Florida Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. Montana Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  19. Alaska Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. Arkansas Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  2. Colorado Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals

  5. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  6. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  7. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production California Onsho

  8. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  9. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  10. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  12. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  13. California State Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 114 213 231 1980's 164 254 252 241 231 1990's 192 59 63 64 61 59 49 56 44 76 2000's 91 85 92 83 86 90 90 82 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  15. Karlsruhe Institute for Industrial Production | Open Energy Informatio...

    Open Energy Info (EERE)

    Karlsruhe Institute for Industrial Production Jump to: navigation, search Name: Karlsruhe Institute for Industrial Production Place: Karlsruhe, Germany Zip: 76187 Product: String...

  16. California Federal Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 246 322 1980's 414 1,325 1,452 1,552 1,496 1990's 1,454 1,162 1,118 1,099 1,170 1,265 1,244 544 480 536 2000's 576 540 515 511 459 824 811 805 704 739 2010's 724 710 651 261 240 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Natural Gas Dry Production (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Dry Production Supplemental Gaseous Fuels Interstate Receipts Receipts Across U.S. Borders Withdrawals from Underground Storage Consumption Interstate Deliveries Deliveries Across U.S. Borders Injections into Storage Balancing Item Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266

  18. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect (OSTI)

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  19. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  20. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  1. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  2. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 69 117 1980's 68 94 102 121 134 123 116 128 162 136 1990's 160 140 139 138 141 113 132 129 131 130 2000's 117 114 133 165 155 181 176 183 211 273 2010's 591 1,248 2,241 3,283 4,197 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  4. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  5. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 301 313 347 1980's 294 372 345 335 306 1990's 293 308 285 252 244 216 217 212 246 266 2000's 282 336 291 265 247 268 255 253 237 239 2010's 243 311 200 188 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Application and energy saving potential of superheated steam drying in the food industry

    SciTech Connect (OSTI)

    Fitzpatrick, J. [Univ. College Cork (United Kingdom); Robinson, A. [Stork Engineering, Uxbridge (United Kingdom)

    1996-12-31

    The possibilities of using superheated steam in heat and mass transfer processes such as drying have lately been investigated and tested by several industries. The mode of operation, energy saving potential, advantages of and problems with this media in contact with foodstuffs and food waste sludge are discussed in this article.

  9. TrendSetter Solar Products Inc aka Trendsetter Industries formerly...

    Open Energy Info (EERE)

    TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name: TrendSetter Solar Products Inc (aka Trendsetter Industries,...

  10. U.S. Federal Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  11. Texas - RRC District 8A Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  12. Land application uses for dry FGD by-products

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. ); Haefner, R. . Water Resources Div.)

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  13. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Dry Natural Gas Expected Future ... 12:18:22 PM" "Back to Contents","Data 1: Oklahoma Dry Natural Gas Expected Future ...

  14. ,"Kansas Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Dry Natural Gas Expected Future ... 7:18:07 AM" "Back to Contents","Data 1: Kansas Dry Natural Gas Expected Future ...

  15. ,"Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Dry Natural Gas Expected Future ... 12:18:23 PM" "Back to Contents","Data 1: Virginia Dry Natural Gas Expected Future ...

  16. ,"West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Dry Natural Gas Expected Future ... PM" "Back to Contents","Data 1: West Virginia Dry Natural Gas Expected Future ...

  17. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future ... to Contents","Data 1: Louisiana State Offshore Dry Natural Gas Expected Future ...

  18. ,"Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Dry Natural Gas Expected Future ... "Back to Contents","Data 1: Texas State Offshore Dry Natural Gas Expected Future ...

  19. Forest Products Industry of the Future

    SciTech Connect (OSTI)

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  20. U.S. Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) U.S. Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 65,656 60,727 76,302 61,682 64,287 77,777 65,574 71,029 73,524 66,094 63,914 87,471 2007 74,110 67,403 72,850 58,881 77,365 72,897 63,995 74,019 72,125 69,854 72,113 71,815 2008 62,840 61,856 65,485 62,439 67,093 64,352 70,984 69,228 60,976 66,020 69,522 64,387 2009 61,231 62,626 61,342 56,360 64,967 61,824 59,656 64,642 63,550 62,669

  1. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,482 1,741 1,625 1,691 1,687 1990's 1,596 1,527 1,494 1,457 1,453 1,403 1,521 1,496 1,403 1,421 2000's 1,443 1,479 1,338 1,280 1,322 1,206 1,309 1,257 1,319 1,544 2010's 2,189 2,985 3,057 2,344 1,960 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. California Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) California Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,487 4,701 4,700 1980's 5,000 3,928 3,740 3,519 3,374 1990's 3,185 3,004 2,778 2,682 2,402 2,243 2,082 2,273 2,244 2,387 2000's 2,849 2,681 2,591 2,450 2,634 3,228 2,794 2,740 2,406 2,773 2010's 2,647 2,934 1,999 1,887 2,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,591 43,264 40,574 38,711 38,167 38,381 1990's 38,192 36,174 35,093 34,718 35,974 36,542 38,270 37,761 37,584 40,157 2000's 42,082 43,527 44,297 45,730 49,955 56,507 61,836 72,091 77,546 80,424 2010's 88,997 98,165 86,924 90,349 97,154 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 174 167 156 1980's 163 165 196 156 171 166 188 159 188 220 1990's 229 282 320 387 447 514 540 562 676 719 2000's 759 882 964 1,142 1,050 1,104 1,174 1,326 1,441 1,524 2010's 1,590 1,694 1,681 1,527 1,561 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 36 39 36 1980's 32 27 20 18 11 8 8 7 5 7 1990's 7 4 7 6 7 6 5 6 5 5 2000's 6 5 4 3 3 2 2 4 3 0 2010's 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  7. Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,567 5,151 4,620 4,517 4,590 4,568 1990's 4,478 4,480 4,545 4,645 4,775 4,724 4,889 4,942 4,855 4,897 2000's 5,072 5,138 5,038 5,166 5,318 5,424 5,608 6,263 7,009 7,017 2010's 6,974 7,139 7,570 7,607 7,877 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 495 684 1,479 1980's 1,699 965 1,141 2,030 1,541 1,331 1,420 1,069 1,229 1,275 1990's 1,214 1,181 1,161 1,104 1,094 1,054 1,113 985 890 1,179 2000's 1,185 970 1,117 1,126 974 898 975 1,027 985 896 2010's 832 758 1,233 3,161 6,723 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  9. Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13,889 14,417 13,816 1980's 13,138 14,699 16,207 16,211 16,126 16,040 16,685 16,711 16,495 15,916 1990's 16,151 14,725 13,926 13,289 13,487 13,438 13,074 13,439 13,645 12,543 2000's 13,699 13,558 14,886 15,401 16,238 17,123 17,464 19,031 20,845 22,769 2010's 26,345 27,830 26,599 26,873 31,778 -

  10. Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 769 899 1,515 1980's 951 1,264 1,429 1,882 1,575 1,617 1,560 1,647 2,072 1,642 1990's 1,720 1,629 1,528 1,717 1,800 1,482 1,696 1,852 1,840 1,772 2000's 1,741 1,775 2,216 2,487 2,361 2,782 3,050 3,361 3,577 6,985 2010's 13,960 26,529 36,348 49,674 59,873 - = No Data Reported; -- =

  11. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 2,579 2,373 2,800 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    52 55 59 71 67 55 2009-2014 Adjustments -13 10 0 -2 -1 -6 2009-2014 Revision Increases 21 4 5 19 4 3 2009-2014 Revision Decreases 17 5 4 3 2 2 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 1 0 0 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 10 0 8 3 0 0 2009-2014 New Reservoir Discoveries in Old Fields 5 0 1 1 2 1 2009-2014 Estimated Production 6 6 6 7 7 8 Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New

  14. ,"Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 8 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 8 Dry Natural Gas Expected ...

  15. ,"Texas - RRC District 1 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 1 Dry Natural Gas Expected ... 7:18:04 AM" "Back to Contents","Data 1: Texas - RRC District 1 Dry Natural Gas Expected ...

  16. ,"Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 9 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 9 Dry Natural Gas Expected ...

  17. ,"Texas - RRC District 6 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 6 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 6 Dry Natural Gas Expected ...

  18. ,"Texas - RRC District 5 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 5 Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 5 Dry Natural Gas Expected ...

  19. ,"Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 10 Dry Natural Gas Expected ... 7:18:06 AM" "Back to Contents","Data 1: Texas - RRC District 10 Dry Natural Gas Expected ...

  20. ,"New Mexico - West Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - West Dry Natural Gas Expected ... 8:55:03 AM" "Back to Contents","Data 1: New Mexico - West Dry Natural Gas Expected ...

  1. ,"New Mexico - East Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico - East Dry Natural Gas Expected ... 8:55:02 AM" "Back to Contents","Data 1: New Mexico - East Dry Natural Gas Expected ...

  2. ,"New York Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Expected Future ... 8:55:07 AM" "Back to Contents","Data 1: New York Dry Natural Gas Expected Future ...

  3. ,"New Mexico Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Expected Future ... 8:55:07 AM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Expected Future ...

  4. ,"North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future ... 9:28:52 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Expected Future ...

  5. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 1,763 1,890 2,123 - = No Data Reported; -- = Not Applicable;

  6. Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,457 10,992 10,243 1980's 9,508 9,860 9,724 9,553 9,387 9,337 10,509 10,494 10,104 10,091 1990's 9,614 9,358 9,681 9,348 9,156 8,571 7,694 6,989 6,402 5,753 2000's 5,299 5,101 4,983 4,819 4,652 4,314 3,931 3,982 3,557 3,279 2010's 3,673 3,486 3,308 3,592 4,359 - = No Data Reported; -- = Not

  7. EIA Energy Efficiency-Table 4f. Industrial Production Indexes...

    Gasoline and Diesel Fuel Update (EIA)

    f Page Last Modified: May 2010 Table 4f. Industrial Production Indexes by Selected Industries, 1998, 2002, and 2006 (2000 100) MECS Survey Years NAICS Subsector and Industry 1998...

  8. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect (OSTI)

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  9. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 35,577 40,269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  10. California--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) California--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,051 5,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  11. Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Production (Million Cubic Feet) Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 16,506 11,222 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production

  12. Data on production and use of DRI: World and U. S. [Direct Reduced Iron

    SciTech Connect (OSTI)

    Jensen, H.B.

    1993-01-01

    This paper will present data on the production and use direct-reduced iron (DRI) worldwide, focusing primarily on its use in the United States. The author is indebted to the Midrex Corporation for the data on world production of DRI. The U.S. data is his own and he will explain later how it was collected. He uses the term DRI to include all forms of direct-reduced iron, whether briquettes, pellets or lump.

  13. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  14. U.S. Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  16. Institute for Industrial Productivity (IIP) | Open Energy Information

    Open Energy Info (EERE)

    20037-1701 Website: www.iipnetwork.org References: www.iipnetwork.org The Institute for Industrial Productivity provides companies and governments with the best energy efficiency...

  17. Covered Product Category: Industrial Luminaires (High/Low Bay) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Industrial Luminaires (High/Low Bay) Covered Product Category: Industrial Luminaires (High/Low Bay) The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Industrial

  18. ,"Alaska Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Arkansas Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Alabama Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Kansas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sks2m.xls" ,"Available from ...

  2. ,"Michigan Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smi2m.xls" ,"Available from ...

  3. ,"South Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160ssd2m.xls" ,"Available from ...

  4. ,"West Virginia Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160swv2m.xls" ,"Available from ...

  5. ,"Utah Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sut2m.xls" ,"Available from ...

  6. ,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160swy2m.xls" ,"Available from ...

  7. ,"Virginia Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sva2m.xls" ,"Available from ...

  8. ,"Tennessee Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160stn2m.xls" ,"Available from ...

  9. ,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sne2m.xls" ,"Available from ...

  10. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160stx2m.xls" ,"Available from ...

  11. ,"Montana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smt2m.xls" ,"Available from ...

  12. ,"Oregon Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sor2m.xls" ,"Available from ...

  13. ,"Ohio Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160soh2m.xls" ,"Available from ...

  14. ,"Louisiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sla2m.xls" ,"Available from ...

  15. ,"Mississippi Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sms2m.xls" ,"Available from ...

  16. ,"Maryland Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smd2m.xls" ,"Available from ...

  17. ,"Missouri Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160smo2m.xls" ,"Available from ...

  18. ,"Oklahoma Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","05312016" ,"Next Release Date:","06302016" ,"Excel File Name:","na1160sok2m.xls" ,"Available from ...

  19. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    64 131 118 94 59 42 1981-2014 Natural Gas Nonassociated, Wet After Lease Separation 161 128 113 88 56 42 1981-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 3 3 5 6 3 0 1981-2014 Dry Natural Gas 164 131 118 94 59 42 1981 Lease Separation

    161 128 113 88 56 42 1981-2014 Adjustments -29 -7 -24 7 -10 -2 1981-2014 Revision Increases 29 20 70 14 9 17 1981-2014 Revision Decreases 21 35 65 9 19 19 1981-2014 Sales 3 20 2 23 6 0 2000-2014 Acquisitions 0 35 26 0 0 0 2000-2014

  20. New York Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 1980's 0 0 0 0 30 8 8 0 0 0 1990's 0 0 0 0 1 2 9 4 25 10 2000's 5 17 0 0 0 0 0 0 0 0 2010's 0 27 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361

    SciTech Connect (OSTI)

    1992-05-01

    A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

  2. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  3. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation 24 29 52 21 70 32 1979-2014 Adjustments 8 -3 -1 -16 114 -29 1979-2014 Revision Increases 0 3 26 0 2 1 1979-2014 Revision Decreases 5 2 6 13 59 6 1979-2014 Sales 0 7 26 0 0 1 2000-2014 Acquisitions 0 14 33 0 0 0 2000-2014 Extensions 0 3 0 0 0 0 1979-2014 New Field Discoveries 0 0 0 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 2 3 3 2 8 3 Production

    20 220 139 107 113 76 2005-2014 Adjustments 0 0 -1 1 0 -2 2009-2014

  4. Missouri Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  5. Natural Gas and U.S. Industrial Production: A Closer Look at Four Industries

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas and U.S. Industrial Production: A Closer Look at Four Industries Vipin Arora and Elizabeth Sendich August 30, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES Natural Gas and U.S. Industrial

  6. Florida Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Florida Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  7. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Michigan Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  8. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    January 2014 (Thousand Barrels) Commodity PAD District 1 PAD District 2 PAD District 3 Receipts Shipments Net Receipts Receipts Shipments Net Receipts Receipts Shipments Net Receipts Crude Oil 1 ................................................................ 11,209 1,213 9,996 35,554 35,363 190 23,680 28,598 -4,918 Petroleum Products 2 .............................................. 106,990 8,669 107,347 29,831 18,055 -6,599 16,594 124,991 -103,885 Pentanes Plus

  9. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  10. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  11. Ohio Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 97 90 74 223 314 208 1979-2014 Adjustments 2 -57 -12 123 -129 -35 1979-2014 Revision Increases 13 5 4 44 108 24 1979-2014 Revision Decreases 8 1 0 10 5 82 1979-2014 Sales 0 0 0 0 0 1 2000-2014 Acquisitions 1 54 0 0 0 7 2000-2014 Extensions 0 0 0 7 134 4 1979-2014 New Field Discoveries 0 0 0 0 1 1 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 5 6 0 1979-2014 Estimated Production 10 8 8 20 24 24 Consumers by Local Distribution and Marketers

    6.48 6.44 7.16 8.01 11.73

  12. California Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    ,835 2,939 3,009 2,976 2,878 2,874 2009-2014 Adjustments -17 14 32 8 -52 31 2009-2014 Revision Increases 427 276 394 507 239 381 2009-2014 Revision Decreases 119 167 230 391 116 247 2009-2014 Sales 3 1 7 1 322 537 2009-2014 Acquisitions 20 156 40 8 320 543 2009-2014 Extensions 30 24 37 32 17 12 2009-2014 New Field Discoveries 0 0 0 2 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 15 16 2009-2014 Estimated Production 208 198 196 198 199 203 Cubic Feet)

    New Reservoir

  13. Colorado Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 1,882 2,371 2,518 3,448 4,280 5,482 1979-2014 Adjustments 14 68 -38 -32 35 118 1979-2014 Revision Increases 11 142 122 514 332 1,317 1979-2014 Revision Decreases 185 71 269 243 291 262 1979-2014 Sales 9 2 19 1 5 36 2000-2014 Acquisitions 10 160 5 169 184 30 2000-2014 Extensions 165 318 506 717 811 339 1979-2014 New Field Discoveries 0 0 0 6 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2014 Estimated Production 134 126 160 200 234 304

    7,348 6,485 6,580

  14. Florida Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    9 19 22 24 38 70 2009-2014 Adjustments -1 2 -2 2 -1 -1 2009-2014 Revision Increases 8 10 9 6 13 1 2009-2014 Revision Decreases 0 0 2 3 1 6 2009-2014 Sales 0 0 0 0 0 20 2009-2014 Acquisitions 0 0 0 0 0 62 2009-2014 Extensions 0 0 0 0 5 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 2 2 3 2 4 Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3

  15. Illinois Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    66 64 54 51 42 34 2009-2014 Adjustments 3 10 -10 -8 -6 -8 2009-2014 Revision Increases 12 0 6 7 11 3 2009-2014 Revision Decreases 1 4 2 1 11 1 2009-2014 Sales 0 15 0 0 0 0 2009-2014 Acquisitions 0 9 0 0 0 0 2009-2014 Extensions 3 2 0 3 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 5 4 4 4 3 2

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 13 13 12 11 11 11 8 9 9 9 8 9 2007 134 128 128 119

  16. Indiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    8 8 7 13 8 8 2009-2014 Adjustments -7 1 0 3 -4 0 2009-2014 Revision Increases 1 0 1 1 1 1 2009-2014 Revision Decreases 0 0 1 0 2 0 2009-2014 Sales 0 2 0 0 0 0 2009-2014 Acquisitions 0 2 0 0 0 0 2009-2014 Extensions 0 0 0 3 1 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 1 1 1 1 1 1

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 218 211 246 234 246 254 179 244 282 275 259 272 2007 282 235

  17. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    480 530 525 584 622 649 2009-2014 Adjustments -1 7 -8 44 6 24 2009-2014 Revision Increases 100 139 100 98 91 71 2009-2014 Revision Decreases 69 93 43 67 65 75 2009-2014 Sales 9 23 63 21 9 68 2009-2014 Acquisitions 11 52 53 23 30 82 2009-2014 Extensions 26 28 21 50 51 54 2009-2014 New Field Discoveries 0 0 1 1 1 5 2009-2014 New Reservoir Discoveries in Old Fields 3 6 2 1 4 3 2009-2014 Estimated Production 68 66 68 70 71 69 Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic

  18. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    252 254 245 276 235 241 2009-2014 Adjustments -1 25 12 40 -20 12 2009-2014 Revision Increases 30 17 14 37 8 14 2009-2014 Revision Decreases 8 9 13 28 15 17 2009-2014 Sales 4 8 0 9 0 1 2009-2014 Acquisitions 0 1 1 10 0 1 2009-2014 Extensions 3 0 0 8 10 19 2009-2014 New Field Discoveries 1 0 1 1 0 2 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 2009-2014 Estimated Production 24 24 24 28 24 25 (Billion Cubic Feet)

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet)

  19. Montana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Separation 12 302 270 289 304 325 1979-2014 Adjustments 84 -38 -33 -3 -5 2 1979-2014 Revision Increases 126 40 32 26 51 15 1979-2014 Revision Decreases 65 31 34 20 43 49 1979-2014 Sales 3 29 45 4 4 2 2000-2014 Acquisitions 3 30 45 4 4 1 2000-2014 Extensions 5 41 14 38 37 79 1979-2014 New Field Discoveries 0 0 7 0 0 0 1979-2014 New Reservoir Discoveries in Old Fields 0 1 1 0 0 0 1979-2014 Estimated Production 35 24 19 22 25 25

    37 64 25 11 16 11 2005-2014 Adjustments 0 11 -30 17 10 -3

  20. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation 1,982 2,213 2,552 2,819 3,413 4,683 1979-2014 Adjustments 170 -103 20 -1 -151 171 1979-2014 Revision Increases 302 230 335 655 789 1,173 1979-2014 Revision Decreases 299 249 214 444 503 597 1979-2014 Sales 64 57 126 244 34 4 2000-2014 Acquisitions 66 319 163 70 29 56 2000-2014 Extensions 233 270 362 478 650 809 1979-2014 New Field Discoveries 0 0 3 2 0 1 1979-2014 New Reservoir Discoveries in Old Fields 0 2 0 1 98 4 1979-2014 Estimated Production 181 181 204 250 284 343

  1. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    ,058 1,887 2,658 3,773 5,683 6,045 2009-2014 Adjustments 12 -8 9 33 -44 -68 2009-2014 Revision Increases 211 709 679 744 994 683 2009-2014 Revision Decreases 69 486 560 370 655 869 2009-2014 Sales 4 63 124 236 44 567 2009-2014 Acquisitions 2 226 224 218 353 310 2009-2014 Extensions 396 533 665 941 1,603 1,234 2009-2014 New Field Discoveries 12 29 14 9 4 3 2009-2014 New Reservoir Discoveries in Old Fields 5 3 16 27 13 30 2009-2014 Estimated Production 84 114 152 251 314 394 (Billion Cubic

  2. ,"California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Illinois Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Indiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. Land application uses for dry FGD by-products. Phase 2 report

    SciTech Connect (OSTI)

    Stehouwer, R.; Dick, W.; Bigham, J.

    1996-03-01

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  7. Economical Recovery of By-products in the Mining Industry

    SciTech Connect (OSTI)

    Berry, J.B.

    2001-12-05

    The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper generally describes

  8. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  9. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video

    Broader source: Energy.gov [DOE]

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  10. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  11. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  12. Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,319 986 919 1980's 829 1,022 892 1,087 838 967 913 812 1,173 1,267 1990's 1,048 1,030 933 698 703 712 906 953 1,104 1,008 2000's 1,032 1,018 1,045 1,062 1,184 1,161 1,063 1,040 985 1,398 2010's 2,399 5,910 8,868 7,784 11,945 - = No Data Reported;

  13. Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,162 2,976 2,974 1980's 2,502 2,629 2,493 2,534 2,512 2,358 2,180 2,273 2,037 1,770 1990's 1,737 1,393 1,389 1,321 1,360 1,251 1,322 1,634 1,614 1,881 2000's 1,980 1,801 1,782 1,770 1,844 2,073 2,060 2,255 2,238 1,800 2010's 2,090

  14. Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,518 7,186 6,315 1980's 5,531 5,292 4,756 4,680 4,708 4,180 3,753 3,632 3,422 3,233 1990's 2,894 2,885 2,684 2,972 3,366 3,866 4,349 4,172 3,961 3,913 2000's 3,873 3,770 3,584 3,349 3,185 3,192 3,050 2,904 2,752 2,616 2010's 2,588

  15. Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,621 9,031 8,326 1980's 8,130 8,004 8,410 8,316 8,525 8,250 8,274 7,490 7,029 7,111 1990's 7,475 7,048 6,739 7,038 7,547 7,709 7,769 8,099 8,429 8,915 2000's 9,645 9,956 9,469 8,763 8,699 8,761 8,116 7,963 7,604 6,728 2010's 7,014

  16. Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 931 1,298 1,155 1980's 1,147 1,250 1,308 1,448 1,874 2,058 2,141 2,119 1,996 1,845 1990's 1,875 1,863 1,747 1,867 2,011 1,862 2,079 1,710 1,953 2,319 2000's 3,168 4,231 4,602 5,407 6,523 9,557 12,593 17,205 20,281 22,343 2010's 24,363 27,843 17,331

  17. Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 699 743 751 1980's 745 804 805 1,027 794 708 684 697 704 459 1990's 522 423 455 477 425 440 520 478 442 416 2000's 312 252 260 340 310 802 1,471 2,117 2,382 2,077 2010's 2,242 3,305 2,943 2,787 2,290 - = No Data Reported; -- = Not Applicable; NA =

  18. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect (OSTI)

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  19. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect (OSTI)

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  20. ,"California Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"California Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  2. ,"Colorado Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  3. ,"Florida Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"Pennsylvania Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2014" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. Land application uses for dry FGD by-products, Phase 1 report

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  6. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  7. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect (OSTI)

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  8. ISSUANCE 2016-05-19: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

  9. ISSUANCE 2016-02-26: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

  10. Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,214 3,240 3,258 1980's 4,230 4,177 4,326 4,857 4,703 4,822 4,854 4,682 4,961 5,614 1990's 5,753 5,233 5,317 5,508 5,381 5,726 5,899 5,887 5,949 5,857 2000's 5,976 6,128 6,256 6,685 7,638 8,976 9,087 11,257 12,184 12,795 2010's 14,886 15,480 11,340

  11. Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,831 2,821 2,842 1980's 2,378 2,503 2,659 2,568 2,866 2,914 2,721 2,708 2,781 3,180 1990's 3,514 3,291 3,239 3,215 3,316 3,107 3,655 3,407 3,113 3,178 2000's 3,504 3,320 3,702 4,327 4,668 5,123 5,126 5,341 4,946 4,827 2010's 4,787 4,475 4,890

  12. U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,843 18,805 19,257 1980's 18,699 18,737 17,506 15,788 17,193 15,985 15,610 16,114 16,670 16,983 1990's 17,233 17,202 17,423 17,789 18,322 17,966 18,861 19,211 18,720 18,928 2000's 19,219 19,779 19,353 19,425 19,168 18,458 18,545 19,466 20,523 21,594 2010's 22,239 23,555 24,912 25,233 26,611 - = No

  13. The Production Tax Credit is Key to a Strong U.S. Wind Industry

    Broader source: Energy.gov [DOE]

    New report finds the production tax credit has been critical to the growth of the U.S. wind industry.

  14. Occupational employment survey, booklet of definitions. Petroleum refining, coal products, and related industries

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The publication gives occupational definitions for 149 occupations in the petroleum refining, coal products, and related industries.

  15. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  16. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    SciTech Connect (OSTI)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  17. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  18. ,"Texas - RRC District 7B Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 7B Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 7B Dry Natural Gas Expected ...

  19. ,"Texas - RRC District 7C Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 7C Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 7C Dry Natural Gas Expected ...

  20. ,"Texas - RRC District 8A Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas - RRC District 8A Dry Natural Gas Expected ... 7:18:05 AM" "Back to Contents","Data 1: Texas - RRC District 8A Dry Natural Gas Expected ...

  1. ,"U.S. Federal Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Federal Offshore Dry Natural Gas Expected Future ... "Back to Contents","Data 1: U.S. Federal Offshore Dry Natural Gas Expected Future ...

  2. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect (OSTI)

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  3. ,"California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. Selling green power in California: Product, industry, and market trends

    SciTech Connect (OSTI)

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  7. ITP Forest Products: Report for AIChE Pulp and Paper Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report PDF icon ...

  8. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect (OSTI)

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PIs group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  9. Management of dry flue gas desulfurization by-products in underground mines

    SciTech Connect (OSTI)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  10. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  11. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  12. Covered Product Category: Industrial Luminaires (High/Low Bay)

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation...

    Open Energy Info (EERE)

    China Zip: 518055 Sector: Solar Product: Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems....

  14. Establishment of a Graduate Certificate Program in Biobased Industrial Products Final Technical Report

    SciTech Connect (OSTI)

    John R. Schlup

    2005-11-04

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU

  15. Land application uses for dry FGD by-products. Phase 1, [Annual report], December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  16. Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices

    Gasoline and Diesel Fuel Update (EIA)

    Energy-weighted industrial production indices December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  17. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

  18. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  19. ISSUANCE 2016-04-11: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

  20. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  1. ,"U.S. Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Dec. 31 740 725 711 652 264 243 1979-2014 Natural Gas Nonassociated, Wet After Lease Separation 9 3 0 0 0 0 1979-2014 Natural Gas Associated-Dissolved, Wet After Lease Separation 731 722 711 652 264 243 1979-2014 Dry Natural Gas 739 724 710 651 261 240 Reserves, Wet After Lease Separation

    9 3 0 0 0 0 1979-2014 Adjustments -1 0 0 0 0 0 1979-2014 Revision Increases 8 0 0 0 0 0 1979-2014 Revision Decreases 0 5 3 0 0 0 1979-2014 Sales 0 0 0 0 0 0 2000-2014 Acquisitions 0 0 0 0 0 0

  3. Land application uses of dry FGD by-products. [Quarterly] report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1993-12-31

    Reclamation of mine-sites with acid overburden requires the use of alkaline amendments and represents a potential high-volume use of alkaline dry flue gas desulfurization (FGD) by products. In a greenhouse study, 25-cm columns of acid mine spoil were amended with two FGD by-products; lime injection multistage burners (LIMB) fly ash or pressurized fluidized bed (PFBC) fly ash at rates of 0, 4, 8, 16, and 32% by weight (0, 40, 80, 160, and 320 tons/acre). Amended spoil was covered with 20 cm of acid topsoil amended with the corresponding FGD by-product to pH 7. Column leachate pH increased with FGD amendment rate while leachate Fe, Mn, and Zn decreased, Leachate Ca, S, and Mg decreased with LIMB amendment rate and increased with PFBC amendment. Leachate concentrations of regulated metals were decreased or unaffected by FGD amendment except for Se which was increased by PFBC. Spoil pH was increased up to 8.9 by PFBC, and up to 9.2 by LIMB amendment. Spoil pH also increased with depth with FGD amendments of 16 and 32%, Yield of fescue was increased by FGD amendment of 4 to 8%. Plant tissue content of most elements was unaffected by FGD amendment rate, and no toxicity symptoms were observed. Plant Ca and Mg were increased by LIMB and PFBC respectively, while plant S, Mn and Sr were decreased. Plant Ca and B was increased by LIMB, and plant Mg and S by PFBC amendment. These results indicate dry FGD by-products are effective in ameliorating acid, spoils and have a low potential for creating adverse environmental impacts.

  4. Hazardous waste minimization. Part 3. Waste minimization in the paint and allied products industry

    SciTech Connect (OSTI)

    Lorton, G.A.

    1988-04-01

    This paper looks at waste minimization practices available to the paint and coatings industry. The paper begins with an introduction to the industry and a description of the products. The steps involved in the manufacture of paints and coatings are then described. The paper then identifies the wastes generated. Source reduction and recycling techniques are the predominant means of minimizing waste in this industry. Equipment cleaning wastes are the largest category of wastes, and the paper concentrates on equipment and techniques available to reduce or eliminate these wastes. Techniques are described to reduce the other wastes from manufacturing operations. The paper concludes with a discussion of changing industry product trends and the effect that these trends will have on the generation of waste.

  5. ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bandwidth Study Report | Department of Energy Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report doe_bandwidth.pdf (1.41 MB) More Documents & Publications Bandwidth Study U.S. Pulp and Paper Manufacturing AMO PEER REVIEW, MAY 28-29, 2015 Low Cost Carbon Fiber from Renewable Resources

  6. Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    1996-12-31

    The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

  7. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  8. Dephosphorization when using DRI

    SciTech Connect (OSTI)

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon University’s Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  9. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  10. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.