National Library of Energy BETA

Sample records for industrial classification code

  1. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  2. Commercialization of Turbulent Combustion Code CREBCOM for Chemical Industry Safety

    SciTech Connect (OSTI)

    Rohatgi, Upendra

    2007-06-30

    This program developed the Kurchatov Institute’s CREBCOM (CRiteria and Experimentally Based COMbustion) code to the point where it could be commercialized and marketed for the special applications described above, as well as for general purpose combustion calculations. The CREBCOM code uses a different approach to model the explosion phenomenon. The code models, with full 3D gas dynamics, the development of an explosion in three characteristics regimes: a) slow flames, b) fast flames, and c) detonation. The transition from one regime to another is governed by a set of empirical criteria and correlations. As part of the commercialization, the code was validated with the use of experimental data. The experimental data covered a range of thermodynamic initial conditions and apparatus scale. Proprietary experimental data were provided to the Kurchatov Institute by the DuPont for this purpose. The flame acceleration and detonation data was obtained from experiments in methane and oxygen enriched air mixtures carried out in two vessels with diameters of 20 and 27 cm. The experimental data covers a wide spectrum of initial temperature (20-525C) and pressure (1-3 atm). As part of this program, the Kurchatov Institute performed experiments in a 52 cm vessel in mixtures of methane-air at room temperature and pressure to be used in the validation of the code. The objective of these tests was to obtain frame acceleration data at a scale close to that found in actual industrial processes. BNL was responsible for managing the DOE/IPP portion of the program, and for satisfying DOE reporting requirements. BNL also participated in an independent assessment of the CREBOM code. DuPont provided proprietary experimental data to the Kurchatov Institute on flame acceleration and detonation in high temperature methane and oxygen enriched air mixtures in addition to the matching fund. In addition, DuPont also supplied to KI instrumentation for pressure and temperature measurement. Kurchatov (KI) performed experiments at close to full-scale in mixtures of room temperature methane and air to develop the CREBCOM code which was used for explosion simulation in confined geometrics, such as chemical reactors and converters. The code was validated by comparison of the code simulations with experimental data obtained under prototypic reactor mixture conditions.

  3. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect (OSTI)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  4. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data; " " Row: NAICS Codes;" " Column: Floorspace and ... "Code(a)","Subsector and Industry","(million sq ... because Relative Standard Error is greater than 50 ...

  6. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  7. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  8. Updating the Classification of Geothermal Resources- Presentation

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  9. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  12. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  13. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business opportunities » Top NAICS Codes Top NAICS Codes Below is a current listing of the top NAICS codes by volume and dollar value Contact Small Business Office 505-667-4419 Email Top Ten NAICS Codes Volume 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing 334111 Electronic Computer Manufacturing 325120 Industrial Gas Manufacturing 334112 Computer Storage Device Manufacturing 334519 Other Measuring and Controlling Device Manufacturing 334515 Instrument

  14. Understanding Classification

    Energy Savers [EERE]

    ... assembly systems, safeguards and security, Strategic Petroleum Reserve). A classification guide indicates whether specific information in a given subject area is classified. ...

  15. Industry Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Partnerships

  16. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  17. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  18. Building Energy Code for the District of Columbia

    Broader source: Energy.gov [DOE]

    The DC Energy Conservation Code is updated regularly as national codes are revised or if a change is proposed by local code enforcement officials, industry, design professionals, or other...

  19. Building Energy Codes Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  20. Building Energy Codes Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program Building Energy Codes Program 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and

  1. Classification Training Institute Catalog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog

  2. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Compiler bugs affecting NERSC users are listed at PGI compiler bugs. Because Carver uses Intel processors, many benchmarks have shown significantly better performance when compiled with the Intel compilers. Compiler bugs affecting NERSC users are listed at Intel bugs. The GCC

  3. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  4. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  5. Classification Documents and Publications

    Broader source: Energy.gov [DOE]

    Certain documents and publications created or issued by the Office of Classification are available from this page.

  6. Current Approaches to Safety, Codes and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Current Approaches to Safety, Codes and Standards Current Approaches to Safety, Codes and Standards Current approaches to hydrogen and fuel cells safety, codes and standards are based on existing practices, guidelines, and codes and standards developed as a result of hydrogen's use in the chemical and aerospace industries. While some codes and standards for hydrogen and hydrogen-related systems are already available, in many cases they do not fully address the

  7. code release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    code release - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  8. Security classification of information

    SciTech Connect (OSTI)

    Quist, A.S.

    1989-09-01

    Certain governmental information must be classified for national security reasons. However, the national security benefits from classifying information are usually accompanied by significant costs -- those due to a citizenry not fully informed on governmental activities, the extra costs of operating classified programs and procuring classified materials (e.g., weapons), the losses to our nation when advances made in classified programs cannot be utilized in unclassified programs. The goal of a classification system should be to clearly identify that information which must be protected for national security reasons and to ensure that information not needing such protection is not classified. This document was prepared to help attain that goal. This document is the first of a planned four-volume work that comprehensively discusses the security classification of information. Volume 1 broadly describes the need for classification, the basis for classification, and the history of classification in the United States from colonial times until World War 2. Classification of information since World War 2, under Executive Orders and the Atomic Energy Acts of 1946 and 1954, is discussed in more detail, with particular emphasis on the classification of atomic energy information. Adverse impacts of classification are also described. Subsequent volumes will discuss classification principles, classification management, and the control of certain unclassified scientific and technical information. 340 refs., 6 tabs.

  9. Security classification of information

    SciTech Connect (OSTI)

    Quist, A.S.

    1993-04-01

    This document is the second of a planned four-volume work that comprehensively discusses the security classification of information. The main focus of Volume 2 is on the principles for classification of information. Included herein are descriptions of the two major types of information that governments classify for national security reasons (subjective and objective information), guidance to use when determining whether information under consideration for classification is controlled by the government (a necessary requirement for classification to be effective), information disclosure risks and benefits (the benefits and costs of classification), standards to use when balancing information disclosure risks and benefits, guidance for assigning classification levels (Top Secret, Secret, or Confidential) to classified information, guidance for determining how long information should be classified (classification duration), classification of associations of information, classification of compilations of information, and principles for declassifying and downgrading information. Rules or principles of certain areas of our legal system (e.g., trade secret law) are sometimes mentioned to .provide added support to some of those classification principles.

  10. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  11. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-08-14

    The order establishes the DOE Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms.Cancels DOE O 0000.1.

  12. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. Classification/Declassification of Government Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Classification ClassificationDeclassification of Government Documents ClassificationDeclassification of Government Documents BALANCING NATIONAL SECURITY WITH ...

  14. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  17. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  18. 2-Stage Classification Modeling

    Energy Science and Technology Software Center (OSTI)

    1994-11-01

    CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using themore » most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.« less

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  20. Hazard classification assessment for the High Voltage Initiator

    SciTech Connect (OSTI)

    Cogan, J.D.

    1994-04-19

    An investigation was conducted to determine whether the High Voltage Initiator (Sandia p number 395710; Navy NAVSEA No. 6237177) could be assigned a Department of Transportation (DOT) hazard classification of ``IGNITERS, 1.4G, UN0325`` under Code of Federal Regulations, 49 CFR 173.101, when packaged per Mound drawing NXB911442. A hazard classification test was performed, and the test data led to a recommended hazard classification of ``IGNITERS, 1.4G, UN0325,`` based on guidance outlined in DOE Order 1540.2 and 49 CFR 173.56.

  1. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1978-07-19

    The order establishes the Department of Energy (DOE) Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms. Canceled by DOE O 0000.1A.

  2. Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Classification PREVENTING THE PROLIFERATION OF NUCLEAR WEAPONS Since the advent of the nuclear age, the United States has been dedicated to preventing the proliferation of nuclear weapons. In order to stop the spread of nuclear weapons-related technology, Congress gave the Atomic Energy Commission (now the Department of Energy [DOE]), authority to control nuclear weapons-related information. This task has gained even greater importance in recent years with an increasing number of

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  7. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it conducts business in a trustworthy manner. What is LANL's Code of Conduct? Charlie McMillan 1:46 Laboratory Director Charlie McMillan introduces the code LANL's Code of...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  11. PNNL Energy Codes Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Development ASHRAE Standard 90.1 International Energy Conservation Code (IECC) Analysis ... of DOE's Determinations on national model codes * Evaluate cost-effectiveness on newly ...

  12. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement ...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  14. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview ... building code regarding energy efficiency to the revised model code and submit a ...

  15. Vapor Retarder Classification - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight ...

  16. Geothermal Resource Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Classification Geothermal Resource Classification PDF icon Geothermal Resource Classification.PDF More Documents & Publications Water Use in the Development and Operations ...

  17. Catalog, Classification Training Institute | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2016 Classification Training Course Catalog. To ensure that all classification and declassification decisions are based on these principles, the Office of Classification has...

  18. Position Management and Classification - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 325.2, Position Management and Classification by Bruce Murray Functional areas: Position Classification, Federal Wage System Standards, Position Management and Classification The...

  19. Safety, Codes, and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes, and Standards Safety, Codes, and Standards Hydrogen, in vast quantities, has been used safely for many years in chemical and metallurgical applications, the food industry, and the space program. As hydrogen and fuel cells begin to play a greater role in meeting the energy needs of our nation and the world, minimizing the safety hazards related to the use of hydrogen as a fuel is essential. DOE is working to develop and implement practices and procedures that will ensure safety in

  20. Classification of Information Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-05-08

    To specify responsibilities, authorities, policy, and procedures for the management of the Department of Energy (DOE) classification system. Cancels DOE O 5650.2, dated 12-12-1978. Canceled by DOE O 5650.2B, dated 12-31-1991.

  1. Position Management and Classification

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-01

    The order establishes departmental requirements and responsibilities for classifying positions using the general schedule (GS) and federal wage system (FWS) standards and to develop and administer a sound position management and classification program. Supersedes DOE O 325.2, dated 4-1-15.

  2. Position Management and Classification

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-01

    The order establishes departmental requirements and responsibilities for classifying positions using general schedule (GS) and federal wage system (FWS) standards and for developing and administering a sound position management and classification program within the Department. Cancels Chapter VII of DOE O 320.1. Canceled by DOE O 325.2 Chg 1 (Admin Chg), 9-1-15.

  3. Report on a workshop concerning code validation

    SciTech Connect (OSTI)

    None

    1996-12-01

    The design of wind turbine components is becoming more critical as turbines become lighter and more dynamically active. Computer codes that will reliably predict turbine dynamic response are, therefore, more necessary than before. However, predicting the dynamic response of very slender rotating structures that operate in turbulent winds is not a simple matter. Even so, codes for this purpose have been developed and tested in North America and in Europe, and it is important to disseminate information on this subject. The purpose of this workshop was to allow those involved in the wind energy industry in the US to assess the progress invalidation of the codes most commonly used for structural/aero-elastic wind turbine simulation. The theme of the workshop was, ``How do we know it`s right``? This was the question that participants were encouraged to ask themselves throughout the meeting in order to avoid the temptation of presenting information in a less-than-critical atmosphere. Other questions posed at the meeting are: What is the proof that the codes used can truthfully represent the field data? At what steps were the codes tested against known solutions, or against reliable field data? How should the designer or user validate results? What computer resources are needed? How do codes being used in Europe compare with those used in the US? How does the code used affect industry certification? What can be expected in the future?

  4. Brochure, Understanding Classification - June 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brochure, Understanding Classification - June 2012 Brochure, Understanding Classification - June 2012 June 2012 This booklet highlights your responsibilities identified in DOE...

  5. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & ...

  6. Automated Defect Classification (ADC)

    Energy Science and Technology Software Center (OSTI)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore » surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  7. Classification of Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1978-12-12

    To provide specific responsibilities, standards, and procedures for the management of the Department of Energy (DOE) classification system. Cancels DOE O 5650.1, dated 7-18-78; DOE N 5650.1, dated 8-7-78; DOE N 5650.2, dated 8-7-78; DOE N 5650.3, dated 8-7-78. Canceled by DOE O 5650.2A, dated 5-8-95

  8. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  9. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U.; Jarpe, Stephen P.; Maurer, William

    1994-01-01

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  10. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  11. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  12. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User...

  13. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  14. Calling All Coders: Help Advance America's Wave Power Industry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Calling All Coders: Help Advance America's Wave Power Industry Calling All Coders: Help Advance America's Wave Power Industry August 4, 2014 - 5:47pm Addthis The Energy Department has launched the second round of a coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. The Energy Department has launched the second round of a coding competition to help industry develop new models and

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  10. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  17. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-01-01

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  18. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2001-02-20

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  20. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " Level: National Data; " " Row: NAICS Codes;" " Column: Floorspace and Buildings;" " ... " QWithheld because Relative Standard Error is greater than 50 percent." " ...

  1. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  2. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  3. "NAICS Code(a)","Energy-Management Activity","No Participation...

    U.S. Energy Information Administration (EIA) Indexed Site

    8.4;" " Unit: Percents." "NAICS Code(a)","Energy-Management Activity","No ... MANUFACTURING INDUSTRIES" ,"Full-Time Energy Manager (c)",0.7,4.8,3.9,"--" ,"Set Goals ...

  4. Energy Department Kicks Off MHK Technologies Coding Challenge

    Broader source: Energy.gov [DOE]

    The Energy Department has launched a new coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices.

  5. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  6. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommore » files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.« less

  7. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption: * Support state adoption of ARRA target codes, updated model codes (IECC and Standard 90.1), and stretch codes. Compliance: * Prioritizing compliance with building energy ...

  8. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  9. Public Comments Received on the Draft Voluntary Code of Conduct |

    Energy Savers [EERE]

    Department of Energy Received on the Draft Voluntary Code of Conduct Public Comments Received on the Draft Voluntary Code of Conduct OE and the Federal Smart Grid Task Force facilitated a multi-stakeholder process to develop a Voluntary Code of Conduct (VCC) for utilities and third parties providing consumer energy use services that will address privacy related to data enabled by smart grid technologies. Industry stakeholders attended open meetings and participated in work group activities

  10. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  11. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  12. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Read more... ALS, Molecular Foundry, and aBeam

  13. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  14. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  15. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes on Cori Compiling Codes on Cori Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the Hopper compute node processors. NOTE: The

  16. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  19. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2002; " " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: ...

  20. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Usage within Cogeneration Technologies;" " Unit: ...

  1. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    http:www.energycodes.govaboutresults 5 Introduction: Model Energy Codes ANSIASHRAEIES Standard 90.1 * Current Version: 90.1-2013 (published 102013) * 30% more efficient ...

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    " ,,,"Cogeneration" "NAICS",,,"Technology" "Code(a)","Selected Subsectors and ... that reported this" "cogeneration technology in use anytime in 2010." " (e) This ...

  3. Shields - Code Coupling

    SciTech Connect (OSTI)

    Vernon, Louis James

    2015-03-02

    This PowerPoint presentation focuses on the history and benefits of the Space Weather Modeling Framework (SWMF) code and collaborative software development.

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  5. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  6. " Row: NAICS Codes;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and ...

  7. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang; Ljungdahl, Lars G.; Chen, Huizhong

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  8. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  9. Benefits Summary - Temporary Job Classification | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temporary Job Classification Download a summary of benefits offered to employees in the temporary job classification (at least 6 months term and 20 hoursweek). PDF icon 2015 Long...

  10. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  11. EPA - UIC Well Classifications | Open Energy Information

    Open Energy Info (EERE)

    Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

  12. Position Management and Classification - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CURRENT DOE O 325.2 Chg 1 (AdminChg), Position Management and Classification by Bruce Murray Functional areas: Administrative Change, Position Classification, Federal Wage System...

  13. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  14. NREL: Distributed Grid Integration - Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes and Standards NREL works with the Institute of Electrical and Electronics Engineers (IEEE) to create consensus standards with participation from industry, utilities, government, and others. These standards guide the integration of renewable and other small electricity generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of standards that NREL works with: IEEE 1547 Family

  15. Sandia National Laboratories analysis code data base

    SciTech Connect (OSTI)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  17. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    % ftn -O0 -Kieee MyCode.F90 Documentation For the full list of compiler options type man pgf90, man pgf95,man pgcc or man pgCC. However, remember always to use the Cray...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  20. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  1. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  5. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  6. "Code(a)","Subsector and Industry","Total","Electricity","Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...es",0,0,"X",0,0,0,0,"X",0 325193," Ethyl Alcohol ",0,0,"X",0,0,0,0,"X",0 325199," Other ...",0,0,"X",0,0,0,"X","X",0 325193," Ethyl Alcohol ",0,0,"X","X",0,0,"X","X","X" 325199," ...

  7. Brochure, Classification Bulletin GEN-16- February 2012

    Broader source: Energy.gov [DOE]

    Brochure on Classification Bulletin GEN-16, No Comment Policy on Classified Information in the open literature

  8. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a ...

  9. Code cases for implementing risk-based inservice testing in the ASME OM code

    SciTech Connect (OSTI)

    Rowley, C.W.

    1996-12-01

    Historically inservice testing has been reasonably effective, but quite costly. Recent applications of plant PRAs to the scope of the IST program have demonstrated that of the 30 pumps and 500 valves in the typical plant IST program, less than half of the pumps and ten percent of the valves are risk significant. The way the ASME plans to tackle this overly-conservative scope for IST components is to use the PRA and plant expert panels to create a two tier IST component categorization scheme. The PRA provides the quantitative risk information and the plant expert panel blends the quantitative and deterministic information to place the IST component into one of two categories: More Safety Significant Component (MSSC) or Less Safety Significant Component (LSSC). With all the pumps and valves in the IST program placed in MSSC or LSSC categories, two different testing strategies will be applied. The testing strategies will be unique for the type of component, such as centrifugal pump, positive displacement pump, MOV, AOV, SOV, SRV, PORV, HOV, CV, and MV. A series of OM Code Cases are being developed to capture this process for a plant to use. One Code Case will be for Component Importance Ranking. The remaining Code Cases will develop the MSSC and LSSC testing strategy for type of component. These Code Cases are planned for publication in early 1997. Later, after some industry application of the Code Cases, the alternative Code Case requirements will gravitate to the ASME OM Code as appendices.

  10. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  11. HIV classification using coalescent theory

    SciTech Connect (OSTI)

    Zhang, Ming; Letiner, Thomas K; Korber, Bette T

    2008-01-01

    Algorithms for subtype classification and breakpoint detection of HIV-I sequences are based on a classification system of HIV-l. Hence, their quality highly depend on this system. Due to the history of creation of the current HIV-I nomenclature, the current one contains inconsistencies like: The phylogenetic distance between the subtype B and D is remarkably small compared with other pairs of subtypes. In fact, it is more like the distance of a pair of subsubtypes Robertson et al. (2000); Subtypes E and I do not exist any more since they were discovered to be composed of recombinants Robertson et al. (2000); It is currently discussed whether -- instead of CRF02 being a recombinant of subtype A and G -- subtype G should be designated as a circulating recombination form (CRF) nd CRF02 as a subtype Abecasis et al. (2007); There are 8 complete and over 400 partial HIV genomes in the LANL-database which belong neither to a subtype nor to a CRF (denoted by U). Moreover, the current classification system is somehow arbitrary like all complex classification systems that were created manually. To this end, it is desirable to deduce the classification system of HIV systematically by an algorithm. Of course, this problem is not restricted to HIV, but applies to all fast mutating and recombining viruses. Our work addresses the simpler subproblem to score classifications of given input sequences of some virus species (classification denotes a partition of the input sequences in several subtypes and CRFs). To this end, we reconstruct ancestral recombination graphs (ARG) of the input sequences under restrictions determined by the given classification. These restritions are imposed in order to ensure that the reconstructed ARGs do not contradict the classification under consideration. Then, we find the ARG with maximal probability by means of Markov Chain Monte Carlo methods. The probability of the most probable ARG is interpreted as a score for the classification. To our knowledge, this particular problem was not addressed up to now. The software package Lamarc Kuhner et al. (2000) allows for sampling ARGs, but it assumes that recombination events only involve one breakpoint. However, in HIV recombinants usually have more than one breakpoint. Moreover, Lamarc does not perform an explicit breakpoint detection, but tries to find them by chance. Although this approach is suitable for most situations, it will not lead to satisfying results in case of highly recombining viruses with multiple breakpoints.

  12. ADP computer security classification program

    SciTech Connect (OSTI)

    Augustson, S.J.

    1984-01-01

    CG-ADP-1, the Automatic Data Processing Security Classification Guide, provides for classification guidance (for security information) concerning the protection of Department of Energy (DOE) and DOE contractor Automatic Data Processing (ADP) systems which handle classified information. Within the DOE, ADP facilities that process classified information provide potentially lucrative targets for compromise. In conjunction with the security measures required by DOE regulations, necessary precautions must be taken to protect details of those ADP security measures which could aid in their own subversion. Accordingly, the basic principle underlying ADP security classification policy is to protect information which could be of significant assistance in gaining unauthorized access to classified information being processed at an ADP facility. Given this policy, classification topics and guidelines are approved for implementation. The basic program guide, CG-ADP-1 is broad in scope and based upon it, more detailed local guides are sometimes developed and approved for specific sites. Classification topics are provided for system features, system and security management, and passwords. Site-specific topics can be addressed in local guides if needed.

  13. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  14. Codes and standards and other guidance cited in regulatory documents

    SciTech Connect (OSTI)

    Nickolaus, J.R.; Bohlander, K.L.

    1996-08-01

    As part of the U.S. Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program (SRP-UDP), Pacific Northwest National Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. The SRP-UDP has been completed and the SRP-Maintenance Program (SRP-MP) is now maintaining this listing. Besides updating previous information, Revision 3 adds approximately 80 citations. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC`s Bulletins, Information Notices, Circulars, Enforcement Manual, Generic Letters, Inspection Manual, Policy Statements, Regulatory Guides, Standard Technical Specifications and the Standard Review Plan (NUREG-0800).

  15. T ID CODE I

    National Nuclear Security Administration (NNSA)

    T ID CODE I DE- , I AC52- AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT I. CONTRAC I 06NA25396 I Los Alamos National Security, LLC 4200 West Jernez Road Suite 400 Los Alamos, NM 87544 PAGE 1 OF 1 PAGES 2. AMENDMENTIMODIFICATION NO. A029 U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 528 3sth Street Los Alamos, NM 87544 I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF

  16. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security

  17. Standards and Codes

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is committed to improving the energy efficiency of residential buildings in a cost-effective manner. By working with teams of researchers, industry, and organizations...

  18. Regulations, Guidelines and Codes and Standards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards Current Approaches to Safety, Codes & Standards Regulations, Guidelines and Codes and Standards Regulations, Guidelines and Codes and Standards Many ...

  19. Integrated Codes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    These codes include both classified and unclassified codes, codes used to simulate the safety, performance, and reliability of stockpile systems, codes used for the design and ...

  20. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... the forest products industry through innovation 2 The U.S. Forest Products Industry's ...

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  2. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts)

  3. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  4. Hazard classification process at LLNL

    SciTech Connect (OSTI)

    Hildum, J. S., LLNL

    1998-05-01

    An essential part of Integrated Safety Management is the identification of hazards in the workplace and the assessment of possible consequences of accidents involving those hazards. The process of hazard classification suggested by the DOE orders on Safety Analysis is the formalization of this identification and assessment for hazards that might cause harm to the public or workers external to the operation. Possible injury to workers in the facility who are exposed to the hazard is not considered in the designation of the hazard classification for facilities at LLNL, although worker safety is discussed in facility Safety Basis documentation.

  5. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  6. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  7. Vapor Retarder Classification - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile describes Building America research that established vapor retarder classifications and appropriate applications that has been instrumental in the market

  8. Statutes, Regulations, and Directives for Classification Program |

    Energy Savers [EERE]

    Department of Energy Statutes, Regulations, and Directives for Classification Program Statutes, Regulations, and Directives for Classification Program Classification Atomic Energy Act of 1954 - Establishes Government-wide policies for classifying, safeguarding, and declassifying Restricted Data information. 10 CFR Part 1045, Nuclear Classification and Declassification - Establishes the Government-wide policies and procedures for implementing sections 141 and 142 of the Atomic Energy Act of

  9. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov [DOE]

    National Geothermal Resource Assessment and Classification presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  11. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  12. THREAT OF MALICIOUS CODE

    Energy Savers [EERE]

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  13. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  14. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  15. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  16. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  17. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  18. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  19. Tribal Green Building Codes

    Energy Savers [EERE]

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND# 2012---9858C Photos placed in horizontal position with even amount of white space between photos and header Source: http://www.galavantier.com/sites/default/files/imagecache/exp-itinerary-main/Pink Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia %20Jeep%20Tours%20-%20Grand%20Canyon%20-Hualapai%20Indian%20Village-High-Res---

  20. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  1. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  2. Code Tables | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Code Tables U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Code Tables Action Code The action code identifies the type of activity being reported in a transaction. The Action Code table shows the valid action codes. Nature of Transaction (TI) Code The financial code signifies the nature of the financial or contractual activity that is involved in the transaction. The Nature of Transaction (TI) Code table shows the valid action

  3. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  4. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  5. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  6. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  7. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  8. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  9. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program: Resource Center Building Energy Codes Program: Status of State Energy Code Adoption Impacts of Standard 90.1-2007 for Commercial Buildings at State ...

  10. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  11. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  12. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  13. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  14. OM Code Requirements For MOVs -- OMN-1 and Appendix III

    SciTech Connect (OSTI)

    Kevin G. DeWall

    2011-08-01

    The purpose or scope of the ASME OM Code is to establish the requirements for pre-service and in-service testing of nuclear power plant components to assess their operational readiness. For MOVs this includes those that perform a specific function in shutting down a reactor to the safe shutdown condition, maintaining the safe shutdown condition, and mitigating the consequences of an accident. This paper will present a brief history of industry and regulatory activities related to MOVs and the development of Code requirements to address weaknesses in earlier versions of the OM Code. The paper will discuss the MOV requirements contained in the 2009 version of ASME OM Code, specifically Mandatory Appendix III and OMN-1, Revision 1.

  15. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  16. Classification Training Institute | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Training Institute Classification Training Institute Welcome to the Classification Training Institute (CTI) Webpage. This page provides information for Department of Energy (DOE) and non-DOE personnel concerning courses offered by the CTI, the current course schedule, and provides training and resources (reference materials and links to web pages with additional information) concerning information classified and controlled information within the DOE. This page also contains short

  17. Office of Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Office of Classification Mission The Office of Classification develops and interprets Government-wide and Department-wide policies, procedures and guidance, performs document reviews, and conducts training to ensure the accurate identification of information and documents that must be classified or controlled under statute or Executive order to protect the National Security, and controlled unclassified information (Official Use Only) to protect commercial and private interests and

  18. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov (indexed) [DOE]

    2013 Peer Review National Geothermal Resource Assessment and Classification Colin F. Williams US Geological Survey Data Systems and Analysis (Resource Assessment) April 24, 2013...

  19. Sanyal Temperature Classification | Open Energy Information

    Open Energy Info (EERE)

    and (e) unusual operational problems that impact power cost (such as scaling, corrosion, high content of non-condensable gases, etc.). Table 1. A Possible Classification...

  20. National Geothermal Resource Assessment and Classification |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Resource Assessment and Classification track 2: hydrothermal | geothermal 2015 peer review National Geothermal Data System Architecture Design, Testing and ...

  1. Discriminant forest classification method and system

    DOE Patents [OSTI]

    Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.

    2012-11-06

    A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.

  2. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  3. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  4. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  5. Technical Assistance: Increasing Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with, and enforcing the model energy codes resulting in higher-performing buildings ... 3 3 PNNL's Technical Support Development Standard 90.1 International Energy Conservation ...

  6. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Challenge * Political - change in leadership or no longer a priority * Funding and staffing constraints * Lack of communication amongst state departments ( codes, energy etc.) ...

  7. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  8. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electricity: Components of Net Demand, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Electricity Components;" " Unit: Million Kilowatthours." " "," ...

  9. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (OSTI)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  10. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  11. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  12. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 183 0 105 38 Q 0 W 8 3112 Grain and Oilseed Milling 36 0 Q 13 W 0 0 6 311221 Wet Corn Milling W 0 0 0 0 0 0 W 31131 Sugar

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 592 W Q Q Q 0 0 345 3112 Grain and Oilseed Milling 85 0 W 15 Q 0 0 57 311221 Wet Corn Milling 8 0 0 0 0 0 0 8 31131 Sugar

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 67 21 49 W 19 10 W W W 3112 Grain and Oilseed Milling 35 7 29 W 7 3 0 W W 311221 Wet Corn Milling 18 4 17 0 4 W 0 W

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 2,920 325 1,945 171 174 25 W 0 0 15 3112 Grain and Oilseed Milling 269 36 152 Q Q W W 0 0 W

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 326 178 23 0 150 Q 0 Q 0 W 3112 Grain and

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 1,462 276 900 Q 217 8 0 25 0 16 3112 Grain and Oilseed Milling 174 10 131 W 4 W 0 W 0 W 311221

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Establishments Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consuming Coal(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 64 19 54 0 17 6 W W W 3112 Grain and Oilseed Milling 30 13 24 0 12 W 0 W W 311221 Wet

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  9. Level: National Data; Row: Values of Shipments within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2

  10. Level: National Data; Row: Values of Shipments within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2

  11. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  12. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  13. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  14. Pattern classification and associative recall by neural networks

    SciTech Connect (OSTI)

    Chiueh, Tzi-Dar.

    1989-01-01

    The first part of this dissertation discusses a new classifier based on a multilayer feed-forward network architecture. The main idea is to map irregularly-distributed prototypes in a classification problem to codewords that are organized in some way. Then the pattern classification problem is transformed into a threshold decoding problem, which is easily solved using simple hard-limiter neurons. At first the author proposes the new model and introduce two families of good internal representation codes. Then some analyses and software simulation concerning the storage capacity of this new model are done. The results show that the new classifier is much better than the classifier based on the Hopfield model in terms of both the storage capacity and the ability to classify correlated prototypes. A general model for neural network associative memories with a feedback structure is proposed. Many existing neural network associative memories can be expressed as special cases of this general model. Among these models, there is a class of associative memories, called correlation associative memories, that are capable of storing a large number of memory patterns. If the function used in the evolution equation is monotonically nondecreasing, then a correlation associative memory can be proved to be asymptotically stable in both the synchronous and asynchronous updating modes. Of these correlation associative memories, one stands out because of its VLSI implementation feasibility and large storage capacity. This memory uses the exponentiation function in its evolution equation; hence it is called exponential correlation associative memory (ECAM).

  15. Resolving Code and Standard Barriers to Building America Innovations- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Pam Cole, Pacific Northwest National Laboratory This project is developing processes and resources for a Codes and Standards Innovation (CSI) team to assist research partners and industry in overcoming codes and standards barriers to high-performance innovations. The goal of this project is to speed the market adoption of residential high-performance innovations and technologies facing code and standard barriers by utilizing tools and resources developed by CSI and others to address these barriers. The Building America program supports codes and standards by identifying and filling gaps in building science and system knowledge that may limit effective implementation of new and existing standards.

  16. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  17. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    Codes and Standards Concerns in Energy Innovations February 24, 2016 3:00PM to 4:30PM EST The Building America Program is hosting a free webinar that will provide an overview ...

  18. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  19. Category:Sanyal Temperature Classification | Open Energy Information

    Open Energy Info (EERE)

    Sanyal Temperature Classification Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Sanyal Temperature Classification Geothermalpower.jpg Looking for the Sanyal...

  20. Brochure, Classification Overview of RD and FRD - September 2010...

    Energy Savers [EERE]

    2010 September 2010 A Classification Overview of Restricted Data and Formerly Restricted Data - Brochure. PDF icon Brochure, Classification Overview of RD and FRD - September 2010...

  1. Security Framework for Control System Data Classification and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework for Control System Data Classification and Protection Security Framework for Control System Data Classification and Protection This document presents a data ...

  2. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual savings opportunities for

  3. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  4. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  5. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  6. II.CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN

  7. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  8. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  9. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Historical Procurement Information

  10. Product Service Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Service Codes @ Headquarters Product Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services PDF icon Produce Service Codes @ Headquarters.pdf More Documents & Publications NAICS Codes @ Headquarters Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Federal Reporting Recipient Information

  11. code | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

  12. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  13. The Integrated TIGER Series Codes

    Energy Science and Technology Software Center (OSTI)

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with anmore » input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  14. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  15. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  16. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    SciTech Connect (OSTI)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-22

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  17. Classification CommuniQué- Year: 2013

    Broader source: Energy.gov [DOE]

    Classification newsletters for the year 2013, consisting of the following issues: CommuniQué 2013-1 - Spring 2013 CommuniQué 2013-2 - Fall 2013

  18. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  19. Laser-guidance systems, security classification. Instruction

    SciTech Connect (OSTI)

    Flickinger, A.

    1982-12-03

    The Instruction reissues Department of Defense (DoD) Instruction 5210.62, April 25, 1980, and prescribes policies, standards, and criteria governing the security classification of information pertaining to any laser-guidance system that is developed in whole or in part with information or knowledge obtained from or developed for the Department of Defense; and provides guidance to DoD Components responsible for issuing security classification guides for individual systems and equipment under their control.

  20. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  1. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Technical Assistance for States Building Energy Codes Collaborative Technical ... 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes ...

  2. Finite Element Scalar Diffraction Theory Code

    Energy Science and Technology Software Center (OSTI)

    1993-08-18

    This computer code calculates the optical diffraction field for diffraction through two-dimensional apertures to aid optical system design. The code allows plotting of the diffraction field.

  3. Design Code Survey Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Code Survey Form Design Code Survey Form Survey of Safety Software Used in Design of Structures, Systems, and Components 1. Introduction The Department's Implementation Plan ...

  4. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  5. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  6. Technical Standards, Safety Analysis Toolbox Codes - November...

    Office of Environmental Management (EM)

    2003 Technical Standards, Safety Analysis Toolbox Codes - November 2003 November 2003 Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes Safety...

  7. Chemistry and Material Sciences Codes at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 Last edited: 2016-04-29 11:35:1

  8. Nevada Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Administrative Code Citation Nevada Administrative Code (2014)....

  9. Arizona Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Arizona Administrative Code Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Arizona Administrative CodeLegal Abstract This...

  10. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  11. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  12. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  13. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  14. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  15. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  16. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  17. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  18. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  19. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  20. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  1. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  2. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  3. Codes and standards and other guidance cited in regulatory documents. Revision 1

    SciTech Connect (OSTI)

    Ankrum, A.; Nickolaus, J.; Vinther, R.; Maguire-Moffitt, N.; Hammer, J.; Sherfey, L.; Warner, R.

    1994-08-01

    As part of the US Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program, Pacific Northwest Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. In addition to updating previous information, Revision 1 adds citations from the NRC Inspection Manual and the Improved Standard Technical Specifications. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC`s Bulletins, Information Notices, Circulars, Generic Letters, Policy Statements, Regulatory Guides, and the Standard Review Plan (NUREG-0800).

  4. Validation issues for SSI codes

    SciTech Connect (OSTI)

    Philippacopoulos, A.J.

    1995-02-01

    The paper describes the results of a recent work which was performed to verify computer code predictions in the SSI area. The first part of the paper is concerned with analytic solutions of the system response. The mathematical derivations are reasonably reduced by the use of relatively simple models which capture fundamental ingredients of the physics of the system motion while allowing for the response to be obtained analytically. Having established explicit forms of the system response, numerical solutions from three computer codes are presented in comparative format.

  5. Sensor Authentication: Embedded Processor Code

    SciTech Connect (OSTI)

    2012-09-25

    Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048 point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking

  6. Standards & Codes in Emerging Technologies

    Broader source: Energy.gov [DOE]

    Developing innovative technologies that increase building energy efficiency is one of the primary goals of research being conducted between the U.S. Department of Energy, laboratories, and industry...

  7. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  8. Safety, Codes, and Standards Fact Sheet

    Broader source: Energy.gov [DOE]

    Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen safety, codes, and standards.

  9. Tribal Legal Code: Umpqua Indian Utility Cooperative

    Broader source: Energy.gov [DOE]

    Provides an example tribal utility legal code. Also includes an example tribal energy development vision statement.

  10. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  11. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Reasons that Made Electricity Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million kWh. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Electricity Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Electricity Fuel Use Another Fuel the Products

  12. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  13. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million short tons. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Coal Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Coal Fuel Use Another Fuel the Products Fuel

  14. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS LPG Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel LPG Fuel Use Another Fuel the Products Fuel

  15. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  16. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B; Cartelli, Laura

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  17. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  18. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  19. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  20. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  1. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  2. MARS-KS code validation activity through the atlas domestic standard problem

    SciTech Connect (OSTI)

    Choi, K. Y.; Kim, Y. S.; Kang, K. H.; Park, H. S.; Cho, S.

    2012-07-01

    The 2 nd Domestic Standard Problem (DSP-02) exercise using the ATLAS integral effect test data was executed to transfer the integral effect test data to domestic nuclear industries and to contribute to improving the safety analysis methodology for PWRs. A small break loss of coolant accident of a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. Ten calculation results using MARS-KS code were collected, major prediction results were described qualitatively and code prediction accuracy was assessed quantitatively using the FFTBM. In addition, special code assessment activities were carried out to find out the area where the model improvement is required in the MARS-KS code. The lessons from this DSP-02 and recommendations to code developers are described in this paper. (authors)

  3. Adding kinetics and hydrodynamics to the CHEETAH thermochemical code

    SciTech Connect (OSTI)

    Fried, L.E., Howard, W.M., Souers, P.C.

    1997-01-15

    In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. We have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.

  4. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  5. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  6. Sensor Authentication: Embedded Processor Code

    Energy Science and Technology Software Center (OSTI)

    2012-09-25

    Described is the c code running on the embedded Microchip 32bit PIC32MX575F256H located on the INL developed noise analysis circuit board. The code performs the following functions: Controls the noise analysis circuit board preamplifier voltage gains of 1, 10, 100, 000 Initializes the analog to digital conversion hardware, input channel selection, Fast Fourier Transform (FFT) function, USB communications interface, and internal memory allocations Initiates high resolution 4096 point 200 kHz data acquisition Computes complex 2048more » point FFT and FFT magnitude. Services Host command set Transfers raw data to Host Transfers FFT result to host Communication error checking« less

  7. GeoPhysical Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2011-05-21

    GPAC is a code that integrates open source libraries for element formulations, linear algebra, and I/O with two main LLNL-Written components: (i) a set of standard finite elements physics solvers for rersolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of contact both implicity and explicity, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic problemsmore » and problems involving hydraulic fracturing, where the mesh topology is dynamically changed. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GPAC also has interfaces to call external libraries for, e.g., material models and equations of state; however, LLNL-developed EOS and material models will not be part of the current release.« less

  8. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  9. Macro Industrial Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    2025 * What you'll see today - Shipments - Industrial energy use (total and excluding both refining and lease &plant fuel) * AEO2015 Reference and selected side cases * AEO2015 v. ...

  10. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  11. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  12. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  13. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (OSTI)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  14. GUI for Structural Mechanics Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of GUI for Structural Mechanics Codes The TRACC Cluster gives its users a lot of flexibility when it comes to requesting software version of LS-DYNA and computational resources for submitted jobs. To fully utilize that flexibility, users need to get familiar with on-line documentation of all the installed releases of different software and modules on the cluster. As on other LINUX based HPC systems, the submission and controlling of LS-DYNA is done through text commands. Especially

  15. City Code Non-Transferable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    City Code Non-Transferable If the sales tax permit at this location becomes invalid then all associated permits will become invalid. If the business changes location or ownership or is discontinued for any reason, this permit must be returned to the Oklahoma Tax Commission for cancellation WITH AN EXPLANATION ON THE REVERSE SIDE. PLEASE POST IN CONSPICUOUS PLACE GENERAL ELECTRIC COMPANY 4211 METRO PKWY FORT MYERS FL 33916-9406 443111 8010 March 6, 2014 2102181888 Effective Expires Business

  16. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  17. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  18. CASL Industry Council Members:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL Industry Council Members: We are looking forward to hosting you at the upcoming CASL Industry Council Meeting on Tuesday, April 12, 2016 through Wednesday, April 13, 2016 at the following location: ALOFT Greenville Downtown Converge Conference Room 5 North Laurens Street Greenville, SC 29601 864-297-6100 Meeting Contact: Lorie Fox (865) 548-5178 Lodging: ALOFT Greenville Downtown: http://www.aloftgreenvilledowntown.com/ Hotel Information * Check-in time: 4 PM * Checkout time: 12 PM * Fast

  19. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  20. Light-water reactor accident classification

    SciTech Connect (OSTI)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  1. Brochure, Understanding Classification - June 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brochure, Understanding Classification - June 2012 Brochure, Understanding Classification - June 2012 June 2012 This booklet highlights your responsibilities identified in DOE Order 475.2A, Identifying Classified Information. Classification is how certain information is identified that needs to be protected in the interest of national security. DOE has a formal process for classifying and declassifying information, documents, and materials. PDF icon Brochure, Understanding Classification - June

  2. Object Classification at the Nearby Supernova Factory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 79; 97; CLASSIFICATION; EFFICIENCY; PIPELINES; TRANSIENTS; VECTORS methods: data analysis methods: statistical ...

  3. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie; Nimbalkar, Sachin U; Cox, Daryl

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  4. Quantum error-correcting codes and devices

    DOE Patents [OSTI]

    Gottesman, Daniel

    2000-10-03

    A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.

  5. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  6. California Water Code | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: California Water CodeLegal Abstract Code governing the usage of water resources in the state of...

  7. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and ... All Issues submit Industry Cluster Development Grant winners Recipients include Picuris ...

  8. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  9. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  10. DOE Research and Development Accomplishments QR Code

    Office of Scientific and Technical Information (OSTI)

    QR Code qrcode A Quick Response (QR) code is a two-dimensional barcode containing alphanumeric text that can be read/scanned by designated barcode readers and camera phones. QR codes can contain a wide variety of information, including URLs that can direct users to websites. The QR code for access to DOE R&D Accomplishments is available on this web page.

  11. Energy Code Compliance and Enforcement Best Practices

    Broader source: Energy.gov [DOE]

    This webinar covers how to access current practices, compliance best practices, and enforce best practices with energy code compliances.

  12. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  13. Ultra-narrow bandwidth voice coding

    DOE Patents [OSTI]

    Holzrichter, John F.; Ng, Lawrence C.

    2007-01-09

    A system of removing excess information from a human speech signal and coding the remaining signal information, transmitting the coded signal, and reconstructing the coded signal. The system uses one or more EM wave sensors and one or more acoustic microphones to determine at least one characteristic of the human speech signal.

  14. Mosaic of coded aperture arrays

    DOE Patents [OSTI]

    Fenimore, Edward E.; Cannon, Thomas M.

    1980-01-01

    The present invention pertains to a mosaic of coded aperture arrays which is capable of imaging off-axis sources with minimum detector size. Mosaics of the basic array pattern create a circular on periodic correlation of the object on a section of the picture plane. This section consists of elements of the central basic pattern as well as elements from neighboring patterns and is a cyclic version of the basic pattern. Since all object points contribute a complete cyclic version of the basic pattern, a section of the picture, which is the size of the basic aperture pattern, contains all the information necessary to image the object with no artifacts.

  15. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  16. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in ...

  17. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  18. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  19. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  20. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries

    SciTech Connect (OSTI)

    Belzer, D.B. ); Serot, D.E. ); Kellogg, M.A. )

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)

  1. PIA - Industrial Hygiene Analytical System (IHAS) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PDF icon PIA - Industrial Hygiene ...

  2. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  3. Microsoft Word - Global Harmonization Classifications.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harmonization Classifications: The following is prepared for your understanding of the new Global Harmonization System Physical hazards  H200: Unstable explosive  H201: Explosive; mass explosion hazard  H202: Explosive; severe projection hazard  H203: Explosive; fire, blast or projection hazard  H204: Fire or projection hazard  H205: May mass explode in fire  H220: Extremely flammable gas  H221: Flammable gas  H222: Extremely flammable aerosol  H223: Flammable

  4. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  5. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  6. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  7. US DRIVE Hydrogen Codes and Standards Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Codes and Standards Technical Team Roadmap US DRIVE Hydrogen Codes and Standards Technical Team Roadmap The Hydrogen Codes and Standards Tech Team (CSTT) mission is to ...

  8. Photovoltaic Online Training Course for Code Officials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Online Training Course for Code Officials Photovoltaic Online Training Course for Code Officials The Photovoltaic Online Training Course for Code Officials is a free ...

  9. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen ...

  10. Technical Standards, Guidance on MELCOR computer code - May 3...

    Office of Environmental Management (EM)

    Standards, Guidance on MELCOR computer code - May 3, 2004 Technical Standards, Guidance on MELCOR computer code - May 3, 2004 May 3, 2004 MELCOR Computer Code Application Guidance...

  11. The United States Code - Printing, Title 44 Excerpts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts PDF icon The United ...

  12. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore » 25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  13. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  14. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  15. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  16. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  17. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers Special (Commercial) Units Note(s): Source(s): 170 1) 170 of these companies also produce panelized homes. Automated Builder Magazine, Mar. 2005, p. 34-35; Automated Builder Magazine, Jan. 2004, p. 16. Number of Companies 3,500 200 90 7,000 2,200

  18. System Performance and Safety Government and Industry Collaboration

    Energy Savers [EERE]

    pnnl.gov Codes and Standards for Energy Storage System Performance and Safety Government and Industry Collaboration BRIEFING SUMMARY The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL), and in collaboration with a number of stakeholders, developed a protocol (i.e., pre-standard) for measuring and expressing the performance

  19. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  20. NERSC Selects 20 NESAP Code Teams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selects 20 NESAP Code Teams NERSC Selects 20 NESAP Code Teams NERSC Exascale Scientific Applications Program projects to launch in Fall 2014 August 25, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov onesandzeros The National Energy Research Scientific Computing Center (NERSC) has accepted 20 projects into the NERSC Exascale Scientific Applications Program (NESAP), a new collaborative effort that partners NERSC, Intel and Cray resources with code teams across the U.S. to prepare

  1. Verification and Validation Supporting VERA Neutronics Code

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification and Validation Supporting VERA Neutronics Code As CASL produces its VERA software each physics capability must be tested, verified, and validated (V&V). The overarching objective of code verification is to establish that a computation- al model implemented in a code accurately represents the de- veloper's conceptual representation of the physics, while vali- dation refers to the process of determining the degree to which a computational model provides an accurate representation

  2. Codes and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics » Codes and Standards Codes and Standards Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These organizations typically work with the public and private sectors to craft standards. In the U.S., the American National Standards Institute (ANSI) coordinates standards development, provides guidance on consensus building, recommends that no more than one standard

  3. Group representations, error bases and quantum codes

    SciTech Connect (OSTI)

    Knill, E

    1996-01-01

    This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.

  4. Codes and Standards Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Hydrogen Codes and Standards Tech Team (CSTT) mission is to enable and facilitate the appropriate research, development, & demonstration (RD&D) for the development of safe, performance-based defensible technical codes and standards that support the technology readiness and are appropriate for widespread consumer use of fuel cells and hydrogen-based technologies with commercialization by 2020. Therefore, it is important that the necessary codes and standards be in place no later than 2015.

  5. Integrated Codes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Integrated Codes Integrated codes contain the mathematical descriptions of the physical processes relating to nuclear weapon systems and describe what the nation knows about how nuclear weapons function. This subprogram funds the critical skills needed to develop, maintain and interpret the results of the large-scale integrated simulation codes that are needed for Stockpile Stewardship Program (SSP) maintenance, the Life Extension Programs (LEP), Significant Finding Investigation (SFI)

  6. Code of Conduct regarding holiday gifts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Code of Conduct regarding holiday gifts Code of Conduct regarding holiday gifts The holiday season is here again, and we need to remember our responsibilities as Laboratory employees. Code of Conduct regarding holiday gifts The holiday season is here again, and we need to remember our responsibilities as Laboratory employees. The holiday season brings gifts and invitations to open houses from customers, suppliers, and vendors that we do business with all year. It is important that we all

  7. Action Codes Table | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Action Codes Table U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Action Codes Table Action codes *U.S.: **IAEA: A - Shipper's original data A B - Receiver's data accepting shipper's weights without measurement W C - Shipper's adjustment or acknowledgement C D - Receiver's adjustment or acknowledgement W, Z E - Receiver's independent measurement or determination W, Z I - Inventory difference explanation data *Historical -

  8. Industrial Dojo Program Fosters Industrial Internet Development | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet

  9. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  10. Alaska Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    library Legal Document- RegulationRegulation: Alaska Administrative CodeLegal Published NA Year Signed or Took Effect 2013 Legal Citation Not provided DOI Not Provided Check for...

  11. Action Codes Table | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Blog Home About Us Our Programs Defense Nuclear Security Nuclear Materials Management & Safeguards System NMMSS ... Action Codes Table U.S. Department of Energy ...

  12. City of San Francisco- Green Building Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    San Francisco adopted a mandatory green building code for new construction projects in September 2008, establishing strict guidelines for residential and commercial buildings according to the...

  13. Maine Uniform Building and Energy Code

    Broader source: Energy.gov [DOE]

    The Maine Uniform Building and Energy Code includes the statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include log homes, ma...

  14. Building Energy Codes Collaborative Technical Assistance for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ACEEE. December, 2012. * Lee, Allen, et. al. "Attributing Building Energy Code Savings to Energy Efficiency Programs." Prepared by The Cadmus Group and partners for NEEP, IEE, and ...

  15. TNRC 191 - Antiquities Code | Open Energy Information

    Open Energy Info (EERE)

    Code section for preservation of antiquities. Published NA Year Signed or Took Effect 1977 Legal Citation TNRC 191 (1977) DOI Not Provided Check for DOI availability: http:...

  16. Southeast Enertgy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Association of South Carolina (HBA of SC), HERS Raters, Honeywell, International Codes Council (ICC), Kenneth Smith Consulting, Mathis Consulting, Mississippi Energy Institute (MEI...

  17. Prosper Sustainably Webinar: Tribal Environmental Codes Development

    Broader source: Energy.gov [DOE]

    Hosted by Prosper Sustainably, this webinar will provide a brief overview and guidance on the process of drafting tribal environmental codes, ordinances, and regulations that cover environmental...

  18. Texas Natural Resources Code | Open Energy Information

    Open Energy Info (EERE)

    Resources CodeLegal Abstract This regulation governs the law pertaining to natural resources management in Texas. Published NA Year Signed or Took Effect 2014 Legal...

  19. Energy Citations Database (ECD) - Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code