Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

2

Solar industrial process heat  

DOE Green Energy (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

3

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

4

Aditya Solar Power Industries | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Aditya Solar Power Industries Jump to: navigation, search Name Aditya Solar Power Industries...

5

Solar Industry Update 2012  

Science Conference Proceedings (OSTI)

Worldwide energy demand is projected to double before 2050 and triple by the end of this century. Fossil fuel reserves are expected to fall short of demand over the next several decades and become increasingly expensive in the long term. In addition, continued reliance on fossil fuels has environmental consequences ranging from pollution to global climate change. Clean, inexhaustible solar power technologies have the potential to make critical contributions to the energy mix of the 21st ...

2012-12-31T23:59:59.000Z

6

Solar Industry Update  

Science Conference Proceedings (OSTI)

Worldwide energy demand is projected to double before 2050, and triple by the end of this century. Fossil fuel reserves are expected to fall short of demand over the next several decades and become increasingly expensive in the long term. In addition, continued reliance on fossil fuels has environmental consequences ranging from pollution to global climate change. Clean, inexhaustible solar power technologies have the potential to make critical contributions to the energy mix of the 21st Century. The U....

2011-12-21T23:59:59.000Z

7

North American Industry Classification System (NAICS) Search Tool |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool North American Industry Classification System (NAICS) Search Tool The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and publishing statistical data related to the U.S. business economy. NAICS was developed under the auspices of the Office of Management and Budget, and adopted in 1997 to replace the Standard Industrial Classification system. Through our website, you can search for procurement opportunities using your company's NAICS code, and you can learn more about the history of purchasing for your NAICS code at the Department. Visit our Industry Information page to learn more about our procurements by

8

Solar Industry At Work: Streamlining Home Solar Installation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Sunrun is a home solar installation company based in San Francisco. | Photo by Francis Fine Art Photography. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What are the key facts? Tillie Peterson works at Sunrun a home solar installation company based in San Francisco. As Director of Operations, Tillie works to get solar panels up and running for homeowners as simply and quickly as possible. Our Solar Industry At Work Series shares the personal success of

9

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

10

TrendSetter Solar Products Inc aka Trendsetter Industries formerly...  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries,...

11

Site-specific solar resource measurements for industrial solar applications  

DOE Green Energy (OSTI)

The solar industry can borrow solar radiation measuring equipment from the National Renewable Energy Laboratory (NREL) as part of NREL`s Solar Industrial Program. This program provides assistance to qualified parties in quantifying the solar radiation resource at prospective sites to reduce the risks of deploying industrial solar energy systems. Up-to-date solar radiation measurements permit comparisons of fresh data with existing data to verify established data bases and also provide data based on actual measurements instead of on less accurate models. This report outlines the responsibilities and obligations of NREL and the solar industry participant. It also describes the equipment for measuring solar radiation, the data quality assessment procedures, and the format of the data provided.

Marion, W.

1994-06-01T23:59:59.000Z

12

ET Solar Group Formerly CNS Solar Industry | Open Energy Information  

Open Energy Info (EERE)

Solar Group Formerly CNS Solar Industry Solar Group Formerly CNS Solar Industry Jump to: navigation, search Name ET Solar Group (Formerly CNS Solar Industry) Place Nanjing, Jiangsu Province, China Zip 210009 Sector Solar Product A Chinese solar company specializing in ingot, wafer, modules and solar trackers production. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Implementation of solar industrial process heat: summary  

SciTech Connect

The implementation of solar industrial process heat systems will depend not only on the successful development of reliable and efficient solar technologies, but also on the intelligent and sound application of process engineering principles. This poses an important challenge which must be given increasing attention if SIPH systems are to be adopted by industry. (MOW)

Kearney, D. W.

1979-11-01T23:59:59.000Z

14

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

15

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

16

Market analysis of the solar energy industry  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-01T23:59:59.000Z

17

Baseline study of US industry solar exports  

DOE Green Energy (OSTI)

This study is a detailed aggregate profile of US solar export activity in 1979 based on a survey of all segments of the solar industry. It identifies the dollar volume of exports by technology: (1) solar heating and cooling products; (2) wind products; (3) photovoltaics; (4) solar thermal electric; (5) OTEC and biomass; and (6) support products and services. The study offers to government and industry groups, for the first time, comprehensive information with which to formulate export goals and assistance measures based on the current realities of the solar export marketplace. Specific and aggregate recommendations which can lead to identification of realistic solar export opportunities and development of solar export markets are included.

Jacobius, T M; Levi, R S; Bereny, J A

1980-10-01T23:59:59.000Z

18

Solar ponds for industrial process heat  

DOE Green Energy (OSTI)

Solar ponds offer perhaps the simplest technique for conversion of solar energy to thermal energy, which can be used for industrial process heat. It is unique in its capability in acting both as collector and storage. Further, the cost of solar pond per unit area is less than any active collectors available today. Combination of these economic and technical factors make solar ponds attractive as a fuel saver in IPH applications. Detailed calculations are given for solar ponds in two specific applications: providing hot water for aluminum can washing in a manufacturing plant and hot water for washing in a large commercial laundry. With the help of computer codes developed at SERI for other solar IPH systems, it is shown that solar ponds are far more cost effective than any other solar IPH technology for these applications.

Brown, K.C.; Edesess, M.; Jayadev, T.S.

1979-10-01T23:59:59.000Z

19

Developing a solar energy industry in Egypt  

E-Print Network (OSTI)

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

20

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network (OSTI)

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping, dilution, a reaction ingredient, etc. These classifications are termed 'Btu' loads or 'Pound' loads. Some final end uses of steam are actually a combination of the two. The classification of steam loads is extremely important to the overall economics of the industrial plant steam system. These economic effects are explained in detail as they impact on both the thermal efficiency and the heat power cycle efficiency of an industrial system. The use of a powerful steam system mass and energy modeling program called MESA (Modular Energy System Analyzer, The MESA Company) in identifying and accurately evaluating these effects is described.

Waterland, A. F.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cutting Industrial Solar System Costs in Half  

E-Print Network (OSTI)

While there are technical, social, environmental and institutional barriers to the widespread use of solar systems, the principle barrier is economic. For commercial and industrial firms to turn to this alternate energy source, the first cost must be sharply reduced so that the annual savings that are achievable will provide an attractive return on the incremental investment. This paper discusses one proven method of combining the energy efficiency of high temperature industrial heat pumps with solar collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating. The basic principles of the technology are reviewed, including the typical operating characteristics of the industrial heat pumps and the solar collectors, plus the generic application schematics comparing this approach with conventional solar collector only systems. Several case histories are reviewed, including an industrial plant, townhouse project, and hospital. Not only is a lower first cost demonstrated, but the combination uses small solar arrays, ideal where roof area is limited, and use less expensive solar collectors.

Niess, R. C.; Weinstein, A.

1982-01-01T23:59:59.000Z

22

Commercial & Industrial Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

23

Solar energy for agricultural and industrial process heat  

SciTech Connect

A state-of-the-art review of solar process heat is given; near term prospects are discussed; and the federal solar industrial process heat program is reviewed. Existing solar industrial process heat projects are tabulated. (WHK)

1979-06-22T23:59:59.000Z

24

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

25

Potential for supplying solar thermal energy to industrial unit operations  

DOE Green Energy (OSTI)

Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

May, E.K.

1980-04-01T23:59:59.000Z

26

MISR -- Solar and steam for industry  

SciTech Connect

The goal of the MISR project is to assist industry in developing viable Solar Energy Systems which have high reliability and low cost because they do not require custom engineering and installation for each industrial site. The collector field, piping and steam generation equipment are pre-engineered to be suitable for a wide range of industrial steam applications. The approach of the MISR project is twofold: to develop line-focus industrial solar thermal energy systems which, like conventional packaged steam boilers, are based on the modular concept; and to install and operate a number (10 or less) of these systems at existing industrial plants, supplementing steam produced by conventional boilers. The project is briefly described.

1981-12-31T23:59:59.000Z

27

DOE Solar Decathlon: 2007 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. Universidad de Puerto Rico student Wilfredo Rodriguez explains the team's gray-water pool to visitors at the 2007 Solar Decathlon. The pool is used to filter wash water for reuse. Solar Decathlon 2007 Building Industry Workshops Below are descriptions of the workshops offered at the 2007 Solar Decathlon on Building Industry Day, Thursday, October 18, 2007. Solar Applications for Homes Revised Title: Translating Sustainability to Affordable Housing 9:00 a.m. Presenter: ASHRAE and John Quale, Assistant Professor, University of Virginia School of Architecture The focus of the workshop is translating sustainability to affordable

28

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Solar Energy Industries Association Address 575 7th Street NW #400 Place Washington, DC Zip 20004 Number of employees 11-50 Year founded 1974 Website http://www.seia.org/ Coordinates 38.897162°, -77.021563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.897162,"lon":-77.021563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Denmark Solar Industry DSI | Open Energy Information  

Open Energy Info (EERE)

Industry DSI Industry DSI Jump to: navigation, search Name Denmark Solar Industry (DSI) Place Copenhagen, Denmark Zip DK-1550 Sector Solar Product Manufactures and distributes solar panels and systems. Coordinates 55.67631°, 12.569355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.67631,"lon":12.569355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Modular Industrial Solar Retrofit fact sheet  

SciTech Connect

The MISR project has two goals. One is to assist industry in developing viable Solar Energy Systems which have high reliability and low cost because they do not require tailored engineering and installation for each industrial site. The collector field, piping and steam generation equipment are pre-engineered to be suitable for a wide range of industrial steam applications. This is the Modular Concept. The second goal is to fabricate, install, and test qualification test systems (representative of full-size MISR designs in all but the size of the collector field) to determine design quality, fabrication and installation correctness, and system cost. This activity allows the designers to produce the first MISR system, experimentally verify its operation and performance before committing to large scale solar installations, thereby avoiding the risks associated with the first system. It provides the potential industrial user with information upon which to base solar energy decisions. Five separate system designs are being developed under the MISR project. Four of the designs are being tested at Sandia National Laboratories at Albuquerque, New Mexico and one is being tested at the Solar energy Research Institute in Golden, Colorado.

1981-12-31T23:59:59.000Z

32

The Solarex Solar Power Industrial Facility  

E-Print Network (OSTI)

The Solarex Corporation has designed, built and operated an industrial facility which is totally powered by a Solarex solar electric power system. The solar power system, energy-conserving building and manufacturing operations were treated as a total system for optimizing the entire design. Many special features were included to ensure that highly reliable operations could be achieved without requiring electric utility back-up. The facility was built as both an operating plant for Solarex and as a demonstration of the possibility of solar powered industrial plants. The facility has been in operation since October 1982. During this period the solar power system has operated reliably with only two incidents of short losses of power while the local electric utility has experienced more than seven incidences of power loss for a significant amount of total downtime. This paper presents summaries for the design and operational features of the solar powered facility and the potential for other solar powered plants in the U.S. and abroad.

Macomber, H. L.; Bumb, D. R.

1984-01-01T23:59:59.000Z

33

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

34

Solar Industry At Work: Video Interview with Alta Devices' Laila...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos June 6, 2012 - 12:07pm Addthis Laila...

35

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

36

Solar Energy LLC Industrial Investors Group | Open Energy Information  

Open Energy Info (EERE)

LLC Industrial Investors Group LLC Industrial Investors Group Jump to: navigation, search Name Solar Energy LLC - Industrial Investors Group Place Moscow, Russian Federation Zip 119017 Sector Solar Product The company Solar Energy plans to use turnkey equipment from GT Solar and others to make silicon, ingots, wafers and cells in Russia. References Solar Energy LLC - Industrial Investors Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy LLC - Industrial Investors Group is a company located in Moscow, Russian Federation . References ↑ "Solar Energy LLC - Industrial Investors Group" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Energy_LLC_Industrial_Investors_Group&oldid=351271

37

US Solar Energy Industries Association SEIA | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association SEIA Energy Industries Association SEIA Jump to: navigation, search Name US Solar Energy Industries Association (SEIA) Place Washington, Washington, DC Zip 20005 Sector Solar Product US national trade association of solar energy manufacturers, dealers, distributors, consultants, and marketers. References US Solar Energy Industries Association (SEIA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Solar Energy Industries Association (SEIA) is a company located in Washington, Washington, DC . References ↑ "US Solar Energy Industries Association (SEIA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Solar_Energy_Industries_Association_SEIA&oldid=352621

38

Value of solar thermal industrial process heat  

DOE Green Energy (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

39

Test results, Industrial Solar Technology parabolic trough solar collector  

DOE Green Energy (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

40

DOE Solar Decathlon: News Blog Blog Archive Building Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

(far left), Rob Minnick, and members of their company's green team attended Building Industry Day. (Credit: Alexis PowersU.S. Department of Energy Solar Decathlon) Consumer...

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar America Initiative--In Focus: The Building Industry  

DOE Green Energy (OSTI)

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

Not Available

2007-01-01T23:59:59.000Z

42

Solar America Initiative--In Focus: The Building Industry  

SciTech Connect

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

2007-01-01T23:59:59.000Z

43

SLIDESHOW: Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work SLIDESHOW: Solar Industry At Work June 4, 2012 - 9:37am Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a

44

A CLASSIFICATION SCHEME FOR TURBULENT ACCELERATION PROCESSES IN SOLAR FLARES  

SciTech Connect

We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant, or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive, or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation {omega} = {omega}(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as those occuring during solar flares.

Bian, Nicolas; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Emslie, A. Gordon, E-mail: n.bian@physics.gla.ac.uk, E-mail: eduard@astro.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

2012-08-01T23:59:59.000Z

45

Solar energy and the oil refining industry  

DOE Green Energy (OSTI)

This paper surveys process heat requirements of the major petroleum refinery processes. Previous studies have overestimated requirements for process heat at high temperatures. About 22% of the process heat in a refinery is consumed below 550/sup 0/F; 62.5% is consumed between 550/sup 0/ and 1100/sup 0/F. A refinery gets about 40% of its total energy supply, and 50% of its process heat, from natural gas and fuel oil. Technological constraints limit the use of alternatives such as coal or solar energy to processes operating below 700/sup 0/F (about 25% of process heat requirements). Curtailments of natural gas supplies and advances in bottom of the barrel oil processing technology will produce strong incentives to develop alternatives to the burning of liquid fuels for low-temperature processes. Energy from coal or solar radiation is most appropriately generated at a central facility to heat a heat transfer fluid, which is then heat exchanged with the process medium. The same process could also produce steam. The cost of installing coal-burning equipment can be up to eight times the cost of the equivalent gas or oil-burning facility. The major obstacle ot the use of coal is environmental. An analysis of a central-receiver solar system, without storage, and sized to deliver a maximum of 25% of process heat needs, indicates that 4.1% of refinery fuel needs could be displaced. For the entire industry, this is equivalent to 57,000 BPD of fuel oil. If long-term cost goals are achieved, capital expenditures to realize these savings would amount to $6.5 billion.

May, E.K.

1980-03-01T23:59:59.000Z

46

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

47

Opportunities for Minority Students in the Solar Industry | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry November 20, 2012 - 9:00am Addthis The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. Dot Harris Dot Harris

48

Weaving New York's Solar Industry Web | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web Weaving New York's Solar Industry Web June 29, 2010 - 11:00am Addthis Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Solar films are manufactured at Precision Flow Technologies in Kingston, N.Y., facility. The factory once served as an IBM plant. | Photo Courtesy of Kevin Brady Stephen Graff Former Writer & editor for Energy Empowers, EERE These days in New York, it seems whatever The Solar Energy Consortium (TSEC) touches turns to green. The nonprofit has been building up a supply chain across the state for the last three years by helping companies bring on new, solar-related manufacturing processes and jobs.

49

Commercial and Industrial Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate The lesser of 25% of the total cost or $50,000 Program Info Funding Source RPS alternative compliance payments Start Date 11/1/2010 State New Hampshire Program Type State Rebate Program Rebate Amount PV: $0.80/W (DC) for new systems; $0.50/W (DC) for additions to existing systems Solar Thermal: $0.12/rated or modeled kBtu/year for new systems with 15 or fewer collectors; $0.07/rated or modeled kBtu/year for new systems with

50

Reliance Industries Limited Solar Group | Open Energy Information  

Open Energy Info (EERE)

Reliance Industries Limited Solar Group Reliance Industries Limited Solar Group Jump to: navigation, search Name Reliance Industries Limited Solar Group Place Bangalore, Karnataka, India Zip 560076 Sector Solar Product String representation "Reliance solar, ... n solar energy." is too long. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Solar wind and geomagnetism: toward a standard classification of geomagnetic activity from 1868 to 2009  

E-Print Network (OSTI)

We examined solar activity with a large series of geomagnetic data from 1868 to 2009. We have revisited the geomagnetic activity classification scheme of Legrand and Simon (1989) and improve their scheme by lowering the ...

Zerbo, J. L.

52

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar Smarter Faster Sec. Chu Online Town Hall Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela What We Do For You Month by month the clean energy...

53

The solar energy industries FY 1995 appropriations recommendations for the U. S. Department of Energy: The solar commercialization challenge  

SciTech Connect

This article contains the Solar Energy Industries Association budget recommendations for DOE for the commercialization of solar energy. Areas covered are photovoltaics, solar buildings, solar thermal, and other programs such as resource assessment and integrated resource planning.

Butler, B.; Sklar, S.

1994-01-01T23:59:59.000Z

54

Use of solar energy to produce process heat for industry  

DOE Green Energy (OSTI)

The role of solar energy in supplying heat and hot water to residential and commercial buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particularly to the supplemental supply of process heat of all kinds. The realization of that potential will depend, however, on the identification of the most suitable applications and locations for industrial solar energy and the continued improvement in cost, durability, and reliability of solar equipment. The status of solar thermal technology for industrial process heat applications is surveyed, including a description of current costs and operating histories. Because the current status is unsatisfactory in view of the goals established by President Carter for solar industrial energy, the most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar IPH are outlined. The effect of government tax policy will be of little impact until technical efficiency and cost effectiveness are significantly improved.

Brown, K.

1980-04-01T23:59:59.000Z

55

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH-1345 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Shell Solar Industries LP (SSI) has requested an advance waiver of...

56

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

As set out in the attached waiver petition and in subsequent discussions with DOE, Shell Solar Industries, LP (SSI) has requested an advance waiver of domestic and foreign patent...

57

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NO. DE-AC36-83CH10093, WAIVER NO. W(A)-95-002, CH0850. The attached petition by Siemens Solar Industries (hereafter Siemens) is for an advance waiver of patent rights under...

58

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDER DOE CONTRACT NO. DE- AC36-83CH10093; W(A)-98-019; CH-0987 The Petitioner, Siemens Solar Industries (hereinafter "SSI"), has requested a waiver of domestic and foreign...

59

Pages that link to "Denmark Solar Industry DSI" | Open Energy...  

Open Energy Info (EERE)

250 | 500) Retrieved from "http:en.openei.orgwikiSpecial:WhatLinksHereDenmarkSolarIndustryDSI" Special pages About us Disclaimers Energy blogs Developer services OpenEI...

60

Factors that affect the share price index of Taiwan's solar energy industrythe crude oil prices and industry scale.  

E-Print Network (OSTI)

??This paper discusses the factors that affect the share price index of Taiwan solar power industry, crude oil prices and the size of the solar (more)

Deng, Yu-chi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improving the industrial classification of cork stoppers by using image processing and Neuro-Fuzzy computing  

Science Conference Proceedings (OSTI)

This paper presents a solution to a problem existing in the cork industry: cork stopper/disk classification according to their quality using a visual inspection system. Cork is a natural and heterogeneous (remarkable variability among different samples, ... Keywords: Automated visual inspection system, Cork industry, Image processing, Neuro-Fuzzy classifier, Stopper quality

Beatriz Paniagua; Miguel A. Vega-Rodrguez; Juan A. Gomez-Pulido; Juan M. Sanchez-Perez

2010-12-01T23:59:59.000Z

62

Proceedings of the solar industrial process heat symposium  

DOE Green Energy (OSTI)

The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

none,

1978-06-01T23:59:59.000Z

63

Solar production of industrial process steam. Final detail design report  

SciTech Connect

The application of solar energy to produce 110 psig industrial steam for processing laundry and drycleaning for a facility in Pasadena, California, is described. The system uses tracking parabolic trough collectors. The collectors, the detailed process analyses, solar calculations and insolation data, energy reduction analyses, economic analyses, design of the solar system, construction, and costs are presented in detail. Included in appendices are the following: mechanical specifications and calculations, electrical specifications and calculations, and structural specifications and calculations. (MHR)

Eldridge, B.G.

1978-06-15T23:59:59.000Z

64

The Department of Energy's Solar Industrial Program: New ideas for American industry  

SciTech Connect

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

65

The Department of Energy's Solar Industrial Program: New ideas for American industry  

DOE Green Energy (OSTI)

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

66

Commercial & Industrial Solar Rebate Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

state's renewable portfolio standard (RPS), this program supports photovoltaic (PV) and solar-thermal installations. Installations must be located in the state of New Hampshire,...

67

Applications and systems studies for solar industrial process heat  

SciTech Connect

The program has been highlighted by the development of analytical computer programs, engineering case studies in specific industries, applications and market studies and the assessment of operating experience in actual solar installations. For example, two analytical computer codes (known as PROSYS and ECONMAT) have been assembled and used for the large-scale matching of industrial processes with different types of solar equipment. Verification of the results of this large-scale matching have resulted in a program of detailed case studies of solar and conservation options in local dairies, metal can manufacturing plants, meatpacking plants, and other factories.

Brown, K.C.

1980-01-01T23:59:59.000Z

68

Survey and analyze the business conditions of the solar industry, June-July 1981. Task I  

DOE Green Energy (OSTI)

Progress is reported on the following tasks: surveying and analyzing the business conditions of the solar industry, administrative analysis of solar system product certification standards and codes, and solar industry advertising guidelines. (MHR)

Not Available

1981-01-01T23:59:59.000Z

69

Market development directory for solar industrial process heat systems  

DOE Green Energy (OSTI)

The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

None

1980-02-01T23:59:59.000Z

70

Application of solar thermal energy to buildings and industry  

DOE Green Energy (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

71

Solar Augmented Steam Cycles: 2010 Industry Update  

Science Conference Proceedings (OSTI)

Several studies were performed to evaluate a range of solar augmented steam cycle design options. All the designs use steam generated by a solar field in a conventional steam cycle, either offsetting some of the fuel required to generate power or boosting plant power output. The scope of the studies included a conceptual design modeling effort to evaluate a broad range of solar integration design options for biomass and natural gas combined-cycle (NGCC) power plants and two detailed case studies at NGCC ...

2010-12-23T23:59:59.000Z

72

Commercial & Industrial Solar Rebate Program (New Hampshire)...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

73

Industrial solar breeder project using concentrator photovoltaics  

DOE Green Energy (OSTI)

The purpose of this program is to demonstrate the use of a concentrating photovoltaic system to provide the energy for operating a silicon solar cell production facility, i.e., to demonstrate a solar breeder. Solarex has proposed to conduct the first real test of the solar breeder concept by building and operating a 200 kW(e) (peak) concentrating photovoltaic system based on the prototype and system design developed during Phase I. This system will provide all of the electrical and thermal energy required to operate a solar cell production line. This demonstration would be conducted at the Solarex Rockville facility, with the photovoltaic array located over the company parking lot and on an otherwise unusable flood plain. Phase I of this program included a comprehensive analysis of the application, prototype fabrication and evaluation, system design and specification, and a detailed plan for Phases II and III. A number of prototype tracking concentrator solar collectors were constructed and operated. Extensive system analysis was performed to design the Phase II system as a stand-alone power supply for a solar cell production line. Finally, a detailed system fabrication proposal for Phase II and an operation and evaluation plan for Phase III were completed. These proposals included technical, management, and cost plans for the fabrication and exercise of the proposed system.

Hamilton, R.; Wohlgemuth, J.; Burkholder, J.; Levine, A.; Storti, G.; Wrigley, C.; McKegg, A.

1979-08-01T23:59:59.000Z

74

Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries  

SciTech Connect

The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

1977-02-07T23:59:59.000Z

75

Changes related to "ET Solar Group Formerly CNS Solar Industry...  

Open Energy Info (EERE)

"http:en.openei.orgwikiSpecial:RecentChangesLinkedETSolarGroupFormerlyCNSSolarIndustry" Atom Special pages About us Disclaimers Energy blogs Developer services OpenEI...

76

Commercial/industrial applications spur solar development  

SciTech Connect

Several large commercial buildings with solar systems are examined. The first building mentioned is the La Quinta Motor Inn located in Dallas, Texas. The system supplies approximately 90% of the hot water for the rooms and laundry. The largest solar cooling system is located in Frenchman's Reef, the Holiday Inn, St. Thomas, Virgin Islands. The system was funded by a 75% grant from the Energy Research and Development Administration. In Decatur, Alabama, construction has begun on a solar heating system that will be used at a large soybean oil extraction facility. The project is also sponsored in part by ERDA. The solar panels will be used to air dry the soy beans. The largest solar-powered irrigation system is located in Gila River Ranch southwest of Phoenix, Arizona. The system includes a 50-hp pump capable of delivering up to 10,000 gallons of irrigation water per minute. It operates with 5,500 ft/sup 2/ of parabolic tracking collectors.

Comstock, W.S.

1977-11-01T23:59:59.000Z

77

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

78

Collaborating Towards a Common Goal to Advance America's Solar Industry |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Collaborating Towards a Common Goal to Advance America's Solar Collaborating Towards a Common Goal to Advance America's Solar Industry Collaborating Towards a Common Goal to Advance America's Solar Industry June 21, 2012 - 6:07pm Addthis Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Attendees gather to discuss, collaborate at the SunShot Grand Challenge Summit in Denver, Colorado. | Photo by Dennis Schroeder/NREL. Justin Vandenbroeck Intern, Office of Energy Efficiency and Renewable Energy Change takes more than desire -- it takes collaboration, communication, and a common goal. This idea was perhaps best exemplified at the SunShot Grand Challenge Summit in Denver. As a former participant in the Solar Decathlon and a current Energy Department intern, I attended the Summit to

79

The Department of Energy`s Solar Industrial Program: 1994 review  

DOE Green Energy (OSTI)

This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

NONE

1995-03-01T23:59:59.000Z

80

Arizona Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association Energy Industries Association Jump to: navigation, search Logo: Arizona Solar Energy Industries Association Name Arizona Solar Energy Industries Association Place Arizona Website http://www.arizonasolarindustr Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Foster Wheeler Solar Development Corporation modular industrial solar retrofit qualification test results  

DOE Green Energy (OSTI)

Under the Department of Energy's Modular Industrial Solar Retrofit project, industrial process steam systems incorporating line-focus solar thermal collectors were designed and hardware was installed and tested. This report describes the test results for the system designed by Foster Wheeler Solar Development Corporation. The test series included function and safety tests to determine that the system operated as specified, an unattended operations test to demonstrate automatic operation, performance tests to provide a database for predicting system performance, and life cycle tests to evaluate component and maintenance requirements. Component-level modifications to improve system performance and reliability were also evaluated.

Cameron, C.P.; Dudley, V.E.; Lewandoski, A.A.

1986-10-01T23:59:59.000Z

82

Shenzhen Sumoncle Solar Energy Industrial Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sumoncle Solar Energy Industrial Co Ltd Sumoncle Solar Energy Industrial Co Ltd Jump to: navigation, search Name Shenzhen Sumoncle Solar Energy Industrial Co Ltd Place Shenzhen, Guangdong Province, China Zip 518040 Sector Solar Product Produces a-Si thin-film solar cells for application in consumer products like calculators, watches, LCD apparatus, battery re-chargers, thermometers and so on. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Maryland DC Virginia Solar Energy Industries Association MDV SEIA | Open  

Open Energy Info (EERE)

DC Virginia Solar Energy Industries Association MDV SEIA DC Virginia Solar Energy Industries Association MDV SEIA Jump to: navigation, search Name Maryland-DC-Virginia Solar Energy Industries Association (MDV-SEIA) Place Bethesda, Maryland Zip 20814-3954 Sector Solar Product Trade associaton to promote solar equipment in the Mid-Atlantic region in US. Coordinates 40.020185°, -81.073819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.020185,"lon":-81.073819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Industrial applications of solar energy. First quarterly progress report  

DOE Green Energy (OSTI)

The objective of this program is to define solar energy systems that are technically and economically feasible, can satisfy all or part of selected industry demands, and to determine the market potential for such systems. The primary emphasis is placed on the application of total energy systems where industrial process heat, electrical needs, and space heating and cooling requirements are satisfied with a single solar collector field at maximum possible efficiency. Industrial energy usage in the United States and the Southwest was surveyed to determine which industries were most energy intensive. This resulted in the selection of six major groups: (1) Chemicals and Allied Products - SIC 28, (2) Primary Metals - SIC 33, (3) Petroleum and Coal Products - SIC 29, (4) Paper and Allied Products - SIC 26, (5) Stone, Clay, and Glass Products - SIC 32, and (6) Food and Kindred Products - SIC 20. These groupings account for approximately 80% of the total industrial energy usage, both nationwide and within the Southwest. These major groups were then pursued through their subdivisions to determine more specifically the largest energy users and their locations within the Southwest, allowing the final industry selection. Approximately 300 representatives of the selected industries were contacted to determine their specific energy requirements as well as architecturally related energy parameters. Climatic and seismic data is also being collected for the areas encompassing the selected regions.

Rogan, J.E.

1976-01-01T23:59:59.000Z

85

NREL: News - NREL Assembles Industry Working Group to Advance Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 NREL Assembles Industry Working Group to Advance Solar Securitization Webinar focusing on SAPC to be held on March 22 March 19, 2013 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently convened the Solar Access to Public Capital (SAPC) working group with a mission to enable securitization of solar PV assets and associated cash flows in the marketplace. SAPC's primary efforts center on the standardization of power purchase agreements, leases, and other documents relevant to residential and commercial deployment, and the development of robust datasets to assess performance and credit-default risk. These activities are designed to allow projects to be grouped into tradable securities. Securitization is expected to attract additional investors to the solar asset class, enabling the

86

New York Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name New York Solar Energy Industries Association Address 533 Woodford Avenue Place Endicott, New York Zip 13760 Region Northeast - NY NJ CT PA Area Website http://www.nyseia.org/ Notes Non-profit membership and trade association dedicated solely to advancing solar energy use in New York State Coordinates 42.105025°, -76.065685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.105025,"lon":-76.065685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Colorado Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Colorado Solar Energy Industries Association Address 841 Front St. Place Louisville, Colorado Zip 80027 Region Rockies Area Website http://www.coseia.org/ Notes Promote the use of solar energy and conservation to improve the environment and create a sustainable future, CO state chapter of SEIA Coordinates 39.978565°, -105.131049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.978565,"lon":-105.131049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Bates solar industrial process steam application environmental impact assessment  

DOE Green Energy (OSTI)

It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)

Not Available

1981-06-30T23:59:59.000Z

89

Feasibility evaluation for solar industrial process heat applications  

DOE Green Energy (OSTI)

An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

Stadjuhar, S. A.

1980-01-01T23:59:59.000Z

90

The solar industries` FY 1998 appropriations recommendations for the US Department of Energy  

SciTech Connect

This article details the Solar Industry recommendations for solar energy expenditures by the US DOE. Major solar energy categories with specific monetary recommendations are presented in detailed tables: solar building technology research; photovoltaic systems; solar thermal electric and process heat; miscellaneous programs.

Barnett, A.; Sklar, S.

1997-06-01T23:59:59.000Z

91

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

1981-05-01T23:59:59.000Z

92

Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary  

DOE Green Energy (OSTI)

An instructional aid is presented which integrates the subject of solar energy into the classroom study of industrial arts. This guide for teachers was produced in addition to the student activities book for industrial arts by the USDOE Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-05-01T23:59:59.000Z

93

Licensing arrangements and the development of the solar energy industry  

SciTech Connect

The process by which technology and information related to technology are transferred within industry is explored. Property rights in technology are part of the broader field of intellectual property. The general contours of legal protection for knowledge are explored. The four basic forms of intellectual property - patents, trade secrets (or know-how), trademarks, and copyrights - are covered in varying degrees of depth, depending on their relative applicability to the development of the solar industry. Once this background has been established, the legal aspects of licensing are examined. A license is a legal arrangement whereby a party (licensor) who controls the right to use an idea, invention, etc. shares the right to use the particular intellectual property with someone else (licensee). The advantages and disadvantages of licensing are described from the point of view of potential licensees and licensors. Barriers to licensing are discussed.

Green, M.

1979-06-01T23:59:59.000Z

94

Solar technology and the insurance industry: Issues and applications  

DOE Green Energy (OSTI)

Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. Solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. This report will address the above issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses and offer suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers.

Deering, A.; Thornton, J. P.

1999-07-01T23:59:59.000Z

95

Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Industry At Work: Video Interview with Alta Devices' Laila Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos June 6, 2012 - 12:07pm Addthis Laila Mattos talks about her work life at Alta Devices -- a solar company based in Silicon Valley. | Video by Hantz Leger. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What is this video about? Laila Mattos, a technology manager at Alta Devices, talks about her experiences working at a "disruptive" solar company. Our Solar Industry At Work Series shares the personal success of America's solar workforce - from finance experts, to scientists, to engineers. You can learn more about the series here. "Great solar won't go anywhere unless its low cost."

96

SOLERAS - Summary technical report on SOLERAS Industrial Solar Thermal Applications Project  

Science Conference Proceedings (OSTI)

This document reports the advances in solar industrial applications made by SOLERAS, a joint United States-Saudi Arabian solar energy research and development program. The industrial application chosen was the freeze desalination of seawater powered by mid-temperature (385/degree/C) solar collectors. This innovative process will compete with other downscaled desalination processes for small communities in developing countries. Using solar energy to power this installation demonstrates the ability of solar energy to fuel any industrial application that requires mid-temperature energy. 13 refs., 11 figs.

Zimmerman, J.C.

1987-10-01T23:59:59.000Z

97

Identification of Business Opportunities within the solar industry for Saudi Arabian Companies.  

E-Print Network (OSTI)

?? This master thesis report presents a prefeasibility analysis for a Saudi Company to enter the solar industry.Section one of this report illustrates the value (more)

Retana Herrera, Julio

2013-01-01T23:59:59.000Z

98

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

99

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

100

The Department of Energy`s Solar Industrial Program: 1995 review  

DOE Green Energy (OSTI)

During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

NONE

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Classification  

NLE Websites -- All DOE Office Websites (Extended Search)

Classification Classification Name: mike Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: What is the most accurate way to classify animals in taxonomy? Replies: If by "most accurate", you mean the way that best approximates classifying animals according to their genetic relatedness, and historical ties, then the best way is called "cladistics." Cladistics is a method that is used to split a group of animals (or any living thing) into two groups. The process is completed until there are only two animals left, and they are split. The criteria they use to split groups is based on "synapomorphies" a 50-cent word which means a SHARED and DERIVED CHARACTER. A CHARACTER is a measure of an organism, like its color, or structure, or size. A DERIVED character is one that is newly evolved. For instance, if you had a group of 5 fish, and 2 monkeys, you would guess (based on previous work) that the two monkeys belong in one group, and the 5 fish in the other (and you would be right). This is because the 2 monkeys SHARE many DERIVED CHARACTERS that the fish do not share with the monkeys. One such derived character is the presence of legs. Fossil evidence shows that vertebrate legs are newly evolved with respect to fish. Fish came first, the vertebrate legs. You have now created a simple cladogram. One branch is for fish, the other for monkeys. By the by, taxonomy is the process of naming organisms, and is neither accurate nor inaccurate. Phyletics is the science of determining the beasts genetic relationships, and that can be inaccurate if one is not careful

102

State-of-the-art of solar control systems in industrial process heat applications  

DOE Green Energy (OSTI)

The state-of-the-art of solar control systems is addressed pertinent to industrial process heat applications. Solar system configurations currently being used or proposed are presented; parameters and functions deemed essential in solar system controls are identified; operating deficiencies are described; and possible future improvements are discussed.

Su, W. S.; Castle, J. N.

1979-07-01T23:59:59.000Z

103

SunShot Incubator Spurs Solar Industry Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spurs Solar Industry Innovation Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation November 18, 2011 - 11:15am Addthis As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. Minh Le Minh Le Program Manager, Solar Program What does this project do? The SunShot Initiative is investing approximately $7 million over 18 months in a new Incubator Program for Soft Cost Reduction. The price for solar modules is now nearly $1 per watt and continues to

104

SunShot Incubator Spurs Solar Industry Innovation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SunShot Incubator Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation SunShot Incubator Spurs Solar Industry Innovation November 18, 2011 - 11:15am Addthis As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. As much as half of the price of solar energy, represented in red above graph, is made up of non-hardware costs. | Data source: Goodrich et al 2011. | Image courtesy of the Energy Department's SunShot Initiative. Minh Le Minh Le Program Manager, Solar Program What does this project do? The SunShot Initiative is investing approximately $7 million over 18 months in a new Incubator Program for Soft Cost Reduction. The price for solar modules is now nearly $1 per watt and continues to

105

DOE Solar Decathlon: Building Industry Day Workshop Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Behind Solar LED This workshop provided an introduction to solar LED (light-emitting diode) lighting technology and addressed current and potential applications in...

106

Two case studies of the application of solar energy for industrial process heat  

DOE Green Energy (OSTI)

Case studies of industrial process heat (IPH) have been performed by the Solar Energy Research Institute (SERI) on selected plants in metal processing, oil production, beverage container manufacturing, commercial laundering, paint (resin manufacturing), and food industries. For each plant, the application of solar energy to processes requiring hot water, hot air, or steam was examined, after energy conservation measures were included. A life-cycle economic analysis was performed for the solar system compared to the conventional energy system. The studies of the oil production facility (oil/water separation process) indicate that it could economically employ a solar hot water system immediately. The studies of solar energy applied to the beverage container process (solar air preheat system with partial recycle of oven exhaust gases) indicate a 7.5-yr payback period, based on a solar system installation in 1985.

Hooker, D. W.; West, R. E.

1979-10-01T23:59:59.000Z

107

Solar Energy Education. Industrial arts: student activities. Field test edition  

DOE Green Energy (OSTI)

In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

Not Available

1981-02-01T23:59:59.000Z

108

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

109

Shallow solar ponds for industrial process heat: the ERDA--SOHIO project  

DOE Green Energy (OSTI)

The solar energy group at LLL has developed shallow solar ponds to supply cost-competitive solar heated water for industrial use. A prototype system has been built and put into operation at the site of the Sohio Petroleum Company's new uranium mine and milling complex near Grants, New Mexico. When operational, a projected full-size system is expected to furnish approximately half of the 10/sup 5/ GJ (approximately 10/sup 5/ MBtu) annual site process heat requirement. A description of the physical features of shallow solar ponds is presented along with a method for analyzing pond performance. An economic analysis of the projected Sohio solar system is provided.

Dickinson, W.C.; Clark, A.V.; Iantuono, A.

1976-06-17T23:59:59.000Z

110

Shallow solar ponds for industrial process heat: the ERDA--SOHIO project  

DOE Green Energy (OSTI)

The solar energy group at LLL has developed shallow solar ponds to supply cost-competitive solar heated water for industrial use. A prototype system has been built and put into operation at the site of the Sohio Petroleum Company's new uranium mine and milling complex near Grants, New Mexico. When operational, a projected full-size system is expected to furnish approximately half of the 10/sup 5/ GJ annual site process heat requirement. A description of the physical features of shallow solar ponds is presented along with a method for analyzing pond performance. An economic analysis of the projected Sohio solar system is provided.

Dickinson, W.C.; Clark, A.F.; Iantuono, A.

1976-06-17T23:59:59.000Z

111

Human Impact on Direct and Diffuse Solar Radiation during the Industrial Era  

Science Conference Proceedings (OSTI)

In this study the direct and diffuse solar radiation changes are estimated, and they contribute to the understanding of the observed global dimming and the more recent global brightening during the industrial era. Using a multistream radiative ...

Maria M. Kvalevg; Gunnar Myhre

2007-10-01T23:59:59.000Z

112

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

113

Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis  

Science Conference Proceedings (OSTI)

This study examines technological collaboration in the solar cell industry using the information of patent assignees and inventors as defined by the United States Patent and Trademark Office. Three different collaborative types, namely local (same city), ... Keywords: Assignee, Collaboration, Inventor, PV system, Patent analysis, Solar cell

Xiao-Ping Lei; Zhi-Yun Zhao; Xu Zhang; Dar-Zen Chen; Mu-Hsuan Huang; Jia Zheng; Run-Sheng Liu; Jing Zhang; Yun-Hua Zhao

2013-08-01T23:59:59.000Z

114

NRELs Optical Furnace Technology Sparks Solar Industry Interest  

NREL Principal Engineer Bhushan Sopori has fired up an optical furnace he developed to efficiently fabricate solar cells. Credit: Ray David, NREL

115

Breakthrough Furnace Can Cut Solar Industry Costs (Fact Sheet)  

SciTech Connect

A game-changing Optical Cavity Furnace (OCF), developed by NREL, uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency.

Not Available

2013-08-01T23:59:59.000Z

116

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

117

Innovation and production in the global solar photovoltaic industry  

Science Conference Proceedings (OSTI)

The global development of solar photovoltaic power is seen as a potentially major technology in the pursuit of alternative energy sources. Given its evolutionary nature, in terms of both technology and the market, there is some discernible divergence ... Keywords: Innovation, Patent, Production, Solar photovoltaic (PV) market

Show-Ling Jang; Li-Ju Chen; Jennifer H. Chen; Yu-Chieh Chiu

2013-03-01T23:59:59.000Z

118

Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies  

DOE Green Energy (OSTI)

The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

1982-08-01T23:59:59.000Z

119

Solar process designs being readied in 4 industries. [Canning, textiles, concrete, and laundry  

SciTech Connect

As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at the Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)

Edwards, P.L.

1976-10-11T23:59:59.000Z

120

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

DOE Green Energy (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six  

Open Energy Info (EERE)

TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name TrendSetter Solar Products Inc (aka Trendsetter Industries, formerly Six River Solar) Place Fairhaven, California Zip 95564 Sector Solar Product Manufacturer of solar hot water heating and storage systems. Coordinates 41.63548°, -70.903856° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.63548,"lon":-70.903856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Modeling Total Solar Irradiance Variations Using Automated Classification Software on Mount Wilson Data  

E-Print Network (OSTI)

S. , Joukoff, A. : 2004, Solar Phys. 224, 209. Djafer, D. ,a, S. , Egidi, A. : 2008, Solar Phys. 247, 225. Fazel, Z. ,Bernasconi, P.N. : 2008, Solar Phys. 248, 1. Foukal, P. ,

Ulrich, R. K.; Parker, D.; Bertello, L.; Boyden, J.

2010-01-01T23:59:59.000Z

123

Bates solar industrial process-steam application: preliminary design review  

SciTech Connect

The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

Not Available

1980-01-07T23:59:59.000Z

124

Approximating the Seismic Amplification Effects Experienced by Solar Towers Mounted on the Rooftops of Low-Rise Industrial Buildings.  

E-Print Network (OSTI)

?? This thesis investigates the acceleration amplification experienced by solar towers mounted on the rooftops of low-rise industrial buildings during a seismic event. Specifically, this (more)

Balla, Peter Luiz

2013-01-01T23:59:59.000Z

125

ORNL, Industry Collaboration Puts Spotlight on Solar T DOING BUSINESS WITH ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Collaboration Industry Collaboration Puts Spotlight on Solar T DOING BUSINESS WITH ORNL PREPARING FOR THE FUTURE The ORNL Partnerships Directorate seeks to foster economic development and the growth of business and industry by mak- ing available the most innovative equipment, the latest technol- ogy, and the expertise of ORNL researchers to technology-based companies and research universities throughout the nation. F our manu- facturers of solar energy components are working with Oak Ridge National Labo- ratory to address some of their biggest challenges. Through individual cooperative research and development agreements (CRADAs), the companies hope to advance solar cell materials and processing technologies. The $880,000 effort is funded by the American Recovery and Reinvestment

126

Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation | Open  

Open Energy Info (EERE)

Prosunpro PengSangPu Solar Industrial Products Corporation Prosunpro PengSangPu Solar Industrial Products Corporation Jump to: navigation, search Name Shenzhen Prosunpro/ PengSangPu Solar Industrial Products Corporation Place Shenzhen, Guangdong Province, China Zip 518055 Sector Solar Product Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Economic feasibility of solar-thermal industrial applications and selected case studies  

DOE Green Energy (OSTI)

The economic feasibility is assessed of utilizing solar energy to augment an existing fossil fuel system to generate industrial process heat. Several case studies in the textile and food processing industries in the southern United States were analyzed. Sensitivity analyses were performed, and comparisons illustrating the effects of the Economic Recovery Tax Act of 1981 were made. The economic desirability of the proposed solar systems varied with the type of system selected, location of the facility, state tax credits, and type of fuel displaced. For those systems presently not economical, the projected time to economic feasibility was ascertained.

Montelione, A.; Boyd, D.; Branz, M.

1981-12-01T23:59:59.000Z

128

Industrial applications of solar energy. First quarterly progress report  

SciTech Connect

Industrial energy usage in the United States and the Southwest was surveyed to determine which industries were most energy intensive. This resulted in the selection of six major groups: (1) Chemicals and Allied Products - SIC 28, (2) Primary Metals - SIC 33, (3) Petroleum and Coal Products - SIC 29, (4) Paper and Allied Products - SIC 26, (5) Stone, Clay, and Glass Products - SIC 32, and (6) Food and Kindred Products - SIC 20. These groupings account for approximately 80% of the total industrial energy usage, both nationwide and with the Southwest. These major groups were then pursued through their subdivisions to determine more specifically the largest energy users and their locations within the Southwest, allowing the final industry selection. Approximately 300 representatives of the selected industries were contacted to determine their specific energy requirments as well as architecturally related energy parameters. Climaic and seismic data is also being collected for the areas encompassing the selected regions. Figures of Merit are being defined and their applicability to total energy systems tested. Subsystem definition work was initiated.

Rogan, J.E.

1976-01-01T23:59:59.000Z

129

Preliminary energy sector assessments of Jamaica. Volume III: renewable energy. Part I: solar energy - commercial and industrial  

SciTech Connect

This study concerns commercial and industrial solar applications, specifically solar water heating and solar air cooling. The study finds that solar domestic water heating and boiler make-up water preheating are technically feasible and, depending on the displaced energy source (electrical or various fuel types), economically justified; and that solar hot water installations could displace the equivalent of 189,842 barrels of fuel oil per year. However, solar cooling requires high performance collectors not currently manufactured in Jamaica, and feasibility studies indicate that solar cooling in the near term is not economically justified.

1980-01-01T23:59:59.000Z

130

Regional comparisons of on-site solar potential in the residential and industrial sectors  

SciTech Connect

Regional and sub-regional differences in the potential development of decentralized solar technologies are studied. Two sectors of the economy were selected for intensive analysis: the residential and industrial sectors. In both investigations, the sequence of analysis follows the same general steps: (1) selection of appropriate prototypes within each land-use sector disaggregated by census region; (2) characterization of the end-use energy demand of each prototype in order to match an appropriate decentralized solar technology to the energy demand; (3) assessment of the energy conservation potential within each prototype limited by land use patterns, technology efficiency, and variation in solar insolation; and (4) evaluation of the regional and sub-regional differences in the land use implications of decentralized energy supply technologies that result from the combination of energy demand, energy supply potential, and the subsequent addition of increasingly more restrictive policies to increase the percent contribution of on-site solar energy. Results are presented and discussed. It is concluded that determining regional variations in solar energy contribution for both the residential and industrial sectors appears to be more dependent upon a characterization of existing demand and conservation potential than regional variations in solar insolation. Local governmental decisions influencing developing land use patterns can significantly promote solar energy use and reduce reliance on non-renewable energy sources. These decisions include such measures as solar access protection through controls on vegetation and on building height and density in the residential sector, and district heating systems and industrial co-location in the manufacturing sector. (WHK)

Gatzke, A.E.; Skewes-Cox, A.O.

1980-10-01T23:59:59.000Z

131

Modeling Total Solar Irradiance Variations Using Automated Classification Software on Mount Wilson Data  

E-Print Network (OSTI)

S.K. (eds. ) The Sun as a Variable Star: Solar and Stellartube and the quiet Sun and a particular solar surface pixelsolar surface allow the construction of images of the Sun as

Ulrich, R. K.; Parker, D.; Bertello, L.; Boyden, J.

2010-01-01T23:59:59.000Z

132

Solar feasibility study for site-specific industrial-process-heat applications. Final report  

DOE Green Energy (OSTI)

This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

Murray, O.L.

1980-03-18T23:59:59.000Z

133

Summary of some feasibility studies for site-specific solar industrial process heat  

DOE Green Energy (OSTI)

Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

Not Available

134

Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies  

DOE Green Energy (OSTI)

Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

Kutscher, C.F. (ed.)

1981-03-01T23:59:59.000Z

135

Comparison of conventional and solar-water-heating products and industries report  

DOE Green Energy (OSTI)

President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

1980-07-11T23:59:59.000Z

136

An Evaluation of Alternative Classification Methods for Routine Low Level Waste from the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

This report investigates the feasibility of classifying all routine nuclear power plant low level waste, including Class B and Class C waste, as Class A low level waste within the framework of NRC regulatory requirements. A change in classification could expand disposal venues and reduce the uncertainty of future disposal. The report shows that all of the waste, when managed as a composite stream, will meet the requirements for Class A disposal without leaving a portion of the stream orphaned to on-site ...

2007-11-19T23:59:59.000Z

137

Pages that link to "ET Solar Group Formerly CNS Solar Industry...  

Open Energy Info (EERE)

from "http:en.openei.orgwikiSpecial:WhatLinksHereETSolarGroupFormerlyCNSSolarIndustry" Special pages About us Disclaimers Energy blogs Developer services OpenEI...

138

Application of solar energy to industrial drying of soybeans: Phase III, performance evaluation. Final report  

DOE Green Energy (OSTI)

A 15-month performance evaluation was conducted on a solar system designed and constructed to augment the industrial drying of soybeans at the Gold Kist, Inc., extraction plant in Decatur, Alabama. The plant employs three oil-fired, continuous-flow dryers of 3,000 bu/hr each. The solar system consists of 672 Solaron air collectors that temper the airflow into the existing dryers. Since the requirement for energy exceeds the peak solar system capacity, no storage is provided. The interface with the existing facility is simply accomplished by three ducts that release the solar heated air directly adjacent to the dryer air intakes, and no mechanical coupling is needed. The solar system was operated for 1,752 hr on 290 days during the 15-month period without a single failure sufficient to cause shutdown. No interference with normal plant operations was experienced. Maintenance of the solar system, consisting of service to the air handling unit, cleaning of collector glazing, and minor duct repair, totaled $1,564. System utilization was only 46.3%. This was primarily due to daytime routine maintenance performed on the conventional drying and processing equipment. The solar fraction was not large enough to justify maintenance shift changes. An average collector efficiency of 26.2% was experienced. Contamination caused by the local plant environment reduced the average collector efficiency by 9.3 percentage points. A prototype of an automatic cleaning system was constructed and tested.

Hall, B.R.

1979-10-31T23:59:59.000Z

139

Economic status and prospects of solar thermal industrial heat  

DOE Green Energy (OSTI)

This paper provides estimates of the levelized energy cost (LEC) of a mid-temperature parabolic trough system for three different development scenarios. A current technology case is developed that is representative of recent designs and costs for commercial systems, and is developed using data from a recent system installed in Tehachapi, California. The second scenario looks at design enhancements to the currenttechnology case as a way to increase annual energy output and decrease costs. The third scenario uses the annual energy output of the enhanced design, but allows for cost reductions that would be possible in higher volume production than currently exist. A simulation model was used to estimate the annual energy output from the system, and the results were combined with cost data in an economic analysis model. The study indicates that R D improvements in the current trough system show promise of reducing the (LEC) by about 40%. At higher production rates, the LEC of the solar system with R D improvements could potentially be reduced by over 50%.

Williams, T.A.; Hale, M.J.

1992-12-01T23:59:59.000Z

140

Economic status and prospects of solar thermal industrial heat  

DOE Green Energy (OSTI)

This paper provides estimates of the levelized energy cost (LEC) of a mid-temperature parabolic trough system for three different development scenarios. A current technology case is developed that is representative of recent designs and costs for commercial systems, and is developed using data from a recent system installed in Tehachapi, California. The second scenario looks at design enhancements to the currenttechnology case as a way to increase annual energy output and decrease costs. The third scenario uses the annual energy output of the enhanced design, but allows for cost reductions that would be possible in higher volume production than currently exist. A simulation model was used to estimate the annual energy output from the system, and the results were combined with cost data in an economic analysis model. The study indicates that R&D improvements in the current trough system show promise of reducing the (LEC) by about 40%. At higher production rates, the LEC of the solar system with R&D improvements could potentially be reduced by over 50%.

Williams, T.A.; Hale, M.J.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of industry views on international business prospects for solar thermal technology  

DOE Green Energy (OSTI)

This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

Easterling, J.C.

1984-09-01T23:59:59.000Z

142

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Photovoltaic Industry: Looking Through the Storm.Solar Photovoltaic Industry: Looking Through the Storm.

Price, S.

2010-01-01T23:59:59.000Z

143

Equipment/product classification. [Equipment suppliers for the oil and gas industry  

SciTech Connect

This article contains information about the manufacturers and suppliers of goods for the oil and gas industry, including machines, software, services, and equipment used to build, operate, and maintain energy pipeline systems. The article represents companies around the world and are arranged by product category for ease of use.

Not Available

1994-05-01T23:59:59.000Z

144

Current performance and potential improvements in solar thermal industrial heat  

DOE Green Energy (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m[sup 2] system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

145

Current performance and potential improvements in solar thermal industrial heat  

DOE Green Energy (OSTI)

A representive current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more am 50% improvement in the annual energy delivered by a 2677 m{sup 2} system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

Hale, M.J.; Williams, T.; Barker, G.

1992-12-01T23:59:59.000Z

146

Financial barriers to the use of solar-industrial-process heat  

SciTech Connect

Industry concerns about solar process heat, attitudes toward investment in solar process heat, and decision processes and factors are reported. Four cases were selected from among 30 potential solar process heat installations that had been carried through the design stage, and case was analyzed using discounted cash flow to determine what internal rate of return would be earned under current tax laws over 10 years. No case showed any significant rate of return from capital invested in the solar installation. Several possible changes in the cost of solar equipment, its tax treatment or methods of financing were tested through computer simulation. A heavy load of extra tax incentives can improve the return on an investment, but such action is not recommended because they are not found to induce adoption of solar process heat, and if they were effective, capital may be drawn away from applications such as conservation were the potential to improve the nation's energy dilemma is greater. Tax shelter financing through limited partnership may be available. (LEW)

1981-03-01T23:59:59.000Z

147

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

1980-07-01T23:59:59.000Z

148

Application of solar energy to industrial drying or dehydration processes. Final report  

DOE Green Energy (OSTI)

The application of a solar energy system to the Lawrence, Kansas alfalfa dehydration plant, owned by the Western Alfalfa Corporation, is an attractive opportunity to demonstrate the feasibility of using solar energy to supply industrial process heat. The work undertaken for this project is reviewed. The design parameters of the dehydrator, including the energy consumed by the plant, the airflow requirements of the dehydrator, and the interface between the dehydrator and the solar array are discussed. The design of the collector array, the selection of solar collectors, the calculation of collector areas for the array, and the simulations of the system performance are addressed. Discussions of the detailed engineering drawings and specifications of the array construction, duct work, air handling equipment, system controls, and data monitoring, and acquisition systems are presented. The results of the contractors' bids based on these drawings and specifications are given. An economic analysis of the solar system using the Lawrence Livermore Laboratory format is presented. Finally, the impact of the solar system on the process energy requirements and on the operation of the plant are discussed. (WHK)

Not Available

1977-03-17T23:59:59.000Z

149

Solar production of industrial process steam for the Lone Star Brewery. Conceptual design report  

DOE Green Energy (OSTI)

The project conceptual design activities are divided into six parts: Industrial Plant, Conceptual System Design, Collector Selection, Heat Transfer Fluid Selection, Site Fabrication, and Engineered Equipment. Included is an overview of the solar steam system and a brief discussion on the environmental impact of the project as well as the safety considerations of the system design. The effect of the solar system on the environment is negligible, and the safety analysis of the system indicates the considerations to be taken to minimize any potential safety hazard due to contamination of the food product or to fire. Both of these potential hazards are discussed in detail. Both the question of product contamination and the question of potential fire hazards will be presented to the industrial partner's safety committee so that the selection of the heat transfer fluid meets with their approval.

Deffenbaugh, D.M.

1978-12-29T23:59:59.000Z

150

Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report  

SciTech Connect

This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

1984-06-01T23:59:59.000Z

151

A Method for Sky-Condition Classification from Ground-Based Solar Radiation Measurements  

Science Conference Proceedings (OSTI)

Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorological variables, solar ...

Josep Calb; Josep-Abel Gonzlez; David Pags

2001-12-01T23:59:59.000Z

152

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

153

Solar energy system performance evaluation: Aratex Services, Inc. , Industrial Laundry, Fresno, California, November 1977--May 1978  

SciTech Connect

An operational summary of how the solar energy system installed at ARATEX Services Inc., an industrial laundry located in Fresno, California, performed during the report period is provided. This analysis is made by evaluation of measured system performance and by comparison of measured climatic data with long term average climatic conditions. Performance of major subsystems is also presented to illustrate their operation. Included are: a brief system description, review of actual system performance during the report period, analysis of performance based on evaluation of meteorological load and operational conditions, and an overall discussion of results. Monthly values of average daily insolation and average ambient temperature measured at the ARATEX site are presented. Also presented are the long-term, average monthly values for these climatic parameters. The ARATEX system collected an average of 67 million Btu of solar energy per month. The available solar radiation was 75 percent of the long term average. The use of both a solar energy and heat recovery system at ARATEX has combined to reduce the total load of a system without heat recovery by approximately 45 percent. The solar energy system alone contributed 16 percent of the total hot water load at the site. Damage to the Lexan covers on fourteen of the total 140 collectors was reported. This damage is believed to have been caused by winds.

1978-07-01T23:59:59.000Z

154

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES, LP FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIES, LP FOR AN ADVANCE INDUSTRIES, LP FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZDJ-2-30630-16 UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-03-010; CH-1136 As set out in the attached waiver petition and in subsequent discussions with DOE, Shell Solar Industries, LP (SSI) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of SSl's waiver petition, the purpose of the subcontract encompasses the development of thin-film module processing and cell and module reliability.

155

Solar production of industrial process steam for the Lone Star Brewery. Final report  

DOE Green Energy (OSTI)

This report outlines the detailed design and system analysis of a solar industrial process steam system for the Lone Star Brewery. The industrial plant has an average natural gas usage of 12.7 MMcf per month. The majority of this energy goes to producing process steam of 125 psi and 353/sup 0/F at about 50,000 lb/h, with this load dropping to about 6000 lb/h on the weekends. The maximum steam production of the solar energy system is about 1700 lb/h. The climatic conditions at the industrial site give 50% of the possible amount of sunshine during the winter months and more than 70% during the summer months. The long-term yearly average daily total radiation on a horizontal surface is 1574 Btu/day-ft/sup 2/, the long-term yearly average daytime ambient temperature is 72/sup 0/F, and the percentage of clear day insolation received on the average day of the year is 62%. The solar steam system will consist of 9450 ft/sup 2/ of Solar Kinetics T-700 collectors arranged in fifteen 90-ft long rows through which 67.5 gpm of Therminol T-55 is pumped. This hot Therminol then transfers the heat collected to a Patterson-Kelley Series 380 unfired steam boiler. The solar-produced steam is then metered to the industrial process via a standard check valve. The thermal performance of this system is projected to produce about 3 million lbs of steam during an average weather year, which is approximately 3 billion Btu's. As with any prototype system, this steam system cannot be justified for purely economic reasons. It is estimated, however, that if the cost of the collectors can be reduced to a mass production level of $3 per lb then this type of system would be cost effective in about six years with the current government incentives and a fuel escalation rate of 10%. This period can be shortened by a combination of an increased investment tax credit and an accelerated depreciation.

Deffenbaugh, D.M.; Watkins, P.V.; Hugg, S.B.; Kulesz, J.J.; Decker, H.E.; Powell, R.C.

1979-06-29T23:59:59.000Z

156

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

157

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

158

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network (OSTI)

are renewable as well. Solar energy, one such resource, isThe Inevitability of Solar Energy," contains one chapter inenergy system, introduces solar energy with its merits and

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

159

3S Industries AG Formerly 3S Swiss Solar Systems AG | Open Energy  

Open Energy Info (EERE)

AG Formerly 3S Swiss Solar Systems AG AG Formerly 3S Swiss Solar Systems AG Jump to: navigation, search Name 3S Industries AG (Formerly 3S Swiss Solar Systems AG) Place Bern, Switzerland Zip CH-3006 Product Swiss-based manufacturer of manual and semi-automatic PV module production lines; provides turnkey integration service for PV and BIPV. Coordinates 46.948432°, 7.440461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.948432,"lon":7.440461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

162

Preferences and concerns of potential users in the selection of solar thermal systems for industrial and small utility applications  

SciTech Connect

To achieve widespready application in the industrial and utility sectors, solar systems must be economically competitive. Economic viability is, in turn, determined by a number of supporting criteria, ranging from system reliability to dispatch characteristics to how the system supports the main product line. In addition, solar systems possess some inherent attributes that may render some of the traditional supporting criteria inappropriate or require their redefinition. Those criteria and their relation to the solar investments are discussed in three steps. First, the main concerns and preferences of the potential users, as identified in recent SERI studies, are identified. Second, the equitability of the resulting decision criteria for solar investments are examined. Finally, the implications of these criteria for solar energy's penetration into these markets are discussed.

Gresham, J.B.; Kriz, T.A.

1981-03-01T23:59:59.000Z

163

STATEMENT OF CONSIDERATIONS REQUEST BY SHELL SOLAR INDUSTRIES LP FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ZAX-5-33628-07 ENTITLED "MANUFACTURING IMPROVEMENTS IN Cz SILICON ZAX-5-33628-07 ENTITLED "MANUFACTURING IMPROVEMENTS IN Cz SILICON MODULE PRODUCTION;" UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-05-060; CH-1346 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Shell Solar Industries LP (SSI) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified subcontract by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of SSI's waiver petition, the purpose of this subcontract encompasses the development of improved photovoltaic (PV) manufacturing techniques

164

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL NREL SUBCONTRACT NO. ZAK-8-17619-19 UNDER DOE CONTRACT NO. DE- AC36-83CH10093; W(A)-98-019; CH-0987 The Petitioner, Siemens Solar Industries (hereinafter "SSI"), has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under th, above referenced subcontract entitled "Commercialization of CIS-Based Thin-Film PV." The ) Petitioner is a ower. tie subcontractor under the referenced NREL subcontract wi / Res3areh lstituce - (SRI),a- 1 ot-for profit organi7ztion. 4 The contract pertains to the use of alloys of copper indium diselenide (CuInSe 2 , hereinafter "CIS") in photovoltaic cells. CIS-based photovoltaic cells have shown promise in reducing the cost of photovoltaics well below the cost of crystalline silicon-based photovoltaic

165

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE DOE COOPERATIVE AGREEMENT NO. DE-FG48-97R8810617; W(A)-97- 034; CH-0937 The Petitioner, Siemens Solar Industries, has requested a waiver of domestic and foreign patent rights for all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Commercialization of CIS Thin Film Photovoltaics." This cooperative agreement is to assist the Petitioner in commercializing its proprietary copper indium diselenide (CIS) thin film photovoltaic technology. The thin film technology promises better than average efficiency and lower-cost manufacturing. This is a two year program designed to purchase equipment for pilot production of CIS modules, and for Petitioner to demonstrate, on a pilot scale, process capabilities and cost

166

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS SOLAR INDUSTRIES FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCE WAIVER ADVANCE WAIVER OF U.S. AND FOREIGN RIGHTS UNDER SUBCONTRACT NO. NREL-RAF-5-14142-03 UNDER DOE PRIME CONTRACT NO. DE-AC36-83CH10093, WAIVER NO. W(A)-95-002, CH0850. The attached petition by Siemens Solar Industries (hereafter Siemens) is for an advance waiver of patent rights under Subcontract No. NREL-RAF-5-14142-03, under DOE Contract No. DE-AC36-83CH10093. Siemens requests that the Department of Energy grant an advance waiver for the domestic and foreign rights to inventions developed in the performance of the above identified subcontract without limitation as to field of use and that these rights will be retained by Siemens subject to the standard Advance Waiver Patent Rights Clause with the enclosed U.S. Competitiveness paragraph as previously agreed to. Additionally, Siemens has

167

Solar production of industrial process steam at Ore-Ida frozen-fried-potato plant  

DOE Green Energy (OSTI)

TRW is designing a system for the demonstration of the Solar Production of Industrial Process Steam. Included, besides the Conceptual Design, is an Environmental Impact Assessment and a System Safety Analysis report. The system as proposed and conceptualized consists of an array of 9520 square feet of parabolic trough concentrating solar energy collectors which generate pressurized hot water. The pressurized water is allowed to flash to steam at 300 psi (417/sup 0/F) and fed directly into the high pressure steam lines of the Ore-Ida Foods, Inc., processing plant in Ontario, Oregon. Steam is normally generated in the factory by fossil-fired boilers and is used by means of a steam-to-oil heat exchanger for the process of frying potatoes in their frozen food processing line. The high pressure steam is also cascaded down to 125 psi for use in other food processing operations. This solar system will generate 2 x 10/sup 6/ Btu/hr during peak periods of insolation. Steam requirements in the plant for frying potatoes are: 43 x 10/sup 6/ Btu/hr at 300 psi and 52 x 10/sup 6/ Btu/hr at the lower temperatures and pressures. The Ontario plant operates on a 24 hr/day schedule six days a week during the potato processing campaigns and five days a week for the remainder of the year. The seventh day and sixth day, respectively, use steam for cleanup operations. An analysis of the steam generated, based on available annual insolation data and energy utilized in the plant, is included.

Cherne, J.M.; Gelb, G.H.; Pinkerton, J.D.; Paige, S.F.

1978-12-29T23:59:59.000Z

168

Preliminary operational results of the low-temperature solar industrial process heat field tests  

DOE Green Energy (OSTI)

Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

Kutscher, C.F.; Davenport, R.L.

1980-06-01T23:59:59.000Z

169

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network (OSTI)

the Present." A brief history of energy is presented first.solar energy. A short history of solar energy along with its

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

170

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network (OSTI)

The author remarks that solar PV modules production cost hasPV option. The last chapter presents the real world assessment of solar

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

171

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

172

Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW  

DOE Green Energy (OSTI)

This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generating systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)

Not Available

1979-06-01T23:59:59.000Z

173

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

174

Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center  

SciTech Connect

This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

Brown, G.Z.

1990-01-01T23:59:59.000Z

175

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

176

National program plan for research and development in solar heating and cooling for building, agricultural, and industrial applications  

DOE Green Energy (OSTI)

The main feature of the directed program is the focus on specific approaches, called paths, to the application of solar energy. A path is the linking of a method of energy collection or rejection with a particular application. Eleven such paths are identified for building applications and eleven for agricultural and industrial process applications. Here, an overview is given of the program plan. The 11 paths to the solar heating and cooling of buildings and the 11 paths for agricultural and industrial process applications are described. Brief descriptions of these tasks and of the non-engineering tasks are included. The importance of each non-engineering task to the overall R and D program is indicated. (MHR)

Not Available

1978-08-01T23:59:59.000Z

177

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

178

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

179

Solar Easements and Local Option Solar Rights Laws | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements and Local Option Solar Rights Laws Solar Easements and Local Option Solar Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government...

180

Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981  

DOE Green Energy (OSTI)

A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar Monkey | Open Energy Information  

Open Energy Info (EERE)

search Name Solar Monkey Place Irvine, California Zip 92618 Sector Solar Product Solar Monkey installs PV systems for commercial and industrial users. References Solar...

182

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

183

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

184

Investigation of Opportunities for High-Temperature Solar Energy in the Aluminum Industry  

DOE Green Energy (OSTI)

This report gives the conclusions drawn from a study of the potential application of high-temperature solar process heat for production of aluminum.

Murray, J.

2006-05-01T23:59:59.000Z

185

Normative price for a manufactured product: the SAMICS methodology. Volume II. Analysis. JPL publication 78-98. [Solar Array Manufacturing Industry Costing Standards  

DOE Green Energy (OSTI)

The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. This document presents the methodology and its theoretical background. It is contended that the model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simulation computer program (SAMIS III, Release 1) is discussed.

Chamberlain, R.G.

1979-01-15T23:59:59.000Z

186

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

187

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

188

Review: Solar Revolution: The Economic Transformation of the Global Energy Industry by Travis Bradford  

E-Print Network (OSTI)

related to finance and alternative energy economics. Energyalternatives are discussed next with the author concluding that hydroelectric dams; nuclear power; wind energyalternatives for various reasons. The last chapter in this part is dedicated to solar energy.

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

189

NREL Invention Speeds Solar Cell Quality Testing for Industry (Fact Sheet)  

SciTech Connect

A solid-state optical system, invented by the National Renewable Energy Laboratory (NREL), measures solar cell quantum efficiency (QE) in less than a second, enabling a suite of new capabilities for solar cell manufacturers. QE is a measurement of how cells respond to light across the solar spectrum, but traditional methods for measuring QE had been too slow, limiting its application to small samples pulled from the production line and analyzed in laboratories. NREL's technique, commercialized by Tau Science as the FlashQE(TM) system, uses a solid-state light source, synchronized electronics, and advanced mathematical analysis to parallel-process QE data in a tiny fraction of the time required by the current method, allowing its use on every solar cell passing through a production line.

Not Available

2013-08-01T23:59:59.000Z

190

Application of solar energy to the supply of industrial hot water. Technical report 3  

SciTech Connect

A solar water heating and steam generating system is being developed for a California laundry. Progress reported includes accumulation of data on process usage and demands for the purpose of collector sizing, studies of insulation for piping and thermal storage tanks, investigation in the selection of the heat transfer fluid, and weather measurements. Further analyses on the supporting structure for the solar collector arrays are reported. A concept review meeting is discussed. (LEW)

1976-08-01T23:59:59.000Z

191

Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

Steen, M.; Lisell, L.; Mosey, G.

2013-01-01T23:59:59.000Z

192

Solar energy system performance evaluation. Aratex Services, Inc. , industrial laundry, Fresno, California, June--September 1978  

SciTech Connect

The system utilizes 140 collectors manufactured by Ying. The collectors are flat plate and lexan glazed. They provide an effective aperture area of 6500 square feet. The collectors are mounted in 24 rows on the flat roof of the building. The 12,500 gallon insulated fiberglass storage tank is mounted on an above ground slab in a partially enclosed area. All solar energy system piping is copper. All exterior piping is insulated with fiberglass covered by an aluminum jacket. The solar energy system is used in conjunction with a heat recovery system. Softened cold water is first pumped through a heat exchanger which recovers heat from the laundry wastewater. The water then flows into the solar storage tank and circulates through the collectors. It is then pumped through another heat exchanger which boosts the water to the required temperature of 170/sup 0/F. Steam from a low pressure gas-fired boiler located in the building is used as the auxiliary energy source. The hot water is stored in a 4,000 gallon holding tank which contains an immersed heat exchanger that adds heat to the water from the steam condensate. The ARATEX solar system has an average hot water demand of over 30,000 gallons per day at a temperature of 180/sup 0/F. The heat recovery system reduced the hot water load at the laundry by 30 percent. Of the remaining load, 25 percent was provided by solar energy.

Armstrong, H.L.; Sohoni, V.S.; Murphy, L.J.

1978-01-01T23:59:59.000Z

193

Application of solar energy to the supply of industrial hot water. Technical report 4  

SciTech Connect

A solar water heating and steam generating system is being designed for a California laundry. Progress reported includes completion of the analysis of the existing process services, determination of collectable solar energy at El Centro, California, selection of water as the heat transfer fluid in the 200/sup 0/F system and further analyses of heat transfer fluids for the 300/sup 0/F system, meetings and discussions with respect to system controls and monitoring and the collector support structure, and a proposal for the waste heat recovery system. (LEW)

1976-09-01T23:59:59.000Z

194

Solar production of industrial process steam for the Lone Star Brewery. 80% review report  

DOE Green Energy (OSTI)

The solar steam system for the Lone Star Brewery is described in detail. It consists of a roof-mounted parabolic trough collector field heating Monsanto's Therminol T-55 heat transfer fluid, a solar-fired boiler, a heat transfer fluid circulation pump, and all the associated piping. The comparison of various collectors and heat transfer fluids surveyed is reviewed. Also included are discussions of the system performance analysis, economic analysis, safety analysis, data collection, and environmental impact assessment. Numerous drawings illustrate the system, particularly the parallel trough collectors. (LEW)

Deffenbaugh, D.M.; Watkins, P.V.; Hugg, S.B.; Kulesz, J.J.; Decker, H.E.; Powell, R.C.

1979-05-15T23:59:59.000Z

195

Survey and analyze the business conditions of the solar industry, April-May 1981. Task I  

DOE Green Energy (OSTI)

The response to seminars on Making Market Regulations Work For You are described. The administration and analysis of solar system product certification are discussed. The state-of-the-art in photovoltaics is reviewed. Recommendations on photovoltaics are made concerning regulatory initiatives, system experiments, patent policies, tax policies, procurements, and DOE operations. (MHR)

Not Available

1981-01-01T23:59:59.000Z

196

Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry  

DOE Green Energy (OSTI)

The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

Lamm, D.

1980-06-01T23:59:59.000Z

197

Passive-solar techniques for the mobile/modular housing industry  

DOE Green Energy (OSTI)

Using a fairly typical mobile home design, it is shown that state-of-the-art mobile/modular housing and passive solar techniques can be used together. Computer simulations are used to analyze the concept. Size conditions at a mobile home park are considered. Glazing orientation, shading, and thermal storage are included in the analysis. (LEW)

Osborn, D.C.

1983-01-31T23:59:59.000Z

198

Research on the application of solar energy to industrial drying or dehydration processes. Final Phase report  

DOE Green Energy (OSTI)

The dehydration operation is described. The system design and its economic analysis are discussed. The system analysis covers the solar collectors, fan and ducting selection, rock storage design, heat recovery, control system, system simulation, and the monitoring system. The construction costs are discussed thoroughly. The construction design is presented including engineering drawings. (MHR)

Not Available

1977-03-01T23:59:59.000Z

199

Groundwater Classification and Standards (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Classification and Standards (North Carolina) Classification and Standards (North Carolina) Groundwater Classification and Standards (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Siting and Permitting Provider Department of Environment and Natural Resources The rules established in this Subchapter 2L of North Carolina Administrative Code Title 15A are intended to maintain and preserve the quality of the groundwaters, prevent and abate pollution and contamination of the waters of the state, protect public health, and permit management of the groundwaters for their best usage by the citizens of North Carolina. It

200

Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030. Final report  

DOE Green Energy (OSTI)

This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE`s Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets.

Not Available

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Hybrid System for Learning Sunspot Recognition and Classification  

Science Conference Proceedings (OSTI)

Sunspots observation and classification are important tasks for solar astronomers. The activity of sunspots can give clues to the timing of solar flares and the solar weather in general. This paper describes a hybrid system for automatic sunspot recognition ...

Trung Thanh Nguyen; Claire P. Willis; Derek J. Paddon; Hung Son Nguyen

2006-11-01T23:59:59.000Z

202

Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant  

DOE Green Energy (OSTI)

The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

None

1977-01-01T23:59:59.000Z

203

Solar Project Cost Report. Aratex Services, Inc. , Industrial Laundry, Fresno, California  

SciTech Connect

The system utilizes 140 Ying, flat plate, lexan glazed collectors which provide an effective aperture area of 6500 square feet. The collectors are mounted in 24 rows on the flat roof of the building. The water is pumped between the collectors and the atmospherically vented storage tank. The 12,500 gallon insulated fiberglass storage tank is located above ground on the concrete floor of a covered area of the building which is open to the outside. The solar energy system is used in conjunction with a system which recovers heat from laundry wastewater and steam condensate. The construction costs of this solar water heating system are presented. Category costs are listed by materials, labor, and subcontract costs. The subcontract costs include materials, labor, overhead and profit costs for insulation and electrical subcontractors.

1978-06-07T23:59:59.000Z

204

A ternary unification framework for optimizing TCAM-based packet classification systems  

Science Conference Proceedings (OSTI)

Packet classification is the key mechanism for enabling many networking and security services. Ternary Content Addressable Memory (TCAM) has been the industrial standard for implementing high-speed packet classification because of its constant classification ... Keywords: packet classification, tcam

Eric Norige, Alex X. Liu, Eric Torng

2013-10-01T23:59:59.000Z

205

Decontamination of industrial cyanide-containing water in a solar CPC pilot plant  

Science Conference Proceedings (OSTI)

The aim of this work was to improve the quality of wastewater effluent coming from an Integrated Gasification Combined-Cycle (IGCC) power station to meet with future environmental legislation. This study examined a homogeneous photocatalytic oxidation process using concentrated solar UV energy (UV/Fe(II)/H{sub 2}O{sub 2}) in a Solar Compound Parabolic Collector (CPC) pilot plant. The efficiency of the process was evaluated by analysis of the oxidation of cyanides and Total Organic Carbon (TOC). A factorial experimental design allowed the determination of the influences of operating variables (initial concentration of H{sub 2}O{sub 2}, oxalic acid and Fe(II) and pH) on the degradation kinetics. Temperature and UV-A solar power were also included in the Neural Network fittings. The pH was maintained at a value >9.5 during cyanide oxidation to avoid the formation of gaseous HCN and later lowered to enhance mineralization. Under the optimum conditions ([H{sub 2}O{sub 2}] = 2000 ppm, [Fe(II)] = 8 ppm, pH = 3.3 after cyanide oxidation, and [(COOH){sub 2}] = 60 ppm), it was possible to degrade 100% of the cyanides and up to 92% of Total Organic Carbon. (author)

Duran, A.; Monteagudo, J.M.; San Martin, I.; Aguirre, M. [Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Avda. Camilo Jose Cela 3, 13071 Ciudad Real (Spain)

2010-07-15T23:59:59.000Z

206

2644 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 7, JULY 2008 An Adaptive Solar Photovoltaic Array Using  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 2 ­ Solar Electric Arrays Prepared for the Oregon Million Solar. (­) (+) (­)(+) (­) (+) (­) (+) (+) (+) (­) (­) Solar cells in series boost voltage Solar cells in parallel boost amperage #12;2 A photovoltaic (PV Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken

Lehman, Brad

207

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

investments. Thin Film PV Solar Heating & Cooling Projectused in the report. Solar water heating, space heating ande.g. , PV, CSP, solar water heating) Types of industry

Price, S.

2010-01-01T23:59:59.000Z

208

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

capture such savings: the solar provider has unique pricingscale solar industry. Solar providers will need both to

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

209

Solar Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

general plumbing contractors carrying an S210 license are authorized to install solar thermal systems. The Division has also established solar-specific license classifications....

210

Programmatic environmental assessment of the DOE Solar Agricultural and Industrial Process Heat Program  

DOE Green Energy (OSTI)

The program's potential environmental impacts are evaluated to ensure that environmental issues are considered at the earliest meaningful point in the decision-making process. The existing environment is studied for the following: grain drying; crop drying; livestock shelter heating; food processing; textile products; lumber and wood products; paper products; chemicals; petroleum refining; stone, clay, and glass products; and primary metals industries. Environmental impacts of the proposed action on the following are studied: air quality, water quality, ecosystems, health and safety, land use, esthetics, and social and institutional impacts. (MHR)

Not Available

1979-06-01T23:59:59.000Z

211

Kishimura Industry Co | Open Energy Information  

Open Energy Info (EERE)

Kishimura Industry Co Jump to: navigation, search Name Kishimura Industry Co Place Kanagawa-Ken, Japan Sector Solar, Vehicles Product Developer of solar power systems and...

212

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name Millennium Energy Industries Place Jordan Zip 1182 Sector Solar Product Jordan-based solar energy firm focused in MENA region....

213

Solar Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Contractor Licensing Solar Contractor Licensing Solar Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Program Info State Nevada Program Type Solar/Wind Contractor Licensing Provider Nevada State Contractors Board - Reno Nevada law requires that solar energy system installers be licensed by the Nevada State Contractors Board. Contractors may be licensed under License Classification C-37 (solar contracting for solar water heating and space heating and air conditioning). Contractors may also perform solar work under License Classification C-1* (plumbing and heating), sub-classification (d) for solar water heating installations, or

214

Rotem Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

research, development, construction & consultation of major solar energy projects: solar power plants and solar powered desalination study. References Rotem Industries Ltd1...

215

Solar production of industrial process steam. Quarterly performance report, January 16, 1980-June 30, 1980  

DOE Green Energy (OSTI)

A solar process steam system for gauze bleaching/sterilization utilizing 1065 m/sup 2/ Acurex Model 3001 line focusing parabolic trough concentrators is described. The system operates by circulating pressurized water through the collector field and then throttling it into a flash boiler. There the heated, pressurized water flashes to steam and flows into the plant steam main for distribution to various plant processes. Makeup water is supplied by the existing plant boiler feedwater system. The flash boiler retains enough thermal storage to provide freeze protection to the collector field when required. The system performance from January 16 to June 30 is summarized. A comparison of predicted and measured performance for a single day in June is presented. A summary of the operation of the system is given in Appendix A for each day of operation. Appendix B contains the hourly average values of system parameters for a single clear day in each month. These values are presented in graphical form in Appendix C. The daily values are tabulated in Appendix D and plotted in Appendix E for each month of operation. (MCW)

Not Available

1980-01-01T23:59:59.000Z

216

How Solar Panels Work  

NLE Websites -- All DOE Office Websites (Extended Search)

their understanding of this concept. Finally, students will investigate careers in solar energy and report on the growing solar industry. LESSON OVERVIEW Grade Level &...

217

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ulm Public Utilities - Solar Electric Rebate Program New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

218

Transpired Solar Collector - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; ... including laser perforating or hot ...

219

Solar Easements & Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements & Rights Laws Solar Easements & Rights Laws Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential...

220

DOE Solar Decathlon: Solar Decathlon Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Workshops Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Videos For video of the U.S. Department of Energy Solar Decathlon 2011, see the collections listed below or visit the U.S. Department of Energy Solar Decathlon YouTube Channel. General Solar Decathlon Videos Watch these videos to learn about the Solar Decathlon competition and event. Solar Decathlon House Video Tours Learn about each of the U.S. Department of Energy Solar Decathlon teams and their houses in these video tours. Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the Solar Decathlon

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar collectors  

SciTech Connect

Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

Cassidy, V.M.

1981-11-01T23:59:59.000Z

222

Havasu Solar Electric | Open Energy Information  

Open Energy Info (EERE)

Zip 86401 Sector Solar Product Arizona-based electric contractors in the solar industry. References Havasu Solar Electric1 LinkedIn Connections CrunchBase Profile No...

223

Solar Glare Hazard Analysis Tool (SGHAT)  

I am a solar power design engineer and owner of Advanced Solar Products, and I also lead the Mid-Atlantic Solar Energy Industries Association.

224

SunShot Initiative: Solar Career Map  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Career Map This solar career map explores an expanding universe of solar-energy occupations, describing diverse jobs across the industry, charting possible...

225

Application of solar energy to the supply of industrial process hot water. Energy reduction and economic analysis report. Aerotherm report TR-76-220. [Can washing at Campbell Soup Company in California  

DOE Green Energy (OSTI)

A discussion is provided of the following aspects of the solar process hot water program: criteria and rationale used in process selection, expected fuel savings to be provided by widespread use of the solar energy system in the industry, and economic evaluation of the system. The design, construction, operation, and evaluation of a solar water heating system for application to the can washing process at the Campbell Soup Company's plant located in Sacramento, California are included.

None

1976-10-14T23:59:59.000Z

226

Solar production of industrial process hot water: operation and evaluation of the Campbell Soup hot water solar facility. Final report, September 1, 1979-December 10, 1980  

DOE Green Energy (OSTI)

The operation and evaluation of a solar hot water facility designed by Acurex Corporation and installed (November 1977) at the Campbell Soup Company Sacramento, California canning plant is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation 99% of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large-scale solar facilities based on this project's experience are given, and an environmental impact assessment for the Campbell Soup solar facility is provided. (WHK)

Kull, J. I.; Niemeyer, W. N.; Youngblood, S. B.

1980-12-01T23:59:59.000Z

227

Solar energy: industry sector analysis, the role of legislation and policy, and the California and U.S. market outlook.  

E-Print Network (OSTI)

??This thesis is a discussion of solar energy technology, the current global and United States markets, the role of government legislation and policy as a (more)

Motta, John James

2010-01-01T23:59:59.000Z

228

Putting the sun to work in industry  

DOE Green Energy (OSTI)

Industrial applications of solar energy are discussed in this illustrated brochure along with the DOE and SERI industrial process heat field test programs. The future prospects and advantages of solar industrial process heat are also discussed. (MHR)

None

1979-09-01T23:59:59.000Z

229

Textile drying using solarized can dryers to demonstrate the application of solar energy to industrial drying or dehydration processes, Phase II. Final report  

DOE Green Energy (OSTI)

This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated process steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46 percent of the direct isolation available to the collector field during the operational hours (300 days/year of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Over 50 percent of all woven goods are processed through slashers and dried on can dryers. The collectors were fabricated by Honeywell at a pilot production facility in Minneapolis, Minnesota, under a 3000-square-meter (32,000-square-foot) production run. The collectors and other system components were installed at the site by the Bahnson Service Company and their subcontractors, acting as the project general contractor. System checkout and start-up was conducted. Preliminary system performance was determined from data collected during start-up. System design, fabrication and installation, data analysis, operation and maintenance procedures, and specifications and drawings are presented.

Mitchell, P.D.; Beesing, M.E.; Bessler, G.L.

1979-12-01T23:59:59.000Z

230

Solar production of industrial process steam ranging in temperature from 300/sup 0/F to 550/sup 0/F (Phase I). Volume 1. Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

This section summarizes the Foster Wheeler Development Corporation/Dow Chemical Company Phase I solar industrial process steam system and includes a system schematic, a brief system description, general specifications of the major system components, expected system performance, and a cost estimate summary for Phases II and III. The objectives of Phase I are: (1) design a cost-effective solar steam generating system, using state-of-the-art components and technology, to supply steam for Dow Chemical Company's Dalton, Georgia, plant; (2) predict the performance of the solar process steam plant; (3) conduct a safety evaluation and an environmental impact assessment of the solar steam system; (4) conduct an economic analysis to determine the potential economic benefits of a solar-augmented process steam production system compared with an existing fossil-fuel-fired steam generator; and (5) promote the project extensively to make it visible to industry and the general public.

Not Available

1979-06-30T23:59:59.000Z

231

Lubricant Classification  

Science Conference Proceedings (OSTI)

Table 9   Engine tests for API classification...wear ASTM sequence VI (1982 Buick V-6 engine): Fuel economy Diesel engines CRC L-38: Bearing corrosion, oxidation, shear stability Caterpillar 1K: Piston deposits Detroit diesel 6V-92TA (two-stroke engine): Piston

232

Technology Transfer: For Industry:SBIR Opportunities  

... our lab is not specialized in solar cell fabrication and hence, our solar cell fabrication tools do not meet industrial standards. For instance, ...

233

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

234

Green Industrial Policy: Trade and Theory  

E-Print Network (OSTI)

costs of de- veloping an industry that produces components for solar and wind powered energy.the cost of this energy. Nevertheless, solar and wind power,

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

235

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

Solar Product Solar energy company based in Hebei province, engaged in manufacturing photovoltaic cell, crystal silicon and other key products. References Jinlong Industrial...

236

Longjitaihe Industry Group | Open Energy Information  

Open Energy Info (EERE)

Zip 7400 Sector Solar Product Chinese real estate developer foraying into solar PV projects. References Longjitaihe Industry Group1 LinkedIn Connections CrunchBase Profile No...

237

DOE Solar Decathlon: Solar Decathlon Juries  

NLE Websites -- All DOE Office Websites (Extended Search)

consulting firm specializing in solar heating and cooling of commercial buildings and industrial process heat. Kelelo has also provided sustainable solutions through...

238

Product Classification  

Science Conference Proceedings (OSTI)

Table 1   Major types and uses of pipe...Uses Standard Industrial or residential water steam, oil, or gas

239

Classification Training Institute Catalog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Classification Training Institute Catalog Classification Training Institute Catalog Enforcement Guidance Oversight Reporting Classification Classification Training Institute...

240

An Input-Output Analysis of the Relationships Between Communications and Travel for Industry  

E-Print Network (OSTI)

Make of Commodities by Industries 2. The Use of Industriesrelationships in industry. Transportation Research A 31A(for Classification of Industries in 1997 B. Comparison of

Lee, Taihyeong; Mokhtarian, Patricia L.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overcoming Barriers to Solar Use  

E-Print Network (OSTI)

Solar water heating systems built during the past ten years represent the beginning of a strong North American Solar Industry. The opportunities provided through Government assistance programs have enabled the Industry to develop products, standards and the research capability to the edge of commercially realisable solar water heating systems for residential, commercial and industrial applications. With continued Government support and access to creative financing programs, the Solar Industry is a short step away from creating large demands from large sectors of the economy.

Halme, D. S.; Sicotte, J. R.

1986-06-01T23:59:59.000Z

242

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

their low-cost, fiber-based solar cells even more energy efficient. May 14, 2010 Sensible Solar Fueling Energy Revolution in Georgia Secretary Chu describes a second industrial...

243

Property Tax Exclusion for Solar Energy Systems | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion for Solar Energy Systems Property Tax Exclusion for Solar Energy Systems Eligibility Commercial Industrial Residential Savings For Solar Buying & Making Electricity...

244

NREL: TroughNet - Industry Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

the solar energy industry that partner with the U.S. Department of Energy's SunLab on parabolic trough technology research, development, and deployment efforts. Industry Partner...

245

Advanced Manufacturing Office: Industrial Distributed Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. Access the CHP Project Profiles database....

246

Green Industrial Policy: Trade and Theory  

E-Print Network (OSTI)

policy has underwritten the ?xed costs of de- veloping an industry that produces components for solar and wind powered energy.

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

247

Prism Solar Technologies, Inc.  

3 Prism Management Team Rick Lewandowski President and Chief Executive Officer, BOD 25-year veteran of solar industry Founder of US PV ...

248

Smart Solar Rooftops  

competing with fossil fuels on the energy market, so producing high-efficiency while maintaining a low cost is a major priority for the solar industry.

249

Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies  

DOE Green Energy (OSTI)

Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

Jones, E.; Eto, J.

1997-09-01T23:59:59.000Z

250

STAC is a collaboration of the Colorado Renewable Energy Society and the Colorado Solar Energy Industries Association. www.ColoradoRTS.org info@ColoradoRTS.org 303.377.5006 x2  

E-Print Network (OSTI)

STAC is a collaboration of the Colorado Renewable Energy Society and the Colorado Solar Energy Industries Association. www.ColoradoRTS.org · info@ColoradoRTS.org · 303.377.5006 x2 By 2018, the Energy Efficiency and Renewable Energies Jobs Act will be... Supporting over 500 Full-Time Jobs Saving energy

Colorado at Boulder, University of

251

NREL: Solar Radiation Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's solar radiation research supports industry, government, and academia by providing solar radiation measurements, models, maps, and support services. These resources are used...

252

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Solar Solar Learn how a fourth grade classroom solar project is contributing to the clean energy revolution. | Photo courtesy of Aaron Sebens. Learn how a fourth grade classroom solar project is contributing to the clean energy revolution. | Photo courtesy of Aaron Sebens. The tremendous growth in the U.S. solar industry is helping to pave the way to a cleaner, more sustainable energy future. Over the past few years, the cost of a solar energy system has dropped significantly -- helping to give more American families and business access to affordable, clean energy. Through a portfolio of R&D efforts, including the SunShot Initiative, the

253

Solar ponds  

DOE Green Energy (OSTI)

The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

Jayadev, T.S.; Edesess, M.

1980-04-01T23:59:59.000Z

254

& REFLE TED SOLAR IRRADIAN E TE HNOLOGY READINESS LEVEL 9  

using a digital camera. Measurements of reflected solar irradiance is of great importance to industry, military,

255

Understanding Classification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

n n n d d e e r r s s t t a a n n d d i i n n g g C C l l a a s s s s i i f f i i c c a a t t i i o o n n O O f f f f i i c c e e o o f f C C l l a a s s s s i i f f i i c c a a t t i i o o n n O O f f f f i i c c e e o o f f H H e e a a l l t t h h , , S S a a f f e e t t y y a a n n d d S S e e c c u u r r i i t t y y U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y J J u u n n e e 2 2 0 0 1 1 2 2 1 Now that you have your clearance, you are likely to be working with classified information. As a result - * You may originate a document that must be reviewed for classification. * You may have a classified document that you want to have reviewed for declassification. * You may be reading a newspaper or magazine article and find information in it that appears to be classified. * You may encounter classified information you believe should NOT be classified. This booklet highlights your responsibilities identified in DOE Order

256

Matter & Energy Solar Energy  

E-Print Network (OSTI)

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

Rogers, John A.

257

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Courthouse: Before and After Solar Industry At Work The World Renewable Energy Forum in Denver Solar Phoenix 2 Launch Event The Max Tech and Beyond Competition Leon...

258

Assessment of need for developing and implementing technical and skilled-worker training for the solar-energy industry. Final report  

DOE Green Energy (OSTI)

A forecast for solar-trained manpower needs was produced based on projected demand for solar systems and manpower requirement for solar systems. A skills analysis was made to determine the types of training required to produce manpower capable of performing the tasks identified in the task analysis. (MHR)

Orsak, C.G. Jr.

1978-01-13T23:59:59.000Z

259

Estimating solar irradiance using a geostationary satellite  

E-Print Network (OSTI)

2009. Global Concentrated Solar Power Industry Report 2010Table 1.1 Incoming solar power at the top of the atmosphererate of 32% (WWEA, 2010). Solar power capacity was 16GW at

Urquhart, Bryan Glenn

2011-01-01T23:59:59.000Z

260

Estimating solar irradiance using a geostationary satellite  

E-Print Network (OSTI)

Rayleigh optical thickness. Solar Energy 56(3), 239244.of Linke turbidity factor. Solar Energy 37, 393396. Mrquez2009. Global Concentrated Solar Power Industry Report 2010

Urquhart, Bryan Glenn

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Commonwealth Solar Hot Water Commercial Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Program Commonwealth Solar Hot Water Commercial Program Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential...

262

Million Solar Roofs Flyer (Revision)  

SciTech Connect

The Million Solar Roofs Initiative, announced in June 1997, assists businesses and communities in installing solar energy systems on one million buildings across the United States by 2010. The US Department of Energy leads this trailblazing initiative by partnering with the building industry, local governments, state agencies, the solar industry, electric service providers, and non-governmental organizations to remove barriers and strengthen the demand for solar technologies.

Not Available

2000-11-01T23:59:59.000Z

263

Solar collector manufacturing activity 1993  

DOE Green Energy (OSTI)

The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

Not Available

1994-08-15T23:59:59.000Z

264

California Energy Commission PIER Industrial, Agriculture and Water Program  

E-Print Network (OSTI)

/Not Pass Biodiesel Industries of Ventura, LLC 31 Solar Power, and Gasification and Anaerobic Digestion Biodiesel Industries of Ventura, LLC 61* Solar Power, and Gasification and Anaerobic Digestion of Raw

265

DOE Solar Decathlon: Solar Decathlon Team-Produced Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Walkthroughs Video Walkthroughs Animated Walkthroughs Architecture Presentations Engineering Presentations Sales Presentations Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the U.S. Department of Energy Solar Decathlon 2011 competition. Solar Decathlon 2011 Team Video Walkthroughs See inside the Solar Decathlon 2011 houses in these team-produced video tours. Solar Decathlon 2011 Team Computer-Animated Walkthroughs Learn about the teams' plans and concepts by watching these team-produced

266

Coronal loop detection from solar images  

Science Conference Proceedings (OSTI)

In this paper, we make an overview of a methodology for the automatic retrieval of images with coronal loops from the solar image data captured by the extreme-ultraviolet imaging telescope (EIT) onboard the spacecraft SOHO (Solar and Heliospheric Observatory). ... Keywords: Classification techniques, Coronal loop, Curvature feature, Data mining, Feature extraction, Image retrieval, Solar images

Nurcan Durak; Olfa Nasraoui; Joan Schmelz

2009-11-01T23:59:59.000Z

267

Solar Installation Labor Market Analysis  

DOE Green Energy (OSTI)

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

268

AMO Industrial Distributed Energy: Combined Heat and Power Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market...

269

Implementation plan for the demonstration of a 50,000 ft/sup 2/ solar hot water system for the textile industry. Final report  

DOE Green Energy (OSTI)

An analysis of textile processes was conducted to determine their applicability to integration into a 50,000 ft/sup 2/ collector field and into a waste heat recovery system. Various processes in a typical carpet finishing plant, a typical cotton/cotton blend finishing plant, and a typical 100% synthetic fabric pressurized beck finishing plant are analyzed. The flat-plate, evacuated tube, and parabolic concentrator are discussed and evaluated. Evaluations of direct heat exchange, closed cycle enhanced recovery, and open cycle enhanced heat recovery techniques as applied to textile processes are presented. Conceptual designs are discussed that use a solar array to produce hot water and use standard boilers to produce process steam and to augment the hot water output when insolation values are insufficient to meet process demands. Conceptual designs and cost estimates are presented for: process water systems with evacuated tube solar collectors; process water system with concentrating-tracking solar collectors; feedwater system with concentrating-tracking solar collectors; templifier and direct exchange waste heat recovery system; direct heat recovery systems; integrated system using enhanced heat recovery and concentrating-tracking solar collectors; integrated system using direct heat recovery and concentrating-tracking solar collectors; integrated system using direct heat recovery, evacuated tube solar collectors and concentrating-tracking solar collectors; and integrated system using enhanced heat recovery, evacuated tube collectors, and concentrating-tracking source collectors. An economic evaluation of the systems is presented using the rate of return method. Results and recommendations are summarized. (MCW)

Hester, J.C.; Beasley, D.E.; Rogers, W.A. Jr.

1980-08-01T23:59:59.000Z

270

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic

271

Solar Power Beginner | Open Energy Information  

Open Energy Info (EERE)

Solar Power Beginner Solar Power Beginner Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Power Beginner Agency/Company /Organization: Solar Power Beginner Sector: Energy Focus Area: Renewable Energy, Solar Topics: Resource assessment Website: www.solarpowerbeginner.com/index.html References: Solar Power Beginner[1] Solar Power Beginner is a website that specializes in providing simple solar information to people who are new to solar power. The site features information on photovoltaic panels[2], solar thermal energy[3], and everyday uses for solar power. Also included are interviews[4] with various experts in the solar industry. References ↑ "Solar Power Beginner" ↑ Solar Panels Page ↑ Solar Thermal Page ↑ Solar Interviews Page Retrieved from

272

Kansas City Power and Light - Solar Photovoltaic Rebates | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Photovoltaic Rebates Kansas City Power and Light - Solar Photovoltaic Rebates Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family...

273

Local Option - Solar, Wind & Biomass Energy Systems Exemption...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind & Biomass Energy Systems Exemption Local Option - Solar, Wind & Biomass Energy Systems Exemption Eligibility Agricultural Commercial Industrial Residential Savings For...

274

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the commercial solar hot water industry in Massachusetts. Commercial and non-profit building owners can use the financing program to install solar hot water systems that heat...

275

Solar Energy Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Sales Tax Exemption Solar Energy Sales Tax Exemption Eligibility Commercial General PublicConsumer Industrial Residential Savings For Heating & Cooling Commercial...

276

Solar and Wind Energy Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Rebate Program Solar and Wind Energy Rebate Program Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State...

277

A Review: Solar Thermal Reactors for Materials Production  

Science Conference Proceedings (OSTI)

Currently, there are no industrial scale solar reactors used for material processing and only small research units have been tried. Various laboratory scale solar...

278

Solar technologies diversify the energy supply, reduce the country...  

NLE Websites -- All DOE Office Websites (Extended Search)

on imported fuels, improve air quality, and offset greenhouse gas emissions. A growing solar industry also stimulates our economy by creating jobs in solar manufacturing and...

279

Active Solar Heating and Cooling Systems Exemption | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Active Solar Heating and Cooling Systems Exemption Active Solar Heating and Cooling Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Heating...

280

Microsoft PowerPoint - BP Solar NSERC Workshop.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

* 1979 Invention of Solarex poly-crystalline silicon process * 1980 BP enters solar industry via purchase of Lucas Energy Systems * 1985 BP Solar acquires license for Laser...

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Security classification of information  

Science Conference Proceedings (OSTI)

This document is the second of a planned four-volume work that comprehensively discusses the security classification of information. The main focus of Volume 2 is on the principles for classification of information. Included herein are descriptions of the two major types of information that governments classify for national security reasons (subjective and objective information), guidance to use when determining whether information under consideration for classification is controlled by the government (a necessary requirement for classification to be effective), information disclosure risks and benefits (the benefits and costs of classification), standards to use when balancing information disclosure risks and benefits, guidance for assigning classification levels (Top Secret, Secret, or Confidential) to classified information, guidance for determining how long information should be classified (classification duration), classification of associations of information, classification of compilations of information, and principles for declassifying and downgrading information. Rules or principles of certain areas of our legal system (e.g., trade secret law) are sometimes mentioned to .provide added support to some of those classification principles.

Quist, A.S.

1993-04-01T23:59:59.000Z

282

Solar Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Contractor Licensing Solar Contractor Licensing Solar Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State Florida Program Type Solar/Wind Contractor Licensing Provider Florida Solar Energy Industries Association Until 1994, Florida offered limited specialty licenses for residential solar hot water and pool heating, as well a general solar contractor's license. These specialty licenses have not been issued since that time, although people holding these licenses may renew them. The new solar contractor license defines a broader scope of work. With the new license, solar contractors have the authority to install, maintain and

283

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

284

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country's first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

NONE

1998-04-01T23:59:59.000Z

285

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

Not Available

1998-04-01T23:59:59.000Z

286

California Solar Initiative - Solar Thermal Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

287

Plastic Magen Industry | Open Energy Information  

Open Energy Info (EERE)

plastic products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References Plastic Magen Industry1 LinkedIn Connections...

288

Solar Rights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State Louisiana Program Type Solar/Wind Access Policy In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors are generally defined to include photovoltaics (PV), solar water heating, and any other system or device that uses sunlight as an energy source. While this law generally guarantees a property owner's right to install solar collectors, there are

289

Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)  

DOE Green Energy (OSTI)

Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

Speer, B.; Mendelsohn, M.; Cory, K.

2010-02-01T23:59:59.000Z

290

Classification Training Institute, 2013 Course Catelog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Classification Classification Classification Training Institute 2013 Course Catalog 1 TABLE OF CONTENTS Introduction ................................................................................................................................... 2 Classification Level ....................................................................................................................... 2 Registration ................................................................................................................................... 2 Additional Information ................................................................................................................... 2 2013 Course Schedule and Locations .......................................................................................... 3

291

Solar Thermal Electric Technology: 2009  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2009. It addresses relevant policies in the United States and internationally, technology status, trends, companies and organizations involved in the field, and modeling activities supported by the Electric Power Research Institute (EPRI) and the Solar Thermal Electric Project (STEP).

2010-06-23T23:59:59.000Z

292

Solar Thermal Electric Technology: 2008  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the solar thermal and concentrating solar power (CSP) industry in 2008. It addresses technology status, trends, companies and organizations involved in the field, and modeling activities supported by EPRI and the Solar Thermal Electric Project (STEP).

2009-03-31T23:59:59.000Z

293

Development of the Supply Chain Optimization and Planning for the Environment (SCOPE) Tool - Applied to Solar Energy  

E-Print Network (OSTI)

electricity used by the electricity industry, and the totalwith- drawn by the electricity industry [12]. Solar has the

Reich-Weiser, Corinne; Fletcher, Tristan; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

294

Multidimensional data classification  

Science Conference Proceedings (OSTI)

This paper deals with the classification of objects into the limited number of classes. Objects are characterised by n-features, e.g. n-dimensional vectors describe them. The paper focuses on the Bayes classifier based on the probability principle, with ... Keywords: Bayes classifier, classification, decision rule, feature, fixed number of features, loss function, multispectral data

Dana Klimeov; Eva Ocelkov

2009-03-01T23:59:59.000Z

295

DOE LLW classification rationale  

Science Conference Proceedings (OSTI)

This report was about the rationale which the US Department of Energy had with low-level radioactive waste (LLW) classification. It is based on the Nuclear Regulatory Commission's classification system. DOE site operators met to review the qualifications and characteristics of the classification systems. They evaluated performance objectives, developed waste classification tables, and compiled dose limits on the waste. A goal of the LLW classification system was to allow each disposal site the freedom to develop limits to radionuclide inventories and concentrations according to its own site-specific characteristics. This goal was achieved with the adoption of a performance objectives system based on a performance assessment, with site-specific environmental conditions and engineered disposal systems.

Flores, A.Y.

1991-09-16T23:59:59.000Z

296

DOE LLW classification rationale  

Science Conference Proceedings (OSTI)

This report was about the rationale which the US Department of Energy had with low-level radioactive waste (LLW) classification. It is based on the Nuclear Regulatory Commission`s classification system. DOE site operators met to review the qualifications and characteristics of the classification systems. They evaluated performance objectives, developed waste classification tables, and compiled dose limits on the waste. A goal of the LLW classification system was to allow each disposal site the freedom to develop limits to radionuclide inventories and concentrations according to its own site-specific characteristics. This goal was achieved with the adoption of a performance objectives system based on a performance assessment, with site-specific environmental conditions and engineered disposal systems.

Flores, A.Y.

1991-09-16T23:59:59.000Z

297

Solar and Wind Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Easements Solar and Wind Easements Solar and Wind Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Wind Program Info State Montana Program Type Solar/Wind Access Policy Provider Montana Department of Environmental Quality Montana's solar and wind easement provisions allow property owners to create solar and wind easements for the purpose of protecting and maintaining proper access to sunlight and wind. Solar easements should be negotiated with neighboring property owners. Montana's solar easement law was enacted in 1979; the wind easement law was originally enacted in 1983.

298

Progress Energy Carolinas - SunSense Commercial Solar Water Heating...  

Open Energy Info (EERE)

Fed. Government, Industrial, Institutional, Local Government, Nonprofit, Schools, State Government Eligible Technologies Solar Water Heat Active Incentive No Implementing...

299

Local Option - Property Tax Exemption for Solar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Maximum Rebate Varies (local...

300

Solar Renewable Energy Credits (SRECs) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Credits (SRECs) Solar Renewable Energy Credits (SRECs) Eligibility Agricultural Commercial Industrial Institutional Local Government Low-Income Residential...

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar Renewable Energy Credits (SRECs) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Credits (SRECs) Solar Renewable Energy Credits (SRECs) Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit...

302

California Solar Initiative - PV Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentives California Solar Initiative - PV Incentives Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential...

303

Passive solar technology  

DOE Green Energy (OSTI)

The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

Watson, D

1981-04-01T23:59:59.000Z

304

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

305

Solar ponds and their applications  

SciTech Connect

Solar ponds are probably the simplest and least expensive technology for conversion of solar energy to thermal energy. The solar pond is unique in its ability to act both as collector and as storage. The cost of a solar pond per unit area is considerably less than that of any active collector available today. The combination of their economic and technical factors make solar ponds attractive for district heating and industrial process heat applications. Solar ponds have the potential to displace significant quantities of fossil fuel in low-temperature heating applications in nonurban areas.

Jayadev, T. S.; Edesess, M.

1980-03-01T23:59:59.000Z

306

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Contractor Licensing Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Arkansas Program Type Solar/Wind Contractor Licensing Arkansas offers several limited, specialty licenses for solar thermal installers under the general plumbing license. There are three specialty classifications available for solar thermal installers: a Restricted Solar Mechanic license, a Supervising Solar Mechanic license, and a Solar Mechanic Trainee classification. Installers with a Restricted Solar Mechanic license can install and maintain systems used to heat domestic hot water, but are not allowed to perform any other plumbing work. Individuals holding a Supervising Solar Mechanic license are able to supervise, install

307

Solar/Wind Contractor Licensing | Open Energy Information  

Open Energy Info (EERE)

Solar/Wind Contractor Licensing Solar/Wind Contractor Licensing < Solar Jump to: navigation, search Some states have established a licensing process for solar-energy contractors and/or wind-energy contractors. These requirements are designed to ensure that contractors have the necessary knowledge and experience to install systems properly. Solar licenses typically take the form of either a separate, specialized solar contractor's license, or a specialty classification under a general electrical or plumbing license. [1] Solar/Wind Contractor Licensing Incentives CSV (rows 1 - 24) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy System Contracting (Virginia) Solar/Wind Contractor Licensing Virginia Installer/Contractor Photovoltaics No

308

Application of solar energy to the supply of industrial hot water. Volume 1. Final design report. [For American Linen Supply laundry in El Centro, California  

SciTech Connect

The conceptual design of a solar system for integration into the process hot water and steam services for the laundry facility, American Linen Sypply, located in El Centro, California is presented. A tracking parabolic collector array and thermal storage tanks will be used. Process analysis, instrumentation for control and data analysis, construction, maintenance and safety, energy reduction analysis, and economic analysis are described. A waste heat reclamation system is included in the design. (WHK)

1977-01-31T23:59:59.000Z

309

Solar Power Prospector | Open Energy Information  

Open Energy Info (EERE)

is an interactive mapping tool designed and developed by the National Renewable Energy Laboratory (NREL) for the Concentrating Solar Power (CSP) industry to help...

310

Baldrige Award Recipients--Solar Turbines (1998)  

Science Conference Proceedings (OSTI)

... Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of mid-range industrial gas turbine systems. ...

2012-11-30T23:59:59.000Z

311

OpenEI - Solar Thermal/PV  

Open Energy Info (EERE)

industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also...

312

Solar Easements & Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rights Laws Solar Easements & Rights Laws Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings For Heating &...

313

SunShot Initiative: Solar Innovation Timeline  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Timeline This timeline features the key innovations that have advanced the solar industry in the United States. Learn more about these key events from 1955 to present....

314

Performance of a parabolic trough solar collector.  

E-Print Network (OSTI)

??Parabolic trough solar collectors (PTSCs) constitute a proven source of thermal energy for industrial process heat and power generation, although their implementation has been strongly (more)

Brooks, Michael John

2005-01-01T23:59:59.000Z

315

SunShot Initiative: Solar Career Map  

NLE Websites -- All DOE Office Websites (Extended Search)

an expanding universe of solar-energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality...

316

Solar Thermal Success Stories - Energy Innovation Portal  

Solar Thermal Success Stories These success stories highlight some of the effective licensing and partnership activity between laboratories and industry in the area ...

317

Concentrating Solar Power Program overview  

DOE Green Energy (OSTI)

Over the last decade, the US solar thermal industry has established a track record in the power industry by building and operating utility-scale power plants with a combined rated capacity of 354 megawatts (MW). The technology used in these power plants is based on years of research and development (R and D), much of it sponsored by the US Department of Energy (DOE). DOE`s Concentrating Solar Power (CSP) Program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power.

NONE

1998-04-01T23:59:59.000Z

318

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

319

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

320

Prospects for investment in solar energy  

SciTech Connect

The prospects for solar energy and the growth of the solar industry are discussed. Some misconceptions, capital requirements, energy payback, and growth rate are reviewed. Technologies briefly discussed in the order in which they will likely be commercialized are: conservation, passive solar, biomass, flat plate collectors for water and space heating, wind power, solar ponds, photovoltaics, concentrating collectors for high temperature heat and electricity generation, ocean thermal energy conversion systems, and the solar power satellite. (MCW)

Edesess, M.

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application of solar energy for the generation and supply of industrial-process low-to intermediate-pressure steam ranging from 300/sup 0/F-550/sup 0/F (high-temperature steam). Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

A detailed design was developed for a solar industrial process heat system to be installed at the ERGON, Inc. Bulk Oil Storage Terminal in Mobile, Alabama. The 1874 m/sup 2/ (20160 ft/sup 2/) solar energy collector field will generate industrial process heat at temperatures ranging from 150 to 290/sup 0/C (300 to 550/sup 0/F). The heat will be used to reduce the viscosity of stored No. 6 fuel oil, making it easier to pump from storage to transport tankers. Heat transfer oil is circulated in a closed system, absorbing heat in the collector field and delivering it through immersed heat exchangers to the stored fuel oil. The solar energy system will provide approximately 44 percent of the process heat required.

Matteo, M.; Kull, J.; Luddy, W.; Youngblood, S.

1980-12-01T23:59:59.000Z

322

Introduction to Classification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 This briefing provides an introduction to classified information. 2 Introduction to Classified Information April 2013 3 What is classification?  Classification is how we identify certain information that needs to be protected in the interest of national security.  DOE has a formal process for classifying and declassifying information, documents, and materials. 4 Restricted Data (RD) Formerly Restricted Data (FRD) What information is classified? Atomic Energy Act Implemented by 10 CFR part 1045 Executive Order 13526 Implemented by 32 CFR part 2001 National Security Information (NSI) 5 Transclassified Foreign Nuclear Information (TFNI) Authority Classified Information Category 6 Restricted Data  The Atomic Energy Act defines "Restricted

323

CuCoMnOx as a Functional Coating for Solar Absorbers Using Sol ...  

Science Conference Proceedings (OSTI)

Solar thermal heaters are used widely in domestic and industrial applications for heating water or generating electrical power through the use of solar absorber...

324

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

325

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

326

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

327

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Green Energy (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

328

Passive solar heating of buildings  

DOE Green Energy (OSTI)

Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five general classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Examples of each are discussed. Passive test rooms built at Los Alamos are described and results are presented. Mathematical simulation techniques based on thermal network analysis are given together with validation comparisons against test room data. Systems analysis results for 29 climates are presented showing that the concepts should have wide applicability for solar heating.

Balcomb, J.D.; Hedstrom, J.C.; McFarland, R.D.

1977-01-01T23:59:59.000Z

329

Solar Glare and Flux Mapping  

NLE Websites -- All DOE Office Websites (Extended Search)

SGFMT Home SGFMT Home Register Glare Analysis Solar Glare Hazard Analysis SGHAT 1.0 (old) Empirical Glare Analysis Analytical Glare Analysis PHLUX Mapping Reflectivity Calculator References Contact Us Solar Glare and Flux Mapping Tools Measurement of reflected solar irradiance is receiving significant attention by industry, military, and government agencies to assess potential impacts of glint and glare from growing numbers of solar power installations around the world. In addition, characterization of the incident solar flux distribution on central receivers for concentrating solar power applications is important to monitor and maintain system performance. This website contains tools to evaluate solar glare and receiver irradiance. Register to access the tools Solar Glare Hazard Analysis Tool

330

Solar Easements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements Solar Easements Solar Easements < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State Kansas Program Type Solar/Wind Access Policy Provider Kansas Corporation Commission Kansas' solar easement provisions do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate exposure of a solar energy system. An easement must be expressed in writing and recorded with the register of deeds for that county. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=KS01R

331

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

London: New Energy Finance. CSP Today. (May 12, 2009). covers global and U.S. PV and CSP industry trends. Sectionwww.eere.energy.gov/solar/pdfs/csp_water_study.pdf. U.S.

Price, S.

2010-01-01T23:59:59.000Z

332

Algorithms for pseudoknot classification  

Science Conference Proceedings (OSTI)

The structures of non-coding RNAs are found to be critical in many biological functions. In particular, pseudoknotted structures play an important role in some of these functions. Different pseudoknotted structures may have different functionalities. ... Keywords: non-coding RNA, pseudoknot classification

Thomas K. F. Wong; Hui-Ting Yu; Bay-Yuan Hsu; Tak-Wah Lam; Wing-Kai Hon; Siu-Ming Yiu

2011-08-01T23:59:59.000Z

333

Fuzzy theory applied in quality management of distributed manufacturing system: A literature review and classification  

Science Conference Proceedings (OSTI)

Fuzzy theory has been regarded as a very important technique for quality management (QM) of distributed manufacturing system and attracts the attentions of academic and industry; however, there is a lack of a comprehensive literature review and a classification ... Keywords: Classification, Clustering analysis, Distributed manufacturing network, Fuzzy theory, Quality management

Lv Yaqiong; Lee Ka Man; Wu Zhang

2011-03-01T23:59:59.000Z

334

Design of an automatic wood types classification system by using fluorescence spectra  

Science Conference Proceedings (OSTI)

The classification of wood types is needed in many industrial sectors, since it can provide relevant information concerning the features and characteristics of the final product (appearance, cost,mechanical properties, etc.). This analysis is typical ... Keywords: automatic spectra analysis, automatic wood classification, computational intelligence

Vincenzo Piuri; Fabio Scotti

2010-05-01T23:59:59.000Z

335

Data envelopment analysis classification machine  

Science Conference Proceedings (OSTI)

This paper establishes the equivalent relationship between the data classification machine and the data envelopment analysis (DEA) model, and thus build up a DEA based classification machine. A data is characterized by a set of values. Without loss of ... Keywords: Classification machine, Data envelopment analysis, Preference cone

Hong Yan; Quanling Wei

2011-11-01T23:59:59.000Z

336

National solar water heater workshop  

Science Conference Proceedings (OSTI)

The National Solar Water Heater Workshop (NSWHW) program directly resolves the major problem inhibiting the widespread application of solar energy for domestic water heating - that of bridging the gap, by an educational program, between well-known solar technology and the application of that technology. This is accomplished by workshop sponsors throughout the nation, conducting workshops to educate homeowners on solar principles, and installation, operation, and maintenance of their solar system. During a workshop, students personally fabricate two or more collectors and complete a plumbing subsystem, all of which have been developed and specified by Arizona State University (ASU). The program appeals to do-it-yourselfers and handyman type persons who by their example become strong solar advocates to their neighbors and acquaintances. A market for the commercial solar industry is thus also generated as other homeowners acquire installed systems from the local solar industry. A central thrust of this program is the establishment of local solar hardware suppliers who can supply the demand of the students for solar hardware kits. This is a DOE program approved for 2 years and is funded at $600,000 for the first year with $400,000 to be funded for the second year. At the end of 2 years, it is envisioned that 50,000 domestic solar water heaters will have been installed throughout the nation and trust territories which will result in savings in the order of 131 million kWh, 447 billion Btu and 8 million dollars.

Mumma, S.A.; Ashland, M.

1981-01-01T23:59:59.000Z

337

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

building solar panels and wind turbines; constructing fuel-that the fortunes of wind turbine manufacturers are relatedThe wind industry value chain Wind turbine manufacturing and

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

338

industrial | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Perspectives: Industrial and transportation sectors lead energy use by sector. ... New EIA data show total grid-connected photovoltaic solar capacity. October ...

339

Summary of the 20th NREL Industry Growth Forum  

Silicon Valley Solar Vortex Hydro Energy Quality Deal-Flow NRELs annual Industry Growth Forum is the largest national venture event focused exclusively

340

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

DOE Green Energy (OSTI)

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solar Easements and Local Option Solar Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements and Local Option Solar Rights Laws Solar Easements and Local Option Solar Rights Laws Solar Easements and Local Option Solar Rights Laws < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Water Heating Program Info State New York Program Type Solar/Wind Access Policy New York's real property laws allow for the creation of solar easements. Like those in many other states, these are voluntary contracts which must be entered into in order to ensure uninterrupted solar access for solar energy devices. Solar easement agreements are required at a minimum to contain information describing the easement location and orientation to

342

NREL's Concentrated Solar Radiation User Facility  

DOE Green Energy (OSTI)

Declared a national user facility in 1993, NREL's Concentrated Solar Radiation User Facility (CSR) allows industry, government, and university researchers to examine the effects and applications of as much as 50,000 suns of concentrated solar radiation using a High-Flux Solar Furnace and long-term exposure using an ultraviolet (UV) concentrator.

Lewandowski, A.

1999-09-01T23:59:59.000Z

343

Hon Hai Precision Industry Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hon Hai Precision Industry Co Ltd Jump to: navigation, search Name Hon Hai Precision Industry Co Ltd Place Tu-Cheng City, Taiwan Zip 236 Sector Solar Product Taiwan-based...

344

Arizona solar tours: a guidebook to 101 contemporary solar projects  

SciTech Connect

This guidebook contains one hundred and one solar projects throughout the state of Arizona. They represent a wide variety of solar system types, economic sectors, and geographic locations. The projects were chosen by a nomination process. Letters seeking nominations were sent to 1500 homeowners, builders, architects, engineers and the solar industry. The purpose of the publication is to present a representative cross-section of solar projects in Arizona. It is hoped that this book will encourage other solar owners to share their projects and insights in a second edition. This book is intended to be active in nature. Readers are encouraged to go and see the different solar applications. It is valuable to make site visits in order to talk to the occupants, builder, engineer, architect and/or designer. A dialogue and idea exchange can help in developing one's own solar plans.

Berkowitz, P.I.

1984-01-01T23:59:59.000Z

345

Soil Classification Using GATree  

E-Print Network (OSTI)

This paper details the application of a genetic programming framework for classification of decision tree of Soil data to classify soil texture. The database contains measurements of soil profile data. We have applied GATree for generating classification decision tree. GATree is a decision tree builder that is based on Genetic Algorithms (GAs). The idea behind it is rather simple but powerful. Instead of using statistic metrics that are biased towards specific trees we use a more flexible, global metric of tree quality that try to optimize accuracy and size. GATree offers some unique features not to be found in any other tree inducers while at the same time it can produce better results for many difficult problems. Experimental results are presented which illustrate the performance of generating best decision tree for classifying soil texture for soil data set.

Bhargavi, P

2010-01-01T23:59:59.000Z

346

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network (OSTI)

to clean lighting and electricity. CSP technology offers theof dispatchable power. The CSP industry, with just over 1 GWconcentrated solar power (CSP) industry and, with the US, is

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

347

Seismic event classification system  

DOE Patents (OSTI)

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

Dowla, F.U.; Jarpe, S.P.; Maurer, W.

1994-12-13T23:59:59.000Z

348

Seismic event classification system  

DOE Patents (OSTI)

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

1994-01-01T23:59:59.000Z

349

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

350

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

351

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

352

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

353

Classification Training Institute Catalog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Classification » Classification Training Institute » Services » Classification » Classification Training Institute » Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog Training & Reference Materials Online Classified or Controlled Information Mini-Lessons Classified Information Training Unclassified Controlled Nuclear Information Training Official Use Only Training OpenNet Training Training For Other Agency Personnel Classification Training Institute Catalog Enforcement Guidance Oversight Reporting Security Classification Classification Training Institute Official Use Only Information Unclassified Controlled Nuclear Information (UCNI) Statutes, Regulations, & Directives Nuclear Safety Assistance Training Outreach & Collaboration

354

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

355

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

356

Active and passive solar heating of buildings  

SciTech Connect

An overview of both active and passive solar heating approaches for buildings is presented. Passive solar heating concepts--in which the thermal energy flow is by natural means--are described according to five classifications: direct gain, thermal storage wall, solar greenhouses, roof ponds, and convective loops. Results of simulation analyses are presented for a variety of climates. Active systems utilizing both liquid-heating collectors and air-heating collectors are described. Trends in the recent development of solar heating are discussed.

Balcomb, J.D.

1977-01-01T23:59:59.000Z

357

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of AEO2005. In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sectorbulk chemicals and pulp and paper.

Information Center

2005-02-01T23:59:59.000Z

358

Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar...

359

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

360

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Harmful Shunting Mechanisms Found in Silicon Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists developed near-field optical microscopy for imaging electrical breakdown in solar cells and identified critical electrical breakdown mechanisms operating in industrial silicon and epitaxial silicon solar cells.

Not Available

2011-05-01T23:59:59.000Z

362

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

363

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

364

Solar thermal repowering  

SciTech Connect

Solar central receiver technology is developing steadily with a promise of becoming a real commercial alternative for energy generation in the late 1980s. Significant potential markets have been identified, research and development of important components is proceeding well, and the first full-system verification experiment at Barstow, California, is under construction. However, much work still lies ahead. A big step toward the realization of large-scale commercial use of solar energy was taken when the Department of Energy (DOE) issued a solicitation in March 1979 for utility repowering/industrial retrofit system conceptual design studies employing solar central receivers. Twenty-two responses were evaluated, and twelve were selected for funding. The results of the twelve studies, plus one study completed earlier and one privately funded, are sufficiently encouraging to warrant proceeding to the next stage of the program: cost-shared projects chosen through open competition. Eight of he fourteen studies are for electric utility repowering of existing oil or natural gas generating plants. The other six are the first site-specific studies of the use of solar central receiver systems for industrial process heat. The industrial processes include gypsum board drying, oil refining, enhanced oil recovery, uranium ore processing, natural gas processing, and ammonia production. Site descriptions, project summaries, conceptual designs, and functional descriptions are given for each of these 14 studies.

1980-08-01T23:59:59.000Z

365

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

On Classification with Incomplete Data  

Science Conference Proceedings (OSTI)

We address the incomplete-data problem in which feature vectors to be classified are missing data (features). A (supervised) logistic regression algorithm for the classification of incomplete data is developed. Single or multiple imputation for the missing ... Keywords: Classification, incomplete data, missing data, supervised learning, semisupervised learning, imperfect labeling.

David Williams; Xuejun Liao; Ya Xue; Lawrence Carin; Balaji Krishnapuram

2007-03-01T23:59:59.000Z

367

DOE Announces $87 Million in Funding to Support Solar Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologies, devices and processes for both the PV and Concentrating Solar Power (CSP) industry. PV projects focus on development of next generation devices and processes,...

368

Solar and Wind Easements and Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laws Solar and Wind Easements and Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings...

369

New Ulm Public Utilities - Solar Electric Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount 1watt (nameplate capacity) New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers....

370

Diffraction: Enhanced Light Absorption of Solar Cells and ...  

The solar and photovoltaic industry has grown steadily over the last several years. In order to maintain these growth rates, the processes and methods ...

371

SunShot Initiative: Concentrating Solar Power Staff Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Staff Profiles The SunShot Initiative concentrating solar power (CSP) program competitively funds and actively manages the efforts of industry, national laboratories, and...

372

Reducing fuel usage through applications of conservation and solar energy  

Science Conference Proceedings (OSTI)

Solar thermal technology, coupled with aggressive conservation measures, offers the prospect of greatly reducing the dependence of industry on oil and natural gas. The near-term market for solar technology is largely in industrial processes operating at temperatures below 288/sup 0/C (550/sup 0/F). Such process heat can be supplied by the relatively unsophisticated solar equipment available today. The number and diversity of industrial plants using process heat at this temperature allows favorable matches between solar technologies and industrial processes. The problems involved with the installation and maintenance of conservation and solar equipment are similar. Both compete for scarce investment capital, and each complicates industrial operations and increases maintenance requirements. Technological innovations requiring new types of equipment and reducing the temperature requirements of industrial processes favor the introduction of solar hardware. The industrial case studies program at the Solar Energy Research Institute has examined technical, economic, and other problems facing the near-term application of solar thermal technology to provide industrial process heat. The plant engineer is in the front line of any measure to reduce energy consumption or to supplement existing fuel supplies. The conditions most favorable to the integration of solar technology are presented and illustrated with examples from actual industrial plants.

May, E. K.; Hooker, D. W.

1980-04-01T23:59:59.000Z

373

Table 10.7 Solar Thermal Collector Shipments by Market ...  

U.S. Energy Information Administration (EIA)

8 Medium-temperature collectors are solar thermal ... Special collectors are evacuated tube ... data are for the industrial sector and independent pow ...

374

Solar Easement and the Solar Shade Control Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Easement and the Solar Shade Control Act Easement and the Solar Shade Control Act Solar Easement and the Solar Shade Control Act < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State California Program Type Solar/Wind Access Policy California's solar access laws appear in the state's Civil, Government, Health and Safety, and Public Resources Codes. California's Civil Code (801.5) ensures that neighbors may voluntarily sign solar easements to ensure that proper sunlight is available to those who operate solar energy systems. California's Government Code (65850.5) provides that subdivisions may include solar easements applicable to all plots within the

375

Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Solar/Wind Access Policy Oregon has several laws that protect access to solar and wind resources and the use of solar energy systems. Oregon's solar access laws date back to 1979 and state that no person conveying or contracting to convey a property title can include provisions that prohibit the use of solar energy systems

376

Taking advantage of models for legal classification  

Science Conference Proceedings (OSTI)

Legal reasoning is often couched in terms of legal classification. We examine how three models of classification Classical, Probabilistic and Exemplar are used to perform legal classification. We argue that all three models of ...

D. B. Skalak

1989-05-01T23:59:59.000Z

377

SOLTECH 92 proceedings: Solar Process Heat Program  

SciTech Connect

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

1992-03-01T23:59:59.000Z

378

SOLTECH 92 proceedings: Solar Process Heat Program  

DOE Green Energy (OSTI)

This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the US Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17--20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil; (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, (6) PV Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

Not Available

1992-03-01T23:59:59.000Z

379

Standard for solar collectors  

SciTech Connect

The purpose of this standard is to estabish for solar collectors: definitions; requirements for testing and rating; specifications, literature and advertising requirements; requirements for marking; requirements for safety; and conformance conditions. This standard is intended for the guidance of the industry including manufacturers, engineers, distributors, installers, contractors, and consumers. This standard applies to factory-made solar collectors using either air or a liquid as the heat transfer fluid for one or more of the following purposes: a) heating service water or other fluids and b) heating or cooling of buildings.

1977-01-01T23:59:59.000Z

380

Advanced solar thermal technology  

SciTech Connect

The application of dish solar collectors to industrial process heat (IPH) has been reviewed. IPH represents a market for displacement of fossil fuels (10 quads/y). A 10% market penetration would indicate a substantial market for solar thermal systems. Apparently, parabolic dish systems can produce IPH at a lower cost than that of troughs or compound parabolic concentrators, even though dish fabrication costs per unit area are more expensive. Successful tests of point-focusing collectors indicate that these systems can meet the energy requirements for process heat applications. Continued efforts in concentrator and transport technology development are needed. 7 figures.

Leibowitz, L.P.; Hanseth, E.; Liu, T.M.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar and Wind Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Equipment Certification Solar and Wind Equipment Certification Solar and Wind Equipment Certification < Back Eligibility Commercial Construction Industrial Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Equipment Certification Provider Arizona Solar Energy Industries Association Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The remaining components of the system and their installation must have a warranty of at least one year.

382

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

383

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

384

Catalog, Classification Training Institute | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Catalog, Classification Training Institute Catalog, Classification Training Institute Catalog, Classification Training Institute December 2012 2013 Classification Training Course Catalog. To ensure that all classification and declassification decisions are based on these principles, the Office of Classification has undertaken the establishment and maintenance of a comprehensive classification and declassification education program. The training and education program is perpetually evolving with new courses and special briefings as events dictate. Basic courses that are in constant demand are described in this course catalog. Other more specialized courses and briefings have been developed and are available on an "as needed" basis. Classification Training Institute (CTI) 2013 Catalog can be viewed below:

385

Catalog, Classification Training Institute | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Catalog, Classification Training Institute Catalog, Classification Training Institute Catalog, Classification Training Institute December 2012 2013 Classification Training Course Catalog. To ensure that all classification and declassification decisions are based on these principles, the Office of Classification has undertaken the establishment and maintenance of a comprehensive classification and declassification education program. The training and education program is perpetually evolving with new courses and special briefings as events dictate. Basic courses that are in constant demand are described in this course catalog. Other more specialized courses and briefings have been developed and are available on an "as needed" basis. Classification Training Institute (CTI) 2013 Catalog can be viewed below:

386

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Data Explorer (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

387

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Green Energy (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

2008-05-30T23:59:59.000Z

388

Commercial, Industrial and Institutional Solar Electric Program...  

Open Energy Info (EERE)

Institutional Eligible Technologies Photovoltaics Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Non-profits:...

389

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Fleets Announcement 1 of 14 Clean Fleets Announcement Untitled Secretary Chu Visits Dublin, Ireland 110410-110510 Keep Your Home Office Efficient with ENERGY STAR. Home...

390

DOE Solar Decathlon: 2009 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

workshop addresses an array of energy-efficient lighting options, focusing on light-emitting diode (LED) lamps and compact fluorescent lamps. (PDF 3.7 MB) LEED for Homes: Green...

391

Passive Solar Industries Council | Open Energy Information  

Open Energy Info (EERE)

OR Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

392

Solar industrial process heat conference proceedings  

DOE Green Energy (OSTI)

Separate abstracts were prepared for 41 of the 54 papers presented. The remaining thirteen papers were previously included in the data base. (WHK)

None

1979-01-01T23:59:59.000Z

393

Secretary Chu Announces Over $110 Million in SunShot Projects to Advance Solar Photovoltaic Manufacturing in the U.S.  

Energy.gov (U.S. Department of Energy (DOE))

Solar Manufacturing Partnerships will boost American competitiveness in the global solar energy industry and lower the cost of clean, renewable energy

394

Solar Thermal Generation Technologies: 2006  

Science Conference Proceedings (OSTI)

After years of relative inactivity, the solar thermal electric (STE) industry is experiencing renewed activity and investment. The shift is partly due to new interest in large-scale centralized electricity generation, for which STE is well suited and offers the lowest cost for solar-specific renewable portfolio standards. With policymaking and public interest driven by concerns such as global climate change, atmospheric emissions, and traditional fossil fuel price and supply volatility, STE is increasing...

2007-03-30T23:59:59.000Z

395

Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

396

Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-11-03T23:59:59.000Z

397

1980 Active-Solar Installations Survey  

SciTech Connect

The survey covers active solar installations made during and prior to calendar year 1980. As the first survey of active solar installations in the United States, the objective was to establish a national baseline information system that could provide current data on residential and commercial active solar installations as well as a listing of firms involved in the active solar industry, including installers. Potential respondents were identified from regional lists of solar equipment dealers and installers compiled by each Regional Solar Energy Center (RSEC). The RSEC lists were computerized and combined into a mailing list of 5466 company names and addresses. An additional 1619 referrals, were provided by survey respondents from the RSEC list. However, because of resource constraints, 981 of these referrals were not included in the survey. To substantiate that the results of this survey represent accurate statistics on the number of active solar installations in the United States, a comparison was made to the Solar Collector Manufacturing Survey installations. (PSB)

1982-10-01T23:59:59.000Z

398

Solar Neutrinos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Neutrinos at the Conclusion of the Sudbury Neutrino Observatory Noah Oblath April 22, 2008 The study of solar neutrinos began with the idea that one could use the neutrinos...

399

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's...

400

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar...

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Idahos solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho communities have passed...

402

Text structure-aware classification  

E-Print Network (OSTI)

Bag-of-words representations are used in many NLP applications, such as text classification and sentiment analysis. These representations ignore relations across different sentences in a text and disregard the underlying ...

Dzunic, Zoran, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

403

Cloud Classification Before Luke Howard  

Science Conference Proceedings (OSTI)

A brief outline of the history of cloud painting prior to the first cloud classification schemes of Luke Howard and Lamarck is presented. It is shown that European painters had accurately represented most of the different cloud forms between ...

Stanely David Gedzelman

1989-04-01T23:59:59.000Z

404

Industrial process heat case studies. [PROSYS/ECONMAT code  

DOE Green Energy (OSTI)

Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

Hooker, D.W.; May, E.K.; West, R.E.

1980-05-01T23:59:59.000Z

405

Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

Harrison, T.D.

1981-03-01T23:59:59.000Z

406

Solar Thermal Electric Technology Update: 2007  

Science Conference Proceedings (OSTI)

After more than a dozen years of relative inactivity, the solar thermal electric (STE) industry is seeing pronounced activity and investment. This product is intended to update the reader on these recent world-wide activities.

2008-03-31T23:59:59.000Z

407

Solar project  

SciTech Connect

A solar laundry was installed on a college campus in South Carolina, including two separate systems installed in parallel. (LEW)

1983-01-01T23:59:59.000Z

408

Protein structure classification by structural transformatio  

Science Conference Proceedings (OSTI)

Protein structure classification plays an important role in understanding the relationships among structure and sequence. Recently, as the number of known protein structure are increasing steeply, automatic classification is highly required. This paper ... Keywords: Brookhaven Protein Data Bank, automatic classification, molecular biophysics, primitive operations, protein folds, protein structure classification, secondary structural elements, sequence, structural transformation

T. Ohkawa; D. Namihira; N. Komoda; A. Kidera; H. Nakamura

1996-11-01T23:59:59.000Z

409

GA Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Solar Jump to: navigation, search Name GA-Solar Place Madrid, Spain Zip 28045 Sector Solar Product Madrid based solar project developer, owned by Spanish industrial group Corporacion Gestamp. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

NREL: Learning - Solar Process Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

411

Market Barriers to Solar in Michigan  

DOE Green Energy (OSTI)

The solar industry in the United States is at a turning point; the cost of PV hardware has declined substantially in recent years, placing new attention on reducing the balance of system (BOS) costs of solar that now contribute to a growing percentage of installation expenses. How states address these costs through the creation of a favorable policy and regulatory environment is proving to be a critical determinant of a thriving statewide solar market. This report addresses the permitting and tax issues that may stimulate the solar market growth in Michigan. By making PV installations easier to complete through reduced BOS costs, Michigan would become a more attractive location for manufacturers and installers. As PV module costs decline and BOS costs make up a greater share of the cost of solar, action taken today on these issues will prove beneficial in the long term, providing Michigan an opportunity to establish a leadership position in the solar industry.

Miller, E.; Nobler, E.; Wolf, C.; Doris, E.

2012-08-01T23:59:59.000Z

412

GlassPoint Solar Inc | Open Energy Information  

Open Energy Info (EERE)

GlassPoint Solar Inc GlassPoint Solar Inc Jump to: navigation, search Name GlassPoint Solar Inc. Place San Francisco, California Zip 94105 Sector Solar Product San Francisco-based developer and marketer of solar industrial process heat generating equipment for a wide range of industries including enhanced oil recovery, municipal waste water treatment and electrical power generation. References GlassPoint Solar Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. GlassPoint Solar Inc. is a company located in San Francisco, California . References ↑ "GlassPoint Solar Inc." Retrieved from "http://en.openei.org/w/index.php?title=GlassPoint_Solar_Inc&oldid=345889

413

Good, Better, Best: Designing a Designation Program for Solar | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar Good, Better, Best: Designing a Designation Program for Solar December 4, 2012 - 4:00pm Addthis The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. The Energy Department is gathering input on solar designation programs that could one day help consumers recognize the best products and services that the solar industry has to offer. | Photo by Dennis Schroeder/NREL. Minh Le Minh Le Program Manager, Solar Program How can I participate? To provide input for the Designation Program for Solar Energy Stakeholders Request for Information (RFI), submit your feedback.

414

Solar Easements and Rights Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Easements and Rights Laws Solar Easements and Rights Laws Solar Easements and Rights Laws < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State New Mexico Program Type Solar/Wind Access Policy Provider New Mexico Energy, Minerals and Natural Resources Department New Mexico's Solar Rights and Solar Recordation Acts (both contained in NMSA § 47-3) allow property owners to create solar easements for the purpose of protecting and maintaining proper access to sunlight. The Solar Rights Act established the right to use solar energy as a property right. The solar right prevents neighboring property owners from constructing new

415

Solar energy systems for manufactured housing  

DOE Green Energy (OSTI)

The opportunities for solar energy utilization in manufactured housing such as mobile homes and modular homes are discussed. The general characteristics of the manufactured housing industry are described including market and prices. Special problems of the utilization of liquid heating collectors, air heating collectors, or passive types of solar heating systems in manufactured housing are considered. The market situation for solar energy in manufactured housing is discussed. The design of the Los Alamos Scientific Laboratory mobile/modular home is described.

Balcomb, J.D.

1976-01-01T23:59:59.000Z

416

Solar collectors, energy storage, and materials  

SciTech Connect

This volume was prepared as an extended, annotated bibliography in the solar thermal energy collection field, documenting the state-of-the-art in the late 1980s. It covers collectors of solar thermal energy, including salt gradient solar ponds, flat plate collectors, compound parabolic concentrators, and other stationary and tracking collection systems. Collectors that are used for building applications are emphasized since power and industrial applications are considered in other volumes.

de Winter, F. (ed.) (Altas Corp., Santa Cruz, CA (USA))

1990-01-01T23:59:59.000Z

417

Solar powered desalination system  

E-Print Network (OSTI)

Desalination Systems Developers MIT BARC IMB Power Solar PVcells Solar PV cells 10 MW solar farm Solar pond FranciscoSolar Energy: PEC vs. PV Solar energy is just as important

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

418

Rankine cycle machines for solar cooling  

DOE Green Energy (OSTI)

A vigorous effort to develop and demonstrate practical uses of solar energy to heat and cool buildings, to process agricultural products, and to provide thermal and electrical energy for industry has been initiated. One significant part of this effort is the research, development, and demonstration of Rankine cycle machines using fluids heated by solar energy. Recent developments in three such devices are discussed briefly.

Weathers, H.M.

1978-08-01T23:59:59.000Z

419

DOE/solar export opportunities workshop  

DOE Green Energy (OSTI)

The workshop was conducted to bring together persons from government agencies and the US solar industry to initiate dialogue needed to create and implement programs facilitating the export of US solar technology, hardware, and services. A separate abstract was prepared for 23 individual presentations, all of which will appear in Energy Research abstracts (ERA) and Energy Abstracts for Policy Analysis (EAPA).

None

1979-04-01T23:59:59.000Z

420

Solar Optics  

DOE Green Energy (OSTI)

Solar opacities are presented from the center of the Sun to the photosphere. The temperatures, densities and hydrogen mass fractions are taken from the standard solar model. For the heavy element abundances the Grevesse mixture is used. In the solar interior photoabsorption is dominated by free-free absorption and they compare two sets of opacities based on two different models for the inverse bremsstrahlung. The radiative luminosities calculated from the two sets of opacities are compared with those predicted by previous models of the standard solar model and also with the known luminosity of the Sun. pressures, specific heats and the speed of sound in the solar plasma are also presented.

Rozsnyai, B.F.

2000-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solar thermal financing guidebook  

DOE Green Energy (OSTI)

This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

1983-05-01T23:59:59.000Z

422

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

423

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

424

SOLAR REFLE TION PANELS  

Unlike other solar collectors that are known to lose solar reflectivity due to issues with their design, the solar collector

425

Potential of Securitization in Solar PV Finance  

SciTech Connect

This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investment tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets.

Lowder, T.; Mendelsohn, M.

2013-12-01T23:59:59.000Z

426

Solar reflector materials. [Overview of state-of-art  

SciTech Connect

A brief overview is given of the current state-of-the-art in solar reflector materials. Its purpose is to outline the uses of reflectors in the solar industry and present some insights into the operational and materials considerations that must be incorporated into the solar reflector design. Current problem areas and research goals will be emphasized.

Lind, M. A.

1979-01-01T23:59:59.000Z

427

Solar Cells in 2009 and Beyond Mike McGehee  

E-Print Network (OSTI)

Solar Cells in 2009 and Beyond Mike McGehee Materials Science and Engineering These slidesTunesU and Youtube. #12;To provide the world with 10 TW of solar electricity by 2030 · We need to grow the industry parity cost depends on location #12;Conventional p-n junction photovoltaic (solar) cell #12;Efficiency

McGehee, Michael

428

Solar heating/cooling and domestic hot-water systems  

Science Conference Proceedings (OSTI)

Increasing awareness of global warming forces policy makers and industries to face two challenges: reducing greenhouse gas emissions and securing stable energy supply against ever-increasing world energy consumption, which is projected to increase by ... Keywords: buildings heating, domestic hot-water, energetical analysis, renewable energy sources, solar cooling technologies, solar energy collection, solar thermal systems

Ioan Srbu; Marius Adam

2011-02-01T23:59:59.000Z

429

Solar energy research and development: program balance. Annex, Volume I  

DOE Green Energy (OSTI)

An evaluation of federal research, development, and demonstration options on solar energy is presented. This assessment treats seven groups of solar energy technologies: solar heating and cooling of buildings, agricultural and industrial process heat, biomass, photovoltaics, thermal power, wind, and ocean thermal energy conversion. The evaluation methodology is presented in detail. (MHR)

None

1978-02-01T23:59:59.000Z

430

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 California Solar Initiative - Single-Family Affordable Solar...

432

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 Solar Energy Resources Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be...

433

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

434

High temperature solar thermal technology: The North Africa Market  

DOE Green Energy (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

435

Nanjing Dalu Industry Investment Group | Open Energy Information  

Open Energy Info (EERE)

Dalu Industry Investment Group Dalu Industry Investment Group Jump to: navigation, search Name Nanjing Dalu Industry Investment Group Place Beijing Municipality, China Zip 100055 Sector Solar Product Chinese investment company with a focus on energy, telecommunications, finance, and biotechnology; involved with polysilicon production for the solar industry. References Nanjing Dalu Industry Investment Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Nanjing Dalu Industry Investment Group is a company located in Beijing Municipality, China . References ↑ "Nanjing Dalu Industry Investment Group" Retrieved from "http://en.openei.org/w/index.php?title=Nanjing_Dalu_Industry_Investment_Group&oldid=34900

436

BOC Lienhwa Industrial Gases BOCLH | Open Energy Information  

Open Energy Info (EERE)

BOC Lienhwa Industrial Gases BOCLH BOC Lienhwa Industrial Gases BOCLH Jump to: navigation, search Name BOC Lienhwa Industrial Gases (BOCLH) Place Taipei, Taiwan Sector Solar Product BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United Kingdom and produces high-purity gases used in solar component production. References BOC Lienhwa Industrial Gases (BOCLH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BOC Lienhwa Industrial Gases (BOCLH) is a company located in Taipei, Taiwan . References ↑ "BOC Lienhwa Industrial Gases (BOCLH)" Retrieved from "http://en.openei.org/w/index.php?title=BOC_Lienhwa_Industrial_Gases_BOCLH&oldid=342956

437

Solar Two Performance Evaluation Methodology  

Science Conference Proceedings (OSTI)

Solar Two is a 10-MWe prototype central-receiver plant east of Barstow, California. Solar Two, which is sponsored by a consortium of utilities and industry in partnership with the U.S. Department of Energy, began regular electricity production in February 1997. The objective of Solar Two's performance evaluation activity is to understand the plant's performance and to use the evaluation information for the following purposes: optimize plant performance, extrapolate Solar Two's performance to general performance of molten-salt central-receiver technology, and recommend revisions to predictive models and engineering design methods for Solar Two and future-generation molten-salt central-receiver technology. The primary aspect of the performance evaluation is the lost-electricity analysis. This analysis compares the actual generation with the generation predicted by the Solar Two model. (SOLERGY, a computer program designed by Sandia National Laboratories to simulate the operation and power output of a solar central-receiver power plant is the code used to model Solar Two.) The difference between the predicted and the actual generation (i.e., the lost electricity) is broken down into the different efficiency and availability categories responsible for the loss. Having the losses broken down by system and in terms of electricity is useful for understanding and improving the plant's performance; it provides a tool for determining the best operating procedures for plant performance and the allocation of operation and maintenance resources for the best performance payback.

Mary Jane Hale

1999-11-01T23:59:59.000Z

438

The Importance of the Sun: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Grade Level: Grade Level: 5-8 Subjects: Science & Visual Arts Length: 2-3 Class Periods LESSON PLAN The Importance of the Sun: Solar Energy The Importance of the Sun: Solar Energy Introduction and Overview INTRODUCTION In this lesson, students will investigate the development and use of solar power. They will examine the role of the sun as a source of energy and explore how humanity has relied on the sun to provide energy for our lives. Solar techniques ranging from using sunlight to warm houses to the latest technologies like advances in photovoltaic solar power will be discussed. Students will explore pre- Industrial Revolution uses of solar energy and technological advances using a Solar Decathlon house as an example. This lesson will also cover the potential energy inherent in the sun's daily output and

439

Associations and Industry - TMS  

Science Conference Proceedings (OSTI)

... Associations and Industry, Research Programs, ==== Basic Metallurgy ==== ... FORUMS > ASSOCIATIONS AND INDUSTRY, Replies, Views, Originator, Last...

440

Solar heating demonstration. Final report  

DOE Green Energy (OSTI)

The demonstration involved a 4-panel solar collector mounted on the industrial arts building. A 120 gallon storage tank supplements a 66 gallon electric hot water heater which supplies hot water for 5 shop wash basins, girl's and boy's lavatories, and a pressure washer in the auto shop. The installation and educational uses of the system are described. (MHR)

Bonicatto, L.; Kozak, C.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Statutes, Regulations, and Directives for Classification Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Classification » Statutes, Regulations, and Directives Classification » Statutes, Regulations, and Directives for Classification Program Statutes, Regulations, and Directives for Classification Program Classification Atomic Energy Act of 1954 - Establishes Government-wide policies for classifying, safeguarding, and declassifying Restricted Data information. 10 CFR Part 1045, Nuclear Classification and Declassification - Establishes the Government-wide policies and procedures for implementing sections 141 and 142 of the Atomic Energy Act of 1954 for classifying and declassifying RD and FRD and implements those requirements of Executive Order 12958 concerning NSI that affect the public. Executive Order 13526, Classified National Security Information - Prescribes the Government-wide system for classifying, safeguarding, and

442

Industrial alliances  

Science Conference Proceedings (OSTI)

The United States is emerging from the Cold War era into an exciting, but challenging future. Improving the economic competitiveness of our Nation is essential both for improving the quality of life in the United States and maintaining a strong national security. The research and technical skills used to maintain a leading edge in defense and energy now should be used to help meet the challenge of maintaining, regaining, and establishing US leadership in industrial technologies. Companies recognize that success in the world marketplace depends on products that are at the leading edge of technology, with competitive cost, quality, and performance. Los Alamos National Laboratory and its Industrial Partnership Center (IPC) has the strategic goal to make a strong contribution to the nation`s economic competitiveness by leveraging the government`s investment at the Laboratory: personnel, infrastructure, and technological expertise.

Adams, K.V.

1993-09-13T23:59:59.000Z

443

Short-Range Direct and Diffuse Irradiance Forecasts for Solar Energy Applications Based on Aerosol Chemical Transport and Numerical Weather Modeling  

Science Conference Proceedings (OSTI)

This study examines 23-day solar irradiance forecasts with respect to their application in solar energy industries, such as yield prediction for the integration of the strongly fluctuating solar energy into the electricity grid. During cloud-...

Hanne Breitkreuz; Marion Schroedter-Homscheidt; Thomas Holzer-Popp; Stefan Dech

2009-09-01T23:59:59.000Z

444

Brochure, Classification Bulletin GEN-16 - February 2012 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brochure, Classification Bulletin GEN-16 - February 2012 Brochure, Classification Bulletin GEN-16 - February 2012 This brochure provides information on Classification Bulletin...

445

BNL | NSERC, the Northeast Solar Energy Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Research Center Northeast Solar Energy Research Center A multi-purpose research facility on the BNL campus Home Map of the Research Array Project Updates solar array NSERC, a multi-purpose research facility on the Brookhaven campus Brookhaven National Laboratory is developing a new Northeast Solar Energy Research Center (NSERC) on its campus that will serve as a solar energy research and test facility for the solar industry. The NSERC will include laboratories for standardized testing in accordance with industry standards, along with a solar PV research array for field testing existing or innovative new technologies under actual northeastern weather conditions. The NSERC will also include access to unique high-resolution data sets from the 32MW Long Island Solar Farm located at Brookhaven. Our vision is to

446

SunShot Initiative: Concentrating Solar Power Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Staff Concentrating Solar Power Staff to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Staff on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Staff on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Staff on Google Bookmark SunShot Initiative: Concentrating Solar Power Staff on Delicious Rank SunShot Initiative: Concentrating Solar Power Staff on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Staff on AddThis.com... Accomplishments Visiting the SunShot Office Fellowships Postdoctoral Research Contacts Staff Concentrating Solar Power Staff The SunShot Initiative concentrating solar power (CSP) program competitively funds and actively manages the efforts of industry, national laboratories, and universities working to make large-scale dispatchable

447

NREL-Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

NREL-Solar Technologies Market Report NREL-Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: NREL-Solar Technologies Market Report Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Website: www.nrel.gov/analysis/pdfs/46025.pdf NREL-Solar Technologies Market Report Screenshot References: NREL Solar Tech Market Report[1] Logo: NREL-Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry

448

MRL Industries Inc | Open Energy Information  

Open Energy Info (EERE)

MRL Industries Inc MRL Industries Inc Jump to: navigation, search Name MRL Industries Inc Place Sonora, California Zip 95370 Sector Solar Product MRL Industries is a US company committed to developing heating technology. They are a supplier for crystalline silicon solar cell production. Coordinates 30.567043°, -100.64392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.567043,"lon":-100.64392,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Solar Decathlon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and

450

Solar Cells  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Here we are using microwaves for increasing the surface area of titania nanopowders for energy based applications like dye sensitized solar...

451

Solar News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency http://energy.gov/eere/articles/energy-department-announces-19-million-drive-down-solar-soft-costs-increase-hardware solar-soft-costs-increase-hardware" class="title-link">Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency

452

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Data Explorer (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

453

Solar Resource & Meteorological Assessment Project (SOLRMAP): Southwest Solar Research Park (Formerly SolarCAT) Rotating Shadowband Radiometer (RSR); Phoenix, Arizona (Data)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2010-09-27T23:59:59.000Z

454

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

455

innovati nComponents Makeover Gives Concentrating Solar Power a Boost  

E-Print Network (OSTI)

innovati nComponents Makeover Gives Concentrating Solar Power a Boost Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others

456

Agricultural and Industrial Process-Heat-Market Sector workbook  

SciTech Connect

This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

Shulman, M. J.; Kannan, N. P.; deJong, D. L.

1980-01-01T23:59:59.000Z

457

SunShot Initiative: Solar Newsletters  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletters Newsletters The Solar Energy Technologies Office offers three e-newsletters to provide up-to-date information on solar industry progress. The SunShot Newsletter provides weekly e-mail updates on solar office activities, events, funding opportunities, and publications. The SunShot Concentrating Solar Power Newsletter provides quarterly e-mail updates specific to the CSP industry. The SunShot Systems Integration Newsletter provides quarterly e-mail updates related to the topic of solar grid integration. In addition, subscribers can sign up for SunShot Financial Opportunities alerts to get the latest funding announcements. Update your subscriptions, modify your password or e-mail address, or stop subscriptions at any time on your Subscriber Preferences Page. You will need to use your e-mail address to log in.

458

Solar Resource and Meteorological Assessment Project (SOLRMAP)  

DOE Green Energy (OSTI)

The purpose of this collaborative project between NREL and industry is: (1) provide high quality solar measurements in support of deploying Concentrating Solar Thermal projects; and (2) provide NREL with research-quality data sets for refining solar models and developing solar forecasting capabilities. The benefits of this project are: (1) lends NREL credibility to data sets used for economic analyses and commercial justification; (2) helps minimize costly mistakes in estimating capacity and economic return on investment; (3) helps maximize the development of projects for which adequate solar resources exist; (4) provides data to NREL for research to improve/validate models and explore RA innovations; and (5) helps maintain collaborative channels between NREL and industry.

Wilcox, S.

2008-10-29T23:59:59.000Z

459

NREL: Concentrating Solar Power Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL Concentrating Solar Power research. Subscribe to the RSS feed RSS . Learn about RSS. November 5, 2013 Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. October 24, 2013 NREL Researcher Honored with Hispanic STEM Award A national organization devoted to getting more Hispanics into the fields of science, technology, engineering, and math (STEM), has honored a scientist at the Energy Department's National Renewable Energy Laboratory (NREL) with its annual Outstanding Technical Achievement Award.

460

Automated classification of congressional legislation  

Science Conference Proceedings (OSTI)

For social science researchers, content analysis and classification of United States Congressional legislative activities have been time consuming and costly. The Library of Congress THOMAS system provides detailed information about bills and laws, but ... Keywords: SVMs, U.S. congress, institutions, legislative activities, support vector machines, text analysis

Stephen Purpura; Dustin Hillard

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Classification of 7-dimensional Einstein nilradicals II  

E-Print Network (OSTI)

This paper contains all computations supporting the classification of 7-dimensional Einstein nilradicals given in the article "Classification of 7-dimensional Einstein nilradicals" (arXiv). Each algebra is analyzed in detail here.

Culma, Edison Alberto Fernndez

2011-01-01T23:59:59.000Z

462

A property based specification formalism classification  

Science Conference Proceedings (OSTI)

Specification formalisms may be classified through some common properties. Specification formalism classification may be used as a basis for the evaluation of the adequacy of formal specification languages within specific application domains. System ... Keywords: Classification, Specification formalism, Specification properties

Amir A. Khwaja; Joseph E. Urban

2010-11-01T23:59:59.000Z

463

Illinois Solar Energy Association - Renewable Energy Credit Aggregation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Solar Energy Association - Renewable Energy Credit Illinois Solar Energy Association - Renewable Energy Credit Aggregation Program Illinois Solar Energy Association - Renewable Energy Credit Aggregation Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate $105/MWh) Program Info Start Date 01/01/2010 State Illinois Program Type Performance-Based Incentive Rebate Amount $105/MWh '''''RECAP is not currently accepting applications. The most recent solicitation closed April 30th, 2013. Check the program web site for information regarding future solicitations. ''''' The Illinois Solar Energy Association offers the Renewable Energy Credit Aggregation Program (RECAP) to Illinois solar photovoltaic (PV) system

464

Biomass energy conversion workshop for industrial executives  

DOE Green Energy (OSTI)

The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

None

1979-01-01T23:59:59.000Z

465

Interferometric SAR coherence classification utility assessment  

SciTech Connect

The classification utility of a dual-antenna interferometric synthetic aperture radar (IFSAR) is explored by comparison of maximum likelihood classification results for synthetic aperture radar (SAR) intensity images and IPSAR intensity and coherence images. The addition of IFSAR coherence improves the overall classification accuracy for classes of trees, water, and fields. A threshold intensity-coherence classifier is also compared to the intensity-only classification results.

Yocky, D.A.

1998-03-01T23:59:59.000Z

466

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and...

467

Simulation and process development for ion-implanted N-type silicon solar cells .  

E-Print Network (OSTI)

??As the efficiency potential for the industrial P-type Al-BSF silicon solar cell reaches its limit, new solar cell technologies are required to continue the pursuit (more)

Ning, Steven

2013-01-01T23:59:59.000Z

468

Modularization of passive solar  

SciTech Connect

Ways of modularizing component parts of passive soalr systems for the manufactured housing industry are discussed. Site-filled water mass modules installed in south-facing stud spaces, glazing systems, sun-rooms and roof apertures are being explored and constructed. Even though the houses are being designed without pre-selected sites, they are expected to perform well given the variable deployment of the south-facing wall system. Any facade of the house will be able to accept the sun's energy. While some of the solutions involve specific products and techniques, it is the general conclusion that low-cost, modular solar components can be worked into solar building designs without great regard for the final site. This makes marketing easier and costs lower with the result of more installations.

Maloney, T.

1980-01-01T23:59:59.000Z

469

Remote Sensing Ayman F. Habib Image Classification  

E-Print Network (OSTI)

1 Remote Sensing Ayman F. Habib 1 Chapter 6 Image Classification Remote Sensing Ayman F. Habib 2. ­ Unsupervised classification. · Accuracy assessment. #12;2 Remote Sensing Ayman F. Habib 3 Image Classification of image pixels is based on their digital numbers/grey values in one or more spectral bands. Remote Sensing

Habib, Ayman

470

Scalable Active Learning for Multiclass Image Classification  

Science Conference Proceedings (OSTI)

Machine learning techniques for computer vision applications like object recognition, scene classification, etc., require a large number of training samples for satisfactory performance. Especially when classification is to be performed over many categories, ... Keywords: Training,Support vector machines,Training data,Noise,Accuracy,Learning systems,Couplings,object recognition,Active learning,scalable machine learning,multiclass classification

Ajay J. Joshi; Fatih Porikli; Nikos Papanikolopoulos

2012-11-01T23:59:59.000Z

471

Non-smoothness in classification problems  

Science Conference Proceedings (OSTI)

We review the role played by non-smooth optimization techniques in many recent applications in classification area. Starting from the classical concept of linear separability in binary classification, we recall the more general concepts of polyhedral, ... Keywords: classification, non-smooth optimization, separation of sets

A. Astorino; A. Fuduli; E. Gorgone

2008-10-01T23:59:59.000Z

472

Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Information  

Open Energy Info (EERE)

Sumitomo Metal Industries Ltd Sumitomo Metals Sumitomo Metal Industries Ltd Sumitomo Metals Jump to: navigation, search Name Sumitomo Metal Industries Ltd (Sumitomo Metals) Place Osaka-shi, Osaka, Japan Zip 540-0041 Sector Solar Product Engaged in the steel, engineering, and electronics businesses; works on fuel cell component technology and manufactures silicon wafers for the solar sector. References Sumitomo Metal Industries Ltd (Sumitomo Metals)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sumitomo Metal Industries Ltd (Sumitomo Metals) is a company located in Osaka-shi, Osaka, Japan . References ↑ "Sumitomo Metal Industries Ltd (Sumitomo Metals)" Retrieved from "http://en.openei.org/w/index.php?title=Sumitomo_Metal_Industries_Ltd_Sumitomo_Metals&oldid=351744"

473

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

474

Transforming the Freight Industry  

E-Print Network (OSTI)

Transforming the Freight Industry From Regulation to Icommon-carrier freight industry was Competition to backwardjourneys. When the freight industry was deregulated, it was

Regan, Amelia

2002-01-01T23:59:59.000Z

475

Demographics and industry returns  

E-Print Network (OSTI)

Demographics and Industry Returns By Stefano DellaVigna andand returns across industries. Cohort size fluc- tuationspredict profitability by industry. Moreover, forecast demand

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

476

Solar and Wind Permitting Laws | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permitting Laws Permitting Laws Solar and Wind Permitting Laws < Back Eligibility Commercial Industrial Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Wind Program Info State New Jersey Program Type Solar/Wind Permitting Standards Provider New Jersey Department of Community Affairs New Jersey has enacted three separate laws addressing local permitting practices for solar and wind energy facilities. The first deals with solar and wind facilities located in industrial-zoned districts; the second with wind energy devices sited on piers; and the third addresses permitting standards small wind energy devices in general. All three are described below. '''Solar and Wind as Permitted Uses in Industrial Zones''' In March 2009 the state enacted legislation (A.B. 2550) defining facilities

477

DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies Activity  

E-Print Network (OSTI)

During fiscal year (FY) 1991, the U.S. Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing fiat plate or concentrating solar collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government.

Russell Hewett; Price Microfiche A

1992-01-01T23:59:59.000Z

478

Solar Rights Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rights Act Rights Act Solar Rights Act < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Program Info State California Program Type Solar/Wind Access Policy The Solar Rights Act (CA Civil Code 714), enacted in 1978, bars restrictions by homeowners associations (HOAs) on the installation of solar-energy systems, but originally did not specifically apply to cities, counties, municipalities or other public entities. The Act was amended in September 2003 to prohibit a public entity from receiving state grant funding or loans for solar-energy programs if the entity prohibits or

479

Workplan and Annex: Solar Resource Knowledge Management  

DOE Green Energy (OSTI)

''Solar Resource Knowledge Management'' will be a new task under the International Energy Agency's Solar Heating and Cooling Programme. The task development has involved researchers from Germany, France, Switzerland, Spain, Portugal, Italy, Canada, the U.S. that have been engaged in the use of satellite imagery to develop solar resource maps and datasets around the world. The task will address three major areas: (1) ''Benchmarking'' of satellite-based solar resource methods so that resource information derived from approaches developed in one country or based on a specific satellite can be quantitatively intercompared with methods from other countries using different satellites, as well as with ground data; (2) Data archiving and dissemination procedures, especially focusing on access to the data by end users; and (3) basic R&D for improving the reliability and usability of the data, and for examining new types of products important to the solar industry, such as solar resource forecasts.

Renne, D.

2005-01-01T23:59:59.000Z

480

Solar thermal power systems. Summary report  

DOE Green Energy (OSTI)

The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

Not Available

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial classification solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

482

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

483

Santa Cruz County - Solar Access Protection | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cruz County - Solar Access Protection Cruz County - Solar Access Protection Santa Cruz County - Solar Access Protection < Back Eligibility Commercial Industrial Residential Program Info State California Program Type Solar/Wind Access Policy Provider County of Santa Cruz Although the California Solar Rights Act of 1978 requires local governments to plan for future passive or natural heating or cooling opportunities in new residential construction, and the California Shade Control Act protects solar systems from shading by vegetation, current state and local laws do not protect installed solar energy systems from shading caused by structures. The County of Santa Cruz has developed a process for registering solar energy systems to provide additional protection to solar energy system owners. The County's Building Regulations Code requires that any obstructions of

484

Solar Two  

DOE Green Energy (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

Not Available

1998-04-01T23:59:59.000Z

485

Cost of Federal tax credit programs to develop the market for industrial solar and wind energy technologies. Final report to Lawrence Livermore Laboratory, University of California. Volume 2: appendices  

DOE Green Energy (OSTI)

A study was made to estimate the impact tax credits (from Acts passed by Congress) would have on renewable energy investment and to estimate the net costs to the US Treasury of providing these tax credits. The appendices to this study are presented. Some investment and marketing penetration worksheets are presented on wind turbines, solar ponds, flat plates, evacuated tubes, and parabolic troughs. A market penetration and economic analysis program with test written for TI-59 programmable calculator with printer is presented. Data on the average $/kWh for each state are included for energy use (70 to 400/sup 0/F and electricity) and energy resource (total and direct solar and wind). Also included is an energy use processing program written for TI-59 programmable calculator with printer. (MCW)

Downey, W.T.; Carey, H.; Dlott, E.; Frantzis, L.; McDonald, M.; Myer, L.; O& #x27; Neill, K.; Patel, R.; Perkins, R.

1981-11-12T23:59:59.000Z

486

Solar PST | Open Energy Information  

Open Energy Info (EERE)

Solar PST Jump to: navigation, search Name Solar PST Place Bergondo, Spain Zip 15 165 Sector Solar Product Spanish company producing thermodynamic solar panels. References Solar...

487

Growth in Solar Means Growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

488

Growth in Solar Means Growth in Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry saw growth in 2010. Market research company Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. The research firm reports that in the United States, the annual number of total watts installed moved from 485 MW in all of 2009 to 2.3 GW

489

Solar and Wind Energy Business Franchise Tax Exemption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Business Franchise Tax Exemption Solar and Wind Energy Business Franchise Tax Exemption Solar and Wind Energy Business Franchise Tax Exemption < Back Eligibility Commercial Industrial Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate None Program Info Start Date 1982 State Texas Program Type Industry Recruitment/Support Rebate Amount All Provider Comptroller of Public Accounts Companies in Texas engaged solely in the business of manufacturing, selling, or installing solar energy devices are exempted from the franchise tax. The franchise tax is Texas's equivalent to a corporate tax. There is no ceiling on this exemption, so it is a substantial incentive for solar manufacturers. For the purposes of this exemption, a solar energy device means "a system

490

Advanced laser processing and photoluminescence characterisation of high efficiency silicon solar cells.  

E-Print Network (OSTI)

??Many current technologies used in solar cell fabrication have been successfully adapted from the integrated circuits industry. The success of laser processing applications in this (more)

Abbott, Malcolm David

2006-01-01T23:59:59.000Z

491

An Optical Characterization Technique for Parabolic Trough Solar Collectors Using Images of the Absorber Reection.  

E-Print Network (OSTI)

?? As the concentrating solar power industry competes to develop a less-expensive parabolic trough collector, assurance is needed that new parabolic trough collectors maintain accurate (more)

Owkes, Jeanmarie Kathleen

2013-01-01T23:59