Sample records for industrial coke commercial

  1. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2004-09-26T23:59:59.000Z

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  2. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2003-09-26T23:59:59.000Z

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  3. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk Jr; Keith Wisecarver

    2005-10-01T23:59:59.000Z

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

  4. Simulation of industrial coking -- Phase 1

    SciTech Connect (OSTI)

    Todoschuk, T.W.; Price, J.T.; Gransden, J.F.

    1997-12-31T23:59:59.000Z

    Two statistically designed experimental programs using an Appalachian and a Western Canadian coal blend were run in CANMET`s 460mm (18 inch) movable wall oven. Factors included coal grind, moisture, oil addition, carbonization rate and final coke temperature. Coke quality parameters including CSR, coal charge characteristics and pressure generation were analyzed.

  5. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

    2003-02-07T23:59:59.000Z

    The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

  6. Coking Coal Prices for Industry - EIA

    Gasoline and Diesel Fuel Update (EIA)

    Prices for Industry for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA 37.24 NA NA NA Austria NA NA...

  7. An overview of crisis management in the coke industry

    SciTech Connect (OSTI)

    Saunders, D.A.

    1995-12-01T23:59:59.000Z

    Members of the American Coke and Coal Chemicals Institute (ACCCI), as responsible corporate citizens, have embraced the concepts of crisis management and progress down the various paths of planning and preparation, monitoring, media communications, community outreach, emergency response, and recovery. Many of the concepts outlined here reflect elements of crisis management guidelines developed by the Chemical Manufacturers Association (CMA). At a coke plant, crises can take the form of fires, chemical releases, labor strikes, feedstock supply disruptions, and excessive snowfall, just to name a few. The CMA defines a crisis as: ``an unplanned event that has the potential to significantly impact a company`s operability or credibility, or to pose a significant environment, economic or legal liability``; and crisis management as: ``those activities undertaken to anticipate or prevent, prepare for, respond to and recover from any incident that has the potential to greatly affect the way a company conducts its business.

  8. New environmental concepts in the chemical and coke industries

    SciTech Connect (OSTI)

    A.Yu. Naletov; V.A. Naletov [Mendeleev Russian Chemical-Engineering University (Russian Federation)

    2007-05-15T23:59:59.000Z

    We know that environmentally pure technologies do not exist. Coke production is no exception to the rule. The article considers the logic of environmental decision making. Attention focuses on a new bank of ecologically appropriate materials whose release to the biosphere must be considered solely in quantititative terms. Qualitativily all these materials are familiar; they are assimilated by populations of microorganisms and tar thus compatible with the biosphere.

  9. Clean Production of Coke from Carbonaceous Fines

    SciTech Connect (OSTI)

    Craig N. Eatough

    2004-11-16T23:59:59.000Z

    In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

  10. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  11. New coke-sorting system at OAO Koks

    SciTech Connect (OSTI)

    B.Kh. Bulaevskii; V.S. Shved; Yu.V. Kalimin; S.D. Filippov [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    A new coke-sorting system has been introduced at OAO Koks. It differs from the existing system in that it has no bunkers for all-purpose coke but only bunkers for commercial coke. In using this system with coke from battery 4, the crushing of the coke on conveyer belts, at roller screens, and in the commercial-coke bunkers is studied. After installing braking elements in the coke path, their effectiveness in reducing coke disintegration and improving coke screening is investigated. The granulometric composition and strength of the commercial coke from coke battery 3, with the new coke-sorting system, is evaluated.

  12. Blast furnace coke quality in relation to petroleum coke addition

    SciTech Connect (OSTI)

    Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

    1995-12-01T23:59:59.000Z

    The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

  13. Met coke world summit 2005

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    Papers are presented under the following session headings: industry overview and market outlook; coke in the Americas; the global coke industry; and new developments. All the papers (except one) only consist of a copy of the overheads/viewgraphs.

  14. Commercial and Industrial Machinery Tax Exemption (Kansas)

    Broader source: Energy.gov [DOE]

    All commercial and industrial machinery and equipment acquired by qualified purchase or lease made or entered into after June 30, 2006 shall be exempt from property tax. All commercial and...

  15. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  16. Kenergy- Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  17. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  18. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  19. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Commercial and Industrial Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to...

  20. CenterPoint Energy- Commercial and Industrial Standard Offer Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

  1. Indiana Michigan Power- Commercial and Industrial Rebates Program

    Broader source: Energy.gov [DOE]

    Indiana Michigan Power offers rebates for HVAC equipment, variable frequency drives, commercial refrigeration equipments, food service equipment and lighting measures for commercial and industrial...

  2. Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

  3. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial...

  4. Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

  5. Empire District Electric- Commercial and Industrial Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Empire District Electric Company offers rebates to certain commercial and industrial customers for the installation of energy efficiency equipment. Prescriptive rebates for lighting, air...

  6. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  7. Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

  8. Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  9. Laclede Gas Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and Industrial customers can receive rebates for various energy efficiency measures. Customers implementing specified efficiency measures can receive prescriptive rebates. All other...

  10. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  11. Commercial and Industrial Energy Conservation Programs in Illinois

    E-Print Network [OSTI]

    Thomas, S. K.

    1980-01-01T23:59:59.000Z

    This paper presents the State of Illinois' evolving role in assisting commercial and industrial firms in identifying and improving inefficiencies in the use of energy....

  12. Webinar: ASRAC Commercial/Industrial Pumps Working Group

    Broader source: Energy.gov [DOE]

    DOE is conducting a public meeting and webinar for the Appliance Standards and Rulemaking Federal Advisory Committee's (ASRAC) Commercial and Industrial Pumps Working Group. For more information,...

  13. Progress Energy Carolinas- Commercial and Industrial Energy-Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  14. Detroit Public Lighting Department- Commercial and Industrial Energy Wise Program

    Broader source: Energy.gov [DOE]

    The Detroit Public Lighting Department (PLD) offers commercial and industrial customers rebates for energy efficient equipment. Specific rebate amounts, equipment requirements, and applications are...

  15. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  16. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  17. Dakota Electric Association- Commercial and Industrial Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    Dakota Electric provides low-interest loans to help its commercial and industrial customers finance projects which will improve the energy efficiency of participating facilities. The minimum loan...

  18. Entergy New Orleans- Small Commercial and Industrial Solutions Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Solutions Program is an energy efficiency program designed to help business customers understand and make energy efficiency improvements in eligible facilities. The...

  19. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  20. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

  1. Industrial and Commercial Heat Pump Applications in the United States 

    E-Print Network [OSTI]

    Niess, R. C.

    1986-01-01T23:59:59.000Z

    The energy crisis of 1973 accelerated the development of large-scale heat pumps in the United States. Since that time, the commercial, institutional, and industrial applications of heat pumps for waste heat recovery have expanded. This paper reviews...

  2. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  3. Empire District Electric- Commercial and Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  4. Con Edison Commercial and Industrial Energy Efficiency Program

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    1 Con Edison Commercial and Industrial Energy Efficiency Program Discussion Overview ? Benefits, Eligibility & Team Members ? Program Components ? Project Incentives & Energy Studies ? Additional Program Attributes, Tools & Resources... and Sub-metering ? PlaNYC - Green House Gas Emissions 4 5 Customer Eligibility ? Con Edison directly metered Commercial or Industrial customer in an existing building who pays the applicable gas or electric System Benefits Charge The Program Team...

  5. Industry Research and Recommendations for New Commercial Buildings

    SciTech Connect (OSTI)

    Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

    2014-05-01T23:59:59.000Z

    Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

  6. Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work

    Broader source: Energy.gov [DOE]

    Cutting Residential, Commercial, and Industrial Energy Use: Tools and Incentives that Work Presentation

  7. Commercialization of Industrialized Absorption Heat Pumps in the US

    E-Print Network [OSTI]

    Pettigrew, M. G.

    COMMERCIALIZATION OF INDUSTRIAL ABSORPTION HEAT PUMPS IN THE US MALCOLM G. PETTIGREW LITWIN ENGINEERS &CONSTRUCTORS, INC. HOUSTON, ABSTRACT The recovery of waste heat through absorption heat pumping is quite appeal ing to U.S. industry.... However, although this technology has been successfully applied in Europe and Japan, a cauti ous atmosphere wi 11 continue to prevail in the U.S. until the first absorption heat pump is built and successfully demonstrates it's viability...

  8. Collector main replacement at Indianapolis Coke

    SciTech Connect (OSTI)

    Sickle, R.R. Van

    1997-12-31T23:59:59.000Z

    Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

  9. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  10. Characterization of the U.S. Industrial/Commercial Boiler Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. IndustrialCommercial Boiler Population - Final Report, May 2005 Characterization of the U.S. IndustrialCommercial Boiler Population - Final Report, May 2005 The U.S....

  11. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  12. Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

  13. Otter Tail Power Company- Commercial and Industrial Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

  14. Barron Electric Cooperative- Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Barron Electric Cooperative (BEC) offers the Customized Energy Incentive Program for their commercial, industrial, and agricultural members to save energy by replacing old equipment with more...

  15. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  16. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  17. Minnesota Valley Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Valley Electric Cooperative (MVEC) offers incentives to encourage commercial and industrial customers to increase the energy efficiency of facilities. Rebates are offered for the...

  18. FirstEnergy (Potomac Edison)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    FirstEnergy company Potomac Edison offers rebates to eligible commercial, industrial, governmental, and institutional customers in Maryland service territory who are interested in upgrading to...

  19. Otter Tail Power Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Rebate Program offers rebates to qualifying commercial, industrial, and agricultural customers for the installation of high-efficiency equipment upgrades. See the program...

  20. Cape Light Compact- Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Through a multi-member partnership, Cape Light Compact (CLC) and Masssave offer a variety of financial incentives for commercial, industrial, and municipal facilities. Custom rebate options are...

  1. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  2. Moorhead Public Service Utility- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.mpsutility.com Moorhead Public Service Utility] offers the Bright Energy Solutions Programs for commercial and industrial customers that purchase and install qualifying energy-efficient...

  3. Coldwater Board of Public Utilities- Commercial and Industrial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

  4. Western Canadian coking coals -- Thermal rheology and coking quality

    SciTech Connect (OSTI)

    Leeder, W.R. [Teck Corp. (Canada); Price, J.T.; Gransden, J.F. [CANMET Energy Technology Centre, Ottawa, Ontario (Canada)

    1997-12-31T23:59:59.000Z

    Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

  5. Initial coke deposition on a NiMo/{gamma}-Al{sub 2}O{sub 3} bitumen hydroprocessing catalyst

    SciTech Connect (OSTI)

    Richardson, S.M.; Nagaishi, Hiroshi; Gray, M.R. [Univ. of Alberta, Edmonton (Canada). Dept. of Chemical Engineering] [Univ. of Alberta, Edmonton (Canada). Dept. of Chemical Engineering

    1996-11-01T23:59:59.000Z

    Athabasca bitumen was hydrocracked over a commercial NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst in two reactors, a microbatch reactor and a 1-L continuous stirred tank reactor (CSTR). Coke deposition on catalyst was measured as a function of hydrogen pressure, time on stream, and liquid composition by measuring the carbon content of the cleaned spent catalyst. The carbon content ranged from 11.3% to 17.6% over the pressure range 6.9--15.2 MPa in CSTR experiments. Batch and CSTR experiments showed a rapid approach to a constant coke content with increasing oil/catalyst ratio. Coke deposition was independent of product composition for residue concentrations ranging from 8% to 32% by weight. Removal of the coke by tetralin at reaction conditions suggested reversible adsorption of residue components on the catalyst surface. A physical model based on clearance of coke by hydrogen in the vicinity of metal crystallites is presented for the coke deposition behavior during the first several hours of hydrocracking use. This model gives good agreement with experimental data, including the effect of reaction time, the ratio of total feed weight to catalyst weight, hydrogen pressure, and feed composition, and it agrees with general observations from industrial usage. The model implies that except at the highest coke levels, the active surfaces of the metal crystallites remain exposed. Severe mass-transfer limitations are caused by the overall narrowing of the pore structure, which in {gamma}-Al{sub 2}O{sub 3} would give very low effective diffusivity for residuum molecules in micropores.

  6. Commercial and Industrial Base Intermittent Resource Management Pilot

    SciTech Connect (OSTI)

    Kiliccote, Sila; Sporborg, Pamela; Sheik, Imran; Huffaker, Erich; Piette, Mary Ann

    2010-11-30T23:59:59.000Z

    This scoping study summarizes the challenges with integrating wind and solar generation into the California's electricity grid. These challenges include: Smoothing intra-hour variability; - Absorbing excess renewable energy during over-generation periods; - Addressing morning and evening ramping periods. In addition, there are technical challenges to integrating retail demand response (DR) triggered by the wholesale conditions into the CAISO markets. The study describes the DR programs available to the consumers through the utilities in California and CAISO's ancillary services market because an integration of the wholesale and retail DR requires an understanding of these different offerings and the costs associated with acquiring them. Demand-side active and passive storage systems are proposed as technologies that may be used to mitigate the effects of intermittence due to renewable generation. Commercial building technologies as well as industrial facilities with storage capability are identified as targets for the field tests. Two systems used for ancillary services communications are identified as providing the triggers for DR enablement. Through the field tests, issues related to communication, automation and flexibility of demand-side resources will be explored and the performance of technologies that participate in the field tests will be evaluated. The major outcome of this research is identifying and defining flexibility of DR resources and optimized use of these resources to respond to grid conditions.

  7. The methods of steam coals usage for coke production

    SciTech Connect (OSTI)

    Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

    1998-07-01T23:59:59.000Z

    Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

  8. Shakopee Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Shakopee Public Utilities (SPU) offers a wide array of rebates and incentives encouraging its commercial customers to increase the energy efficiency of their facilities. Broadly, rebates exist for...

  9. EPUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Emerald People's Utility District (EPUD) offers financial incentives for commercial customers to increase the energy efficiency of their facilities. EPUD works with the Bonneville Power...

  10. Mason County PUD 3- Commercial and Industrial Energy Rebates

    Broader source: Energy.gov [DOE]

    Mason County PUD 3 offers rebates to its non-residential customers for implementing energy efficient lighting, motor rewinds, refrigeration, commercial cooking equipment, and custom projects....

  11. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-12-01T23:59:59.000Z

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  12. ConEd (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Con Edison offers New York Commercial natural gas customers a rebate program for energy efficient equipment in buildings inside the eligible service area. All equipment must be installed by a...

  13. Energy Smart- Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities)

    Broader source: Energy.gov [DOE]

    Franklin Energy Services has partnered with the Michigan Public Power Agency (MPPA), which is made up of 20 municipal utilities, to offer the Energy Smart Commercial and Industrial Energy...

  14. Minnesota Energy Resources (Gas)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     MER also provides rebates to commercial and industrial customers for an energy audit which provides a walk-through of the premise and a report on energy saving opportunities, and estimated costs...

  15. Formulation of Prediction Algorithms for Management of Commercial and Industrial Energy Loads

    E-Print Network [OSTI]

    Forrester, R. J.; Wepfer, W. J.

    1984-01-01T23:59:59.000Z

    Adaptive control promise's to significantly improve the energy efficiency of commercial and industrial HVAC systems. By predicting energy consumption and peak usage up to several hours in advance, the adaptive control scheme enables managers...

  16. Cost-Effective Gas-Fueled Cooling Systems for Commercial/Industrial Buildings and Process Applications

    E-Print Network [OSTI]

    Lindsay, B. B.

    Gas Research Institute initiated a program in 1985 to develop cost-effective gas engine-driven cooling systems for commercial and industrial applications. Tecogen, Inc., has designed, fabricated, and tested a nominal 150-ton engine-driven water...

  17. Randolph EMC- Commercial and Industrial Efficient Lighting Rebate Program (North Carolina)

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet Randolph EMC's standards are eligible for a prescriptive incentive payment. The cooperative will provide a...

  18. Commercial and Industrial Conservation and Load Management Programs at New England Electric

    E-Print Network [OSTI]

    Gibson, P. H.

    COMMERCIAL AND INDUSTRIAL CONSERVAT~ON AND LOAD MANAGEMENT PROGRAMS AT NEW ENGLAND ELECTRIC PETER H. GIBSON Manager, Load Management and Conservation Services New England Power Service Company Westborough, Massachusetts ABSTRACT New... is directed mainly toward the commercial and industrial classes, which mske up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a...

  19. Coking and gasification process

    DOE Patents [OSTI]

    Billimoria, Rustom M. (Houston, TX); Tao, Frank F. (Baytown, TX)

    1986-01-01T23:59:59.000Z

    An improved coking process for normally solid carbonaceous materials wherein the yield of liquid product from the coker is increased by adding ammonia or an ammonia precursor to the coker. The invention is particularly useful in a process wherein coal liquefaction bottoms are coked to produce both a liquid and a gaseous product. Broadly, ammonia or an ammonia precursor is added to the coker ranging from about 1 to about 60 weight percent based on normally solid carbonaceous material and is preferably added in an amount from about 2 to about 15 weight percent.

  20. High coking value pitch

    SciTech Connect (OSTI)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10T23:59:59.000Z

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  1. Estimating the Economic Impact for the Commercial Hard Clam Culture Industry on the Economy of

    E-Print Network [OSTI]

    Florida, University of

    1 Estimating the Economic Impact for the Commercial Hard Clam Culture Industry on the Economy that the economic impact of the cultured hard clam industry on the economy of Florida was approximately $34 million communities and the statewide economy Florida. A follow-up study to the 2000 study was recently funded

  2. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial

    E-Print Network [OSTI]

    Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual aspects of ESPCs, and Industrial Energy Efficiency Group (865) 574-1013 kelleyjs@ornl.gov 9/08 r1 ORNL helps organizations

  3. EnerNOC Inc. Commercial & Industrial Demand Response

    E-Print Network [OSTI]

    Valley Authority C&I DR: 560 MW Tucson Electric Power C&I DR: 40 MW Xcel Energy (Colorado) C&I DR: 44 MW Baltimore Gas & Electric C&I DR:120 MW Bonneville Power Administration C&I DR: Multiple Pilots Delmarva with 2010 revenues of $280 million 500+ full-time employees Energy Efficiency Industrial EE Program

  4. Thermal Storage Applications for Commercial/Industrial Facilities

    E-Print Network [OSTI]

    Knipp, R. L.

    of the future may yet en courage such unique designs. For more information: Richard N. Poirier CBI Industries (815) 436-2912 I'it,jure 7 CASCADED CARBONDIOXIDE THERMAL STORAGE llYSTEM TRIPLE POINT OF CO2 (60 PSIG) (-7Oo...

  5. Commercial and Industrial DSM Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1Program Market

  6. Industrial and Commercial Heat Pump Applications in the United States

    E-Print Network [OSTI]

    Niess, R. C.

    compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

  7. Design and construction of coke battery 1A at Radlin coke plant, Poland

    SciTech Connect (OSTI)

    A.M. Kravchenko; D.P. Yarmoshik; V.B. Kamenyuka; G.E. Kos'kova; N.I. Shkol'naya; V.V. Derevich; A.S. Grankin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    In the design and construction of coke battery 1A at Radlin coke plant (Poland), coking of rammed coke with a stationary system was employed for the first time. The coke batteries are grouped in blocks. Safety railings are provided on the coke and machine sides of the maintenance areas.

  8. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  9. Types of Nuclear Industry Jobs Commercial and Government Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may be key to "fastTwistTypes of Nuclear Industry

  10. COKEMASTER: Coke plant management system

    SciTech Connect (OSTI)

    Johanning, J.; Reinke, M. [Krupp Koppers GmbH, Essen (Germany)

    1996-12-31T23:59:59.000Z

    To keep coke utilization in ironmaking as competitive as possible, the potential to improve the economics of coke production has to be utilized. As one measure to meet this need of its customers, Krupp Koppers has expanded its existing ECOTROL computer system for battery heating control to a comprehensive Coke Plant Management System. Increased capacity utilization, lower energy consumption, stabilization of plant operation and ease of operation are the main targets.

  11. Reliability worth assessment in a developing country - commercial and industrial survey results

    SciTech Connect (OSTI)

    Pandey, M.; Billinton, R.

    1999-11-01T23:59:59.000Z

    This paper presents the results of an investigation conducted to determine the costs of electric service interruptions in the commercial and industrial sectors of a developing country. The investigation used in-person interviews of 800 businesses and 300 industries in Nepal. The results indicate the customer implications of service reliability, and show that electric service reliability worth can be assessed in a developing country.

  12. Operating Experience and Economic Assessment of Commercial and Industrial Cool Storage Systems - TVA Case Study

    E-Print Network [OSTI]

    Sieber, R. E.; Dahmus, A. B.

    1985-01-01T23:59:59.000Z

    Thermal storage systems offer utilities a means to change the energy use patterns of both residential and commercial and industrial (C&I) customers by moving water-heating and space-conditioning loads from peak to offpeak periods. Benefits from...

  13. Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers

    E-Print Network [OSTI]

    Sermakekian, E.

    2011-01-01T23:59:59.000Z

    1 Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency... Fund (CEEF) was created in 1998 by CT State Legislature ? Energy efficiency is a valuable resource for Connecticut, it: ? Reduces air pollutants and greenhouse gases ? Creates monetary savings for customers ? Reduces need for more energy...

  14. Module No: 410330Commercial and Industrial PropertyModule Title: Pre-requisite

    E-Print Network [OSTI]

    Time Programme of Study: Daytime & Evening Study E-mailOffice Number Office Phone Academic rank Instructor Name E-mailOffice Number Office Phone Academic rank Module coordinator b research papers, articles and reports in the field of commercial and industrial property legislations 4

  15. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

    1981-01-01T23:59:59.000Z

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  16. Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    3/20/09 Making the Most of Financed Energy Projects The energy engineers in the Residential, Commercial, and Industrial Energy Efficiency Group are experts in the technical, financial, and contractual, Commercial, and Industrial Energy Efficiency Group kelleyjs@ornl.gov ORNL helps organizations with training

  17. Commercial feasibility and impact of embryo transfer technology on the diary industry: case study

    E-Print Network [OSTI]

    Martin, Daniel Lee

    1985-01-01T23:59:59.000Z

    Industry: A Case Study (August 1985) Daniel Lee Martin, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Ronald D. Knutson )( commercial dairy producer using embryo transfer (ET) proce- dures in its herd was used as a case study... to analyze the commer- cial feasibility and impacts of ET technology. The dairy used the procedures to accelerate the rate at which replacements were raised from the better cows in the herd. Embryo transfer costs at the dairy are about one...

  18. Commercial Aircraft Corporation of China (Comac) attempts to break the Airbus-Boeing duopoly, will it succeed? : an industry analysis framework applied

    E-Print Network [OSTI]

    Fuentes, Jose L., S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Using an industry analysis framework, this thesis analyzes whether the recently established Commercial Aircraft Corporation of China (Comac) is likely to break the Boeing-Airbus duopoly in the industry of large commercial ...

  19. CLASSIFY-Profiles: Volume 2, Commercial and industrial customer needs and energy decision making. Final report

    SciTech Connect (OSTI)

    McRae, M.; Brown, J. [eds.] [Barakat and Chamberlin, Inc., Oakland, CA (United States); Berigan, J.; Lineweber, D.; Finkbeiner, C. [National Analysts, Inc., Philadelphia, PA (United States)

    1995-04-01T23:59:59.000Z

    Efficient promotion of utility products and services is best achieved by a commitment to customer-focused market-driven strategies. EPRI`s CLASSIFY System provides utilities with the information, methods, and tools required to develop an in-depth understanding of customer attitudes toward end-use technologies, industrial processes, and their applications. This guide presents an overview of commercial and industrial customer needs and describes nine target markets, as defined by 22 key customer needs related to business strategies,.business operations, and energy operations. Target markets include: Proactives, Innovators, Dependents, Utilitarians, Conservatives, Self-Reliants, Status Quos, Besieged, and Survivors. For these segments, end-use profiles illustrate 24 technology-related factors that influence customer purchasing decisions and usage patterns. Illustrative examples show how to use Commercial and Industrial CLASSIFY-Profiles in developing and deploying customer-driven products, programs, and services. Volume I of this report presents residential customer needs information. Volume 3 provides an assessment of trade ally needs and their influence on utility customer decisions.

  20. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01T23:59:59.000Z

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  1. Trends in the automation of coke production

    SciTech Connect (OSTI)

    R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.

  2. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31T23:59:59.000Z

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  3. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01T23:59:59.000Z

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  4. Method and apparatus for quenching coke

    SciTech Connect (OSTI)

    Calderon, A.

    1980-07-22T23:59:59.000Z

    A method is described for controlling pollutions during the discharge of coke from a coke oven having a pusher side and a coke discharge opening. The method comprises the steps of moving a carriage into alignment with the coke discharge opening, pushing a body of hot coke out of the discharge opening of the oven, guiding the coke pushed from the oven into a chamber supported on said carriage, quenching the coke by directing liquid at coke which is pushed into said chamber for dropping the temperature of the coke, confining steam and vapor generated during the dropping of the temperature of the coke in the chamber for building a positive pressure within the chamber, forcing the steam and vapors generated from the quenching of the coke out of the chamber through a venturi-like opening by means of the positive pressure built up in the chamber, and spraying liquid at the gases forced through said venturi-like opening by the positive pressure in the chamber for cleaning the gases.

  5. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  6. Mathematical modeling of clearance between wall of coke oven and coke cake

    SciTech Connect (OSTI)

    Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

    1995-12-01T23:59:59.000Z

    A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

  7. Coke cake behavior under compressive forces

    SciTech Connect (OSTI)

    Watakabe, S.; Takeda, T.; Itaya, H.; Suginobe, H.

    1997-12-31T23:59:59.000Z

    The deformation of the coke cake and load on the side wall during pushing were studied using an electric furnace equipped with a movable wall. Coke cake was found to deform in three stages under compressive forces. The coke cake was shortened in the pushing direction in the cake deformation stage, and load was generated on the side walls in the high wall load stage. Secondary cracks in the coke cake were found to prevent load transmission on the wall. The maximum load transmission rate was controlled by adjusting the maximum fluidity and mean reflectance of the blended coal.

  8. Estimating Coke and Pepsi's price and advertising strategies

    E-Print Network [OSTI]

    Golan, Amos; Karp, Larry; Perloff, Jeffrey M.

    1999-01-01T23:59:59.000Z

    No. 789 ESTIMATING COKE AND PEPSI’ PRICE S AND ADVERTISINGAdvertising Strategies: Coke and Pepsi) by Amos Golan, LarryMarch 1999 Estimating Coke and Pepsi’s Price and Advertising

  9. New designs in the reconstruction of coke-sorting systems

    SciTech Connect (OSTI)

    A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

  10. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16T23:59:59.000Z

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  11. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01T23:59:59.000Z

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  12. Factors affecting coking pressures in tall coke ovens

    SciTech Connect (OSTI)

    Grimley, J.J.; Radley, C.E. [British Steel plc, Scunthorpe (United Kingdom). Scunthorpe Works

    1995-12-01T23:59:59.000Z

    The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

  13. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  14. Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report

    SciTech Connect (OSTI)

    Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

    1982-10-01T23:59:59.000Z

    The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

  15. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Commercial Building Energy Consumption Survey (EIA 2003) andEnergy Consumption Survey (EIA 2002). NYISO EDRP customersEnergy Consumption Survey database (EIA 2003), and personal

  16. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

  17. Heat treatment of exchangers to remove coke

    SciTech Connect (OSTI)

    Turner, J.D.

    1990-02-20T23:59:59.000Z

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating the furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas containing molecular oxygen at a sufficient temperature below 800{degrees}F (427{degrees}C) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of five thousand pounds per square inch.

  18. Delayed coking of decant oil and coal in a laboratory-scale coking unit

    SciTech Connect (OSTI)

    Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

    2006-08-15T23:59:59.000Z

    In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

  19. New and revised standards for coke production

    SciTech Connect (OSTI)

    G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.

  20. Mozambique becomes a major coking coal exporter?

    SciTech Connect (OSTI)

    Ruffini, A.

    2008-06-15T23:59:59.000Z

    In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

  1. The waste water free coke plant

    SciTech Connect (OSTI)

    Schuepphaus, K.; Brink, N. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany)

    1995-12-01T23:59:59.000Z

    Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

  2. Method for processing coke oven gas

    SciTech Connect (OSTI)

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1980-11-25T23:59:59.000Z

    Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

  3. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect (OSTI)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  4. Unmanned operation of the coke guides at Hoogovens IJmuiden Coke Plant 1

    SciTech Connect (OSTI)

    Vos, D.; Mannes, N.; Poppema, B. [Hoogovens IJmuiden B.V. (Netherlands)

    1995-12-01T23:59:59.000Z

    Due to the bad condition of batteries and many ovens under repair, Hoogovens was forced to partially repair and rebuild the Coke plant No. 1. The production of coke at Coke plant No. 1 is realized in 3 production blocks subdivided in 6 batteries. Besides a renovated installation, all coke oven machines were renewed. A total of five identical machine sets are available. Each consists of a pusher machine, larry car, coke guide and quench car with diesel locomotive. A complete automated control system was implemented. The main objectives were a highly regular coking and pushing process, automated traveling and positioning and a centrally coordinated interlocking of machine functions. On each operational machine however an operator performed the supervisory control of the automated machine functions. After years of good experience with the automated system, economical reasons urged further personnel reduction from 1994 on. Totally 375 people were involved, including the maintenance department. To reduce the occupation at coke plant No. 1, the coke guide was the first machine to be fully automated because of the isolated and uncomfortable working place.

  5. Investigation of bonding mechanism of coking on semi-coke from lignite with pitch and tar

    SciTech Connect (OSTI)

    Vedat Arslan [Dokuz Eylul University, Izmir (Turkey). Engineering Faculty

    2006-10-15T23:59:59.000Z

    In coking, the bonding ability of inert macerals by reactive macerals is dependent on various parameters and also is related to the wettability of the inert macerals. In this study, the effect of carbonization temperature on the wettability of semi-cokes produced at various temperatures has been investigated. Soma and Yatagan semicokes represent inert macerals, and pitch was used as a reactive structure in the experiments. The briquetted pitch blocks were located on the semi-cokes and heated from the softening temperature of pitch (60{sup o}C) to 140{sup o}C to observe the wettability. In addition, liquid tar was also used to determine the wettability of semi-cokes. From the standpoint of wettability, the temperature of 900{sup o}C was determined to be the critical point for coke produced from sub-bituminous coals. 15 refs., 6 figs., 2 tabs.

  6. 2014-05-05 Issuance: ASRAC Commercial and Industrial Pumps Working Group; Notice of Open Teleconference/Webinar

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of open teleconference/webinar regarding the commercial and industrial pumps working group, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  7. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    SciTech Connect (OSTI)

    Lamm, D.

    1980-06-01T23:59:59.000Z

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  8. Coke oven gas desulfurization: at Republic Steel's New Coking Facility, Warren, OH

    SciTech Connect (OSTI)

    Boak, S.C.; Prucha, D.G.; Turic, H.L.

    1981-01-01T23:59:59.000Z

    Our performance test indicates that the Sulfiban process is an effective method for removing H/sub 2/S from coke-oven gas. The process is able to handle variations in coke-oven gas flow and composition. Continuing efforts are underway to maintain optimum desulfurization conditions while trying to reduce waste production and MEA consumption. The problems which have prevented us from operating continuously have given us a better understanding of the process. This has contributed to better plant operations and greater equipment reliability for us to obtain continuous coke-oven gas desulfurization. 2 figures, 1 table.

  9. Working Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE

    E-Print Network [OSTI]

    Karp, Larry S.

    Working Paper No. 789 ESTIMATING COKE AND PEPSI'S PRICE AND ADVERTISING STRATEGIES (formerly Estimating Firms'Mixed Price and Advertising Strategies: Coke and Pepsi) by Amos Golan, Larry S. Karp. #12;Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan* Larry S. Karp** Jeffrey M

  10. NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

  11. Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

    2009-09-30T23:59:59.000Z

    The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

  12. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect (OSTI)

    Not Available

    1994-05-24T23:59:59.000Z

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  13. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect (OSTI)

    T.F. Trembach; E.N. Lanina [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  14. Water protection in coke-plant design

    SciTech Connect (OSTI)

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  15. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS

    SciTech Connect (OSTI)

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

    2002-05-01T23:59:59.000Z

    The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

  16. Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division

    SciTech Connect (OSTI)

    Volkov, E.L.

    1981-01-01T23:59:59.000Z

    Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

  17. Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

    2006-02-01T23:59:59.000Z

    The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

  18. Commercial Space Activities at Goddard

    E-Print Network [OSTI]

    Waliser, Duane E.

    Facilities ­ Commercial Payload Partnerships/Rideshares ­ Technology Infusion to Industry · Technology

  19. Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen

    SciTech Connect (OSTI)

    Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A.

    1988-06-01T23:59:59.000Z

    Today's commercially proved technology to recover oil from the Athabasca oil sands, as practiced by Suncor and Syncrude, involves two major operations, namely: separation of the bitumen from the sand and upgrading of the bitumen to refinery oil. Significant amounts of petroleum coke are produced during the bitumen upgrading process. Suncor burns the bulk of its petroleum coke in boilers to fulfill the energy requirements of the entire operation, still meeting government regulations restricting the amount of sulfur dioxide that can be released to the environment. In contrast, Syncrude is able to burn only 20% of its coke production because of high sulphur dioxide emissions from elsewhere in its operations. The boiler ash (Fly ash) which contains appreciable amounts of metals, such as vanadium, nickel, titianium, iron, aluminum and other elements, is collected in the boiler hoppers and cyclones of the petroleum coke fired steam generation plants. There has been relatively little effort made towards the understanding of the chemical or physical nature of these materials. Knowledge of the physico-chemical properties of these materials will be helpful in assessing their beneficiation and potential use as fuel or metallurigcal coke and the feasibility of extracting some metals, especially Ni and V. In this communication the authors report studies of acid demineralization as a means of reducing ash content of these materials for /sup 13/C NMR spectroscopic investigations.

  20. REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  1. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15T23:59:59.000Z

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  2. Coking properties of perhydrous low-rank vitrains. Influence of pyrolysis conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    generally lead to increased coking potential of coals characterised in the resulting cokes by large sizes equivalent to natural coking coals, since the cokes from these residues are always made of smaller MOD than those obtained for coking coals. For comparison, a similar characterisation, carried out

  3. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz- [ORNL; Chourey, Aashish [American Magnetics Inc.

    2010-08-01T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  4. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31T23:59:59.000Z

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  5. Cyanide treatment options in coke plants

    SciTech Connect (OSTI)

    Minak, H.P.; Lepke, P. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    The paper discusses the formation of cyanides in coke oven gas and describes and compares waste processing options. These include desulfurization by aqueous ammonia solution, desulfurization using potash solution, desulfurization in oxide boxes, decomposition of NH{sub 3} and HCN for gas scrubbing. Waste water treatment methods include chemical oxidation, precipitation, ion exchange, reverse osmosis, and biological treatment. It is concluded that biological treatment is the most economical process, safe in operation and requires a minimum of manpower.

  6. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect (OSTI)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01T23:59:59.000Z

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  8. Lessons Learned: A review of utility experience with conservation and load management programs for commercial and industrial customers

    SciTech Connect (OSTI)

    Nadel, S.

    1990-10-01T23:59:59.000Z

    This report examines utility experience with conservation and load management (C LM) programs of commercial and industrial (C I) customers in order to summarize the lessons learned from program experiences to date and what these teach us about how to operate successful programs in the future. This analysis was motivated by a desire to learn about programs which achieve high participation rates and high electricity savings while remaining cost effective. Also, we wanted to review the very latest experiences with innovative program approaches -- approaches that might prove useful to utilities as they scale up their C LM activities. Specific objectives of this phase of the study are threefold: (1) To disseminate information on utility C LM experience to a nationwide audience. (2) To review current New York State utility programs and make suggestions on how these programs can be improved. (3) To collect data for the final phase of the American Council for an Energy-Efficient Economy/New York State Energy Research and Development Authority project, which will examine the savings that are achievable if C LM programs are pushed to the limit'' of current knowledge on how to structure and run cost-effective C LM programs. 19 tabs.

  9. Reducing power production costs by utilizing petroleum coke. Annual report

    SciTech Connect (OSTI)

    Galbreath, K.C.

    1998-07-01T23:59:59.000Z

    A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

  10. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    Broader source: Energy.gov [DOE]

    Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

  11. The Problem of Second-Hand Industrial Equipment: Reclaiming a Missed Opportunity

    E-Print Network [OSTI]

    Kelly-Detwiler, P.; Opheim, K.

    furnaces, preheating combustion air, high-efficiency burners, use of coke oven gas compressors, heat recovery of coke oven gases, and dry coke quenching. In addition, high efficiency motor retrofits and installation of adjustable speed drives are less... country industries are likely to experience growing difficulties in their ability to profitably service the domestic markets for which they were designed, let alone potential export markets, if they are dependent on outdated, inefficient industrial...

  12. Coke oven doors: Historical methods of emission control and evaluation of current designs

    SciTech Connect (OSTI)

    Pettrey, J.O.; Greene, D.E. (Armco Steel Co., Middletown, OH (United States))

    1993-01-01T23:59:59.000Z

    The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

  13. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESBEnergy

  14. Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs 

    E-Print Network [OSTI]

    Patel, S. S.

    1982-01-01T23:59:59.000Z

    effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

  15. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    SciTech Connect (OSTI)

    T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  16. Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs

    E-Print Network [OSTI]

    Patel, S. S.

    1982-01-01T23:59:59.000Z

    effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  18. Syncrude coke burned in bubbling fluidized bed

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    Syncrude Canada Ltd.'s byproduct coke is high in sulfur (7%) and vanadium (0.2%), and moderate in ash (5.9%). It contains a high proportion of unreactive forms of carbon and is low in volatiles, 6.6%. It is unsuitable for combustion by established technologies, and at present the entire production of over 2000 tons per day is being stockpiled. Experiments with atmospheric fluidized bed combustion (AFBC) are described. The AFBC provides abatement of SO/sub 2/ emissions by means of limestone sorbent fed to the combustor together with the fuel. The pilot plant, combustion efficiency, and sulfur capture are discussed. 3 figures.

  19. Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, November 1, 1996--October 31, 1997

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    The National Hydrogen Association (NHA) was born out of a Hydrogen Workshop, November 16 and 17, 1988, held at the Electric Power Research Institute in Palo Alto, California. The following mission statement was adopted and remains the statement of the organization: to foster the development of hydrogen technologies and their utilization in industrial and commercial applications and to promote the transition role of hydrogen in the energy field. This final technical report provides a summary of the activities performed by the NHA. Activities are broken down by task area, and include the following: Information exchange within the NHA; Information exchange within the hydrogen industry; Information exchange with other critical industries and the public; Annual US hydrogen meeting; Codes and standards which includes establishing industry consensus on safety issues; Industry perspective and needs; and Administrative. Appendices to this report include the following: Role of the NHA in strategic planning for the hydrogen economy--An international initiative; Hydrogen safety report; and Implementation plan workshop II, whose purpose was to seek commercialization scenarios and strategies to introduce hydrogen in near-term transportation and power markets.

  20. Local Option- Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    In June 2012, Connecticut passed legislation enabling Commercial Property Assessed Clean Energy financing (C-PACE), targeting commercial, industrial and multifamily property owners.  C-PACE is a ...

  1. China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces

    E-Print Network [OSTI]

    Lu, Hongyou

    2013-01-01T23:59:59.000Z

    Coal Washed Coal Coke Coke Oven Gas Other Gas Other CokingTJ) Coal Coke Coke Oven Gas Other Gas Other Coking Products

  2. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

    2010-05-12T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  4. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect (OSTI)

    None

    1981-12-22T23:59:59.000Z

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  5. New process for coke-oven gas desulfurization

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-10-01T23:59:59.000Z

    With the EPA reclassifying spent iron oxide as a hazardous waste material in 1990, an alternative technology was sought for desulfurizing coke-oven gas. Vacasulf technology was adopted for reasons that included: producing of coke battery heating gas without further polishing and high-quality elemental sulfur; lowest operating cost in comparison with other methods; no waste products; and integrates with existing ammonia destruction facility. Vacasulf requires a single purchased material, potassium hydroxide, that reacts with carbon dioxide in coke-oven gas to form potassium carbonate which, in turn, absorbs hydrogen sulfide. Operation of the system has been successful following the resolution of relatively minor start-up problems.

  6. Method for removal of furfural coke from metal surfaces

    SciTech Connect (OSTI)

    Turner, J.D.

    1990-02-27T23:59:59.000Z

    This patent describes a process for preparing furfural coke for removal from metallic surfaces. It comprises: heating ship furfural coke without causing an evolution of heat capable of undesirably altering metallurgical properties of the surfaces in the presence of a gas with a total pressure of less than 100 psig containing molecular oxygen. The gas being at a sufficient temperature below 800{degrees}F. (427{degrees}C.) for a sufficient time to change the crush strength of the coke so as to permit removal with a water jet at a pressure of about 5000 psi.

  7. Coke profile and effect on methane/ethylene conversion process

    E-Print Network [OSTI]

    Al-Solami, Bandar

    2002-01-01T23:59:59.000Z

    with distance along the reactor, and therefore the coke distribution should follow a similar pattern. A distribution of coke deposits along the reactor was also observed by Noda er al. (1974) in a study of iso-pentane isomerization. In this case the coke..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  10. Small Commercial Refrigeration Incentive

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

  11. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  12. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: WRI COKING INDEXES

    SciTech Connect (OSTI)

    John F. Schabron; Joseph F. Rovani, Jr.; Francis P. Miknis; Thomas F. Turner

    2003-06-01T23:59:59.000Z

    Pyrolysis experiments were conducted with three residua at 400 C (752 F) at various residence times. The wt % coke and gaseous products were measured for the product oils. The Western Research Institute (WRI) Coking Indexes were determined for the product oils. Measurements were made using techniques that might correlate with the Coking Indexes. These included spin-echo proton nuclear magnetic resonance spectroscopy, heat capacity measurements at 280 C (536 F), and ultrasonic attenuation. The two immiscible liquid phases that form once coke formation begins were isolated and characterized for a Boscan residuum pyrolyzed at 400 C (752 F) for 55 minutes. These materials were analyzed for elemental composition (CHNS), porphyrins, and metals (Ni,V) content.

  13. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)

    1995-12-01T23:59:59.000Z

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  14. Estimating Coke and Pepsi's Price and Advertising Strategies

    E-Print Network [OSTI]

    Golan, Amos; Karp, Larry S.; Perloff, Jeffrey M.

    1998-01-01T23:59:59.000Z

    2b: GME-Nash Estimates of Pepsi’s Strategies (First QuarterStrategy Distributions for Pepsi (First Quarter 1977) a)789 ESTIMATING COKE AND PEPSI'S PRICE ADVERTISING STRATEGIES

  15. Problem of improving coke oven gas purification systems

    SciTech Connect (OSTI)

    Goldin, I.A.

    1982-01-01T23:59:59.000Z

    A discussion of the problems of improving desulfurization processes of coke oven gas was presented. Of particular interest were control systems and increasing capacity of the coke ovens. Included in the discussion were the vacuum-carbonate and arsenic-soda sulfur removal systems. Problems involved with these systems were the number of treatment operations, the volume of the reagents used, and the operation of equipment for naphthalene and cyanide removal.

  16. Priorities in the design of chemical shops at coke plants

    SciTech Connect (OSTI)

    V.I. Rudyka; Y.E. Zingerman; V.V. Grabko; L.A. Kazak [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Recent trends in the design of chemical equipment at coke plants are described, through the lens of experience at Giprokoks. The main priorities were to improve the removal of impurities from coke oven gas; to improve equipment design on the basis of new materials; to reduce reagent consumption; to reduce the materials and energy consumed in the construction of new equipment; and to minimize impacts on the environment and worker health. Some technological equipment is briefly characterized.

  17. 2014-12-31 Issuance: Energy Conservation Standards for Commercial and Industrial Fans and Blowers; Extension of Comment Period for Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of comment period for notice of data availability regarding energy conservation standards for commercial and industrial fans and blowers, as issued by the Deputy Assistant Secretary for Energy Efficiency on December 31, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  18. 2015-01-16 Issuance: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Notice of Information Collection Extension

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of information collection extension regarding consumer products and commercial and industrial equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on January 16, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  19. Innovative coke oven gas cleaning system for retrofit applications

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

  20. An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry 

    E-Print Network [OSTI]

    Cooke, D. H.; McCue, R. H.

    1985-01-01T23:59:59.000Z

    of the refinery, olefins, and other industry complexes is presented. The cycles described include hot gas and steam heat recovery, going beyond the currently popular gas-turbine/ heat-recovery-steam-generator combination....

  1. Mass-customization in commercial real estate : how the aviation industry can help us create beautiful buildings that add value

    E-Print Network [OSTI]

    Goldklang, Shaul

    2013-01-01T23:59:59.000Z

    The term "mass-customization" in the Architecture, Engineering and Construction (AEC) industry refers to architectural elements that have similar purpose but are completely different from each other. Architects use ...

  2. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01T23:59:59.000Z

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  3. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect (OSTI)

    Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

    2009-07-01T23:59:59.000Z

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  4. Anoka Municipal Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Anoka Municipal Utility (AMU) offers the Commercial and Industrial Lighting and Motor Rebate Program for commercial and industrial customers who install high efficiency lighting, motors, and...

  5. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    factor of bituminous coal, coking coal, and coke consumed inprice of Bituminous coal, coking coal, and coke consumed in

  6. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  7. INDUST: An Industrial Data Base

    E-Print Network [OSTI]

    Wilfert, G. L.; Moore, N. L.

    .5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

  8. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  9. commercial buildings initiative | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Buildings Initiative The DOE Building Technologies Office works with the commercial building industry to accelerate the use of energy efficiency technologies in both...

  10. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  11. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

    1997-12-31T23:59:59.000Z

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  12. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    SciTech Connect (OSTI)

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  13. Process for converting coal into liquid fuel and metallurgical coke

    DOE Patents [OSTI]

    Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

    1994-01-01T23:59:59.000Z

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  14. Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan*

    E-Print Network [OSTI]

    Lansky, Joshua

    Estimating Coke and Pepsi's Price and Advertising Strategies Amos Golan* Larry S. Karp** Jeffrey M strategies in prices and advertising for Coca-Cola and Pepsi-Cola. Separate strategies for each firm theory. We use these methods to estimate the pricing and adver- tising strategies of Coca-Cola and Pepsi

  15. Coke profile and effect on methane/ethylene conversion process 

    E-Print Network [OSTI]

    Al-Solami, Bandar

    2002-01-01T23:59:59.000Z

    The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to catalyst deactivation. A fixed bed reactor was used to conduct this investigation. A series of runs were...

  16. National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs

    Broader source: Energy.gov [DOE]

    National Grid offers electric energy efficiency programs for large commercial and industrial customers.

  17. Coke oven gas desulphurization by the Carl Still process

    SciTech Connect (OSTI)

    Knight, R.E.

    1981-01-01T23:59:59.000Z

    The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

  18. Pipeline charging of coke ovens with a preheated charge

    SciTech Connect (OSTI)

    Karpov, A.V.; Khadzhioglo, A.V.; Kuznichenko, V.M.

    1983-01-01T23:59:59.000Z

    Work to test a pipeline charging method was conducted at the Konetsk Coke Works (a PK-2K coke oven system with a single gas main, oven width 407 mm, height 4300 mm, effective column 20.0 cm/sub 3/). This method consists of transporting the heated coal charge to the ovens through a pipe by means of steam. the charge is transported by high pressure chamber groups, and loaded by means of systems equipped with devices for separation, withdrawal and treatment of the spent steam. The principal goal of the present investigation was to test technical advances in the emission-free charging of preheated charges. The problem was, first, to create a reliable technology for separation of the steam from the charge immediately before loading it into the oven and, second, to provide a total elimination of emissions, thereby protecting the environment against toxic substances.

  19. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  20. How to implement a quality program in a coking plant. The AHMSA experience

    SciTech Connect (OSTI)

    Reyes M, M.A.; Perez, J.L.; Garza, C. de la; Morales, M.

    1995-12-01T23:59:59.000Z

    AHMSA (Altos Hornos de Mexico) is the largest integrated Steel Plant in Mexico, with its 3.1 MMMT of Liquid Steel production program for 1995. AHMSA operates two coke plants which began operations in 1955 and 1976. Total coke monthly production capacity amounts to as much as 106,000 Metric Tons (MT). The coke plants working philosophy was discussed and established in 1986 as part of the Quality Improvement Program, where its ultimate goal is to give the best possible coke quality to its main client--the blast furnaces. With this goal in mind, a planned joint effort with their own coal mines was initiated. This paper deals with the implementation process of the Quality Program, and the results of this commitment at the coal mines, coke plants and blast furnaces. The coke quality improvement is shown since 1985 to 1994, as well as the impact on the blast furnace operation.

  1. Low-coke rate operation under high PCI at Kobe No. 3 BF

    SciTech Connect (OSTI)

    Matsuo, Tadasu; Kanazuka, Yasuo; Hoshino, Koichi; Yoshida, Yasuo; Kitayama, Syuji; Ishiwaki, Shiro [Kobe Steel Ltd. (Japan). Kobe Works

    1997-12-31T23:59:59.000Z

    Kobe No. 3 blast furnace (BF) suffered tremendous damage when the Great Hanshin-Awaji Earthquake rocked the area on January 17, 1995. However, working as quickly as possible to dig out of the burden and rehabilitate various facilities, the company managed to restart the No. 3 BF on April 2. After the restart, which went smoothly, production was shifted into the low coke rate operation which was being promoted before the disaster. In October, 1995, only seven months after the restart, the nation record of 296 kg/t low coke rate could be achieved. Subsequently, in January, 1996, coke rate reached 290 kg/t and the low coke rate operation was renewed. Since that time the same level of coke rate has been maintained. The paper discusses how low coke rate operation was achieved.

  2. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31T23:59:59.000Z

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  3. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31T23:59:59.000Z

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  4. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01T23:59:59.000Z

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  5. Commercial and Industrial Prescriptive Rebates

    Broader source: Energy.gov [DOE]

    As part of the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=IN11R&re=0&ee=0 Indiana Demand Side Management Program], customers of [https://energizingindiana.com/utilities/...

  6. Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Connecticut electricity customers that install energy efficiency equipment and reduce their energy use during peak hours may be eligible for a rebate based on the amount of kilowatt-hours (kWh) s...

  7. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESB

  8. Lessons learned: The commercialization process

    SciTech Connect (OSTI)

    Padilla, B.A.; Gritzo, R.E.; Garcia, J.J.

    1996-03-01T23:59:59.000Z

    One successful component of a commercialization strategy includes the implementation of an industrial outreach workshop. This workshop is designed to select an industrial partner with the skills necessary to successfully commercialize a federally-funded, laboratory developed technology. These workshops provide efficiency and effectiveness and, in addition, ensure that all prospective partners receive equal access to the same quality and quantity of information.

  9. The effects of ash and maceral composition of Azdavay and Kurucasile (Turkey) coals on coking properties

    SciTech Connect (OSTI)

    Toroglu, I. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

    2006-07-01T23:59:59.000Z

    In this study, investigations were made as to the effect of the maceral compositions and mineral matter content of Azdavay and Kurucasile coals on the coking property. Chemical and maceral analyses and coking properties were determined for the products of the float-sink procedure. The coking properties were established on the basis of free swelling index and Ruhr dilatometer tests. Maceral analyses showed that as the ash content of a coal containing both high and medium volatile matter increases, its effective maceral proportion decreases, and the coking property is affected in an unfavorable way.

  10. Integration of stripping of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1980-01-01T23:59:59.000Z

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  11. X-ray evaluation of coke-oven gas line deposits

    SciTech Connect (OSTI)

    Swain, Y.T.

    1983-08-01T23:59:59.000Z

    Control of coke-oven gas pipeline deposits has been facilitated through the use of an X-ray technique that provides quantitative data without disrupting plant operations.

  12. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    SciTech Connect (OSTI)

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen [Peking University, Beijing (China). Laboratory for Earth Surface Processes, College of Environmental Sciences

    2006-08-01T23:59:59.000Z

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  13. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  14. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    response, automation, commercial, industrial buildings, peakautomation system design. Auto-DR for commercial and industrialautomation server renamed as the DRAS. This server was operated at a secure industrial

  15. Process for dissolving coke oven deposits comprising atomizing a composition containing N-methyl-2-pyrrolidone into the gas lines

    SciTech Connect (OSTI)

    Stafford, M.L.; Nicholson, G.M.

    1993-07-06T23:59:59.000Z

    A method is described for cleaning gas lines in coke oven batteries comprising atomizing a composition into the gas lines of coke oven batteries, where the composition comprises N-methyl-2-pyrrolidone.

  16. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06T23:59:59.000Z

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

  17. Takahax-Hirohax process for coke oven gas desulfurization

    SciTech Connect (OSTI)

    Gastwirth, H.; Miner, R.; Stengle, W.

    1981-01-01T23:59:59.000Z

    This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

  18. Influence of coal on coke properties and blast-furnace operation

    SciTech Connect (OSTI)

    G.R. Gainieva; L.D. Nikitin [OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (Russian Federation)

    2007-07-01T23:59:59.000Z

    With unstable coal supplies and properties and a fluctuating content of coking coal in the batch at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat (ZSMK) and of bituminous coal at Kuznetskaya enrichment facility, it is important to optimize the rank composition of the batch for coke production.

  19. Analytical input-output and supply chain study of China's coke and steel sectors

    E-Print Network [OSTI]

    Li, Yu, 1976-

    2004-01-01T23:59:59.000Z

    I design an input-output model to investigate the energy supply chain of coal-coke-steel in China. To study the demand, supply, and energy-intensity issues for coal and coke from a macroeconomic perspective, I apply the ...

  20. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  1. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  2. Teamwork in planning and carrying out the first inspection of the coke dry quenching (CDQ) plant of the Kaiserstuhl Coking Facility

    SciTech Connect (OSTI)

    Burchardt, G.

    1996-12-31T23:59:59.000Z

    The coke plant Kaiserstuhl operates a coke dry quenching (CDQ) plant with a downstream installed waste heat boiler to satisfy statutory pollution control rules and requirements. This CDQ which went on stream in March 1993 cools the whole coke production output from the Kaiserstuhl coke plant in counterflow to an inert cooling gas. This brief overview on the whole CDQ plant should elucidate the complex of problems posed when trying to make an exact plant revision plan. After all it was impossible to evaluate or to assess all the interior process technology relevant components during the planning stage as the plant was in operation. The revision data for the first interior check was determined and fixed by the statutory rule for steam boilers and pressure vessels. The relevant terms for this check are mandatorily prescribed. In liaison with the testing agency (RW TUEV) the date for the first revision was fixed for April 1995, that means two years after the first commissioning.

  3. Black Hills Energy (Gas)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers multiple programs for Colorado commercial and industrial customers to save natural gas in eligible facilities. The commercial prescriptive rebate program provides...

  4. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  5. Modesto Irrigation District- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District’s Commercial Power Saver Rebate Program offers incentives to commercial, industrial, and agricultural customers for the purchase and installation of qualifying energy...

  6. 2014-11-20 Issuance: Energy Conservation Program for Commercial...

    Energy Savers [EERE]

    11-20 Issuance: Energy Conservation Program for Commercial and Industrial Natural Gas Compressors; NOPM 2014-11-20 Issuance: Energy Conservation Program for Commercial and...

  7. NorthWestern Energy- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. The E+ Commercial Natural Gas Savings Program...

  8. Essays on Merger Simulation in Industrial Organization

    E-Print Network [OSTI]

    Kim, Mee Yeon

    2012-01-01T23:59:59.000Z

    mergers as Coke and Dr. Pepper (rejected), Pepsi and 7–Up (withdrawn), and Coke and Pepsi (hypothetical). Nevo (2000)

  9. Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)

    E-Print Network [OSTI]

    Boyer, Edmond

    - 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

  10. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

  11. Bethlehem Steel announces plans to control coke oven air and water pollution

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    Bethlehem Steel Corporation and the Maryland Department of the Environment have announced an agreement under which Bethlehem will spend an estimated $92-million at its Sparrows Points, Md., plant for technologically-advanced controls to further reduce air and water pollution, mainly from the plant's coke ovens. The two major systems include one to treat by-product coke oven gas and chemicals, and another to upgrade existing pushing emission controls on two older coke oven batteries. One of the new systems will replace most of the existing equipment that cleans gas and treats chemicals created by the coking process at the plant's three coke oven batteries. Because this system has the potential to greatly reduce sulfur dioxide and other pollutants, the United States Department of Energy (DOE) in September announced that its installation qualified for funding as part of the nationwide Innovative Clean Coal Technology Program.

  12. Desulphurization of coke oven gas by the Stretford Process

    SciTech Connect (OSTI)

    Plenderleith, J.

    1981-01-01T23:59:59.000Z

    The Stretford process is probably the most effective means available for removing hydrogen sulphide from gas streams. For streams which do not contain hydrogen cyanide or excessive oxygen it should be nearly ideal. However, the large volume of waste liquor generated by fixation of hydrogen cyanide has prevented its widespread adoption for coke oven gas treatment. Investigations of various proposals for treating the waste liquor indicate that the only practicable way of dealing with it is by reductive incineration. Although attempts to apply the Peabody-Holmes reductive incineration process have been disappointing, significant progress in overcoming some of its deficiencies has been made. The Zimpro wet oxidation process will provide a convenient method of treating the HCN scrubber effluent at No. 1 Plant. However, it will not treat the sodium based liquor from the Stretford plant. Its application to Stretford waste treatment is limited to situations where ammonium liquors and ammonium sulphate recovery facilities are available. Commissioning of this plant has been delayed while a defect in the air compressor supplied for the plant is being remedied. When the problem of liquid effluent disposal has been overcome, and if reagent chemicals continue to be available at reasonable prices, the Stretford process will be a good choice for coke oven gas desulphurization. 8 figures.

  13. Innovative coke oven gas cleaning system for retrofit applications

    SciTech Connect (OSTI)

    Not Available

    1992-10-16T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

  14. Ammonia removal process upgrade to the Acme Steel Coke Plant

    SciTech Connect (OSTI)

    Harris, J.L. [Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant

    1995-12-01T23:59:59.000Z

    The need to upgrade the ammonia removal process at the Acme Steel Coke Plant developed with the installation of the benzene NESHAP (National Emission Standard for Hazardous Air Pollutants) equipment, specifically the replacement of the final cooler. At Acme Steel it was decided to replace the existing open cooling tower type final cooler with a closed loop direct spray tar/water final cooler. This new cooler has greatly reduced the emissions of benzene, ammonia, hydrogen sulfide and hydrogen cyanide to the atmosphere, bringing them into environmental compliance. At the time of its installation it was not fully recognized as to the effect this would have on the coke oven gas composition. In the late seventies the decision had been made at Acme Steel to stop the production of ammonia sulfate salt crystals. The direction chosen was to make a liquid ammonia sulfate solution. This product was used as a pickle liquor at first and then as a liquid fertilizer as more markets were developed. In the fall of 1986 the ammonia still was brought on line. The vapors generated from the operation of the stripping still are directed to the inlet of the ammonia absorber. At that point in time it was decided that an improvement to the cyclical ammonia removal process was needed. The improvements made were minimal yet allowed the circulation of solution through the ammonia absorber on a continuous basis. The paper describes the original batch process and the modifications made which allowed continuous removal.

  15. Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen

    SciTech Connect (OSTI)

    Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1989-01-01T23:59:59.000Z

    Ash reduction of the cokes and fly ash samples derived from the Athabasca oil sands bitumen was attempted by dissolving the mineral matter in acids. The samples used for this investigation included Syncrude fluid coking coke, Suncor delayed coking coke and the two fly ash samples obtained from the combustion of these cokes. All samples were analyzed for C,H,N,O, and S before and after acid demineralization and the analyses results compared. Further, the ash from the samples before and after acid demineralization was analyzed for silica, alumina, iron titanium, nickel and vanadium to assess the acid leaching of these elements. CP/MAS, /sup 13/C NMR spectroscopic study of the demineralized coke and fly ash samples was also attempted.

  16. Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil

    SciTech Connect (OSTI)

    Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

    2009-05-15T23:59:59.000Z

    In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

  17. Glass-coating and cleaning system to prevent carbon deposition on coke oven walls

    SciTech Connect (OSTI)

    Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka [Kawasaki Steel Corp., Mizushima, Kurashiki (Japan). Mizushima Works

    1997-12-31T23:59:59.000Z

    The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

  18. Method for removing hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Ritter, H.

    1982-08-03T23:59:59.000Z

    An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations. In its normal function, the concentrator/scrubber functions as a scrubber to strip ammonia gas from recirculating liquid streams and to permit introduction of an ammonia-rich gas into a hydrogen sulfide scrubber to increase the separation efficiency of that unit. In the standby operation, the same concentrator/scrubber serves as a concentrator to concentrate hydrogen sulfide in a ''strong liquor'' stream for separate recovery as a strong liquor.

  19. Energy efficiency of alternative coke-free metallurgical technologies

    SciTech Connect (OSTI)

    V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov [Ural State Technical University - Ural Polytechnic Institute, Yekaterinburg (Russian Federation)

    2009-02-15T23:59:59.000Z

    Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

  20. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  1. Berkshire Gas- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkshire Gas Company (BCG) provides rebates for its commercial and industrial customers to pursue energy efficient improvements to their facilities. As a part of their energy efficiency program,...

  2. Progress Energy Carolinas- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Progress Energy provides rebates for energy efficiency measures in new construction or retrofits, as well as Technical Assistance for feasibility/energy studies to commercial, industrial and...

  3. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  4. MassSAVE (Gas)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  5. MassSAVE (Electric)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  6. An international comparison of Scotland and Newfoundland's offshore marine industries: exploring the connections among commercial fisheries and offshore oil and gas 

    E-Print Network [OSTI]

    Lowitt, Kerrie

    The development of the offshore oil industry in the past fifty years has created heightened interactions at sea, where traditionally fishing activities dominated. This study explores the nature of liaison bodies that have formed between...

  7. Tax-Exempt Industrial Revenue Bonds (Kansas)

    Broader source: Energy.gov [DOE]

    Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial,...

  8. Producing and controlling of the pollutant in the coal`s coking process

    SciTech Connect (OSTI)

    Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

    1997-12-31T23:59:59.000Z

    In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

  9. Current developments at Giprokoks for coke-battery construction and reconstruction

    SciTech Connect (OSTI)

    V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos'kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

  10. Development of a partnership with government and industry to accelerate the commercialization of hydrogen. Final report, 9/30/1995--10/31/1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    This Final Technical Report provides a summary of the activities performed by the NHA in accordance with the Cooperative Agreement. Activities are broken down by task area, and include the following: (1) Information exchange within the NHA, which includes the two NHA newsletters, the NHA Advocate, and the H{sub 2} Digest, as well as directory information. (2) Information exchange within the hydrogen industry, which includes conferences and meeting attendance, presentations of papers, and HTAP activities. (3) Information exchange with other critical industries and the public, which includes press conferences, and public awareness activities. (4) Annual US hydrogen meeting, NHA`s signature event. The 7th Annual US Hydrogen Meeting was held April 2--4, 1996 in Alexandria, Virginia in conjunction with the US DOE`s Hydrogen Technical Advisory Panel Meeting and the SAE`s Fuel Cell TOPTEC. (5) Industry perspective and needs, which covers activities related to the Hydrogen Industrialization Plan. (6) Codes and standards, which includes workshop and workgroup activities, as well as other safety-related activities. The objective of the codes and standards activities is to establish expert working groups to develop industry consensus on safety issues, and develop compatible standards and formats, and product certification protocols.

  11. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D. [Centre de Pyrolyse de Marienau, Forbach (France)

    1997-12-31T23:59:59.000Z

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  12. The nature and formation of coke in the reaction of methanol to hydrocarbons over chabazite 

    E-Print Network [OSTI]

    McLaughlin, Kenneth Woot

    1983-01-01T23:59:59.000Z

    45 Figure 9. Relationship between enhanced coke formation with increasing yields of paraffins and diminishing yields of olefins 46 Figure 10. Gas chromatogram of the concentrated carbon tetrachloride extract of spent catalyst pellets . . . 49...THE NATURE ABD FORMATION OF COKE IB THE REACTIOB OF METHANOL TO HIDROCARBOBS OVER CHABAZITE A Thesis KENNETH WOOT MCLAUGHLLN Submitted to the Graduate College of Texas AAM Univers ty partial. fulfillment nf the req~nt fo~he degree of MASTER...

  13. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1981-01-01T23:59:59.000Z

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  14. Effect of thermal treatment on coke reactivity and catalytic iron mineralogy

    SciTech Connect (OSTI)

    Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

    2009-07-15T23:59:59.000Z

    Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

  15. Coke gasification: the influence and behavior of inherent catalytic mineral matter

    SciTech Connect (OSTI)

    Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

    2009-04-15T23:59:59.000Z

    Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

  16. Market integration in the international coal industry: A cointegration approach

    SciTech Connect (OSTI)

    Warell, L. [University of Lulea, Lulea (Sweden). Dept. of Business Administration & Social Science

    2006-07-01T23:59:59.000Z

    The purpose of this paper is to test the hypothesis of the existence of a single economic market for the international coal industry, separated for coking and steam coal, and to investigate market integration over time. This has been conducted by applying cointegration and error-correction models on quarterly price series data in Europe and Japan over the time period 1980-2000. Both the coking and the steam coal markets show evidence of global market integration, as demonstrated by the stable long-run cointegrating relationship between the respective price series in different world regions. This supports the hypothesis of a globally integrated market. However, when analyzing market integration over time it is not possible to confirm cointegration in the 1990s for steam coal. Thus, compared to the coking coal market, the steam coal market looks somewhat less global in scope.

  17. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The AOG programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the installation of energy efficie...

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    In addition, the coking coal market began to deteriorateits permeability. Bituminous, or coking coal, is blended andmerchant coke plants, coking coal is heated in a low-oxygen,

  19. A Long, Contingent Path to Comparative Advantage: Industrial Policy and the Japanese Iron and Steel Industry, 1900-1973

    E-Print Network [OSTI]

    ELBAUM, BERNARD

    2006-01-01T23:59:59.000Z

    Overseas Procurement of Coking Coal By the Japanese Steelendowed as Japan in coking coal and iron ore (Yonekura,

  20. Effect of coal and coke qualities on blast furnace injection and productivity at Taranto

    SciTech Connect (OSTI)

    Salvatore, E.; Calcagni, M. [ILVA, Taranto (Italy); Eichinger, F.; Rafi, M.

    1995-12-01T23:59:59.000Z

    Injection rates at Taranto blast furnaces Nos. 2 and 4, for more than 16 months, was maintained above 175 kg/thm. Monthly average injection rate for two months stabilized above 190 kg/thm. This performance was possible due to the very high combined availabilities of Taranto blast furnaces and the KST injection system. Based upon this experience the quantitative relationships between coke/coal and blast furnace operational parameters were studied and are shown graphically. During this period due to coke quality changes, injection rate had to be reduced. The effect of using coke breeze in coke/ferrous charge as well as coal blend was also evaluated. Permeability of the furnace was found to be directly affected by O{sub 2} enrichment level, while at a high PCI rate no correlation between actual change in coke quality and permeability could be established. The future of PCI technology lies in better understanding of relationships between material specifications and blast furnace parameters of which permeability is of prime importance.

  1. Dale Coke: Coke Farm

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01T23:59:59.000Z

    the right place to get compost, or how you get the beststerilized or pasteurized our compost before we put it out.

  2. Living off-grid in an arid environment without a well : can residential and commercial/industrial water harvesting help solve water supply problems?

    SciTech Connect (OSTI)

    Axness, Carl L.; Ferrando, Ana

    2010-08-01T23:59:59.000Z

    Our family of three lives comfortably off-grid without a well in an arid region ({approx}9 in/yr, average). This year we expect to achieve water sustainability with harvested or grey water supporting all of our needs (including a garden and trees), except drinking water (about 7 gallons/week). We discuss our implementation and the implication that for an investment of a few thousand dollars, many single family homes could supply a large portion of their own water needs, significantly reducing municipal water demand. Generally, harvested water is very low in minerals and pollutants, but may need treatment for microbes in order to be potable. This may be addressed via filters, UV light irradiation or through chemical treatment (bleach). Looking further into the possibility of commercial water harvesting from malls, big box stores and factories, we ask whether water harvesting could supply a significant portion of potable water by looking at two cities with water supply problems. We look at the implications of separate municipal water lines for potable and clean non-potable uses. Implications on changes to future building codes are explored.

  3. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

    1997-12-31T23:59:59.000Z

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  4. Commercial Application of Freeze Crystallization

    E-Print Network [OSTI]

    Gorgol, R. G.

    COMMERCIAL APPLICATION OF FREEZE CRYSTALLIZATION ROBERT G. GORGOL, MARKETING MANAGER, HPD INCORPORATED, NAPERVILLE, ILLINOIS ABSTRACT Industrial usc of frcezing for componcnt purification and separation is well understood, but commercial... of purification, but they did understand the water they obtained from ice was potable. RECENT APPLICATIONS Scientists have understood the basic mechanism of the freezing phase change for many years. ID an effort to harness the power of this phenomena...

  5. Use of ethylenediamine to remove hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Marakhovskii, L.F.; Popov, A.A.; Rezunenko, Yu.I.

    1983-01-01T23:59:59.000Z

    The investigations of the equilibrium absorption of H/sub 2/S by an EDA solution which show that the solubility of hydrogen sulfide in ethylenediamine solutions is almost twice that in monoethanolamine solutions. Ethylenediamine may be used as an absorber for thorough removal of H/sub 2/S from coke oven gas in the presence of CO/sub 2/ and HCN. The hydrogen cyanide of coke oven gas, having practically no effect on the equilibrium absorption of H/sub 2/S and CO/sub 2/, may in this case be recovered in the form of ethylenethiourea - a marketable byproduct.

  6. Design, construction and start-up of a modern coke plant

    SciTech Connect (OSTI)

    Williams, A.E.

    1983-05-01T23:59:59.000Z

    The planning and design of a 60-oven, 6m replacement coke battery and associated by-products plant for Republic Steel Corp, Chicago, are described together with the constructional methods used and problems experienced through start-up of the facility. Pushing emission control is achieved with a Mitsubishi-type land-based system and changing emission control with a Nippon Steel combination car and land-based system. A Takahax-Hirohax coke-oven gas desulphurization unit is included in the by-product plant. Construction began in March 1979 with the first push in December 1981.

  7. The use of ethylenediamine to remove hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Marakhovskii, L.F.; Rezunenko, Y.I.; Popov, A.A.

    1983-01-01T23:59:59.000Z

    The investigations of the equilibrium absorption of H/sub 2/S by an EDA solution showed the solubility of hydrogen sulfide in ethylenediamine solutions is almost twice that in monoethanolamine solutions. Ethylenediamine may be used as an absorber for thorough removal of H/sub 2/S from coke oven gas in the presence of CO/sub 2/ and HCN. The hydrogen cyanide of coke oven gas, having practically no effect on the equilibrium absorption of H/sub 2/S and CO/sub 2/, may in this case be used in the form of ethylenethiourea - a marketable byproduct.

  8. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A. [National Steel Corp., Granite City, IL (United States). Granite City Div.

    1995-12-01T23:59:59.000Z

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  9. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect (OSTI)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01T23:59:59.000Z

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  10. Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore Torquatob)

    E-Print Network [OSTI]

    Torquato, Salvatore

    Simulation of diffusion and trapping in digitized heterogeneous media David A. Coke@ and Salvatore of a Brownian particle diffusing among a, digitized lattice-based domain of traps. Following the first, the inverse of the trapping rate, is obtained for a variety of configurations involving digitized spheres

  11. USDA, Departments of Energy and Navy Seek Input from Industry...

    Office of Environmental Management (EM)

    Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

  12. Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant

    SciTech Connect (OSTI)

    Not Available

    1990-04-24T23:59:59.000Z

    Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

  13. Accommodation & Accommodation & Commercial Services

    E-Print Network [OSTI]

    Oakley, Jeremy

    Yorkshire Water. Coke CCE have one of the biggest bottling plants in the world over near Wakefield of million litres of Yorkshire water each day and you get a product made less than 2 weeks ago Eggs - all Juice Coffee: As you would expect, it is very difficult to grow coffee beans in Yorkshire, however

  14. The Commercialization of Microfinance: Efficiency or Exploitation?

    E-Print Network [OSTI]

    Carrillo, Ian Robert

    2009-12-18T23:59:59.000Z

    This thesis seeks to analyze the commercialized developments of the microfinance industry in Mexico. Additionally, I will trace the history of poverty and inequality in Mexico, with an emphasis on urbanization and the ...

  15. Tampa Electric- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Tampa Electric offers a variety of incentives for commercial and industrial customers to increase the efficiency of eligible facilities. Tampa Electric also offers a free energy audit to non...

  16. West Penn Power SEF Commercial Loan Program

    Broader source: Energy.gov [DOE]

    The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn m...

  17. 2014-05-08 Issuance: Energy Conservation Standards for Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    solely as a means to facilitate the public's access to this document. 2014-05-08 Energy Conservation Standards for Commercial and Industrial Electric Motors; Final Rule More...

  18. Xcel Energy (Electric)- Commercial Energy Efficiency Rebate Program (New Mexico)

    Broader source: Energy.gov [DOE]

    Xcel Energy offers a variety of incentives to commercial and industrial customers in the New Mexico service territory. Rebates are available for central air conditioning systems, heat pumps,...

  19. Lansing Board of Water & Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water & Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  20. Ames Electric Department- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The rebate programs available include: The Appliance Rebate...

  1. Johnson County REMC- Commercial Energy Efficiency Rebate Program (Indiana)

    Broader source: Energy.gov [DOE]

    Johnson County REMC offers rebates to commercial and industrial customers who install or replace new motors, variable frequency drives, air conditioners, heat pump systems and lighting equipment....

  2. 2014-01-24 Issuance: Energy Conservation Standards for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24 Issuance: Energy Conservation Standards for Commercial and Industrial Air Compressors; Notice of Public Meeting and Availability of the Framework Document 2014-01-24 Issuance:...

  3. El Paso Electric Company- Small Business and Large Commercial Programs

    Broader source: Energy.gov [DOE]

    El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

  4. Avista Utilities (Electric)- Commercial Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or equipment. Incentive options are available for heating...

  5. Elk River Municipal Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Elk River Municipal Utilities offers a variety of rebates to commercial, industrial, and agricultural customers for the installation of specific energy efficient equipment. Rebates are available...

  6. Clark Public Utilities- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Clark Public Utilities (CPU) offers a variety of energy efficiency rebates and services to help commercial and industrial customers save energy in existing and new facilities. Clark Public...

  7. ISSUANCE 2015-04-21: Energy Conservation Standards for Commercial...

    Energy Savers [EERE]

    Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools ISSUANCE 2015-04-21: Energy Conservation Standards...

  8. Chicopee Electric Light- Commercial Energy Efficiency Rebate Program (Massachusetts)

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue energy saving measures and install energy...

  9. Nebraska Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Nebraska Public Power District offers multiple rebates for commercial and industrial customers to save energy in eligible facilities. Rebates are available for energy efficient lighting, HVAC...

  10. El Paso Electric Company- Small Business and Commercial Program

    Broader source: Energy.gov [DOE]

    El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

  11. MassSAVE (Electric)- Commercial New Construction Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  12. Black Hills Energy (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Black Hills Energy also offers the custom rebate program to commercial and industrial customers for projects that reduce energy usage. Eligible projects include chillers, unitary HVAC equipment,...

  13. Cedarburg Light and Water Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

  14. Modesto Irrigation District- Commercial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Business New Construction Rebate Program is available to commercial, industrial, or agricultural customers that presently or will receive electric service from MID. Accounts billed on FL...

  15. Modesto Irrigation District- Custom Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Custom Rebate Program is available to larger commercial, industrial or agricultural customers that replace existing equipment or systems with high efficiency equipment.  To be eligible...

  16. Black Hills Energy (Gas)- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Black Hills Energy offers commercial and industrial customers incentives to encourage energy efficiency in eligible businesses. Prescriptive rebates are available for furnace and boiler...

  17. Democratizing commercial real estate investing : the impact of the JOBS Act and crowdfunding on the commercial real estate market

    E-Print Network [OSTI]

    Burgett, Bonnie L. (Bonnie Leigh)

    2013-01-01T23:59:59.000Z

    This thesis systematically evaluates how rapid developments in the nascent crowdfunding industry, combined with recent regulatory changes, will impact the commercial real estate markets. The phenomenon of crowdfunding, ...

  18. Commercial and Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    '''''Note: The deadline for the most-recent round of funding under this program, which offered a total of $1.8 million in grants, was June 7, 2013. This summary is provided for reference only....

  19. Dereck, Shockley, Xcel Energy's Commercial - Industrial Programs

    Broader source: Energy.gov (indexed) [DOE]

    green-pricing program in USA No.5 in solar capacity uOne of largest photovoltaic systems and growing - 8.2 megawatts uSolar*Rewards - 7,146 solar systems,...

  20. NYSEG (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment that pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  1. NYSEG (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  2. Peoples Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Chicagoland Natural Gas Savings Program is funded by customers of Peoples Gas, through a line item on the bill called the Enhanced Efficiency Program. The Program is guided by Peoples Gas, the...

  3. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  4. Massachusetts Municipal Commercial Industrial Incentive Program

    Broader source: Energy.gov [DOE]

    Certain municipal utilities in Massachusetts, in cooperation with Massachusetts Municipal Wholesale Electric Company ([http://www.mmwec.org/ MMWEC]), have begun offering energy efficiency...

  5. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptemberState Nuclear Profiles

  6. Commercial and Industrial Solar Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

  7. Entity State Ownership Residential Commercial Industrial Transportation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an IndicatorNatural GasRevenue for

  8. State Commercial Electric Power Residential Industrial Transportation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights ď‚·2008Deutsche Bank|P.10:6:69

  9. Rank Residential Sector Commercial Sector Industrial Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 Weekly7a.7. Petroleum and3.

  10. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect (OSTI)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15T23:59:59.000Z

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  11. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31T23:59:59.000Z

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  12. Choosing a coke-oven gas desulfurization system: a review of current technology

    SciTech Connect (OSTI)

    Lynch, P.A.

    1982-12-01T23:59:59.000Z

    Installation of coke-oven gas desulphurizing systems is primarily the result of air pollution control regulations. Although not currently profitable, operating costs can be minimized by choosing the technology most suited to the particular application. The Stretford Holmes, Takahax/Hirohax, Koppers Vacuum Carbonate, Sulfiban and Dravo/Still processes are discussed, together with criteria for economic analysis based on technical and by-product market evaluations.

  13. Industrial Plate Exchangers Heat Recovery and Fouling

    E-Print Network [OSTI]

    Cross, P. H.

    1981-01-01T23:59:59.000Z

    (still)for separation of light oil from the wash oil,which is then returned to absorber tower.The debenzolised wash 0 0 oil is cooled indirectly to 20 C/30 C before returning to the absorber tower. This is toprevent condensation of water from the gas... Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 -- c.O.G. LIGHT OIL SCRUBBER COKE OVEN GAS(C.O.G,J BENZINE COOLING WATER BENZOLISED ~WASH OILSTRIPPER CONVENTIONAL LIGHT OIL RECOVERY PLANT DEBENZOLISED WASH OIL / COOLING WATER...

  14. Method of washing hydrogen sulfide from coke oven gas by the ammonium sulfide method

    SciTech Connect (OSTI)

    Ritter, H.

    1985-05-21T23:59:59.000Z

    An improved coke oven gas washing process for removing hydrogen sulfide is proposed wherein the coke oven gas is treated in a hydrogen sulfide scrubber by counterflow with an aqueous ammonia wash water. A stream of aqueous weak ammonia liquor is cooled and sprayed through nozzles in the mid-region of the hydrogen sulfide scrubber. A quantity of aqueous ammonia liquor, corresponding to the quantity which is sprayed through the said nozzles, is withdrawn from the hydrogen sulfide scrubber at a level below the nozzles and is introduced into the top of the said hydrogen sulfide scrubber. Ammonia vapor released at the nozzles has a higher partial pressure than the ammonia partial pressure of the coke oven gas in the region of the nozzle. The aqueous ammonia liquor from the deacidifier is the source of the cooled aqueous ammonia liquor which is introduced through the nozzles. A portion of the aqueous ammonia liquor from the deacidifier is introduced directly into the top of the hydrogen sulfide scrubber as a portion of the required aqueous ammonia wash water.

  15. Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel

    SciTech Connect (OSTI)

    Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W. [Geneva Steel, Provo, UT (United States)

    1996-02-01T23:59:59.000Z

    The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

  16. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    SciTech Connect (OSTI)

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

    1991-06-01T23:59:59.000Z

    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

  17. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  18. An example of alkalization of SiO{sub 2} in a blast furnace coke

    SciTech Connect (OSTI)

    S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

    2007-09-15T23:59:59.000Z

    Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

  19. Usiing NovoCOS cleaning equipment in repairing the furnace-chamber lining in coke batteries 4 & 5 at OAO Koks

    SciTech Connect (OSTI)

    S.G. Protasov; R. Linden; A. Gross [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    Experience with a new surface-preparation technology for the ceramic resurfacing of the refractory furnace-chamber lining in coke batteries is described.

  20. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  1. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  2. Experience and results of new heating control system of coke oven batteries at Rautaruukki Oy Raahe Steel

    SciTech Connect (OSTI)

    Swanljung, J.; Palmu, P. [Rautaruukki Oy Raahe Steel (Finland)

    1997-12-31T23:59:59.000Z

    The latest development and results of the heating control system at Raahe Steel are presented in this paper. From the beginning of coke production in Rautaruukki Oy Raahe Steel (October 1987) the heating control systems have been developed. During the first stage of development work at the coking plant (from year 1987 to 1992), when only the first coke oven battery consisting of 35 ovens was in production, the main progress was in the field of process monitoring. After commissioning of the second stage of the coking plant (November 1992), the development of the new heating control model was started. Target of the project was to develop a dynamic control system which guides the heating of batteries through the various process conditions. Development work took three years and the heating control system was commissioned in the year 1995. Principle of the second generation system is an energy balance calculation, coke end temperature determination and dynamic oven scheduling system. The control is based on simultaneous feedforward and feedback control. The fuzzy logic components were added after about one year experience.

  3. Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001

    SciTech Connect (OSTI)

    Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

    2009-09-15T23:59:59.000Z

    This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

  4. COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments

    E-Print Network [OSTI]

    Waliser, Duane E.

    11/13/2013 COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments The Obama Administration's ambitious commercial space program, which has bipartisan support in Congress, has enabled NASA's successful partnership with two American companies now able to resupply the station - SpaceX and Orbital

  5. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

  6. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  7. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect (OSTI)

    Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

    1993-01-01T23:59:59.000Z

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  8. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  9. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    SciTech Connect (OSTI)

    Goshe, A.J.; Nodianos, M.J. [Wheeling-Pittsburgh Steel Corp., Follansbee, WV (United States)

    1995-12-01T23:59:59.000Z

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  10. Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine

    E-Print Network [OSTI]

    Yarbrough, Charles Michael

    1984-01-01T23:59:59.000Z

    J/'CA] volume rate of change [m /'CA) ? apparent rate of heat release [kJ/'CA] fuel air ratio [kg/kg] heat transfer coefficient [kJ/m 'K sec] ratio of specific heats connecting rod length [m] fuel lower heating value [kJ/kg] total mass of combustion gas...OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf...

  11. Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine

    SciTech Connect (OSTI)

    Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

    2007-03-15T23:59:59.000Z

    The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

  12. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications Emerson Climate Technologies Core Offerings & Key Brands Residential Heating & Air Conditioning Commercial

  13. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2008-03-15T23:59:59.000Z

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  14. Method of operating a coal predrying and heating plant in connection with a coking plant

    SciTech Connect (OSTI)

    Bocsanczy, J.; Knappstein, J.; Stalherm, D.

    1981-01-27T23:59:59.000Z

    A method of preparing and delivering coal to a coking plant comprises conveying the coal to the plant on a moving conveyor while an inert combustion gas is directed over the coal being conveyed. The combustion gas is generated by burning a fuel with air to produce a substantially inert combustion gas which is passed over the coal during its conveying and, thereafter, passed through a cooler for removing the moisture which has been picked up from the coal by the gas. The heating and predrying inert gases are advantageously generated by the direct combustion of air and fuel which are passed through flash dryer tubes and one or more separate separator systems and then delivered into a conveyor pipeline through which the coal is conveyed. A portion of the gases which are generated are also directed with a return gas to a filter for removal of any coal therefrom and to a cooler for removing the moisture picked up from the coal and then back into the stream for delivery to the conveyor for the coal. The inert gas may also be a gas which is circulated in heat exchange relationship with combustion gases which are generated by a combustion of the coal itself. In such a system, a portion of the combustion gases generated are also passed through a condenser or cooler and the cooled and dried waste gases are circulated over the coal being conveyed to the coking oven or its bunkers.

  15. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  16. Planning a Commercial Fuel Cell Installation

    E-Print Network [OSTI]

    Bowden, J. R.; May, G. W.

    PLANNING A COMMERCIAL FUEL CELL INSTALLATION J. R.Bowden & G. W. May Bechtel National, Inc. San Francisco, California Fuel cell power plants represent a unique opportunity for industrial users to combine on-site electricity generation... and heat recovery with high efficiencies and no significant environmental releases. Thus in some circumstances, the fuel cell may be the best option for industrial cogeneration in locations with environmental restrictions. Because of the modular...

  17. Petroleum Coke

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent)82,516 82,971 84,053 85,190

  18. Petroleum Coke

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYearPricePrice (Percent)theCity

  19. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking

    SciTech Connect (OSTI)

    Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

    2007-09-15T23:59:59.000Z

    1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

  20. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29T23:59:59.000Z

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  1. Research in Industrial Combustion Systems - Current and Future R&D

    E-Print Network [OSTI]

    Rebello, W. J.; Keller, J. G.

    combustor with its high pressure gain is attractive for use in the process to make Portland cement where energy is needed to heat the raw materials (coal or petroleum coke) and additional power is required for particle separation (electricity.... INTRODUCTION The total energy consumption in the U.S. in 1977 was about 76 Quads (quadrillion BTU). Of this amount, about 28 Quads were consumed by the industrial sector in the form of coal, petroleum, natural gas and electri city. The manufacturing...

  2. 2013 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAge Refining Air BPA2.D (2001)Commercial

  3. Resource assessment/commercialization planning meeting

    SciTech Connect (OSTI)

    None

    1980-01-24T23:59:59.000Z

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  4. EnergyUnited- Commercial Energy Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Commercial and industrial members who upgrade to energy-efficient light bulbs which meet EnergyUnited's standards are eligible for a prescriptive, "per unit" rebate. The cooperative will provide a...

  5. Seattle City Light- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Seattle City Light offers a variety of rebates to commercial and industrial customers through the [http://www.seattle.gov/light/conserve/business/cv5_fi.htm Energy Smart Services Program]. Energy...

  6. NorthWestern Energy (Electric)- Commercial Energy Efficiency Rebate Program (Montana)

    Broader source: Energy.gov [DOE]

    NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. This includes lighting, heating, irrigators,...

  7. MassSAVE (Electric)- Commercial New Construction/Major Renovation Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  8. Lansing Board of Water and Light- Hometown Energy Savers Commercial Rebates

    Broader source: Energy.gov [DOE]

    Franklin Energy Services and the Lansing Board of Water and Light (LBWL) partner together to offer the Hometown Energy Savers® Commercial and Industrial Energy Efficiency Rebate Program. Eligible...

  9. Summing up of discussion on improvement trends in coke-oven gas purification flowsheets

    SciTech Connect (OSTI)

    Zemblevskii, K.K.

    1983-01-01T23:59:59.000Z

    Reference is made to a previously published article that included flowsheets for purification of coke-oven gas. It is concluded that the flowsheets for a process using arsenic-soda and vacuum-carbonate methods of sulfur removal in which the gas is cooled to 303-308/sup 0/K are seriously in error. Schemes involving minor refrigeration, sulfur removal by the circulating ammonia method and ammonia recovery as ammonia liquor are seen as promising but in need of further improvement. One scheme discussed (the VUKhIN scheme) involves ammonia recovery by the circulating phosphate method and sulfur removal by the circulating ammonia method is seen as a replacement for the minor refrigeration method. Since liquid ammonia consumption in agriculture is continually increasing, schemes that result in production of liquid ammonia rather than ammonia liquor should be seriously considered.

  10. Method of recovering sulfur from the hydrogen sulfide contained in coke oven gases

    SciTech Connect (OSTI)

    Laufhutte, D.

    1985-04-30T23:59:59.000Z

    Ammonia and hydrogen sulfide are washed out of the coke oven gas and stripped from the wash liquor in the form of gases and fumes or vapors. The ammonia is decomposed in a nickel catalyzer and a small part of the decomposition gases is supplied directly to a combustion furnace, while the larger part of the combustion gases is first cooled and freed from condensate, and only then supplied to the combustion furnace. In the combustion furnace, the proportion of H/sub 2/S/SO/sub 2/ needed for the Claus process is adjusted by a partial combustion of the decomposition gases. The gases from the combustion furnace are then processed in the Claus plant to sulfur.

  11. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  12. Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate

    SciTech Connect (OSTI)

    Tim Mansfeldt; Heike Leyer; Kurt Barmettler; Ruben Kretzschmar [Ruhr-University Bochum, Bochum (Germany). Soil Science and Soil Ecology Group, Faculty of Geosciences

    2004-07-01T23:59:59.000Z

    Soils in the vicinity of manufactured gas plants and coal coking plants are often highly contaminated with cyanides in the form of the compound Prussian blue. The objective of this study was to investigate the influence of citrate on the leaching of iron-cyanide complexes from an extremely acidic soil (pH 2.3) developed from gas purifier waste near a former coking plant. The soil contained 63 g kg{sup -1} CN, 148 g kg{sup -1} Fe, 123 g kg{sup -1} S, and 222 g kg{sup -1} total C. Analysis of the soil by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy revealed the presence of Prussian blue, gypsum, elemental sulfur, jarosite, and hematite. For column leaching experiments, air-dried soil was mixed with purified cristabolite sand at a ratio of 1:3 and packed into chromatography columns. The soil was leached with dilute (0.1 or 1 mM) CaCl{sub 2} solutions and the effluent was collected and analyzed for total and dissolved CN, Ca, Fe, SO{sub 4}, pH, and pe. In the absence of citrate, the total dissolved CN concentration in the effluent was always below current drinking water limits (< 1.92 {mu}M), indicating low leaching potential. Adding citrate at a concentration of 1 mM had little effect on the CN concentrations in the column effluent. Addition of 10 or 100 mM citrate to the influent solution resulted in strong increases in dissolved and colloidal CN concentrations in the effluent.

  13. Energy Management Services for the Industrial Market Segment at TVA

    E-Print Network [OSTI]

    Hamby, R. E.; Knight, V. R.

    1984-01-01T23:59:59.000Z

    The Tennessee Valley Authority has provided energy management surveys (EMSs) to commercial and industrial power consumers since 1979. A significant number of EMSs have been performed to a variety of industry types and sizes. As in all developmental...

  14. Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

  15. A Blueprint for Forest Products Industry

    E-Print Network [OSTI]

    Major Model Components - Resource Assessment - Industry Structure - Product/Market Strategy - Economic Impacts Workforce Training Network Formation Resource Assessment Government Support Financing Economic Development Technology Profitability Resource Assessment Current & projected Commercial species Lesser-used species

  16. NY-Sun Commerical/ Industrial Incentive Program

    Broader source: Energy.gov [DOE]

    New York State Energy Research and Development Authority (NYSERDA) through NY-Sun Commercial/Industrial Incentive Program (PON 3082) provides incentives for installation of non-residential new grid...

  17. Industrial Conservation Technology Energy Savings Monitoring System

    E-Print Network [OSTI]

    Crowell, J. J.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

  18. Cutting Industrial Solar System Costs in Half

    E-Print Network [OSTI]

    Niess, R. C.; Weinstein, A.

    1982-01-01T23:59:59.000Z

    While there are technical, social, environmental and institutional barriers to the widespread use of solar systems, the principle barrier is economic. For commercial and industrial firms to turn to this alternate energy source, the first cost must...

  19. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    E-Print Network [OSTI]

    Fridley, David

    2014-01-01T23:59:59.000Z

    the slowing growth in coking coal production after 2005,the relative share of coking coal has continued to declinein domestic production of coking coal can be linked to the

  20. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    of medium / poor coking coals (i.e. Partial Briquetting andNevertheless, the Indian non-coking coals, suitable for SSI,blast furnaces require coking coal that is mostly imported.

  1. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 1, January 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

  2. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  3. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  4. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  5. Energy Efficiency Improvement by Measurement and Control: A Case Study of Reheating Furnaces in the Steel Industry

    E-Print Network [OSTI]

    Martensson, A.

    , April 22-23, 1992 Table I. Furnace energy use in Sweden, 1989. Source: Jemkontoret, Stockholm, Sweden. Fuel Energy use a [GWh) ([10 9 Btu)) aI 1680 (5732) Propane 1272 (4340) Natural gas 48 (164) Coke oven gas 400 (1365) Electricity (induction...ENERGY EFFICIENCY IMPROVEMENT BY MEASUREMENT AND CONTROL A case study of reheating furnaces in the steel industry Anders Mlirtensson Department of Environmental and Energy Systems Studies Lund University S-22362 Lund Sweden ABSTRACT...

  6. Commercial New Construction

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers support to encourage energy efficient design for new construction. Efficiency Vermont will provide support for new commercial buildings, including technical assistance at...

  7. Commercial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heaters. The use of wind energy is projected based on an estimate of existing distributed wind turbines and the potential endogenous penetration of wind turbines in the commercial...

  8. Electric Utility Industrial DSM and M&V Program 

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  9. Electric Utility Industrial DSM and M&V Program

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  10. SOLOX coke-oven gas desulfurization ppm levels -- No toxic waste

    SciTech Connect (OSTI)

    Platts, M. (Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)); Tippmer, K. (Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany))

    1994-09-01T23:59:59.000Z

    For sulfur removal from coke-oven gas, the reduction/oxidation processes such as Stretford are the most effective, capable of removing the H[sub 2]S down to ppm levels. However, these processes have, in the past, suffered from ecological problems with secondary pollutant formation resulting from side reactions with HCN and O[sub 2]. The SOLOX gas desulfurization system is a development of the Stretford process in which the toxic effluent problems are eliminated by installing a salt decomposition process operating according to the liquid-phase hydrolysis principle. In this process, the gaseous hydrolysis products H[sub 2]S, NH[sub 3] and CO[sub 2] are returned to the untreated gas, and the regenerated solution is recycled to the absorption process. The blowdown from the absorption circuit is fed into a tube reactor where the hydrolysis process takes place. The toxic salts react with water, producing as reaction products the gases H[sub 2]S, NH[sub 3] and CO[sub 2], and the nontoxic salt Na[sub 2]SO[sub 4]. From the hydrolysis reactor the liquid stream flows into a fractionating crystallization plant. This plant produces a recycle stream of regenerated absorption solution and a second stream containing most of the Na[sub 2]SO[sub 4]. This second stream comprises the net plant waste and can be disposed of with the excess ammonia liquor or sprayed onto the coal.

  11. Effects of HyperCoal addition on coke strength and thermoplasticity of coal blends

    SciTech Connect (OSTI)

    Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

    2008-05-15T23:59:59.000Z

    Ashless coal, also known as HyperCoal (HPC), was produced by thermal extraction of three coals of different ranks (Gregory caking coal, Warkworth steam coal, and Pasir subbituminous coal) with 1-methylnaphthalene (1-MN) at 360, 380, and 400{sup o}C. The effects of blending these HPCs into standard coal blends were investigated. Blending HPCs as 5-10% of a standard blend (Kouryusho:Goonyella:K9) enhanced the thermoplasticity over a wide temperature range. For blends made with the Pasir-HPC, produced from a noncaking coal, increasing the extraction temperature from 360 to 400{sup o}C increased the thermoplasticity significantly. Blends containing Warkworth-HPC, produced from a slightly caking coal, had a higher tensile strength than the standard blend in semicoke strength tests. The addition of 10% Pasir-HPC, extracted at 400{sup o}C, increased the tensile strength of the semicokes to the same degree as those made with Gregory-HPC. Furthermore, all HPC blends had a higher tensile strength and smaller weight loss during carbonization. These results suggest that the HPC became integrated into the coke matrix, interacting strongly with the other raw coals. 14 refs., 11 figs., 1 tab.

  12. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect (OSTI)

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01T23:59:59.000Z

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  13. Algae Biodiesel: Commercialization

    E-Print Network [OSTI]

    Tullos, Desiree

    Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center conservation and biomonitoring · Algae biodiesel is largest CEHMM project #12;Project Overview: The Missing Piece of the Biodiesel Puzzle Project Overview: The Missing Piece of the Biodiesel Puzzle · Began

  14. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  15. Nanotechnology Commercialization in Oregon

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

  16. Commercial Fertilizers and Commercial Poisonous Insecticides.

    E-Print Network [OSTI]

    Harrington, H. H. (Henry Hill)

    1903-01-01T23:59:59.000Z

    - organized. They are all most excellent fertilizers. The amount of potash is quite exceptional. This can probably be explained by the nature of the vegetation on which they graze. Barnyard Manure. The sample below was taken from a car-lot shipped... chemical elements of commercial fertilizers, barnyard manure still has an agricultural value difficult to explain, possibly due to the number of microscopic organisms which it contains, and to par- . ticular combinations which it sets up in the soil...

  17. Innovative coke oven gas cleaning system for retrofit applications. Quarterly technical progress report No. 4, October 1, 1990 to December 31, 1990

    SciTech Connect (OSTI)

    Kwasnoski, D.

    1993-10-22T23:59:59.000Z

    Work on this coke oven gas cleaning demonstration project (CCT-II) this quarter has been focused on Phase IIB tasks, and include engineering, procurement, construction, and training. Additionally, plans for changes in the operating schedule of the coke plant that affect the demonstration project are described. Engineering efforts are nearly complete. Remaining to be finalized is an assessment of electrical heat tracing/insulation needs for pipe lines, assessment of fire protection requirements, and instrument modifications. Procurement of all major equipment items is complete, except for possible additions to fire fighting capabilities. Major focus is on expediting pipe and structural steel to the project site. Civil construction is complete except for minor pads and bases as required for pipe supports, etc. Erection of the hydrogen sulfide and ammonia scrubber vessels is complete. Installation of scrubber vessel internals is underway. A subcontractor has been retained to develop a computerized program for operations and maintenance training for the coke oven gas treatment plant. Recent developments in the coke plant operating plans will result in reductions in the rate of production of coke oven gas to be processed in the demonstration project.

  18. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  19. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  20. IID Energy- Commercial Rebate Program (Commercial Check Me)

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies. Several distinct programs cover general commercial...

  1. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  2. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  3. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  4. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  5. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    effective use of non-coking coal and iron-bearing dust andfrom iron ore and non-coking coal. The process was developedBF production in using non-coking coal as reducing agent and

  6. Development and introduction of methods for extracting hydrogen sulfide and hydrogen cyanide from coke-oven gas

    SciTech Connect (OSTI)

    Litvinenko, M.S.; Zaichenko, V.M.

    1980-01-01T23:59:59.000Z

    The progress between 1933 and the present in desulfurizing coal gas from coke ovens and making use of the by-products to produce sulfuric acid, thioyanates, etc. is described. The vacuum carbonate process and the monoethanolamine method are apparently now preferred, but some plants are still using modified arsenic-soda processes. More recently additional by-products have been thiocyanates (for producing acrylonitrile fiber) and hydrogen xanthanates. The production of other organic sulfur and cyanide compounds has been investigated for use as herbicides, corrosion inhibitors, etc. (LTN)

  7. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  8. High Assurance Aerospace CPS & Implications for the Automotive Industry

    E-Print Network [OSTI]

    Poovendran, Radha

    High Assurance Aerospace CPS & Implications for the Automotive Industry Scott A. Lintelman1 assurance CPS can mutually benefit aerospace and automotive industries. I. INTRODUCTION Commercial aviation]. In the automotive industry, recent trends in intelligent transportation systems can be evidently mapped to e

  9. Review of a Proposed Quarterly Coal Publication

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  10. How Godzilla Ate Pittsburgh: The Long Rise of the Japanese Iron and Steel Industry, 1900–1973

    E-Print Network [OSTI]

    Bernard Elbaum

    2007-01-01T23:59:59.000Z

    poorly endowed as Japan in coking coal and iron ore (WarrenYawata of iron ore for coking coal and the progressive in-

  11. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01T23:59:59.000Z

    from Agriculture Energy Consumption Coal Coke and Otherfrom Industry Energy Consumption Coal Coke and Otherfrom Construction Energy Consumption Coal Coke and Other

  12. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial BuildingCommercial

  13. High-performance commercial building systems

    SciTech Connect (OSTI)

    Selkowitz, Stephen

    2003-10-01T23:59:59.000Z

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

  14. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  15. Coal gasification 2006: roadmap to commercialization

    SciTech Connect (OSTI)

    NONE

    2006-05-15T23:59:59.000Z

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  16. The future steelmaking industry and its technologies

    SciTech Connect (OSTI)

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

    1995-01-01T23:59:59.000Z

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  17. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    geothermal, biomass, small hydro, and biogas) generated awind, solar, geothermal, and small hydro are a growing partas geothermal, biomass and small hydro are predictable and

  18. Con Edison Commercial and Industrial Energy Efficiency Program 

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    ? Con Edison C&I Energy Efficiency Team ? Program Management and Account Executives ? Lockheed Martin Team ? Marketing, Operations, Engineering and Administration ? Market Partner Network ? Con Edison Customers 6 C&I Program: Three Major... Components ? Rebates for Equipment Upgrades ? Performance-based Custom Incentives ? Energy Efficiency Technical Studies 7 8 ? Equipment Rebate Program ? Electric: High Efficiency Lighting, HVAC, Heat Pumps, De-lamping, Controls, Motors, VFD...

  19. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Authority Area Hourly Wind Generation Data for 2009. Folsom,to 4,200 MW with a 20% RPS. Wind generation patterns differResearch Evaluation of Wind Generation, Solar Generation,

  20. Peoples Gas- Commercial and Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    Peoples Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers,...

  1. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    der Sluis, S. M. 2008. Cold Storage of Wind Energy – Nightvariable renewable resources, cold storage set points may be

  2. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Advisory Group. New analysis: SCADA market for water &business/new-analysis-scada-market-for-water- wastewater-to-and Data Acquisition systems (SCADA). SCADA systems have the

  3. AEP Appalachian Power- Commercial and Industrial Rebate Programs (West Virginia)

    Broader source: Energy.gov [DOE]

    Appalachian Power and Wheeling Power are offering prescriptive incentives under the APCo C&I Prescriptive program to facilitate the implementation of cost-effective energy efficiency...

  4. AEP Appalachian Power - Commercial and Industrial Rebate Programs...

    Broader source: Energy.gov (indexed) [DOE]

    150,000 will be reviewed on a case-by-case basis Program Info Start Date 3112011 State West Virginia Program Type Utility Rebate Program Rebate Amount UnitarySplit ACAir...

  5. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  6. Muscatine Power and Water- Commercial and Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Measures must be purchased during a given calendar year in order to qualify for the incentives offered during that year. Applications for measures taken during previous years must be submitted by...

  7. RG&E (Gas)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficiency equipment that pay a natural gas Systems Benefits Charge (SBC). Both prescriptive rebates and custom...

  8. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    has been the dominant renewable resource in California’sIntegration of Renewable Resources: Transmission andIntermittent renewable resources, variable generation,

  9. RG&E (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  10. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    economic of the thermal energy storage systems to enhanceand Electric Company. Thermal Energy Storage Strategies for22 Thermal Energy Storage Systems (

  11. North Shore Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    North Shore Gas offers the Chicagoland Natural Gas Savings Program to help non-residential customers purchase energy efficient equipment. Rebates are available on energy efficient furnaces, boilers...

  12. AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Air Compressors: 194.50kW and 0.0750kWh saved Duct Sealing: 188.40kW and 0.0471 Air...

  13. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    significant variation in wind generator output. The day-to-of $20/MWh allows wind generators to keep on producing and

  14. Variability in Automated Responses of Commercial Buildings and Industrial

    E-Print Network [OSTI]

    for buildings to change their electricity consumption patterns through both "shifts" in energy use and load to Dynamic Electricity Prices Johanna L. Mathieu, Duncan S. Callaway, Sila Kiliccote Environmental Energy was prepared as an account of work sponsored by the United States Government. While this document is believed

  15. Loveland Water & Power- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric...

  16. Longmont Power & Communications- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Longmont Power & Communications, in conjunction with the Platte River Power Authority provides businesses incentives for new construction projects and existing building retrofits. The Electric...

  17. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    2009). Concentrating solar plants can store thermal energybe available….Solar and wind plant profiles when consideredand cloudy day for a solar PV plant . Figure 3: Solar PV

  18. Otter Tail Power Company - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    customers for the installation of high-efficiency equipment upgrades. See the program web site for applicability and maximum amounts for certain technologies. Under Minnesota's...

  19. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    reactive chemicals. Scheduling: Facility processes that are scheduled can be potentially rescheduled to times of lower electricity

  20. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Grid in accordance with WECC standards. Operating Reserves 5required to meet NERC and WECC reliability standards. Theseand Operator (CAISO 2010c). WECC Standard BAL-STD-002-0 –

  1. Duke Energy (Electric)- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Due to new federal standards, Duke Enegry Ohio will cease to offer incentives for most standard T8s and all T5 fixtures replacing T12 fixtures. Contact Duke Energy Ohio for additional eligiblilty...

  2. DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    To participate, customers should first verify that a proposed project is eligible, and wait to begin work until they receive a reservation letter from DTE Energy’s Your Energy Savings Team. The...

  3. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Economic Dispatch RTUC – Real-Time Unit Dispatch Commitment STUC – Short Term Unit Commitment TES – Thermal Energy Storage

  4. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    TES (left) and partial storage (right) load chiller onentire cooling load during peak period. A partial storage

  5. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    solar, geothermal, and small hydro are a growing part ofgeothermal, biomass and small hydro are predictable and havegeothermal, biomass, small hydro, and biogas) generated a

  6. Duquesne Light Company- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

     Duquesne Light has partnered with conservation service providers to work with specific segments of customers. These conservation service providers can assist customers with energy audits, project...

  7. Wabash Valley Power Association- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Michigan, Missouri, Ohio and Illinois...

  8. DTE Energy (Gas)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Any purchaser of a qualifying energy efficiency measure in DTE's service area can participate in the program as long as the measure is installed in a business facility. The DTE Energy program will...

  9. Riverland Energy Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Riverland Energy Cooperative offers a number of rebates for the purchase and installation of efficient lighting fixtures, air conditioners, heat pumps, water heaters, central electric thermal...

  10. Fairmont Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  11. Wells Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  12. Preston Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  13. Grand Marais PUC- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

  14. Litchfield Public Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA])is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally...

  15. Mora Municipal Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  16. Lake City Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  17. Princeton PUC- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency ([http://www.smmpa.com SMMPA]) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit,...

  18. Waseca Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

  19. North Shore Gas- Commercial and Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    '''Contact North Shore Gas for information on bonus equipment rebates which are only available until April 30, 2013.'''

  20. Energy Efficiency Program for Certain Commercial and Industrial Equipment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen andResiliencyDepartment of Energy Efficiency

  1. Unitil (Electric) - Commercial and Industrial Energy Efficiency Programs |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-JapanHighly Enriched Uranium

  2. Thermal Storage Applications for Commercial/Industrial Facilities 

    E-Print Network [OSTI]

    Knipp, R. L.

    1986-01-01T23:59:59.000Z

    , if extremely low temperatures are necessary, the SEC0 system is applicable. But 2 for normal refr.igerated warehouse temperature ranges of -10?F, the effic.iency disadvantage would make this system impractical at today's energy costs. However, energy rates...

  3. PEPCO- Commercial and Industrial Energy Efficiency Incentives Program

    Broader source: Energy.gov [DOE]

    Pepco provides a range of rebates for prescriptive measures in existing and new facilities. Rebates help offset the costs of improvements to HVAC, chiller systems, lighting, lighting controls,...

  4. Commercial and Industrial Base Intermittent Resource Management Pilot

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    for excess renewable generation. Flexible loads with storageFlexible end-use resources can provide the storage and fast response needed to integrate variable generation.generation can create integration problems for system operators, it also creates market opportunities for new resources such as flexible

  5. Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT8.pdf MoreRevisedProgramCostFWP brochure

  6. Calistoga Private and Commercial Industrial Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas RecoveryInformationTransmission Permitting atFacility

  7. Otter Tail Power Company - Commercial & Industrial Energy Efficiency Grant

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof EnergyOokieSolarWorld received

  8. Otter Tail Power Company - Commercial & Industrial Energy Efficiency Rebate

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof EnergyOokieSolarWorld receivedProgram |

  9. ITP Industrial Materials: Development and Commercialization of Alternative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRS Issuesof the U.S.Profile:

  10. Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OF CONTENTS 1of:MicrosoftFinancing

  11. Startup and initial operation of a DFGD and pulse jet fabric filter system on Cokenergy's Indiana Harbor coke oven off gas system

    SciTech Connect (OSTI)

    Morris, W.J.; Gansley, R.R.; Schaddell, J.G.

    1999-07-01T23:59:59.000Z

    This paper describes the design, initial operation and performance testing of a Dry Flue Gas Desulfurization (DFGD) and Modular Pulse Jet Fabric Filter (MPJFF) system installed at Cokenergy's site in East Chicago, Indiana. The combined flue gas from the sixteen (16) waste heat recovery boilers is processed by the system to control emissions of sulfur dioxide and particulates. These boilers recover energy from coke oven off gas from Indiana Harbor Coke Company's coke batteries. The DFGD system consists of two 100% capacity absorbers. Each absorber vessel uses a single direct drive rotary atomizer to disperse the lime slurry for SO{sub 2} control. The MPJFF consists of thirty two (32) modules arranged in twin sixteen-compartment (16) units. The initial start up of the DFGD/MPJFF posed special operational issues due to the low initial gas flows through the system as the four coke oven batteries were cured and put in service for the first time. This occurred at approximately monthly intervals beginning in March 1998. A plan was implemented to perform a staged startup of the DFGD and MPJFF to coincide with the staged start up of the coke batteries and waste heat boilers. Operational issues that are currently being addressed include reliability of byproduct removal. Performance testing was conducted in August and September 1998 at the inlet of the system and the outlet stack. During these tests, particulate, SO{sub 2}, SO{sub 3}, and HCI emissions were measured simultaneously at the common DFGD inlet duct and the outlet stack. Measurements were also taken for average lime, water, and power consumption during the tests as well as system pressure losses. These results showed that all guarantee parameters were achieved during the test periods. The initial operation and performance testing are described in this paper.

  12. Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy

    SciTech Connect (OSTI)

    S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

    2009-03-15T23:59:59.000Z

    Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

  13. A Feasibility Study of Fuel Cell Cogeneration in Industry

    E-Print Network [OSTI]

    Phelps, S. B.; Kissock, J. K.

    Up until now, most of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic analysis...

  14. Gas Separation Membrane Use in the Refinery and Petrochemical Industries

    E-Print Network [OSTI]

    Vari, J.

    Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

  15. ITP Industrial Distributed Energy: CHP Market Potential in the...

    Broader source: Energy.gov (indexed) [DOE]

    2% of the CHP capacity is made up of Alaskan Village power systems. Pulp & Paper 34% Refinery 11% Wood Products 8% Food 36% Village Power 2% Commercial 6% Other Industrial 3%...

  16. absorption refrigeracion industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption refrigeracion industrial First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Commercialization...

  17. Fusion for Neutrons as a Necessary Step to Commercial Fusion

    E-Print Network [OSTI]

    reactors are limited Fast reactors as the basis for future large-scale nuclear industry with acceptable1 Fusion for Neutrons as a Necessary Step to Commercial Fusion B. Kuteev Head of Fusion Reactor MWe #12; Fast track to Fusion for Energy is defined: ITER ~2020 DEMO ~2035 FPP ~2050 New products

  18. Report on the WORKSHOP ON COMMERCIALIZATION OF BLACK LIQUOR

    E-Print Network [OSTI]

    Report on the WORKSHOP ON COMMERCIALIZATION OF BLACK LIQUOR AND BIOMASS GASIFICATION FOR GAS or industry cycle (BGCC) technologies for pulp and paper co~mitm~nt to the develo~ment of gasification systems (existing) technology with an greenhouse gas emissions mitigation measures. emerging (gasification

  19. CoServ Electric Cooperative- Commercial Energy Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom...

  20. Think inside the box : an analysis of converting commercial property into self storage facilities

    E-Print Network [OSTI]

    McKinley, Sean Jeffrey

    2006-01-01T23:59:59.000Z

    The modern self storage facility is a multi-tenant operating business that reflects the needs of residential and commercial customers. The industry has evolved from a transition asset to a property type that adheres to ...

  1. Determining appropriate levels of robotic automation in commercial aircraft nacelle assembly

    E-Print Network [OSTI]

    Durham, Bryce J. (Bryce James)

    2014-01-01T23:59:59.000Z

    This thesis examines the application of reconfigurable industrial robotics in the assembly of the engine nacelle inlet for a commercial aircraft. In addition to addressing the achievable level of automation, this thesis ...

  2. Symbiotic strategies in enterprise ecology : modeling commercial aviation as an Enterprise of Enterprises

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2007-01-01T23:59:59.000Z

    We investigate the effectiveness of strategic alternatives that are designed to dampen the cyclicality manifest in the commercial aviation (CA)-related industries. In this research we introduce the conceptual framework of ...

  3. The economics of photovoltaics in the commercial, institutional and industrical sectors

    E-Print Network [OSTI]

    Cox, Alan J.

    1980-01-01T23:59:59.000Z

    This paper describes the application of a model which computes system break-even capital costs, array break-even capital costs and profits from photovoltaic investments in the industrial, commercial and institutional ...

  4. New Jersey Natural Gas- SAVEGREEN Commercial On-Bill Financing Program

    Broader source: Energy.gov [DOE]

    New Jersey Natural Gas (NJNG) under SAVEGREEN Project offers 0% APR On-Bill Repayment Program (OBRP) for eligible small to mid-sized commercial, industrial, and local governmental buildings in its...

  5. Encouraging Industrial Demonstrations of Fuel Cell Applications

    E-Print Network [OSTI]

    Anderson, J. M.

    ENCOURAGING INDUSTRIAL DEMONSTRATIONS OF FUEL CELL APPLICATIONS Joseph M~ Anderson, P.E. INDUSTRIAL FUEL CELL ASSOCIATION Lake Charles, Louisiana ABSTRACT Fuel Cell technology has advanced from a space-age curiosity to near commercial status... within the last few years. Both the electric and the gas utilities in the United States have conducted ambitious programs to oemonstrate the practicality of fuel cell power plants in a number of applications. The Japanese have been equally active...

  6. Influence of technological factors on statics of hydrogen sulfide absorption from coke-oven gas by the ammonia process

    SciTech Connect (OSTI)

    Nazarov, V.G.; Kamennykh, B.M.; Rus'yanov, N.D.

    1983-01-01T23:59:59.000Z

    The basic technological factors that determine the effectiveness of hydrogen sulfide absorption from coke-oven gas by the cyclic ammonia process are the initial H/sub 2/S content of the gas, the degree of purification, the absorption temperature and the NH/sub 3/ and CO/sub 2/ contents of the absorbent solution. The effects of these factors on the statics of hydrogen sulfide absorption are studied. The investigation is based on the phase-equilibrium distributions of components in the absorption-desorption gas-cleaning cycle. The mathematical model is presented which includes the solution of a system of chemical equilibrium equations for reactions in the solution, material balances, and electrical neutrality. 4 references, 5 figures, 1 table.

  7. Promoting Energy Efficiency in Industry: Utility Roles and Perspectives

    E-Print Network [OSTI]

    Limaye, D. R.; Davis, T. D.

    1984-01-01T23:59:59.000Z

    successful utility marketing puget Sound Power and Light programs related to commercial/industrial end (Puget Power) -- The most flex use efficiency are: ible rebate program offered. Commercial/industrial customers ? Customer Education may submit... proposals and engineering designs for a rebate Pacific Gas and Electric Company up to $100,000. Utility (PG&E) -- Technical briefs of engineers also help with drawing new, emerging technologies. up bid specifications. Energy consumption monitoring...

  8. Industrial applications of electron accelerators

    E-Print Network [OSTI]

    Cleland, M R

    2006-01-01T23:59:59.000Z

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  9. Commercialization plan laser-based decoating systems

    SciTech Connect (OSTI)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01T23:59:59.000Z

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  10. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  11. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  12. The NASA Food Commercial Space

    E-Print Network [OSTI]

    Lin, Zhiqun

    The NASA Food Technology Commercial Space Center and How Your Company Can Participate space Commercial Space Center Iowa State University 2901 South Loop Drive, Suite 3700 Ames, IA 50010-8632 Phone Manager NASA Food Technology Commercial Space Center Iowa State University 2901 South Loop Drive, Suite

  13. THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL Jonatan Pinksea,b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE DEVELOPMENT AND COMMERCIALIZATION OF SOLAR PV TECHNOLOGY IN THE OIL INDUSTRY Jonatan Pinksea regarding solar PV technology investments, a renewable energy technology that has seen explosive growth towards the development and commercialization of solar PV technology. To investigate this, a multiple case

  14. ASSESSMENT OF OPTIONS FOR ATTRACTIVE COMMERCIAL AND DEMONSTRATION TOKAMAK FUSION POWER PLANTS

    E-Print Network [OSTI]

    California at San Diego, University of

    ASSESSMENT OF OPTIONS FOR ATTRACTIVE COMMERCIAL AND DEMONSTRATION TOKAMAK FUSION POWER PLANTS Power Plant based on toka- mak confinement concept. It is obvious that the Fusion Demo should demonstrate that a commercial fusion power plant would be accepted by utility and industry (i

  15. Encoal mild coal gasification project: Commercial plant feasibility study

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    In order to determine the viability of any Liquids from Coal (LFC) commercial venture, TEK-KOL and its partner, Mitsubishi Heavy Industries (MHI), have put together a technical and economic feasibility study for a commercial-size LFC Plant located at Zeigler Coal Holding Company`s North Rochelle Mine site. This resulting document, the ENCOAL Mild Coal Gasification Plant: Commercial Plant Feasibility Study, includes basic plant design, capital estimates, market assessment for coproducts, operating cost assessments, and overall financial evaluation for a generic Powder River Basin based plant. This document and format closely resembles a typical Phase II study as assembled by the TEK-KOL Partnership to evaluate potential sites for LFC commercial facilities around the world.

  16. Commercial Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    types of commercial buildings. Read more DOE Invests 6 Million to Support Commercial Building Efficiency DOE Invests 6 Million to Support Commercial Building Efficiency These...

  17. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  18. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  19. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47 8.91 8.10

  20. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47 8.91

  1. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47

  2. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96

  3. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96(92) Distribution Category

  4. Computers in Commercial Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level ImportsYear Jan EIA

  5. Contacts - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercializationValidation andInformationContactContacts

  6. 1999 Commercial Buildings Characteristics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E Building8)Data Reports

  7. Commercial Building Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial Building EnergyBuilding

  8. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy Efficiency and

  9. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy Efficiency and

  10. Commercial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking EquipmentandCommercial

  11. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    E-Print Network [OSTI]

    Xu, T.T.

    2011-01-01T23:59:59.000Z

    around 8-9% for good coking coal (IISI, 1982). Dryingof steam coal and coking coal to be $15/t (IEA, 1995). This

  12. Industrial Sector Energy Conservation Programs in the People's Republic of China during the Seventh Five-Year Plan (1986-1990)

    E-Print Network [OSTI]

    Zhiping, L.

    2010-01-01T23:59:59.000Z

    in coking, sterling, ironmaking, and open hearth processes,injections for coke in ironmaking is a common practiceinjection methods i n ironmaking. Data from the Anshan Iron

  13. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  14. PA Regional Nanotechnology Conference Nanotechnology for Industry

    E-Print Network [OSTI]

    Gilchrist, James F.

    4/19/2011 Present PA Regional Nanotechnology Conference Nanotechnology for Industry May 31, 2011 9 _____________________________________________________________ _____________The field of nanotechnology continues to be one of the leading forces behind our nation's ability to develop, commercialize, and produce advancements that are enabled by nanotechnology. Therefore, Drexel

  15. Calderon cokemaking process/demonstration project

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Clean Air Act Amendments of 1990 set new emission standards for hazardous air pollutants from coke ovens. Congress, recognizing that the coke industry faces technological and financial difficulties in meeting these new, stringent emission standards, required the U.S. Environmental Protection Agency and DOE to conduct a joint six-year research and development program to assist the industry in developing and commercializing new technologies and work practices that would significantly reduce hazardous coke oven emissions. DOE`s purpose for sponsoring the proposed demonstration project is to provide the coke industry with a new option for the economical production of high quality coke that significantly reduces the quantity of pollutants entering the environment.

  16. Commercial Building Partnerships Replication and Diffusion

    SciTech Connect (OSTI)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16T23:59:59.000Z

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  17. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    NONE

    1995-09-12T23:59:59.000Z

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  18. Technology Transfer and Commercialization Annual Report 2008

    SciTech Connect (OSTI)

    Michelle R. Blacker

    2008-12-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

  19. Thermal Plasma Systems for Industrial Processes 

    E-Print Network [OSTI]

    Fey, M. G.; Meyer, T. N.; Reed, W. H.; Philbrook, W. O.

    1982-01-01T23:59:59.000Z

    required to produce hot metal. To plasma superheat wind. energy is transferred to the air stream via a plasma torch. To maximize the coke reduction due to wind superheating. other fuels such as oil. natural gas. coke oven gas. and coal can be considered... tuyere injections of steam. oxygen, methane. natural gas. coke-oven gas. coal gas. fuel oils. or coals of various ranks is a two-stage blast furnace mass and heat balance developed by Rist and Meysson [12.13J and others at IRSID. A constraint...

  20. Southface Energy Institute: Advanced Commercial Buildings Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review Southface Energy Institute: Advanced Commercial Buildings Initiative - 2015 Peer Review...