National Library of Energy BETA

Sample records for industrial classification code

  1. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Year to Date NAICS Code April - June 2014 January - March 2014

  2. Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 NAICS Code June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June

  3. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  4. Commercialization of Turbulent Combustion Code CREBCOM for Chemical Industry Safety

    SciTech Connect (OSTI)

    Rohatgi, Upendra

    2007-06-30

    This program developed the Kurchatov Institute’s CREBCOM (CRiteria and Experimentally Based COMbustion) code to the point where it could be commercialized and marketed for the special applications described above, as well as for general purpose combustion calculations. The CREBCOM code uses a different approach to model the explosion phenomenon. The code models, with full 3D gas dynamics, the development of an explosion in three characteristics regimes: a) slow flames, b) fast flames, and c) detonation. The transition from one regime to another is governed by a set of empirical criteria and correlations. As part of the commercialization, the code was validated with the use of experimental data. The experimental data covered a range of thermodynamic initial conditions and apparatus scale. Proprietary experimental data were provided to the Kurchatov Institute by the DuPont for this purpose. The flame acceleration and detonation data was obtained from experiments in methane and oxygen enriched air mixtures carried out in two vessels with diameters of 20 and 27 cm. The experimental data covers a wide spectrum of initial temperature (20-525C) and pressure (1-3 atm). As part of this program, the Kurchatov Institute performed experiments in a 52 cm vessel in mixtures of methane-air at room temperature and pressure to be used in the validation of the code. The objective of these tests was to obtain frame acceleration data at a scale close to that found in actual industrial processes. BNL was responsible for managing the DOE/IPP portion of the program, and for satisfying DOE reporting requirements. BNL also participated in an independent assessment of the CREBOM code. DuPont provided proprietary experimental data to the Kurchatov Institute on flame acceleration and detonation in high temperature methane and oxygen enriched air mixtures in addition to the matching fund. In addition, DuPont also supplied to KI instrumentation for pressure and temperature measurement. Kurchatov (KI) performed experiments at close to full-scale in mixtures of room temperature methane and air to develop the CREBCOM code which was used for explosion simulation in confined geometrics, such as chemical reactors and converters. The code was validated by comparison of the code simulations with experimental data obtained under prototypic reactor mixture conditions.

  5. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect (OSTI)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  6. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  7. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  8. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  9. Updating the Classification of Geothermal Resources- Presentation

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  10. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  13. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  14. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  15. Codes and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Codes and Standards Activities Codes and Standards Activities The Fuel Cell Technologies Office works with code development organizations, code officials, industry experts, and national laboratory scientists to draft new model codes and equipment standards that cover emerging hydrogen technologies for consideration by the various code enforcing jurisdictions. DOE's codes and standards activities are focused on: Developing training programs for state and local officials that

  16. Energy Intensity Indicators: Industrial Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Source Energy Consumption Energy Intensity Indicators: Industrial Source Energy Consumption The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The nonmanufacturing sectors are agriculture, forestry and fisheries, mining, and

  17. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  18. Regulations, Guidelines and Codes and Standards

    Broader source: Energy.gov [DOE]

    Many regulations, guidelines, and codes and standards have already been established through years of hydrogen use in industrial and aerospace applications. In addition, systems and organizations...

  19. Building Energy Code for the District of Columbia

    Broader source: Energy.gov [DOE]

    The DC Energy Conservation Code is updated regularly as national codes are revised or if a change is proposed by local code enforcement officials, industry, design professionals, or other...

  20. Building Energy Codes Program Logic Model

    Energy Savers [EERE]

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  1. Building Energy Codes Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program Building Energy Codes Program 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. 75% of U.S. buildings will be new or renovated by 2035. Building codes will ensure they use energy wisely. The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and

  2. Classification Training Institute Catalog | Department of Energy

    Energy Savers [EERE]

    Classification Training Institute Catalog Classification Training Institute Catalog Classification Training Institute (CTI) Catalog

  3. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Compiler bugs affecting NERSC users are listed at PGI compiler bugs. Because Carver uses Intel processors, many benchmarks have shown significantly better performance when compiled with the Intel compilers. Compiler bugs affecting NERSC users are listed at Intel bugs. The GCC

  4. Classification Documents and Publications

    Broader source: Energy.gov [DOE]

    Certain documents and publications created or issued by the Office of Classification are available from this page.

  5. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  6. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  7. Current Approaches to Safety, Codes and Standards | Department of Energy

    Office of Environmental Management (EM)

    Safety, Codes & Standards » Current Approaches to Safety, Codes and Standards Current Approaches to Safety, Codes and Standards Current approaches to hydrogen and fuel cells safety, codes and standards are based on existing practices, guidelines, and codes and standards developed as a result of hydrogen's use in the chemical and aerospace industries. While some codes and standards for hydrogen and hydrogen-related systems are already available, in many cases they do not fully address the

  8. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-08-14

    The order establishes the DOE Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms.Cancels DOE O 0000.1.

  9. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  10. 2-Stage Classification Modeling

    Energy Science and Technology Software Center (OSTI)

    1994-11-01

    CIRCUIT2.4 is used to design optimum two-stage classification configurations and operating conditions for energy conservation. It permits simulation of five basic grinding-classification circuits, including one single-stage and four two-stage classification arrangements. Hydrocyclones, spiral classifiers, and sieve band screens can be simulated, and the user may choose the combination of devices for the flowsheet simulation. In addition, the user may select from four classification modeling methods to achieve the goals of a simulation project using themore » most familiar concepts. Circuit performance is modeled based on classification parameters or equipment operating conditions. A modular approach was taken in designing the program, which allows future addition of other models with relatively minor changes.« less

  11. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  12. Fire Standards Codes and Prevention in IBRs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2015 Demonstration and Market Transformation PI: Erin Webb Keith Kline Maggie Davis Oak Ridge National Laboratory 3.1.3.2 Fire Standards Codes and Prevention in IBR's 2 | Bioenergy Technologies Office Goal Statement * Ensure the safety of people and assets * Reduce risk and improve insurability * Clarify market expectations for sustainability * Reduce costs for biomass industries Enable the scale-up of a commercial-scale biomass industry through the development of harmonized codes and

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  15. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  16. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  17. Hazard classification assessment for the High Voltage Initiator

    SciTech Connect (OSTI)

    Cogan, J.D.

    1994-04-19

    An investigation was conducted to determine whether the High Voltage Initiator (Sandia p number 395710; Navy NAVSEA No. 6237177) could be assigned a Department of Transportation (DOT) hazard classification of ``IGNITERS, 1.4G, UN0325`` under Code of Federal Regulations, 49 CFR 173.101, when packaged per Mound drawing NXB911442. A hazard classification test was performed, and the test data led to a recommended hazard classification of ``IGNITERS, 1.4G, UN0325,`` based on guidance outlined in DOE Order 1540.2 and 49 CFR 173.56.

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  19. Standard Subject Classification System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1978-07-19

    The order establishes the Department of Energy (DOE) Standard Subject Classification System for classifying documents and records by subject, including correspondence, directives, and forms. Canceled by DOE O 0000.1A.

  20. Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Classification PREVENTING THE PROLIFERATION OF NUCLEAR WEAPONS Since the advent of the nuclear age, the United States has been dedicated to preventing the proliferation of nuclear weapons. In order to stop the spread of nuclear weapons-related technology, Congress gave the Atomic Energy Commission (now the Department of Energy [DOE]), authority to control nuclear weapons-related information. This task has gained even greater importance in recent years with an increasing number of

  1. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  6. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  7. Position Management and Classification - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 325.2, Position Management and Classification by Bruce Murray Functional areas: Position Classification, Federal Wage System Standards, Position Management and Classification The...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  12. Position Management and Classification

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-01

    The order establishes departmental requirements and responsibilities for classifying positions using general schedule (GS) and federal wage system (FWS) standards and for developing and administering a sound position management and classification program within the Department. Cancels Chapter VII of DOE O 320.1. Canceled by DOE O 325.2 Chg 1 (Admin Chg), 9-1-15.

  13. Position Management and Classification

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-01

    The order establishes departmental requirements and responsibilities for classifying positions using the general schedule (GS) and federal wage system (FWS) standards and to develop and administer a sound position management and classification program. Supersedes DOE O 325.2, dated 4-1-15.

  14. Classification of Information Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-05-08

    To specify responsibilities, authorities, policy, and procedures for the management of the Department of Energy (DOE) classification system. Cancels DOE O 5650.2, dated 12-12-1978. Canceled by DOE O 5650.2B, dated 12-31-1991.

  15. Resolving Code and Standard Barriers to Building America Innovations - 2014

    Energy Savers [EERE]

    BTO Peer Review | Department of Energy Resolving Code and Standard Barriers to Building America Innovations - 2014 BTO Peer Review Resolving Code and Standard Barriers to Building America Innovations - 2014 BTO Peer Review Presenter: Pam Cole, Pacific Northwest National Laboratory This project is developing processes and resources for a Codes and Standards Innovation (CSI) team to assist research partners and industry in overcoming codes and standards barriers to high-performance

  16. Safety, Codes and Standards - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Safety, Codes and Standards - Basics Safety, Codes and Standards - Basics Hydrogen has a long history of safe use in the chemical and aerospace industries. An understanding of hydrogen properties, proper safety precautions and engineering controls, and established rules, regulations, and standards are the keys to this successful track record. As the use of hydrogen and fuel cell systems expands, codes and standards will be needed to provide the information to

  17. Safety, Codes, and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes, and Standards Safety, Codes, and Standards Hydrogen, in vast quantities, has been used safely for many years in chemical and metallurgical applications, the food industry, and the space program. As hydrogen and fuel cells begin to play a greater role in meeting the energy needs of our nation and the world, minimizing the safety hazards related to the use of hydrogen as a fuel is essential. DOE is working to develop and implement practices and procedures that will ensure safety in

  18. Brochure, Understanding Classification - June 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brochure, Understanding Classification - June 2012 Brochure, Understanding Classification - June 2012 June 2012 This booklet highlights your responsibilities identified in DOE...

  19. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  20. Automated Defect Classification (ADC)

    Energy Science and Technology Software Center (OSTI)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore »surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  1. Catalog, Classification Training Institute | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalog, Classification Training Institute Catalog, Classification Training Institute 2016 Classification Training Course Catalog. To ensure that all classification and declassification decisions are based on these principles, the Office of Classification has undertaken the establishment and maintenance of a comprehensive classification and declassification education program. The training and education program is perpetually evolving with new courses and special briefings as events dictate.

  2. Classification of Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1978-12-12

    To provide specific responsibilities, standards, and procedures for the management of the Department of Energy (DOE) classification system. Cancels DOE O 5650.1, dated 7-18-78; DOE N 5650.1, dated 8-7-78; DOE N 5650.2, dated 8-7-78; DOE N 5650.3, dated 8-7-78. Canceled by DOE O 5650.2A, dated 5-8-95

  3. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U.; Jarpe, Stephen P.; Maurer, William

    1994-01-01

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  4. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  5. System Performance and Safety Government and Industry Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    pnnl.gov Codes and Standards for Energy Storage System Performance and Safety Government and Industry Collaboration BRIEFING SUMMARY The U.S. Department of Energy's Office of ...

  6. Report on a workshop concerning code validation

    SciTech Connect (OSTI)

    None

    1996-12-01

    The design of wind turbine components is becoming more critical as turbines become lighter and more dynamically active. Computer codes that will reliably predict turbine dynamic response are, therefore, more necessary than before. However, predicting the dynamic response of very slender rotating structures that operate in turbulent winds is not a simple matter. Even so, codes for this purpose have been developed and tested in North America and in Europe, and it is important to disseminate information on this subject. The purpose of this workshop was to allow those involved in the wind energy industry in the US to assess the progress invalidation of the codes most commonly used for structural/aero-elastic wind turbine simulation. The theme of the workshop was, ``How do we know it`s right``? This was the question that participants were encouraged to ask themselves throughout the meeting in order to avoid the temptation of presenting information in a less-than-critical atmosphere. Other questions posed at the meeting are: What is the proof that the codes used can truthfully represent the field data? At what steps were the codes tested against known solutions, or against reliable field data? How should the designer or user validate results? What computer resources are needed? How do codes being used in Europe compare with those used in the US? How does the code used affect industry certification? What can be expected in the future?

  7. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  8. Calling All Coders: Help Advance America's Wave Power Industry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Calling All Coders: Help Advance America's Wave Power Industry Calling All Coders: Help Advance America's Wave Power Industry August 4, 2014 - 5:47pm Addthis The Energy Department has launched the second round of a coding competition to help industry develop new models and tools that improve the design, development, and optimization of marine and hydrokinetic devices. The Energy Department has launched the second round of a coding competition to help industry develop new models and

  9. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  10. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  11. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  16. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  10. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  15. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cohan Program Manager Building Energy Codes April 22, 2014 Presentation Outline * Mission * Goals * Program Organization * Strategies/Roles * Near-Term Focus * Measuring Progress/Outcomes/Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement processes to achieve the maximum practicable improvements in building energy efficiency 3 Building Energy Codes Program - Goals

  16. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  17. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  18. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  19. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommore »files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.« less

  20. Position Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Position Classification Position Classification Documents Available for Download June 5, 2014 POLICY GUIDANCE MEMORANDUM #03 Addressing Missclassified Positions This memorandum provides policy guidance on how to consistently address misclassified positions within the Department and is effective immediately. There are several different circumstances that affect how a misclassified position will be addressed. April 27, 2010 POLICY GUIDANCE MEMORANDUM #08 DOE Fair Labor Standards Act (FLSA)

  1. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a...

  2. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  3. Public Comments Received on the Draft Voluntary Code of Conduct |

    Energy Savers [EERE]

    Department of Energy Received on the Draft Voluntary Code of Conduct Public Comments Received on the Draft Voluntary Code of Conduct OE and the Federal Smart Grid Task Force facilitated a multi-stakeholder process to develop a Voluntary Code of Conduct (VCC) for utilities and third parties providing consumer energy use services that will address privacy related to data enabled by smart grid technologies. Industry stakeholders attended open meetings and participated in work group activities

  4. Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet

    Office of Environmental Management (EM)

    [Final].docx | Department of Energy Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx PDF icon Microsoft Word - Energy Code Enforcement Funding Task Force - Fact Sheet [Final].docx More Documents & Publications Sonoma County Solar Implementation Plan Energy Industry Days Additional Information Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program Design Guide Play Book_TEAM

  5. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  6. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Thursday, 21 January 2016 12:47 A collaboration between Bay Area company aBeam Technologies, the ALS, and the Molecular Foundry is bringing cutting-edge metrology instrumentation to the semiconductor market, which will enable a new level of quality control. Summary Slide Read more... Takeda Advances Diabetes Drug Development at the ALS Print Tuesday, 19 May 2015 12:25 Type 2

  7. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  8. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  9. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes on Cori Compiling Codes on Cori Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the Hopper compute node processors. NOTE: The

  10. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  11. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Leadership, Governance » Ethics, Accountability, Contract » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Ethics and Compliance Group (505) 667-7506 Email Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our

  12. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  13. Codes and Standards

    Broader source: Energy.gov [DOE]

    Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  17. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  18. Improving Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Collaborative American Institute of ... Studios 3. Education, Health Care (outpatient), Public Order and Safety, ... elements to the Journal of the American ...

  19. Benefits Summary - Temporary Job Classification | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temporary Job Classification Download a summary of benefits offered to employees in the temporary job classification (at least 6 months term and 20 hoursweek). PDF icon 2015 Long...

  20. EPA - UIC Well Classifications | Open Energy Information

    Open Energy Info (EERE)

    Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

  1. Position Management and Classification - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CURRENT DOE O 325.2 Chg 1 (AdminChg), Position Management and Classification by Bruce Murray Functional areas: Administrative Change, Position Classification, Federal Wage System...

  2. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  3. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang (Athens, GA); Ljungdahl, Lars G. (Athens, GA); Chen, Huizhong (Lawrenceville, GA)

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  4. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  5. Brochure, Classification Bulletin GEN-16- February 2012

    Broader source: Energy.gov [DOE]

    Brochure on Classification Bulletin GEN-16, No Comment Policy on Classified Information in the open literature

  6. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  7. HIV classification using coalescent theory

    SciTech Connect (OSTI)

    Zhang, Ming; Letiner, Thomas K; Korber, Bette T

    2008-01-01

    Algorithms for subtype classification and breakpoint detection of HIV-I sequences are based on a classification system of HIV-l. Hence, their quality highly depend on this system. Due to the history of creation of the current HIV-I nomenclature, the current one contains inconsistencies like: The phylogenetic distance between the subtype B and D is remarkably small compared with other pairs of subtypes. In fact, it is more like the distance of a pair of subsubtypes Robertson et al. (2000); Subtypes E and I do not exist any more since they were discovered to be composed of recombinants Robertson et al. (2000); It is currently discussed whether -- instead of CRF02 being a recombinant of subtype A and G -- subtype G should be designated as a circulating recombination form (CRF) nd CRF02 as a subtype Abecasis et al. (2007); There are 8 complete and over 400 partial HIV genomes in the LANL-database which belong neither to a subtype nor to a CRF (denoted by U). Moreover, the current classification system is somehow arbitrary like all complex classification systems that were created manually. To this end, it is desirable to deduce the classification system of HIV systematically by an algorithm. Of course, this problem is not restricted to HIV, but applies to all fast mutating and recombining viruses. Our work addresses the simpler subproblem to score classifications of given input sequences of some virus species (classification denotes a partition of the input sequences in several subtypes and CRFs). To this end, we reconstruct ancestral recombination graphs (ARG) of the input sequences under restrictions determined by the given classification. These restritions are imposed in order to ensure that the reconstructed ARGs do not contradict the classification under consideration. Then, we find the ARG with maximal probability by means of Markov Chain Monte Carlo methods. The probability of the most probable ARG is interpreted as a score for the classification. To our knowledge, this particular problem was not addressed up to now. The software package Lamarc Kuhner et al. (2000) allows for sampling ARGs, but it assumes that recombination events only involve one breakpoint. However, in HIV recombinants usually have more than one breakpoint. Moreover, Lamarc does not perform an explicit breakpoint detection, but tries to find them by chance. Although this approach is suitable for most situations, it will not lead to satisfying results in case of highly recombining viruses with multiple breakpoints.

  8. NREL: Distributed Grid Integration - Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes and Standards NREL works with the Institute of Electrical and Electronics Engineers (IEEE) to create consensus standards with participation from industry, utilities, government, and others. These standards guide the integration of renewable and other small electricity generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of standards that NREL works with: IEEE 1547 Family

  9. Sandia National Laboratories analysis code data base

    SciTech Connect (OSTI)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  14. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  16. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    % ftn -O0 -Kieee MyCode.F90 Documentation For the full list of compiler options type man pgf90, man pgf95,man pgcc or man pgCC. However, remember always to use the Cray...

  17. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference!  Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  18. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  20. Code cases for implementing risk-based inservice testing in the ASME OM code

    SciTech Connect (OSTI)

    Rowley, C.W.

    1996-12-01

    Historically inservice testing has been reasonably effective, but quite costly. Recent applications of plant PRAs to the scope of the IST program have demonstrated that of the 30 pumps and 500 valves in the typical plant IST program, less than half of the pumps and ten percent of the valves are risk significant. The way the ASME plans to tackle this overly-conservative scope for IST components is to use the PRA and plant expert panels to create a two tier IST component categorization scheme. The PRA provides the quantitative risk information and the plant expert panel blends the quantitative and deterministic information to place the IST component into one of two categories: More Safety Significant Component (MSSC) or Less Safety Significant Component (LSSC). With all the pumps and valves in the IST program placed in MSSC or LSSC categories, two different testing strategies will be applied. The testing strategies will be unique for the type of component, such as centrifugal pump, positive displacement pump, MOV, AOV, SOV, SRV, PORV, HOV, CV, and MV. A series of OM Code Cases are being developed to capture this process for a plant to use. One Code Case will be for Component Importance Ranking. The remaining Code Cases will develop the MSSC and LSSC testing strategy for type of component. These Code Cases are planned for publication in early 1997. Later, after some industry application of the Code Cases, the alternative Code Case requirements will gravitate to the ASME OM Code as appendices.

  1. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  2. Hazard classification process at LLNL

    SciTech Connect (OSTI)

    Hildum, J. S., LLNL

    1998-05-01

    An essential part of Integrated Safety Management is the identification of hazards in the workplace and the assessment of possible consequences of accidents involving those hazards. The process of hazard classification suggested by the DOE orders on Safety Analysis is the formalization of this identification and assessment for hazards that might cause harm to the public or workers external to the operation. Possible injury to workers in the facility who are exposed to the hazard is not considered in the designation of the hazard classification for facilities at LLNL, although worker safety is discussed in facility Safety Basis documentation.

  3. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  4. Codes and standards and other guidance cited in regulatory documents

    SciTech Connect (OSTI)

    Nickolaus, J.R.; Bohlander, K.L.

    1996-08-01

    As part of the U.S. Nuclear Regulatory Commission (NRC) Standard Review Plan Update and Development Program (SRP-UDP), Pacific Northwest National Laboratory developed a listing of industry consensus codes and standards and other government and industry guidance referred to in regulatory documents. The SRP-UDP has been completed and the SRP-Maintenance Program (SRP-MP) is now maintaining this listing. Besides updating previous information, Revision 3 adds approximately 80 citations. This listing identifies the version of the code or standard cited in the regulatory document, the regulatory document, and the current version of the code or standard. It also provides a summary characterization of the nature of the citation. This listing was developed from electronic searches of the Code of Federal Regulations and the NRC`s Bulletins, Information Notices, Circulars, Enforcement Manual, Generic Letters, Inspection Manual, Policy Statements, Regulatory Guides, Standard Technical Specifications and the Standard Review Plan (NUREG-0800).

  5. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security

  6. T ID CODE I

    National Nuclear Security Administration (NNSA)

    T ID CODE I DE- , I AC52- AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT I. CONTRAC I 06NA25396 I Los Alamos National Security, LLC 4200 West Jernez Road Suite 400 Los Alamos, NM 87544 PAGE 1 OF 1 PAGES 2. AMENDMENTIMODIFICATION NO. A029 U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 528 3sth Street Los Alamos, NM 87544 I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF

  7. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview April 22, 2014 Building Energy Codes Program - Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking (Determinations vs. all others) Adoption Compliance Statutory Requirements 2 Relevant Statutory Guidance Residential Adoption (42 U.S.C. 6833(a)(5)(B)) Each State is required to certify that it has compared its residential building code regarding energy efficiency to

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  9. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    Gasoline and Diesel Fuel Update (EIA)

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts)

  10. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  11. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  12. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  13. Energy Department Kicks Off MHK Technologies Coding Challenge | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Energy Department Kicks Off MHK Technologies Coding Challenge Energy Department Kicks Off MHK Technologies Coding Challenge December 11, 2013 - 12:00am Addthis With more than 50% of the nation's population living within 50 miles of coastlines, we have vast potential to provide clean, renewable electricity to communities and cities across the United States using marine and hydrokinetic (MHK) technologies. To help this emerging industry develop new models and tools that improve the

  14. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  15. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  16. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Title: Materials Classification & Accelerated Property Predictions using Machine Learning ... Country of Publication: United States Language: English Subject: Materials Science(36) ...

  17. Vapor Retarder Classification - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile describes Building America research that established vapor retarder classifications and appropriate applications that has been instrumental in the market

  18. Statutes, Regulations, and Directives for Classification Program |

    Energy Savers [EERE]

    Department of Energy Statutes, Regulations, and Directives for Classification Program Statutes, Regulations, and Directives for Classification Program Classification Atomic Energy Act of 1954 - Establishes Government-wide policies for classifying, safeguarding, and declassifying Restricted Data information. 10 CFR Part 1045, Nuclear Classification and Declassification - Establishes the Government-wide policies and procedures for implementing sections 141 and 142 of the Atomic Energy Act of

  19. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov [DOE]

    National Geothermal Resource Assessment and Classification presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. World Energy Projection System Plus Model Documentation: Industrial Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore »of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  2. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  3. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  4. THREAT OF MALICIOUS CODE

    Energy Savers [EERE]

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  5. GENII Code Guidance

    National Nuclear Security Administration (NNSA)

    EH-4.2.1.4-Interim-GENII Rev. 1 GENII Computer Code Application Guidance for Documented Safety Analysis Interim Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 September 2003 GENII Guidance Report September 2003 Interim Report for Review INTENTIONALLY BLANK GENII Guidance Report September 2003 Interim Report for Review FOREWORD This document provides guidance to Department of Energy (DOE) facility analysts in the

  6. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  7. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Historical Procurement Information Historical Procurement Information - by Location

  8. " Row: NAICS Codes;" " Column...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Industry","Establishments(b)","In Use(e)","Not in Use(f)","Don't Know","In Use(e)","Not in Use(f)","Don't Know","In Use(e)","Not in Use(f)","Don't Know","In ...

  9. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  10. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  11. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore »a single database which makes it easier to postprocess the results data.« less

  12. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  13. Tribal Green Building Codes

    Energy Savers [EERE]

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND# 2012---9858C Photos placed in horizontal position with even amount of white space between photos and header Source: http://www.galavantier.com/sites/default/files/imagecache/exp-itinerary-main/Pink Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia %20Jeep%20Tours%20-%20Grand%20Canyon%20-Hualapai%20Indian%20Village-High-Res---

  14. Classification Training Institute | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Training Institute Classification Training Institute Welcome to the Classification Training Institute (CTI) Webpage. This page provides information for Department of Energy (DOE) and non-DOE personnel concerning courses offered by the CTI, the current course schedule, and provides training and resources (reference materials and links to web pages with additional information) concerning information classified and controlled information within the DOE. This page also contains short

  15. Office of Classification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Classification Office of Classification Mission The Office of Classification develops and interprets Government-wide and Department-wide policies, procedures and guidance, performs document reviews, and conducts training to ensure the accurate identification of information and documents that must be classified or controlled under statute or Executive order to protect the National Security, and controlled unclassified information (Official Use Only) to protect commercial and private interests and

  16. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  17. Cal. Wat. Code § 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  18. Cal. Wat. Code § 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  19. Cal. Wat. Code § 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  20. Cal. Wat. Code § 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  1. Cal. Wat. Code § 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  2. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  3. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...

  4. Geothermal Resource Classification | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Resource Classification.PDF More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and...

  5. National Geothermal Resource Assessment and Classification |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Resource Assessment and Classification presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon gsresourceassessmentpeer2013.pdf ...

  6. Discriminant forest classification method and system

    DOE Patents [OSTI]

    Chen, Barry Y.; Hanley, William G.; Lemmond, Tracy D.; Hiller, Lawrence J.; Knapp, David A.; Mugge, Marshall J.

    2012-11-06

    A hybrid machine learning methodology and system for classification that combines classical random forest (RF) methodology with discriminant analysis (DA) techniques to provide enhanced classification capability. A DA technique which uses feature measurements of an object to predict its class membership, such as linear discriminant analysis (LDA) or Andersen-Bahadur linear discriminant technique (AB), is used to split the data at each node in each of its classification trees to train and grow the trees and the forest. When training is finished, a set of n DA-based decision trees of a discriminant forest is produced for use in predicting the classification of new samples of unknown class.

  7. Sanyal Temperature Classification | Open Energy Information

    Open Energy Info (EERE)

    and (e) unusual operational problems that impact power cost (such as scaling, corrosion, high content of non-condensable gases, etc.). Table 1. A Possible Classification...

  8. OM Code Requirements For MOVs -- OMN-1 and Appendix III

    SciTech Connect (OSTI)

    Kevin G. DeWall

    2011-08-01

    The purpose or scope of the ASME OM Code is to establish the requirements for pre-service and in-service testing of nuclear power plant components to assess their operational readiness. For MOVs this includes those that perform a specific function in shutting down a reactor to the safe shutdown condition, maintaining the safe shutdown condition, and mitigating the consequences of an accident. This paper will present a brief history of industry and regulatory activities related to MOVs and the development of Code requirements to address weaknesses in earlier versions of the OM Code. The paper will discuss the MOV requirements contained in the 2009 version of ASME OM Code, specifically Mandatory Appendix III and OMN-1, Revision 1.

  9. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  10. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  11. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  12. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  13. Classification CommuniQué - Year: 2015 | Department of Energy

    Office of Environmental Management (EM)

    5 Classification CommuniQué - Year: 2015 Classification newsletters for the year 2015, consisting of the following issues: PDF icon CommuniQue 2015-1 - Spring 2015 More Documents & Publications Classification CommuniQué - Year: 2014 Classification CommuniQué - Year: 2012 Classification CommuniQué - Year: 2013

  14. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  15. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code also allows for preservation plans in historic districts to incorporate sustainability measures such as solar technologies and other energy generation and efficiency measures.

  16. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  17. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  18. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  19. Telescope Adaptive Optics Code

    Energy Science and Technology Software Center (OSTI)

    2005-07-28

    The Telescope AO Code has general adaptive optics capabilities plus specialized models for three telescopes with either adaptive optics or active optics systems. It has the capability to generate either single-layer or distributed Kolmogorov turbulence phase screens using the FFT. Missing low order spatial frequencies are added using the Karhunen-Loeve expansion. The phase structure curve is extremely dose to the theoreUcal. Secondly, it has the capability to simulate an adaptive optics control systems. The defaultmore » parameters are those of the Keck II adaptive optics system. Thirdly, it has a general wave optics capability to model the science camera halo due to scintillation from atmospheric turbulence and the telescope optics. Although this capability was implemented for the Gemini telescopes, the only default parameter specific to the Gemini telescopes is the primary mirror diameter. Finally, it has a model for the LSST active optics alignment strategy. This last model is highly specific to the LSST« less

  20. Pattern classification and associative recall by neural networks

    SciTech Connect (OSTI)

    Chiueh, Tzi-Dar.

    1989-01-01

    The first part of this dissertation discusses a new classifier based on a multilayer feed-forward network architecture. The main idea is to map irregularly-distributed prototypes in a classification problem to codewords that are organized in some way. Then the pattern classification problem is transformed into a threshold decoding problem, which is easily solved using simple hard-limiter neurons. At first the author proposes the new model and introduce two families of good internal representation codes. Then some analyses and software simulation concerning the storage capacity of this new model are done. The results show that the new classifier is much better than the classifier based on the Hopfield model in terms of both the storage capacity and the ability to classify correlated prototypes. A general model for neural network associative memories with a feedback structure is proposed. Many existing neural network associative memories can be expressed as special cases of this general model. Among these models, there is a class of associative memories, called correlation associative memories, that are capable of storing a large number of memory patterns. If the function used in the evolution equation is monotonically nondecreasing, then a correlation associative memory can be proved to be asymptotically stable in both the synchronous and asynchronous updating modes. Of these correlation associative memories, one stands out because of its VLSI implementation feasibility and large storage capacity. This memory uses the exponentiation function in its evolution equation; hence it is called exponential correlation associative memory (ECAM).

  1. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  2. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 183 0 105 38 Q 0 W 8 3112 Grain and Oilseed Milling 36 0 Q 13 W 0 0 6 311221 Wet Corn Milling W 0 0 0 0 0 0 W 31131 Sugar

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 592 W Q Q Q 0 0 345 3112 Grain and Oilseed Milling 85 0 W 15 Q 0 0 57 311221 Wet Corn Milling 8 0 0 0 0 0 0 8 31131 Sugar

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 67 21 49 W 19 10 W W W 3112 Grain and Oilseed Milling 35 7 29 W 7 3 0 W W 311221 Wet Corn Milling 18 4 17 0 4 W 0 W

  8. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 2,920 325 1,945 171 174 25 W 0 0 15 3112 Grain and Oilseed Milling 269 36 152 Q Q W W 0 0 W

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 326 178 23 0 150 Q 0 Q 0 W 3112 Grain and

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 1,462 276 900 Q 217 8 0 25 0 16 3112 Grain and Oilseed Milling 174 10 131 W 4 W 0 W 0 W 311221

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Establishments Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consuming Coal(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 64 19 54 0 17 6 W W W 3112 Grain and Oilseed Milling 30 13 24 0 12 W 0 W W 311221 Wet

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  18. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2

  19. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2

  20. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  1. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  2. Object Classification at the Nearby Supernova Factory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Object Classification at the Nearby Supernova Factory Citation Details In-Document Search Title: Object Classification at the Nearby Supernova Factory You are accessing a...

  3. Category:Sanyal Temperature Classification | Open Energy Information

    Open Energy Info (EERE)

    Sanyal Temperature Classification Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Sanyal Temperature Classification Geothermalpower.jpg Looking for the Sanyal...

  4. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  5. Building Codes Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes Resources Building Codes Resources Some commercial and/or residential construction codes mandate certain energy performance requirements for the design, materials, and equipment used in new construction and renovations. State-wide minimum codes may be amended by local jurisdictions to be more stringent if energy performance requirements are lacking or liberal. Find building codes resources below. DOE Resources Building Energy Codes Program: Resource Center Building Energy Codes Program:

  6. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  7. New Code Compliance Briefs Assist in Resolving Codes and Standards...

    Energy Savers [EERE]

    Codes and Standards Concerns in Energy Innovations February 24, 2016 3:00PM to 4:30PM EST The Building America Program is hosting a free webinar that will provide an overview ...

  8. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  9. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Codes Program (BECP) 2015 Building Technologies Office Peer Review David Cohan, david.cohan@ee.doe.gov U.S. Department of Energy BECP Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking Adoption Compliance Statutory Requirements 2 BECP Budget FY 2015 $5.59M + FOA budget ≈$2M/yr 3 $800,000 $825,000 $5,607,000 Development Adoption Compliance Goal Reduce energy use in buildings subject to energy codes. Impacts: * Mid-term: By 2020,

  10. II.CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 II.CONTRACT ID CODE ~AGE 1 of AMENDMENT OF SOLICITATIONIMODIFICATION OF CONTRACT PAGES AC 5. PROJECT NO. (If applicable) 3. EFFECTNE DATE 2. AMENDMENTfMODIFICA TION NO. 4. REQUISITIONIPURCHASE REQ. NO. See Block 16c. NOPR 7. ADMINISTERED BY (If other than Item 6) CODE 05008 6. ISSUED BY CODE 05008 U.S. Department of Energy National Nuclear Security Administration U.S. Department of Energy National Nuclear Security Administration P.O. Box 2050 Oak Ridge, TN 37831 P.O. Box 2050 Oak Ridge, TN

  11. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  12. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  13. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    SciTech Connect (OSTI)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-22

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  14. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  15. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  16. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  17. National Geothermal Resource Assessment and Classification

    Broader source: Energy.gov (indexed) [DOE]

    Program 2013 Peer Review National Geothermal Resource Assessment and Classification Colin F. Williams US Geological Survey Data Systems and Analysis (Resource Assessment) April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research * Overall Summary - Major Project Goals * Develop new Geothermal Resource Classification standards * Expand Resource Assessment scope

  18. Waste Classification FAQ DRAFT.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Understanding of Waste Classification DRAFT FAQ Public Involvement Committee Meeting, Hanford Advisory Board Wednesday, September 4, 2013 at the Red Lion - Columbia Center Waste Classification The better the public understands how wastes are classified, the more informed they will be when weighing in about Hanford cleanup. Here are some frequently asked questions about different waste forms and how they are classified. Q. How are radioactive wastes classified? A. Wastes are classified

  19. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  20. Stretch/Reach Codes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stretch/Reach Codes Stretch/Reach Codes This webinar covered stretch codes, particularly some that are coming in the form of green codes. Transcript PDF icon Presentation More Documents & Publications Green Codes and Programs Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Effective O&M Policy in Public Buildings

  1. Product Service Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Service Codes @ Headquarters Product Service Codes @ Headquarters A listing of Product Service Codes used at Headquarters Procurement Services PDF icon Produce Service Codes @ Headquarters.pdf More Documents & Publications NAICS Codes @ Headquarters Federal Reporting Recipient Information Federal Reporting Recipient Information

  2. code | OpenEI Community

    Open Energy Info (EERE)

    by Graham7781(2017) Super contributor 14 April, 2014 - 09:48 National Day of Civic Hacking code community data Event hacking international national OpenEI The National Day of...

  3. Stone's code reveals Earth's processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stone's code reveals Earth's processes Stone's code reveals Earth's processes The returning student researches carbon sequestration to determine the best methods to capture the greenhouse gas that increases global warming. August 27, 2013 Ian Stone At the Lab's Earth and Environmental Sciences (EES) Division, Stone helps monitor movement of Earth's crust while predicting the effects of these events on the environment. He uses his photographic lens to record the effects of a more personal

  4. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  5. The Integrated TIGER Series Codes

    Energy Science and Technology Software Center (OSTI)

    2006-01-15

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with anmore » input scheme based on order-independent descriptive keywords that makes maximum use of defaults and intemal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  6. Appliance Standards and Building Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Manager Presentation Appliance Standards and Building Codes John Cymbalsky U.S Department of Energy - Building Technologies Office john.cymbalsky@ee.doe.gov 202.287.1692 2 | Building Technologies Office eere.energy.gov Appliance Standards and Building Codes Program Goals Appliance Standards Program Goals Provide cost-effective energy savings through national appliance and equipment standards: Issue 23 final rules by end of FY2015 Deliver at least 1 qBtu of savings annually by 2030

  7. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  8. NEEP Building Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEEP Building Energy Codes Project 2014 Building Technologies Office Peer Review MISSION Accelerate the efficient use of energy in the Northeast and Mid-Atlantic Regions Carolyn Sarno, csarno@neep.org Northeast Energy Efficiency Partnerships (NEEP) Project Summary Timeline: Start date: September 1, 2012 Planned end date: August 31, 2015 Key Milestones 1. Rhode Island Code Compliance Initiative, December 2012 2. Massachusetts 2012 IECC Adoption (July 1, 2013) Budget: Total DOE $ to date: $216,500

  9. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  10. Nevada Administrative Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Nevada Administrative Code Citation Nevada Administrative Code (2014)....

  11. Building Energy Code | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  12. Building Energy Codes | Open Energy Information

    Open Energy Info (EERE)

    Building Energy Codes Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial andor residential construction to adhere...

  13. Laboratory Equipment Donation Program - LEDP Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code Copy the code below and paste it to your website or blog: