Sample records for industrial chemical model

  1. Reporting Conservation Results in the Chemical Industry

    E-Print Network [OSTI]

    Doerr, R. E.

    1979-01-01T23:59:59.000Z

    In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results of the chemical industry to the Federal Energy Administration. The MCA Energy Rate Method has served as a model...

  2. Carbon Emissions: Chemicals Industry

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic Feet) Cameron,Chemicals

  3. Methods in Industrial Biotechnology for Chemical Engineers

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache

    2008-07-13T23:59:59.000Z

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

  4. Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes

    E-Print Network [OSTI]

    Zhu, Yu

    2011-08-08T23:59:59.000Z

    uncertainty with rigorous models. For optimal operation, this dissertation takes cryogenic air separation units as a primary case study and focuses on formulations for handling uncertain product demands, contractual constraints on customer satisfaction levels...

  5. Efficient Nonlinear Optimization with Rigorous Models for Large Scale Industrial Chemical Processes 

    E-Print Network [OSTI]

    Zhu, Yu

    2011-08-08T23:59:59.000Z

    for future operations (years/months/weeks). Because this layer has a strong relationship with market, it is very important for managers and engineers to make planning and scheduling decisions with consideration of various customer satisfactions... managers with the tools necessary to evaluate the trade-off between short-term profitability and customer satisfaction in this level. In this dissertation, we adopt nonlinear programming formulations with rigorous models to handle energy cost...

  6. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering

    E-Print Network [OSTI]

    Glowinski, Roland

    | Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hireBiomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics

  7. Supply chain network optimization : low volume industrial chemical product

    E-Print Network [OSTI]

    Dacha, Fred (Frederick Omondi)

    2013-01-01T23:59:59.000Z

    The chemical industry is a highly competitive and low margin industry. Chemical transportation faces stringent safety regulations meaning that Cost-To-Serve (C2S), costs associated with products net flow from manufacturers ...

  8. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Chemical Engineering

    E-Print Network [OSTI]

    Azevedo, Ricardo

    | Mechanical | Petroleum Careers in Chemical Engineering Career opportunities in chemical engineering that new chemical engineering graduates have an average starting salary of $67,600. The University from industry professionals and participate in activities that promote engineering. Chemical

  9. Radio Frequency & Microwave Energy for the Petro Chemical Industry

    E-Print Network [OSTI]

    Raburn, R.

    Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

  10. Organic Rankine Cycles for the Petro-Chemical Industry 

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    Under a cooperatively funded DOE/MTI program, a packaged organic Rankine power recovery system is being developed specifically to meet the needs of the petroleum refining and chemical industries. Program objectives include an actual in...

  11. STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL...

    Broader source: Energy.gov (indexed) [DOE]

    Air Products and Chemicals, Akzo Nobel, Battelle, DuPont, NL Industries, OxyChem, and Praxair. With the exception of Battelle, all of the Petitioner's member companies are major...

  12. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21T23:59:59.000Z

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  13. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  14. Sanyo Chemical Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings, California:Santon GmbH Jump

  15. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries 

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01T23:59:59.000Z

    Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone...

  16. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccessTroy A.Chemical Sciences

  17. Economics of Energy Conservation in the Chemical and Petrochemical Industries

    E-Print Network [OSTI]

    Nachod, J. E. Jr.

    ECONOMIC. OF ENERGY CONSERVATION IN THE CHEMICAL AND PETROCHEMICAL INDUSTRIES by J. Ernest Nachod, Jr., Consultant, Houston, TX ABSTRACT Capital allocated to energy savings projects competes with that for new or revised plants. Thus, it must... show the same or better rate of return. Usually the risk factor in energy savings projects is less than allocations for other uses. The categories of energy consumption on a chemical or petrochemical plant are defined. Distillation is often...

  18. Global Intermodal Tank Container Management for the Chemical Industry

    E-Print Network [OSTI]

    Erera, Alan

    transport multiple cargoes. Tank containers, also referred to as ISO tanks, intermodal tanks, or IMOGlobal Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank

  19. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01T23:59:59.000Z

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  20. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueque, NM) [Albuqueque, NM

    2008-06-24T23:59:59.000Z

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  1. Reactive formulations for a neutralization of toxic industrial chemicals

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueruqe, NM); Betty, Rita G. (Rio Rancho, NM)

    2006-10-24T23:59:59.000Z

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  2. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01T23:59:59.000Z

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  3. Initial Placement of BS Chemical Engineers, `00-01 Industry 55.9%

    E-Print Network [OSTI]

    Haile, Sossina M.

    Initial Placement of BS Chemical Engineers, `00-01 Industry 55.9% Other 1.8% Graduate.8% Initial placement of Chemical Engineering Graduates, Academic Year `00-'01, AIChE Career Services Department #12;Breakdown of Industrial Employment for BS Chemical Engineers Chemical 23.3% Fuels 15

  4. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  5. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  6. Sponsors of CIEEDAC: Environment Canada, Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity

    E-Print Network [OSTI]

    for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Data: Canadian Iron and Steel and Ferro-Alloy Manufacturing Industries, published by CIEEDAC annually

  7. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01T23:59:59.000Z

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  8. Boundary control for an industrial under-actuated tubular chemical reactor

    E-Print Network [OSTI]

    Boundary control for an industrial under-actuated tubular chemical reactor D. Del Vecchio a , N and studied for an industrial under-actuated tubular chemical reactor. This work presents a case-study of the performance of a decentralized versus centralized control strategy. The tubular reactor under consideration

  9. Energy Flow Models for the Steel Industry

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through...

  10. Chemical resistance determination test scheme and rating system development for industrial glove evaluation

    E-Print Network [OSTI]

    Cornils, William Joseph

    1981-01-01T23:59:59.000Z

    CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Industrial Hygiene CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Approved...

  11. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  12. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  13. Chemical Reactor Models of Digestion Modulation

    E-Print Network [OSTI]

    Logan, David

    Chemical Reactor Models of Digestion Modulation William Wolesensky & J. David Logan Department give an overview of the application of chemical reactor theory to models of digestion processes and indicate how those models extend to eco-physiological questions of modulation of digestion and feeding

  14. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

    1995-12-01T23:59:59.000Z

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  15. Developing system-based leading indicators for proactive risk management in the chemical processing industry

    E-Print Network [OSTI]

    Khawaji, Ibrahim A. (Ibrahim Abdullah)

    2012-01-01T23:59:59.000Z

    The chemical processing industry has faced challenges with achieving improvements in safety performance, and accidents continue to occur. When accidents occur, they usually have a confluence of multiple factors, suggesting ...

  16. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  17. US Energy Service Company Industry: History and Business Models

    Broader source: Energy.gov (indexed) [DOE]

    Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases *...

  18. Building robust chemical reaction mechanisms : next generation of automatic model construction software

    E-Print Network [OSTI]

    Song, Jing, 1972-

    2004-01-01T23:59:59.000Z

    Building proper reaction mechanisms is crucial to model the system dynamic properties for many industrial processes with complex chemical reaction phenomena. Because of the complexity of a reaction mechanism, computer-aided ...

  19. The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    The Quantitative Assessment of Risk Caused By Fire and Explosion in Chemical Process Industry Farid by the domino effect are the most destructive accidents related to industrial plants. Fire and explosion; Quantitative risk assessment; Explosions; Fires; Storage areas. 1. Introduction The accidents caused

  20. Industry - Specific Energy Conservation Opportunities in Chemical Plants

    E-Print Network [OSTI]

    McBride, R. B.

    1979-01-01T23:59:59.000Z

    During the second and third quarters of 1978, the process design function of Union Carbide's Chemicals and Plastics Division's Engineering Department prepared project energy statements for eight major capital projects. These eight statements listed...

  1. Iron and steel industry process model

    SciTech Connect (OSTI)

    Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

    1980-01-01T23:59:59.000Z

    The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

  2. Incremental Integration Tools for Chemical Engineering: An Industrial Application of Triple Graph

    E-Print Network [OSTI]

    Westfechtel, Bernhard

    and the components of the chemical plant, simulation models for steady-state and dynamic simulations, etc. Design representations of a chemical plant have to be kept consistent with each other. Incremental integration tools). In chemical engineering design, a chemical plant is described from different per- spectives by a set

  3. Analysis and Clustering of Model Clones: An Automotive Industrial Experience

    E-Print Network [OSTI]

    Cordy, James R.

    Analysis and Clustering of Model Clones: An Automotive Industrial Experience Manar H. Alalfi, James similarity in industrial automotive models. We apply our model clone detection tool, SIMONE, to identify and suggests better ways to maintain them. I. INTRODUCTION In todays automotive industry, models are widely

  4. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    NONE

    1995-09-29T23:59:59.000Z

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  5. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model Demonstrates Offshore Wind Industry's Job Growth Potential New Model Demonstrates Offshore Wind Industry's Job Growth Potential May 18, 2015 - 3:11pm Addthis The U.S....

  6. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20T23:59:59.000Z

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  7. An internship in the agricultural chemical industry: Miles Inc.

    E-Print Network [OSTI]

    Adams, Sharla K

    1994-01-01T23:59:59.000Z

    in Arlington. They beat the Yankees 10 to 9. 6/8 CONTACTS: Dennis Horak, Mike McGinn (Boyce Gin, Waxahachie), Mrs. Roebuck (Roebuck Grain), Dwight Duncan (Avalon), Glenn Sheppard (Helena, Italy), Ted Moore (Williams Gin, Frost), Jerry George (Terra... Divin next week. 6/10 CONTACTS: Ronnie Smith (Terra, Waco), Estes Chemical (Waco), Terry Mechell (CVC, Elm Mott), T. M. Harper (Palmer) Barry Adams (Rocket). RE~S: Dropped off pheremone for Ronnie, met the guys at Estes, took Terry to lunch, put up 3...

  8. Murphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing

    E-Print Network [OSTI]

    Memon, Atif M.

    --graphical user interface; GUI test automation; model extraction; reverse engineering; industrial test environment is a technique for using models as a basis for automated test generation. The industrial adoption of MBTMurphy Tools: Utilizing Extracted GUI Models for Industrial Software Testing Pekka Aho VTT

  9. Characterizing emerging industrial technologies in energy models

    SciTech Connect (OSTI)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29T23:59:59.000Z

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  10. Modeling and Optimization of Next Generation Feedstock Development for Chemical Process

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Modeling and Optimization of Next Generation Feedstock Development for Chemical Process Industry -Glutamic acid Anaerobic digestion mass Cellulose Biogas Bio oil Gasoline Diesel Butanol Dimethyl ether,Oil Polyol Biodiesel Glycerin Naphtha and Diesel Liquefaction / d h l Thermo chemical Protein Protein

  11. Improving Process Control Immunity to Supply Voltage Sags in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Mansoor, A.; Dorr, D.; Olson, G.

    IMPROVING PROCESS CONTROL IMMUNITY TO SUPPLY VOLTAGE SAGS IN PETROLEUM AND CHEMICAL INDUSTRIES Douglas Dorr and Arshad Mansoor EPRI Power Electronics Applications Center Knoxville, TN ABSTRACT In the modem industrial facility, many... by EPRI's Power Quality Test Facility clearly shows that CVT's are an excellent solution for voltage sag problems when they are sized properly. The optimum sizing is achieved when the CVT is loaded to no more than about 40 Figure 3. Batteryless UPS...

  12. Experiment-Based Model for the Chemical Interactions between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Experiment-Based Model for the Chemical Interactions between...

  13. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01T23:59:59.000Z

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

  14. HVAC component data modeling using industry foundation classes

    E-Print Network [OSTI]

    Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

    2002-01-01T23:59:59.000Z

    HVAC Component Data Modeling Using Industry Foundationof a major extension of the HVAC part of the IFC data model.generic approach for handling HVAC components. This includes

  15. Results from modeling and simulation of chemical downstream etch systems

    SciTech Connect (OSTI)

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01T23:59:59.000Z

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  16. Benzene is an important industrial chemical (> 2 billion gallons produced annually in the

    E-Print Network [OSTI]

    California at Berkeley, University of

    Benzene is an important industrial chemical (> 2 billion gallons produced annually in the United leukemia (Snyder 2002). However, the mechanisms of benzene-induced hematotoxicity and leukemo- genesis further light on these mechanisms and better understand the risk benzene poses, we examined the effects

  17. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K

    2008-04-02T23:59:59.000Z

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  18. Online Modeling in the Process Industry for Energy Optimization

    E-Print Network [OSTI]

    Alexander, J.

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  19. Measurements and Models for Hazardous chemical and Mixed Wastes

    SciTech Connect (OSTI)

    Laurel A. Watts; Cynthia D. Holcomb; Stephanie L. Outcalt; Beverly Louie; Michael E. Mullins; Tony N. Rogers

    2002-08-21T23:59:59.000Z

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the DOE sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system o water + acetone + 2-propanol + NaNo3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  20. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  1. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01T23:59:59.000Z

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  2. Automated Verification of Model Transformations in the Automotive Industry

    E-Print Network [OSTI]

    Cordy, James R.

    Automated Verification of Model Transformations in the Automotive Industry Gehan M. K. Selim1] transformation developed for the automotive industry [29]. More specifically, we check the correctness reported on such industrial expe- riences by discussing the effects of MDD and the issues that still need

  3. Chemical Kinetic Modeling of Non-Petroleum Based Fuels

    Broader source: Energy.gov (indexed) [DOE]

    FY11 Objectives: * Develop a chemical kinetic models for an actual components in biodiesel Methyl palmitate Methyl linoleate Methyl linolenate * Develop a chemical...

  4. Characterizing emerging industrial technologies in energy models

    E-Print Network [OSTI]

    Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-01-01T23:59:59.000Z

    Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies,” Lawrenceinformation about energy efficiency technologies, their

  5. Robust model-based fault diagnosis for chemical process systems

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large number of sensors...

  6. Robust model-based fault diagnosis for chemical process systems 

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large ...

  7. Measurement and Model for Hazardous Chemical and Mixed Waste

    SciTech Connect (OSTI)

    Michael E. Mullins; Tony N. Rogers; Stephanie L. Outcalt; Beverly Louie; Laurel A. Watts; Cynthia D. Holcomb

    2002-07-30T23:59:59.000Z

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the Department of Energy (DOE) sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system of water + acetone + 2-propanol + NaNO3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  8. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect (OSTI)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  9. Scope for industrial applications of production scheduling models and

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    ERP Level 4 MES / CPM Production & Control Level 3 Control systems/sensors (DCS, PLC, SCADA, BMS management, planning, scheduling, quality control, recipe management, setpoint definition, integrationScope for industrial applications of production scheduling models and solution methods Iiro

  10. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  12. European Symp. on Computer Application in the Chemical Industry, Erlangen, 23-26 April, 1989

    E-Print Network [OSTI]

    Skogestad, Sigurd

    to implement. 2. Control of distillation columns as a 22 system The control system design is usually simpli ed Modelling and control of distillation columns as a 5 5 system Sigurd Skogestad Chemical Engineering Distillation columns may be viewed as a 5 5 plant. The optimal controller should, based on all available

  13. European Symp. on Computer Application in the Chemical Industry, Erlangen, 23 26 April, 1989

    E-Print Network [OSTI]

    Skogestad, Sigurd

    not be possible to implement. 2. Control of distillation columns as a 2 \\Theta 2 system The control system design Modelling and control of distillation columns as a 5 \\Theta 5 system Sigurd Skogestad Chemical Engineering Summary Distillation columns may be viewed as a 5 \\Theta 5 plant. The optimal controller should, based

  14. Energy Flow Models for the Steel Industry 

    E-Print Network [OSTI]

    Hyman, B.; Andersen, J. P.

    1998-01-01T23:59:59.000Z

    each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated...

  15. A Tomato Detached Leaf Assay for Chemical Genomics of an HLB Model System

    E-Print Network [OSTI]

    Patne, S.; Eulgem, T.; Roose, M. L.

    2014-01-01T23:59:59.000Z

    Leaf Assay for Chemical Genomics of an HLB Model Systemapproach known as chemical genomics with Tomato “Psyllida model of HLB. Chemical genomics involves three key stages

  16. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01T23:59:59.000Z

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  17. Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells Problem, and they offer an alternative to petroleum-burning internal combustion engines. The U.S. Environ- mental and as a replacement for off-grid small power and grid production power plants. Development Stage/IP Status Lab

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  19. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the...

  20. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Coupled Thermal-Hydrological-Mechan...

  1. Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for Optimization of Enhanced Geothermal System Development and Production Eric Sonnenthal (PI) Jonny...

  2. Modelling Inter-Industry Material Flows

    E-Print Network [OSTI]

    ............................................................................................ 4 3.1.2. Life-cycle Analysis. The development of energy-materials-economic models arose out of the need for tools to aid the development, capable of representing complex systems and interactions in a comprehensive and concise way. However

  3. THE DIFFUSION OF VOLUNTARY INTERNATIONAL MANAGEMENT STANDARDS: RESPONSIBLE CARE, ISO 9000 and ISO 14001 IN THE CHEMICAL INDUSTRY

    E-Print Network [OSTI]

    Delmas, Magali A; Montiel, Ivan

    2007-01-01T23:59:59.000Z

    Uzbekistan Venezuela* Vietnam Yemen, Rep. Zambia # ISO14001 # ISO Chemical *Countries included in Models 4 to 62001. "International diffusion of ISO 14000 certification."

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  5. Hydrodynamic model of Fukushima-Daiichi NPP Industrial site flooding

    E-Print Network [OSTI]

    Vaschenko, V N; Gerasimenko, T V; Vachev, B

    2014-01-01T23:59:59.000Z

    While the Fukushima-Daiichi was designed and constructed the maximal tsunami height estimate was about 3 m based on analysis of statistical data including Chile earthquake in 1960. The NPP project industrial site height was 10 m. The further deterministic estimates TPCO-JSCE confirmed the impossibility of the industrial site flooding by a tsunami and therefore confirmed ecological safety of the NPP. However, as a result of beyond design earthquake of 11 March 2011 the tsunami height at the shore near the Fukushima-Daiichi NPP reached 15 m. This led to flooding and severe emergencies having catastrophic environmental consequences. This paper proposes hydrodynamic model of tsunami emerging and traveling based on conservative assumptions. The possibility of a tsunami wave reaching 15 m height at the Fukushima-Daiichi NPP shore was confirmed for deduced hydrodynamic resistance coefficient of 1.8. According to the model developed a possibility of flooding is determined not only by the industrial site height, magni...

  6. Energy use and energy intensity of the U.S. chemical industry

    E-Print Network [OSTI]

    Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

    2000-01-01T23:59:59.000Z

    H.L. , et al. , 1985, “Energy Analysis of 108 IndustrialOTA), 1993. "Industrial Energy Efficiency," Washington, DC:on International Comparisons of Energy Efficiency in the

  7. Applications of Ontologies for Assembling Simulation Models of Industrial Systems

    E-Print Network [OSTI]

    -automated semantic engine that assembles the simulation model. We represent a structure of a real industrial plant in a plant ontology and available simulation blocks in a simulation ontology. Signals of each simulation critical scenarios of nuclear power plants [9]. As some real experiments cannot be repeated under the same

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Air bottoming cycle Black liquor gasification combined cycleCEPI, 2001), and that use continues to grow. Black liquorgasification: Black liquor is the residue from chemical

  9. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect (OSTI)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01T23:59:59.000Z

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  10. Engineered Barrier System: Physical and Chemical Environment Model

    SciTech Connect (OSTI)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09T23:59:59.000Z

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  11. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  12. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  13. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12T23:59:59.000Z

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  16. Final Report - Chemical Industry Corrosion Management - A Comprehensive Information System (ASSET 2)

    SciTech Connect (OSTI)

    Randy C. John, Arthur L. Young, Arthur D. Pelton, William T. Thompson adn Ian G. Wright

    2008-10-10T23:59:59.000Z

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment with the goals to avoid premature failure, to quantitatively manage corrosion over the entire life of high temperature process equipment, to select alloys for equipment and to assist in equipment maintenance programs. ASSET software operates on typical Windows-based (Trademark of Microsoft Corporation) personal computers using operating systems such as Windows 2000, Windows NT and Vista. The software is user friendly and contains the background information needed to make productive use of the software in various help-screens in the ASSET software. A graduate from a university-level curriculum producing a B.S. in mechanical/chemical/materials science/engineering, chemistry or physics typically possesses the background required to make appropriate use of ASSET technology. A training/orientation workshop, which requires about 3 hours of class time was developed and has been provided multiple times to various user groups of ASSET technology. Approximately 100 persons have been trained in use of the technology. ASSET technology is available to about 65 companies representing industries in petroleum/gas production and processing, metals/alloys production, power generation, and equipment design.

  17. Sandia National Laboratories: model chemical processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia received funding for its "Mechanistic Modeling Framework for Predicting Extreme Battery Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and...

  18. A grid of chemical evolution models along the Hubble Sequence

    E-Print Network [OSTI]

    Mercedes Molla; Angeles I. Diaz; Federico Ferrini

    2001-04-03T23:59:59.000Z

    We have computed a grid of multiphase chemical evolution models whose results are valid for any spiral galaxy, using as input the maximum rotation velocity and the morphological type or index T.

  19. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15T23:59:59.000Z

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  20. Establishing and Implementing a Waste Minimization Program in the Chemical and Oil Industries

    E-Print Network [OSTI]

    Hollod, G. J.; Marton, R. J.

    chemicals and chemical processes, and are the best equipped to manage and reduce waste. It is the responsibility of all companies that manufacture a product or generate a waste to understand the meaning of proper waste management hierarchy, waste...

  1. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30T23:59:59.000Z

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  2. Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term

    E-Print Network [OSTI]

    Greening, L.

    2006-01-01T23:59:59.000Z

    -established industrial energy model, ITEMS (Industrial Technology and Energy Modeling System), and is calibrated to MECS 1994 and 1998. However, as compared to ITEMS, MARKAL is an optimization framework. And, this particular version of MARKAL has a forecast horizon...

  3. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY Appl. Stochastic Models Bus. Ind., 2006; 22:297311

    E-Print Network [OSTI]

    Shen, Haipeng

    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY Appl. Stochastic Models Bus. Ind., 2006; 22 Non-parametric modelling of time-varying customer service times at a bank call centre Haipeng Shen1 are interested in modelling the time-varying pattern of average customer service times at a bank call centre

  4. FROM BUSINESS MODEL TO BUSINESS MODEL PORTFOLIO IN THE EUROPEAN BIOPHARMACEUTICAL INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FROM BUSINESS MODEL TO BUSINESS MODEL PORTFOLIO IN THE EUROPEAN BIOPHARMACEUTICAL INDUSTRY 1 GAEL and of the anticipations of consumers' needs, the business model approach complements corporate and business strategy approaches. Firms combine several business models simultaneously to deliver value to different markets

  5. Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report

    SciTech Connect (OSTI)

    Holcomb, C.; Watts, L.; Outcalt, S.L.; Louie, B. [National Inst. of Standards and Technology, Boulder, CO (US); Mullins, M.E.; Rogers, T.N. [Michigan Technological Univ., Houghton, MI (US)

    1998-06-01T23:59:59.000Z

    'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'

  6. Chemical Kinetic Models for Advanced Engine Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Models for Advanced Engine Combustion William J. Pitz (PI) Marco Mehl, Charles K. Westbrook Lawrence Livermore National Laboratory June 17, 2014 DOE National Laboratory Advanced...

  7. Kinetic Part-Feeding Models for Assembly Lines in Automotive Industries

    E-Print Network [OSTI]

    Noelle, Sebastian

    Kinetic Part-Feeding Models for Assembly Lines in Automotive Industries Michael Herty, Lena.ziegler@daimler.com. #12;KINETIC PART­FEEDING MODELS FOR ASSEMBLY LINES IN AUTOMOTIVE INDUSTRIES MICHAEL HERTY, LENA in automotive industries by models based on partial differential equations.The basic idea consists

  8. Comparison of Implementations of a Flexible Joint Multibody Dynamics System Model for an Industrial Robot

    E-Print Network [OSTI]

    Stryk, Oskar von

    In this paper, different implementations of elastic joint models of industrial robots are described and com Industrial robots are widely used in various fields of applica- tion. However, when it comes to tasks where than industrial robots. Industrial robots, on the other hand, have a high work space and are very

  9. Model atmospheres and SEDs of chemically peculiar stars

    E-Print Network [OSTI]

    Yakiv V. Pavlenko

    2002-09-02T23:59:59.000Z

    Procedure and results of computations of stellar model atmospheres and spectral energy distributions are discussed. Model atmospheres of some chemically peculiar stars are computed taking into account detailed information about their abundances: -- R CrB-like stars of Teff $\\sim$ 7000 K, -- Sakurai's object (V4334 Sgr) of 4000 $<$ \\Tef $<$ 7000 K -- Przybylski's star of Teff $\\sim$ 6500 K. We show that our self-consistent approach provides a unique possibility to investigate the temporal changes of physical parameters of chemically peculiar stars. Some problems of computation of model atmospheres of M and C-giants are also considered.

  10. Atomistic Models for the absorption of Oil Production Chemicals on

    E-Print Network [OSTI]

    Goddard III, William A.

    Atomistic Models for the absorption of Oil Production Chemicals on Clay minerals Sungu Hwang, Mario The atomistic simulation of the minerals in oil production Prediction of the performance of the oil production: a model for oil -19 -18 -17 -16 -15 -14 0 0.2 0.4 0.6 0.8 1 Coverage Bindingenergyper adsorbate

  11. Rate of Industrial Conservation - Petroleum Refining, Chemicals and Pulp and Paper Manufacture

    E-Print Network [OSTI]

    Prengle, H. W. Jr.; Golden, S. A.

    1979-01-01T23:59:59.000Z

    are the goals and expectations for decreases in industrial energy use during the next 10-20 years? The specific energy consumption (SEC) of a plant or industry, measured in BTU of fuel used/ton of product produced, can be used to monitor the energy conserved...

  12. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06T23:59:59.000Z

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  13. Statistical evaluation of Hidden Markov Models topologies, based on industrial

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Nowadays, industrial robots living in stochastic environment need faults detection to prevent any breakdown

  14. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

  15. Designing a Mobile Collaborative System for Navigating and Reviewing Oil Industry CAD Models

    E-Print Network [OSTI]

    Barbosa, Alberto

    Designing a Mobile Collaborative System for Navigating and Reviewing Oil Industry CAD Models navigating and reviewing 3D engineering models, applied to the oil industry. Together with professional oil industry engineers from a large oil company, a team of HCI researchers per- formed task analysis

  16. High speed cutting with industrial robots: Towards model based compensation of deviations

    E-Print Network [OSTI]

    Stryk, Oskar von

    High speed cutting with industrial robots: Towards model based compensation of deviations Modeling and numerical simulation of the industrial robot with elastic joints Dr.-Ing. M. Stelzer and Prof. Dr. rer. nat, [abele|bauer|weigold]@ptw.tu-darmstadt.de Abstract Application of industrial robots for high speed

  17. Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama 

    E-Print Network [OSTI]

    Winter, J.

    1998-01-01T23:59:59.000Z

    The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four...

  18. Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry 

    E-Print Network [OSTI]

    Mongon, A.

    1982-01-01T23:59:59.000Z

    , heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers....

  19. Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier

    E-Print Network [OSTI]

    Neumaier, Arnold

    Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik an important role in the development of our novel optimization methods. Foundations of a Modelica library-product distillation were computed as a proof of concept. The Modelica source code is available at the project homepage

  20. Chemical Kinetic Modeling of Combustion of Automotive Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Silke, E J

    2006-11-10T23:59:59.000Z

    The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

  1. Business models for information commons in the pharmaceutical industry

    E-Print Network [OSTI]

    Bharadwaj, Ragu

    2009-01-01T23:59:59.000Z

    The pharmaceutical industry needs new modes of innovation. The industry's innovation system - based on massive investments in R&D protected by intellectual property rights - has worked well for many years, providing ...

  2. Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis

    E-Print Network [OSTI]

    Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis In the liquefied natural gas (LNG) shipping industry, the phenomenon of slosh- ing can lead to the occurrence in the LNG shipping industry. KEYWORDS: Sloshing, multivariate heavy-tail distribution, asymptotic depen

  3. Potential for Energy Efficient Motors and Variable Speed Drives in the Petroleum and Chemical Industry

    E-Print Network [OSTI]

    Fendley, K. A.; Pillay, P.

    This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

  4. A Field Tested Model of Industrial Energy Conservation Assistance to Small Industries

    E-Print Network [OSTI]

    Jendrucko, R. J.; Mitchell, D. S.; Snyder, W. T.; Symonds, F. W.

    1980-01-01T23:59:59.000Z

    The University of Tennessee is one of three universities selected by the Industrial Energy Conservation Program of the Department of Energy to develop and demonstrate the concept of an Energy Analysis and Diagnostics Center (EADC). The objective...

  5. Improving Cooling System Immunity Supply Voltage Sags in Petroleum and Chemical Industries

    E-Print Network [OSTI]

    Dorr, D. S.

    , it is often an overlooked component in the power quality investigation. The cooling process generally consists of a series of pumps, fans and cooling towers with various controls for temperature and flow rate. The EPRI PEAC Corporation Knoxville, TN... the Twenty-second National Industrial Energy Technology Conference, Houston, TX, April 5-6, 2000 EPRI PEAC BRIEF 46 EXCERPT 3 WlRE CONTROL WITH FUSED CONTROL CIRCUIT TRANSFORMER Background AND CONTROL RELAY Relays, contactors, and motor starters are used...

  6. Risk Measures Constituting Risk Metrics for Decision Making in the Chemical Process Industry 

    E-Print Network [OSTI]

    Prem, Katherine

    2012-02-14T23:59:59.000Z

    risk assessment methods for the safety design measures based on a feedback system of using fault tree for credible accidents. Hasle, Kjelle`n and Haugerud (2008) indicate that the Norwegian offshore facilities have the most experience and know...-how in preventing accidents through the design and implementation of good QRA methodologies. Hasle et al. study the principles used by the industry at different phases of design in two ways, namely, the human centered and the energy barrier perspectives...

  7. Self-consistent chemical model of partially ionized plasmas

    SciTech Connect (OSTI)

    Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E. [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 050012 (Kazakhstan)

    2011-01-15T23:59:59.000Z

    A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

  8. The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries

    E-Print Network [OSTI]

    Yang, Xiaole

    2011-08-08T23:59:59.000Z

    by regulations for the use and execution of risk analysis in 1991[16]. QRA became an official requirement for offshore after the Piper Alpha platform disaster that took place in 1988. Lord Cullen in his report recommended QRA as a technique to provide a... than 500,000 people to MIC and other chemicals. It killed at least 3,800 people and caused significant morbidity and premature death for many thousands more. An explosion and resulting fire in the Piper Alpha disaster[4] destroyed the oil production...

  9. Quark number density at imaginary chemical potential and its extrapolation to large real chemical potential by the effective model

    E-Print Network [OSTI]

    Junichi Takahashi; Junpei Sugano; Masahiro Ishii; Hiroaki Kouno; Masanobu Yahiro

    2014-10-30T23:59:59.000Z

    We evaluate quark number densities at imaginary chemical potential by lattice QCD with clover-improved two-flavor Wilson fermion. The quark number densities are extrapolated to the small real chemical potential region by assuming some function forms. The extrapolated quark number densities are consistent with those calculated at real chemical potential with the Taylor expansion method for the reweighting factors. In order to study the large real chemical potential region, we use the two-phase model consisting of the quantum hadrodynamics model for the hadron phase and the entanglement-PNJL model for the quark phase. The quantum hadrodynamics model is constructed to reproduce nuclear saturation properties, while the entanglement-PNJL model reproduces well lattice QCD data for the order parameters such as the Polyakov loop, the thermodynamic quantities and the screening masses. Then, we calculate the mass-radius relation of neutron stars and explore the hadron-quark phase transition with the two-phase model.

  10. Modeling thermal/chemical/mechanical response of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J. [and others

    1995-07-01T23:59:59.000Z

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  11. A study of chemicals as potential health hazards in the manufacturing industries of Arkansas

    E-Print Network [OSTI]

    Franks, Roye Wendell

    1940-01-01T23:59:59.000Z

    ~ or cuucacxco? tho oreetce Kittxe RaeTc CLeabor of Camoroec. tha krimucan ~eal ~e end ~ the ynhiio houltb ysruannul ia tho health unite of tbo etuto~ ~~so coeds sore- eo~ into industry groans es uoud bF tho Vaktud Gtetoe Bureau of- Canaan, ead groayo oaittod... of tks crcacc in the acnnin8 inansXxge GiXSP fixe Csnnins fsctoxios, , . occrlopio8 @gl puxscns ocxo oaxlrcpoae fg Re 4@5 PeyQatian Canaan fi8aXO Of gpQ, @OXhgm in tha ckuteXkila fna- XOXCOS On@ ~ ~ nnlSX cdanufaahqXin8 Je@uhXiae~ hns bann OXnno fa...

  12. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22T23:59:59.000Z

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  13. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    SciTech Connect (OSTI)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01T23:59:59.000Z

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  14. Development of the use, and approval testing of duplex stainless steel in the chemical industry

    SciTech Connect (OSTI)

    Smith, R.F. [ICI, Cleveland (United Kingdom); Pennington, A. [ICI Teesside Operations, Cleveland (United Kingdom)

    1994-12-31T23:59:59.000Z

    The application of duplex stainless steels within ICI began in the early 1970`s. At that time Langley 40V the precursor of Ferralium was being introduced into phosphoric acid production as a pump material, which gave a superior corrosion/erosion resistance compared to 316L in such hostile environments. At the same time the UNS S31500 duplex alloy was being introduced as a tube material not so much for its corrosion resistance, but to give enhanced performance over carbon steel with better resistance to chloride SCC compared with austenitic 300 series type stainless steels. Since then duplex alloys have gained increasing use as the product forms have increased and the alloys have developed. In addition to their resistance to chlorides their good corrosion resistance in difficult chemical environments has been exploited. This has necessitated ensuring that welded structures have a corrosion resistance matching the parent plate. This paper gives examples of some of the applications and the development of a test procedure based on ASTM G-48 to approve the integrity of the welds in a corrosive environment.

  15. Chemical Geothermometers And Mixing Models For Geothermal Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington: EnergyChemical Design

  16. Online Modeling in the Process Industry for Energy Optimization 

    E-Print Network [OSTI]

    Alexander, J.

    1988-01-01T23:59:59.000Z

    and electricity. It further discusses the methods of providing this energy for refineries, petrochemical plants, and other processing plants - chemical, paper, and metal. A typical system flow diagram is used to highlight the energy system network and describe...

  17. Aerosols and clouds in chemical transport models and climate models.

    SciTech Connect (OSTI)

    Lohmann,U.; Schwartz, S. E.

    2008-03-02T23:59:59.000Z

    Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

  18. How to prevent a Normal Accident in a High Reliable Organisation? The art of resilience, a case study in the chemical industry.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How to prevent a Normal Accident in a High Reliable Organisation? The art of resilience, a case.dupre@ish-lyon.cnrs.fr Abstract: The trend in France in the chemical industry following the Toulouse accident in 2001 has created the safety and accident field) some dimensions, for example the level of resilience (or reliability

  19. Prediction of the tool displacement for robot milling applications using coupled models of an industrial

    E-Print Network [OSTI]

    Stryk, Oskar von

    . INTRODUCTION The major fields of machining applications for industrial robots are automated pre- machining an industrial robot for milling applications inaccuracies of the serial robot kinematic, the low structuralPrediction of the tool displacement for robot milling applications using coupled models

  20. DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump of Refrigeration 35, 4 (2012) 1080-1091" DOI : 10.1016/j.ijrefrig.2011.12.007 #12;2 NOMENCLATURE A Cross sectional

  1. PERFORMANCE ANALYSIS OF INDUSTRIAL ETHERNET NETWORKS BY MEANS OF TIMED MODEL-CHECKING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    technologies in manufacturing automation but they have not been specifically intended for industrial controlPERFORMANCE ANALYSIS OF INDUSTRIAL ETHERNET NETWORKS BY MEANS OF TIMED MODEL-CHECKING Daniel Witsch networks are promising for the harmonization of the communication technologies in manufacturing automation

  2. The Swedish Model: Balancing Markets and Gifts in the Music Industry

    E-Print Network [OSTI]

    Baym, Nancy K.

    2011-01-01T23:59:59.000Z

    The internet has destabilized media industries. This article uses the case of Swedish independent music labels, musicians, and fans to articulate one model for understanding the new roles each can take in this new context. ...

  3. Services and the Business Models of Product Firms: An Empirical Analysis of the Software Industry

    E-Print Network [OSTI]

    Suarez, Fernando F.

    Some product firms increasingly rely on service revenues as part of their business models. One possible explanation is that they turn to services to generate additional profits when their product industries mature and ...

  4. Modeling ruminant methane emissions from the U.S. beef cattle industry

    E-Print Network [OSTI]

    Turk, Danny Carroll

    1993-01-01T23:59:59.000Z

    Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

  5. Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process

    E-Print Network [OSTI]

    Stryk, Oskar von

    Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot@sim.tu-darmstadt.de Abstract Using an industrial robot for machining parts provides a cost-saving and flexible alternative for industrial robots is automated pre-machining (deburring and fettling) of cast parts. There, industrial robots

  6. A quantitative model to predict the cost of quality nonconformance in the construction industry

    E-Print Network [OSTI]

    Opara, Ethelbert Okechukwu

    1993-01-01T23:59:59.000Z

    A QUANTITATIVE MODEL TO PREDICT THE COST OF QUALITY NONCONFORMANCE IN THE CONSTRUCTION INDUSTRY A Thesis by ETHELBERT OKECHUKWU OPARA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements... for the degree of MASTER OF SCIENCE August 1993 Major Subject: Construction Management A QUANTITATIVE MODEL TO PREDICT THE COST OF QUALITY NONCONFORMANCE IN THE CONSTRUCTION INDUSTRY A Thesis by ETHELBERT OKECHUKWU OPARA Submitted to Texas A&M University...

  7. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  8. Comments on the use of computer models for merger analysis in the electricity industry

    E-Print Network [OSTI]

    California at Berkeley. University of

    that the commission is considering, electricity market models, production cost/optimal power flow models, and hybridsComments on the use of computer models for merger analysis in the electricity industry FERC Docket for market power in electricity markets. These analyses have yielded several insights about the application

  9. Industrial Hygiene Exposure Predictor Model | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska|Industrial

  10. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    E-Print Network [OSTI]

    Karali, Nihan

    2014-01-01T23:59:59.000Z

    Energy Supply Modeling Package EFOM-12C Mark 1 MathematicalEnergy Supply Modeling Package EFOM-12C Mark 1 User’s Guide,the Economy EU European Union EFOM Energy Flow Optimization

  11. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals

    E-Print Network [OSTI]

    Zender, Charles

    Simulating aerosols using a chemical transport model with assimilation of satellite aerosol for simulating aerosols has been developed using a chemical transport model together with an assimilation of satellite aerosol retrievals. The methodology and model components are described in this paper

  12. header for SPIE use Laboratory Data and Model Comparisons of the Transport of Chemical

    E-Print Network [OSTI]

    Cal, Mark P.

    header for SPIE use Laboratory Data and Model Comparisons of the Transport of Chemical Signatures to examine the breadth of conditions that impact chemical signature transport, from the buried location results from the T2TNT code, specifically developed to evaluate the buried landmine chemical transport

  13. Chemical Engineering Journal 113 (2005) 205214 A detailed model of a biofilter for ammonia removal

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Chemical Engineering Journal 113 (2005) 205­214 A detailed model of a biofilter for ammonia removal Manresa, Spain b Department of Chemical and Environmental Engineering, University of California, Riverside, 92521 CA, USA c Department of Chemical Engineering, Universitat Aut`onoma de Barcelona, Edifici C, 08193

  14. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect (OSTI)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05T23:59:59.000Z

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  15. Computerized operating cost model for industrial steam generation

    SciTech Connect (OSTI)

    Powers, T.D.

    1983-02-01T23:59:59.000Z

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  16. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Broader source: Energy.gov (indexed) [DOE]

    has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential...

  17. Model for multi-strata safety performance measurements in the process industry

    E-Print Network [OSTI]

    Keren, Nir

    2004-09-30T23:59:59.000Z

    ) benchmarking of process safety elements among facilities; and (3) use of incident data collection from various sources for industrial safety performance assessment. The methods presently available for measurement of process safety within facilities... to explore the potential of integrating data sources and harnessing these databases for industrial safety performance assessment. In this study we developed models to pursue the measurement of samples of the strata described above. The measurement...

  18. Development of a Model to Compare Emergency Chemical Decontamination Methods

    E-Print Network [OSTI]

    Bradley, Richard N; Huff, Ester N

    2008-01-01T23:59:59.000Z

    Emergency Chemical Decontamination Methods Richard N.the clothing even after decontamination. Additionally, whileon the skin before decontamination, we found significant

  19. Modelling Starburst in HII galaxies: From chemical to spectro-photometric evolutionary self-consistent models

    E-Print Network [OSTI]

    M. L. Martin-Manjon; M. Molla; A. I. Diaz; R. Terlevich

    2008-10-13T23:59:59.000Z

    We have computed a series of realistic and self-consistent models that reproduce the properties of HII galaxies. The emitted spectrum of HII galaxies is reproduced by means of the photoionization code CLOUDY, using as ionizing spectrum the spectral energy distribution of the modelled HII galaxy, calculated using new and updated stellar population synthesis model (PopStar, Molla et al. 08) This, in turn, is calculated according to a star formation history and a metallicity evolution given by a chemical evolution code. Our technique reproduces observed abundances, diagnostic diagrams, colours and equivalent width vs. colour relations for local HII galaxies

  20. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06T23:59:59.000Z

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

  1. Numerical comparison between relaxation and nonlinear equilibrium models. Application to chemical engineering.

    E-Print Network [OSTI]

    d'Orléans, Université

    processes widely used in chemical engineering: distillation and chromatography. Distillation is a wellNumerical comparison between relaxation and nonlinear equilibrium models. Application to chemical engineering. F. James 1 M. Postel 2 M. Sep'ulveda 3 Abstract A model to take into account the finite exchange

  2. Heat transfer model of large shipping containers 1Chemical Engineering Department -Carnegie Mellon University

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Heat transfer model of large shipping containers 1Chemical Engineering Department - Carnegie Mellon to the inside air 3. Heat transfer at the cargo on the pallets I. The heat transfer model Outline: II. Case

  3. Mechanics, mechanisms, and modeling of the chemical mechanical polishing process

    E-Print Network [OSTI]

    Lai, Jiun-Yu

    2001-01-01T23:59:59.000Z

    The ever-increasing demand for high-performance microelectronic devices has motivated the semiconductor industry to design and manufacture Ultra-Large-Scale Integrated (ULSI) circuits with smaller feature size, higher ...

  4. Chemical enterprise model and decision-making framework for sustainable chemical product design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for complying with regulations, like REACH in Europe. Initially devoted to chemists, chemicals substitution are reconsidering the products that they use and produce, under the pressure of regulations like REACH [1] and VOC: the use of renewable materials, the minimization of energy and material resources consumption

  5. Log-domain circuit models of chemical reactions

    E-Print Network [OSTI]

    Mandal, Soumyajit

    We exploit the detailed similarities between electronics and chemistry to develop efficient, scalable bipolar or subthreshold log-domain circuits that are dynamically equivalent to networks of chemical reactions. Our ...

  6. Characterization and modeling of polysilicon MEMS chemical-mechanical polishing

    E-Print Network [OSTI]

    Tang, Brian D. (Brian David), 1980-

    2004-01-01T23:59:59.000Z

    Heavily used in the manufacture of integrated circuits, chemical-mechanical polishing (CMP) is becoming an enabling technology for microelectromechanical systems (MEMS). To reliably use CMP in the manufacturing process, ...

  7. CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models

    SciTech Connect (OSTI)

    Ma, J.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

  8. Development of a computer-aided fault tree synthesis methodology for quantitative risk analysis in the chemical process industry 

    E-Print Network [OSTI]

    Wang, Yanjun

    2005-02-17T23:59:59.000Z

    There has been growing public concern regarding the threat to people and environment from industrial activities, thus more rigorous regulations. The investigation of almost all the major accidents shows that we could ...

  9. Modeling the determinants of industry political power: industry winners in the Economic Recovery Tax Act of 1981

    E-Print Network [OSTI]

    Kardell, Amy Louise

    2004-09-30T23:59:59.000Z

    to take advantage of the new tax law; the new tax law did not significantly benefit all industries. Thus to claim that all corporations and all industries benefit uniformly from state actions would be misleading. The eight industries that benefited... claimed that these provisions would stimulate economic growth. Ironically in 1981, the same year in which the Economic Recovery Tax Act was passed, the Council of State Planning Agencies reported that the corporate tax incentives (primarily given...

  10. Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen

    SciTech Connect (OSTI)

    Braun, R.L.; Burnham, A.K.

    1993-06-01T23:59:59.000Z

    A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

  11. Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks

    E-Print Network [OSTI]

    Zilic, Zeljko

    . Replacing wired units with wireless sensor network (WSN) nodes offers more flexibility, and ultimately coverage during its deployment. Wireless networking devices are inherently power-limited, which limits1 Structuring Measurements for Modeling and the Deployment of Industrial Wireless Networks Rong

  12. Modeling Physical Quantities in Industrial Systems using Fluid Stochastic Petri Nets

    E-Print Network [OSTI]

    Gribaudo, Marco

    of a case study, in which the quantity to be regulated is a real fluid quantity: the fuel demand in a gas: Start Fuel Controller 2 Fluid Stochastic Petri Nets Fluid Stochastic Petri Nets are Petri net basedModeling Physical Quantities in Industrial Systems using Fluid Stochastic Petri Nets M. Gribaudo

  13. Cross-Industry Applications of a Confidential Reporting Model Linda J. Connell, Director

    E-Print Network [OSTI]

    Agreement that was signed in 1976 between the Federal Aviation Administration (FAA) and the National entitled the Aviation Safety Reporting System (ASRS) (Reynard, Billings, Cheaney, & Hardy, 1986). The FAA1 Cross-Industry Applications of a Confidential Reporting Model Linda J. Connell, Director Aviation

  14. Industrial motivation for interactive shape modeling: a case study in conceptual automotive design

    E-Print Network [OSTI]

    Toronto, University of

    Industrial motivation for interactive shape modeling: a case study in conceptual automotive design illus- trated within the space of conceptual automotive design. Automo- tive design provides a unique but automotive designers almost exclusively work with sketches, clay and other traditional media. Design

  15. FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY

    E-Print Network [OSTI]

    Daripa, Prabir

    FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93 fluid flows that occur in porous media during tertiary dis- placement process of chemical enhanced oil

  16. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01T23:59:59.000Z

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  17. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

  18. A comparative study of vibrational relaxation and chemical reaction models for the Martian entry vehicle

    E-Print Network [OSTI]

    Koteshwar, Rajeev

    1992-01-01T23:59:59.000Z

    A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION AND CHEMICAL REACTION MODELS FOR THE MARTIAN ENTRY VEHICLE A Thesis by RAJEEV KOTESHWAR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1992 Major Subject: Aerospace Engineering A COMPARATIVE STUDY OF VIBRATIONAL RELAXATION AND CHEMICAL REACTION MODELS FOR THE MARTIAN ENTRY VEHICLE A Thesis by RAJEEV KOTESHWAR Approved as to style...

  19. Modeling the determinants of industry political power: industry winners in the Economic Recovery Tax Act of 1981 

    E-Print Network [OSTI]

    Kardell, Amy Louise

    2004-09-30T23:59:59.000Z

    This study uses qualitative comparative analysis (QCA) to examine the basis of industry political power by assessing conditions of economic interdependence and political action associated with the passage of the Economic ...

  20. Model of penetration of coal boilers and cogeneration in the paper industry

    SciTech Connect (OSTI)

    Reister, D.B.

    1982-01-01T23:59:59.000Z

    A model has been developed to forecast the penetration of coal boilers and cogeneration of electricity in the paper industry. Given the demand for energy services (process steam and electricity) by the paper industry, the Penetration Model forecasts the demand for purchased fuel and electricity. The model splits the demand for energy service between energy carriers (coal, fuel oil/natural gas, bark, and spent liquor) on the basis of the installed capacity of 16 types of boilers (combinations of four types of energy carriers and four types of throttle conditions). Investment in new boilers is allocated by an empirical distribution function among the 16 types of boilers on the basis of life cycle cost. In the short run (5 years), the Penetration Model has a small price response. The model has a large price response in the long run (30 years). For constant fuel prices, the model forecasts a 19-percent share for coal and a 65-percent share for residual oil in the year 2000. If the real price of oil and gas doubles by the year 2000, the model forecasts a 68-percent share for coal and a 26-percent share for residual oil.

  1. A Collaborative Model for a Sustainable Management System for Energy at Small to Medium Industrial Enterprises

    E-Print Network [OSTI]

    Imel, M.; Gromacki, M.; Magoon, D.

    A Collaborative Model for a Sustainable Management System for Energy at Small to Medium Industrial Enterprises Mark Imel Technical Manager ? Energy Services Burns & McDonnell Kansas City, MO Michael Gromacki Vice President ? Engineering... adequate resources to implement a sustainable energy management program. A strategy to overcome this constraint is to collaborate and develop partnerships between the company and other external resources. This paper describes a unique business...

  2. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry

    SciTech Connect (OSTI)

    Demou, Evangelia; Hellweg, Stefanie; Wilson, Michael P.; Hammond, S. Katharine; McKone, Thomas E.

    2009-05-01T23:59:59.000Z

    We evaluated three exposure models with data obtained from measurements among workers who use"aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the: 1) homogeneously-mixed-one-box model, 2) multi-zone model, and 3) eddy-diffusion model. Temporally differentiated real-time breathing zone volatile organic compound (VOC) concentration measurements, integrated far-field area samples, and simulated experiments were used in estimating parameters, such as emission rates, diffusivity, and near-field dimensions. We assessed differences in model input requirements and their efficacy for predictive modeling. The One-box model was not able to resemble the temporal profile of exposure concentrations, but it performed well concerning time-weighted exposure over extended time periods. However, this model required an adjustment for spatial concentration gradients. Multi-zone models and diffusion-models may solve this problem. However, we found that the reliable use of both these models requires extensive field data to appropriately define pivotal parameters such as diffusivity or near-field dimensions. We conclude that it is difficult to apply these models for predicting VOC exposures in the workplace. However, for comparative exposure scenarios in life-cycle assessment they may be useful.

  3. Chemical Kinetic Modeling of Non-Petroleum Based Fuels

    Broader source: Energy.gov (indexed) [DOE]

    kinetic models for fuel components and their mixtures are a critical need to enable optimization of fuel formulations for high engine efficiency and very low emissions Targets:...

  4. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Energy Savers [EERE]

    Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled...

  5. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    E-Print Network [OSTI]

    Cowan-Ellsberry, Christina E.

    2010-01-01T23:59:59.000Z

    chlorinated pesticides, e.g. , DDT) based on Swedish marketInvestigating the global fate of DDT: Model evaluation anddichlorodiphenyltrichloroethane (DDT), and its degradation

  6. Development of Chemical Model to Predict the Interactions between...

    Broader source: Energy.gov (indexed) [DOE]

    large domain size and multiple realizations. * Model calibration and verification (End of project) - We will collect data from literature, extrapolate existing data and conduct...

  7. Modelling contact angle hysteresis on chemically patterned and superhydrophobic surfaces

    E-Print Network [OSTI]

    H. Kusumaatmaja; J. M. Yeomans

    2006-11-03T23:59:59.000Z

    We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasi-statically increased and decreased. We consider both two, and three, dimensions using analytical and numerical approaches to minimise the free energy of the drop. In two dimensions we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions this behaviour persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions we identify analytically the advancing and receding contact angles on the different surfaces and we use numerical insights to argue that these provide bounds for the three dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis, and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.

  8. PROCESS MODELING AND CONTROL The Department of Chemical Engineering

    E-Print Network [OSTI]

    Lightsey, Glenn

    economic performance · MIMO (vs. SISO) models · Nonlinear (vs. linear) models · Stochastic variables.D. Graduates (2005 - 2008) Student/Supervisor Destination E. Hale (JQ) Ph.D. (8/05) NREL R. Chong (TFE) M.S. (8 (Emerson Process Management) · J. Lee (postdoc) ­ Various topics in multivariable control (e.g., multiloop

  9. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Schindler, R.E.

    1995-03-01T23:59:59.000Z

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculated relative emissions are summarized and insights on building simulations are discussed.

  10. The physical separation and recovery of metals from wastes. Process engineering for the chemical, metals and minerals industries, Volume 1

    SciTech Connect (OSTI)

    Veasey, T.J.; Wilson, R.J. (eds.) (Univ. of Birmingham (United Kingdom). School of Chemical Engineering); Squires, D.M. (ed.) (Newell Engineering Ltd., Redditch (United Kingdom))

    1993-01-01T23:59:59.000Z

    This book deals with the physical processes used for the separation of secondary metals from waste sources. The introduction briefly considers the history of the secondary metals industries, defines the terms used in materials recycling and discusses the potential for resource recovery and improved processing. A comprehensive survey is given of the unit operations employed for metals recovery and reclamation, and this is followed by detailed descriptions of processes used to treat fragmentized metal wastes and granulated metal wastes. The final chapter reviews the processing of urban wastes for metals recovery, and gives details of modern plant and practices. The volume aims to bring together technical information on metals recovery from a wide range of sources in order to give a unified review of an important engineering and environmental topic. Topics include: general definitions used in materials recycling; the potential for resource recovery; secondary metals; ranking of scrap; the potential for improved processing; comminution; physical separation methods; the scrap industry; automobile composition; shredders; non-magnetic processing; metal reclamation processes; waste tire processing; battery processing; thermal processing systems; composition of urban waste; and material recovery.

  11. Modelling Rates of Gasification of a Char Particle in Chemical Looping Combustion

    E-Print Network [OSTI]

    Saucedo, Marco A.; Dennis, John S.; Scott, Stuart A.

    2014-07-15T23:59:59.000Z

    with that in the initial particle. Keywords Chemical-looping combustion; gasification; coal; CO2 separation; fluidisation 3 Nomenclature 12ckA Pre-exponential factor for the rate constant 2ck1, mol s -1 g-1 bar-1 12ckA Pre-exponential factor for the rate constant 2ck2... 1 Modelling Rates of Gasification of a Char Particle in Chemical Looping Combustion Marco A. Saucedoa*, John S. Dennisa, Stuart A. Scottb aDepartment of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge...

  12. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect (OSTI)

    Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

    1993-05-01T23:59:59.000Z

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  13. Prediction of Physico-Chemical Properties for REACH Based on QSPR Models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Prediction of Physico-Chemical Properties for REACH Based on QSPR Models Guillaume Fayeta models have been developed for the prediction of flash points of two families of organic compounds respected all OECD validation principles with excellent performances in predictivity, the one dedicated

  14. Modeling the chemical, diffusional, and thermal processes of a microreactor

    E-Print Network [OSTI]

    Silva, James Emanuel

    2012-01-01T23:59:59.000Z

    This thesis seeks to create a high fidelity model of the multiphysics present in a typical microreactor using propane combustion as a fuel source. The system is fully described by energy, momentum, and mass equations, all ...

  15. An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial GasFired Furnace \\Lambda

    E-Print Network [OSTI]

    An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial Gas the simulation of an experimental natural gas­fired furnace are shown. \\Lambda This work was performed under

  16. A New, Stochastic, Energy Model of the U.S. is Under Construction: SEDS and Its Industrial Structure

    E-Print Network [OSTI]

    Roop, J. M.

    -duty vehicles and heavy-duty vehicles. The industrial sector is currently modeled as a single sector, using the latest Manufacturing Energy Consumption Survey (MECS) to calibrate energy consumption to end-use energy categories: boilers, process heating...

  17. A methodology for simultaneous modeling and control of chemical processes

    E-Print Network [OSTI]

    Zeng, Tong

    1995-01-01T23:59:59.000Z

    at different Kd, initial system output value = 0. 17 A slowly drifting parameter . 18 Parameter estimation with one parameter slowly drifting, with different relay step sizes and initial system output value = -6. . . . 19 Parameter estimation with one... and disturbance Kd = 0. 4. . . . . . , . . . . . . . Error between the system and the model with a slowly drifting parameter and different disturbance gams. . . . The parameters of the tuning controller PID parameters . . Page 42 48 49 62 CHAPTER I...

  18. Increasing the chemical content of turbulent flame models through the use of parallel computing

    SciTech Connect (OSTI)

    Yam, C.G.; Armstrong, R.; Koszykowski, M.L. [Sandia National Labs., Livermore, CA (United States); Chen, J.Y. [California Univ., Berkeley, CA (United States); Bui-Pham, M.N. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01T23:59:59.000Z

    This report outlines the effort to model a time-dependent, 2- dimensional, turbulent, nonpremixed flame with full chemistry with the aid of parallel computing tools. In this study, the mixing process and the chemical reactions occurring in the flow field are described in terms of the single-point probability density function (PDF), while the turbulent viscosity is determined by the standard kappa-epsilon model. The initial problem solved is a H[sub 2]/Air flame whose chemistry is described by 28 elementary reactions involving 9 chemical species.

  19. Experiment-Based Model for the Chemical Interactions between Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to: navigation,EnergyOpen

  20. Development of Chemical Model to Predict the Interactions between

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas:DetroitOpen

  1. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information squares regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT

  2. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling

    E-Print Network [OSTI]

    Gitelson, Anatoly

    Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative for Sciences, 260 Panama Street, Stanford, CA 94305, USA d Center for Advanced Land Management Information regression We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT-5

  3. Evaluation of TVA`s model site and individual technology pollution prevention demonstration programs and their impact on the agrichemical industry

    SciTech Connect (OSTI)

    Simpson, G.S.

    1995-06-01T23:59:59.000Z

    The high volume of fertilizer and pesticides funneled through a relatively small number of distribution outlets has made these agribusiness sites potential sources of surface/groundwater contamination in watersheds surrounding the agrichemical facilities. The agrichemical industry came under increased pressures in the mid-1980s to implement environmentally sound management practices and to install containment structures around fertilizer and chemical storage/handling areas to prevent future contamination of existing sites or the movement of contaminants offsite. TVA`s long and successful history of technology transfer to the retail fertilizer industry, as well as the technical expertise of the Agency`s staff, made TVA ideally suited to handle the new environmental challenge. It was during this time period that TVA`s Model Site Demonstration Program (MSD) and Individual Technology Demonstration Program (ITD) were conceived. Since inception, the pollution prevention program and the technologies advanced by it have made a very positive impact on the US agrichemical industry, as well as on other TVA programs. This paper is an attempt to document these impacts, with primary focus being placed on the program`s impact on the agribusiness dealer who implements the pollution prevention technologies/practices recommended by TVA.

  4. A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data

    E-Print Network [OSTI]

    M. Molla; A. I. Diaz

    2005-01-18T23:59:59.000Z

    We present a generalization of the multiphase chemical evolution model applied to a wide set of theoretical galaxies with different masses and evolutionary rates. This generalized set of models has been computed using the so-called Universal Rotation Curve from Persic et al (1996) to calculate the radial mass distribution of 44 theoretical protogalaxies. This distribution is a fundamental input which, besides its own effect on the galaxy evolution, defines the characteristic collapse time-scale or gas infall rate onto the disc.We have adopted 10 sets of values, between 0 and 1, for the molecular cloud and star formation efficiencies, as corresponding to their probability nature, for each one of the radial distributions of total mass. Thus, we have constructed a bi-parametric grid of models, depending on those efficiency sets and on the rotation velocity, whose results are valid in principle for any spiral or irregular galaxy. The model results provide the time evolution of different regions of the disc and the halo along galactocentric distance, measured by the gas (atomic and molecular) and stellar masses, the star formation rate and chemical abundances of 14 elements, for a total of 440 models. This grid may be used to estimate the evolution of a given galaxy for which only present time information -- such as radial distributions of elemental abundances, gas densities and/or star formation, which are the usual observational constraints of chemical evolution models -- is available.

  5. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect (OSTI)

    Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

    2009-04-15T23:59:59.000Z

    Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

  6. Correlated random-chemical-potential model for the phase transitions of helium mixtures in porous media

    SciTech Connect (OSTI)

    Falicov, A.; Nihat Berker, A. (Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States))

    1995-01-16T23:59:59.000Z

    A lattice model is constructed for [sup 3]He-[sup 4]He mixtures in porous media, characterized by correlated random chemical-potential differences between isotopes. Sites with high chemical-potential differences form a random connected porous structure, similar to silica strands in aerogel. We find by Monte Carlo simulation that the bulk tricritical phase diagram is replaced: The [lambda] line extends to zero temperature, as had been theoretically predicted some time ago, and phase separation occurs within the superfluid phase. These findings and the behavior of the order parameter agree with recent experiments.

  7. Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

  8. On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry

    E-Print Network [OSTI]

    Victoria, University of

    On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

  9. Systems Modeling and Analysis Industrial Engineers are interested in optimizing the design and operation of complex systems

    E-Print Network [OSTI]

    Dyer, Bill

    Systems Modeling and Analysis Industrial Engineers are interested in optimizing the design and operation of complex systems composed of people and machines using information, materials and energy to produce goods and services. Analyzing such systems with information-driven models is an essential step

  10. Robust Constrained Model Predictive Control using Linear Matrix Inequalities

    E-Print Network [OSTI]

    Balakrishnan, Venkataramanan "Ragu"

    , such as those encountered in chemical process control in the petrochemical, pulp and paper industries, several process models as well as many performance criteria of significance to the process industries can

  11. Econometric model of the U.S. sheep and mohair industries for policy analysis 

    E-Print Network [OSTI]

    Ribera Landivar, Luis Alejandro

    2005-08-29T23:59:59.000Z

    The U.S. sheep industry has been declining in size for many years. Many factors have contributed to the decline of the sheep industry including declining consumption of lamb and mutton, the growth in manmade fiber use, ...

  12. Adapting to contradiction : competing models of organization in the United States organic foods industry

    E-Print Network [OSTI]

    Haedicke, Michael Anthony

    2008-01-01T23:59:59.000Z

    foods that many industry members felt were not compatible with organic agriculture, including ingredients made from genetically modified plants, irradiation

  13. Simulations of greenhouse trace gases using the Los Alamos chemical tracer model

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Morz, E. (Los Alamos National Lab., NM (United States)); Tie, X. (Scripps Institution of Oceanography, San Diego, CA (United States))

    1991-11-01T23:59:59.000Z

    Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth's radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

  14. Simulations of greenhouse trace gases using the Los Alamos chemical tracer model

    SciTech Connect (OSTI)

    Kao, C.Y.J.; Morz, E. [Los Alamos National Lab., NM (United States); Tie, X. [Scripps Institution of Oceanography, San Diego, CA (United States)

    1991-11-01T23:59:59.000Z

    Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth`s radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    solid waste from the chemical industry, some paints, solvents and waste sludge from water treatment (

  16. COSMOLOGICAL SIMULATIONS OF INTERGALACTIC MEDIUM EVOLUTION. I. TEST OF THE SUBGRID CHEMICAL ENRICHMENT MODEL

    SciTech Connect (OSTI)

    Côté, Benoit; Martel, Hugo; Drissen, Laurent [Département de physique, de Génie Physique et d'Optique, Université Laval, Québec, QC G1V 0A6 (Canada)

    2013-11-10T23:59:59.000Z

    We present a one-zone galactic chemical enrichment model that takes into account the contribution of stellar winds from massive stars under the effect of rotation, Type II supernovae, hypernovae, stellar winds from low- and intermediate-mass stars, and Type Ia supernovae. This enrichment model will be implemented in a galactic model designed to be used as a subgrid treatment for galaxy evolution and outflow generation in large-scale cosmological simulations, in order to study the evolution of the intergalactic medium. We test our enrichment prescription by comparing its predictions with the metallicity distribution function and the abundance patterns of 14 chemical elements observed in the Milky Way stars. To do so, we combine the effect of many stellar populations created from the star formation history of the Galaxy in the solar neighborhood. For each stellar population, we keep track of its specific mass, initial metallicity, and age. We follow the time evolution of every population in order to respect the time delay between the various stellar phases. Our model is able to reproduce the observed abundances of C, O, Na, Mg, Al, S, and Ca. For Si, Cr, Mn, Ni, Cu, and Zn, the fits are still reasonable, but improvements are needed. We marginally reproduce the nitrogen abundance in very low metallicity stars. Overall, our results are consistent with the predicted abundance ratios seen in previous studies of the enrichment history of the Milky Way. We have demonstrated that our semi-analytic one-zone model, which cannot deal with spatial information such as the metallicity gradient, can nevertheless successfully reproduce the global Galactic enrichment evolution obtained by more complex models, at a fraction of the computational cost. This model is therefore suitable for a subgrid treatment of chemical enrichment in large-scale cosmological simulations.

  17. A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 Framework to Cope with Organizational Reuse Maturity

    E-Print Network [OSTI]

    Mössenböck, Hanspeter

    A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 in industrial engineering for solution providers is more and more recognized as a key to economic success for reuse in industrial engineering. Based on an overview and the background of the GDES-Reuse improvement

  18. Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics

    SciTech Connect (OSTI)

    Andrae, J.C.G. [Department of Chemical Engineering and Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Shell Global Solutions, P.O. Box 1, Chester CH1 3SH (United Kingdom); Bjoernbom, P. [Department of Chemical Engineering and Technology, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Cracknell, R.F.; Kalghatgi, G.T. [Shell Global Solutions, P.O. Box 1, Chester CH1 3SH (United Kingdom)

    2007-04-15T23:59:59.000Z

    A detailed chemical kinetic model for the autoignition of toluene reference fuels (TRF) is presented. The toluene submechanism added to the Lawrence Livermore Primary Reference Fuel (PRF) mechanism was developed using recent shock tube autoignition delay time data under conditions relevant to HCCI combustion. For two-component fuels the model was validated against recent high-pressure shock tube autoignition delay time data for a mixture consisting of 35% n-heptane and 65% toluene by liquid volume. Important features of the autoignition of the mixture proved to be cross-acceleration effects, where hydroperoxy radicals produced during n-heptane oxidation dramatically increased the oxidation rate of toluene compared to the case when toluene alone was oxidized. Rate constants for the reaction of benzyl and hydroperoxyl radicals previously used in the modeling of the oxidation of toluene alone were untenably high for modeling of the mixture. To model both systems it was found necessary to use a lower rate and introduce an additional branching route in the reaction between benzyl radicals and O{sub 2}. Good agreement between experiments and predictions was found when the model was validated against shock tube autoignition delay data for gasoline surrogate fuels consisting of mixtures of 63-69% isooctane, 14-20% toluene, and 17% n-heptane by liquid volume. Cross reactions such as hydrogen abstractions between toluene and alkyl and alkylperoxy radicals and between the PRF were introduced for completion of chemical description. They were only of small importance for modeling autoignition delays from shock tube experiments, even at low temperatures. A single-zone engine model was used to evaluate how well the validated mechanism could capture autoignition behavior of toluene reference fuels in a homogeneous charge compression ignition (HCCI) engine. The model could qualitatively predict the experiments, except in the case with boosted intake pressure, where the initial temperature had to be increased significantly in order to predict the point of autoignition. (author)

  19. Proceedings of the Combustion Institute, Volume 29, 2002/pp. 711718 MODELING OF CHEMICAL AND MIXING EFFECTS ON METHANE

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    in which reaction rates are determined based on interaction between chemical reaction rates and mixing711 Proceedings of the Combustion Institute, Volume 29, 2002/pp. 711­718 MODELING OF CHEMICAL AND MIXING EFFECTS ON METHANE AUTOIGNITION UNDER DIRECT-INJECTION, STRATIFIED CHARGED CONDITIONS S. HONG,1 M

  20. Nuclear lattice model and the electronic configuration of the chemical elements

    E-Print Network [OSTI]

    Jozsef Garai

    2015-07-07T23:59:59.000Z

    The fundamental organizing principle resulting in the periodic table is the nuclear charge. Arranging the chemical elements in an increasing atomic number order, a symmetry pattern known as the Periodic Table is detectable. The correlation between nuclear charge and the Periodic System of the Chemical Elements (PSCE) indicates that the symmetry emerges from the nucleus. Nuclear symmetry can only exist if the relative positions of the nucleons in the nucleus are invariant. Pauli exclusion principle can also be interpreted as the nucleons should occupy a lattice position. Based on symmetry and other indicatives face centered cubic arrangement have been proposed for the nuclear lattice. A lattice model, representing the protons and the neutrons by equal spheres and arranging them alternately in a face centered cubic structure forming a double tetrahedron, is able to reproduce all of the properties of the nucleus including the quantum numbers and the periodicity of the elements. Based on the geometry of the nuclear structure it is shown that when a new 'layer' of the nuclear structure starts then the distance between the first proton in the new layer and the charge center of the nucleus is smaller than the distance of the proton, which completed the preceding 'layer'. Thus a new valence electron shell should start to develop when the nuclear structure is expanded. The expansion of the double tetrahedron FCC nuclear lattice model offers a feasible physical explanation how the nucleus affects the electronic configuration of the chemical elements depicted by the periodic table.

  1. An Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial GasFired Furnace \\Lambda

    E-Print Network [OSTI]

    for the convective, viscous, and radiative heat transport terms in the mixed cells, while a finite element [20] which accounts for species diffusion, convective and radiative heat transfer, viscous transportAn Embedded Boundary Method for the Modeling of Unsteady Combustion in an Industrial Gas

  2. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  3. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect (OSTI)

    Garrod, Robin T., E-mail: rgarrod@astro.cornell.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 (United States)

    2013-03-01T23:59:59.000Z

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  4. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect (OSTI)

    SCHWARTZ,S.E.; MCGRAW,R.; BENKOVITZ,C.M.; WRIGHT,D.L.

    2001-04-01T23:59:59.000Z

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  5. Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis

    E-Print Network [OSTI]

    Chi, K C; Reiner, David; Nuttall, William J

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y DYNAMICS OF THE UK NATURAL GAS INDUSTRY: SYSTEM DYNAMICS MODELLING AND LONG-TERM ENERGY POLICY ANALYSIS EPRG Working Paper 0913... Cambridge Working Paper in Economics 0922 Kong Chyong Chi , David M. Reiner and William J. Nuttall The UK offshore natural gas and oil industry has a long and successful history and has been said to represent the pride of UK...

  6. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect (OSTI)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01T23:59:59.000Z

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  7. Research utilization in the building industry: decision model and preliminary assessment

    SciTech Connect (OSTI)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

    1985-10-01T23:59:59.000Z

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

  8. CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model.

    SciTech Connect (OSTI)

    Fletcher, Thomas H. (Brigham Young University, Provo, UT); Thompson, Kyle Richard; Erickson, Kenneth L.; Dowding, Kevin J.; Clayton, Daniel (Brigham Young University, Provo, UT); Chu, Tze Yao; Hobbs, Michael L.; Borek, Theodore Thaddeus III

    2003-07-01T23:59:59.000Z

    A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the experiments where the decomposition gases were vented sufficiently. The CPUF model results were not as good for the partially confined radiant heat experiments where the vent area was regulated to maintain pressure. Liquefaction and flow effects, which are not considered in the CPUF model, become important when the decomposition gases are confined.

  9. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect (OSTI)

    Fox, K.; Marra, J.

    2014-08-14T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

  10. Sponsors of CIEEDAC: Natural Resources Canada, Environment Canada, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Foundry Association, Canadian Gas Association, Canadian Petroleum

    E-Print Network [OSTI]

    on energy in the industrial sector or publications by NRCan that reflect energy consumption in various des ressources naturelles, Québec. Ministry of Energy Mines and Petroleum Resource, BC. CIEEDAC An Inventory of Industrial Energy and Emissions Databases in Canada, 2007 Prepared for Natural Resources Canada

  11. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect (OSTI)

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07T23:59:59.000Z

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  12. Using a total landed cost model to foster global logistics strategy in the electronics industry

    E-Print Network [OSTI]

    Jearasatit, Apichart

    2010-01-01T23:59:59.000Z

    Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

  13. Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques 

    E-Print Network [OSTI]

    Viar, W. L.

    1984-01-01T23:59:59.000Z

    Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed...

  14. Adapting to contradiction : competing models of organization in the United States organic foods industry

    E-Print Network [OSTI]

    Haedicke, Michael Anthony

    2008-01-01T23:59:59.000Z

    European market to genetically modified foods. She arguesfoods that many industry members felt were not compatible with organic agriculture, including ingredients made from genetically modifiedgenetically modified crops. Below, I discuss the distinction that co-op leaders make between food-

  15. Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques

    E-Print Network [OSTI]

    Viar, W. L.

    1984-01-01T23:59:59.000Z

    Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed...

  16. Feedback and metal enrichment in cosmological SPH simulations I. A model for chemical enrichment

    E-Print Network [OSTI]

    C. Scannapieco; P. B. Tissera; S. D. M. White; V. Springel

    2006-07-10T23:59:59.000Z

    We discuss a model for treating chemical enrichment by SNII and SNIa explosions in simulations of cosmological structure formation. Our model includes metal-dependent radiative cooling and star formation in dense collapsed gas clumps. Metals are returned into the diffuse interstellar medium by star particles using a local SPH smoothing kernel. A variety of chemical abundance patterns in enriched gas arise in our treatment owing to the different yields and lifetimes of SNII and SNIa progenitor stars. In the case of SNII chemical production, we adopt metal-dependent yields. Because of the sensitive dependence of cooling rates on metallicity, enrichment of galactic haloes with metals can in principle significantly alter subsequent gas infall and the build up of the stellar components. Indeed, in simulations of isolated galaxies we find that a consistent treatment of metal-dependent cooling produces 25% more stars outside the central region than simulations with a primordial cooling function. In the highly-enriched central regions, the evolution of baryons is however not affected by metal cooling, because here the gas is always dense enough to cool. A similar situation is found in cosmological simulations because we include no strong feedback processes which could spread metals over large distances and mix them into unenriched diffuse gas. We demonstrate this explicitly with test simulations which adopt super-solar cooling functions leading to large changes both in the stellar mass and in the metal distributions. We also find that the impact of metallicity on the star formation histories of galaxies may depend on their particular evolutionary history. Our results hence emphasise the importance of feedback processes for interpreting the cosmic metal enrichment.

  17. Future scenarios for green chemical supply chains

    E-Print Network [OSTI]

    Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

  18. Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model

    SciTech Connect (OSTI)

    Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); ESICB, Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520 (Japan); Ishikawa, Atsushi [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); ESICB, Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520 (Japan)

    2014-11-07T23:59:59.000Z

    We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor–liquid equilibration of water and ethanol, and dissolution of gaseous CO{sub 2} in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.

  19. GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 13, PAGES 2345-2348, JULY 1, 1998 High Rayleigh number thermo-chemical models

    E-Print Network [OSTI]

    Manga, Michael

    thermo-chemical models of a dense boundary layer in D Nancy L. Montague, Louise H. Kellogg Department of thermo-chemical convection in 2-D with a Rayleigh number of 107 , we investigate the dy- namic thermal models). Hence a thermo-chemical boundary layer at the CMB may account for the temperature

  20. The application of a chemical equilibrium model, SOLTEQ, to predict the chemical speciations in stabilized/solidified waste forms

    E-Print Network [OSTI]

    Park, Joo-Yang

    1994-01-01T23:59:59.000Z

    19 22 23 28 28 31 33 36 37 37 39 39 45 69 84 APPENDIX 1 APPENDIX 2 VITA Page 93 105 126 vln LIST OF TABLES TABLE Page I Typical Chemical Composition of Ordinary Portland Cement (10) . . . . . . . . . . 7 2 Values of Empirical... activity coefficients in the high ionic strength solution occurring in the S/S waste forms and can describe the variable stoichiometry of calcium silicate hydrate (CSH). CSH is the primary hydration product of binder such as Portland cement. For SOLTEQ...

  1. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  2. Modeling precipitation from concentrated solutions with the EQ3/6 chemical speciation codes

    SciTech Connect (OSTI)

    Brown, L.F.; Ebinger, M.H.

    1995-01-13T23:59:59.000Z

    One of the more important uncertainties of using chemical speciation codes to study dissolution and precipitation of compounds is the results of modeling which depends on the particular thermodynamic database being used. The authors goal is to investigate the effects of different thermodynamic databases on modeling precipitation from concentrated solutions. They used the EQ3/6 codes and the supplied databases to model precipitation in this paper. One aspect of this goal is to compare predictions of precipitation from ideal solutions to similar predictions from nonideal solutions. The largest thermodynamic databases available for use by EQ3/6 assume that solutions behave ideally. However, two databases exist that allow modeling nonideal solutions. The two databases are much less extensive than the ideal solution data, and they investigated the comparability of modeling ideal solutions and nonideal solutions. They defined four fundamental problems to test the EQ3/6 codes in concentrated solutions. Two problems precipitate Ca(OH){sub 2} from solutions concentrated in Ca{sup ++}. One problem tests the precipitation of Ca(OH){sub 2} from high ionic strength (high concentration) solutions that are low in the concentrations of precipitating species (Ca{sup ++} in this case). The fourth problem evaporates the supernatant of the problem with low concentrations of precipitating species. The specific problems are discussed.

  3. Dispersion model for elevated dense-gas-jet chemical releases (DOMS/DEGADIS) (for microcomputers). Software

    SciTech Connect (OSTI)

    Guinnup, D.

    1988-04-01T23:59:59.000Z

    The computer program, Ooms/DEGADIS, found on these diskettes and described in the EPA report entitled, A Dispersion Model for Elevated Dense Gas Jet Chemical Releases - Volumes 1 and 2 (EPA 450/4-88-006a and b), is a VAX-operational program designed to simulate the dispersion of heavier-than-air gases which are emitted into the atmosphere with significant velocity through elevated ports. The program incorporates the sequential execution of two models. The first one (Ooms) calculates the trajectory and dispersion of the gas plume as it falls to the ground. The second (DEGADIS) calculates the downwind dispersion of the plume after it touches the ground. Users are referred to the Preface in the User's Guide for specific instructions for program implementation...Software Description: The program is written in FORTRAN with specific intent for compilation and execution on a Digital Equipment Corporation VAX computer. Implementation of the model on any other computer system may be attempted at the risk of the user. To facilitate dissemination of the model, it is being provided on two PC-compatible diskettes. The model should be uploaded via modem from a PC terminal to host VAX computer, and several files must then be renamed prior to compilation and execution.

  4. Simulating the thermo-chemical magmatic and tectonic evolution of1 Venus' mantle and lithosphere 1. two-dimensional models2

    E-Print Network [OSTI]

    Tackley, Paul J.

    1 Simulating the thermo-chemical magmatic and tectonic evolution of1 Venus' mantle and lithosphere Numerical convection models of the thermo-chemical evolution of Venus are compared to present-8 day

  5. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model

    SciTech Connect (OSTI)

    Andrae, J.C.G. [Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Brinck, T. [Department of Physical Chemistry, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Kalghatgi, G.T. [Shell Global Solutions (UK), P.O. Box 1, Chester CH1 3SH (United Kingdom)

    2008-12-15T23:59:59.000Z

    A semidetailed mechanism (137 species and 633 reactions) and new experiments in a homogeneous charge compression ignition (HCCI) engine on the autoignition of toluene reference fuels are presented. Skeletal mechanisms for isooctane and n-heptane were added to a detailed toluene submechanism. The model shows generally good agreement with ignition delay times measured in a shock tube and a rapid compression machine and is sensitive to changes in temperature, pressure, and mixture strength. The addition of reactions involving the formation and destruction of benzylperoxide radical was crucial to modeling toluene shock tube data. Laminar burning velocities for benzene and toluene were well predicted by the model after some revision of the high-temperature chemistry. Moreover, laminar burning velocities of a real gasoline at 353 and 500 K could be predicted by the model using a toluene reference fuel as a surrogate. The model also captures the experimentally observed differences in combustion phasing of toluene/n-heptane mixtures, compared to a primary reference fuel of the same research octane number, in HCCI engines as the intake pressure and temperature are changed. For high intake pressures and low intake temperatures, a sensitivity analysis at the moment of maximum heat release rate shows that the consumption of phenoxy radicals is rate-limiting when a toluene/n-heptane fuel is used, which makes this fuel more resistant to autoignition than the primary reference fuel. Typical CPU times encountered in zero-dimensional calculations were on the order of seconds and minutes in laminar flame speed calculations. Cross reactions between benzylperoxy radicals and n-heptane improved the model predictions of shock tube experiments for {phi}=1.0 and temperatures lower than 800 K for an n-heptane/toluene fuel mixture, but cross reactions had no influence on HCCI simulations. (author)

  6. Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling

    SciTech Connect (OSTI)

    Eric Wachsman; Keith L. Duncan

    2006-09-30T23:59:59.000Z

    This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

  7. Two-Component Galactic Bulge Probed with Renewed Galactic Chemical Evolution Model

    E-Print Network [OSTI]

    Tsujimoto, Takuji

    2012-01-01T23:59:59.000Z

    Results of recent observations of the Galactic bulge demand that we discard a simple picture of its formation, suggesting the presence of two stellar populations represented by two peaks of stellar metallicity distribution (MDF) in the bulge. To assess this issue, we construct Galactic chemical evolution models that have been updated in two respects: First, the delay time distribution (DTD) of type Ia supernovae (SNe Ia) recently revealed by extensive SN Ia surveys is incorporated into the models. Second, the nucleosynthesis clock, the s-processing in asymptotic giant branch (AGB) stars, is carefully considered in this study. This novel model first shows that the Galaxy feature tagged by the key elements, Mg, Fe, Ba for the bulge as well as thin and thick disks is compatible with a short-delay SN Ia. We present a successful modeling of a two-component bulge including the MDF and the evolutions of [Mg/Fe] and [Ba/Mg], and reveal its origin as follows. A metal-poor component (~-0.5) is formed with a relatively ...

  8. Survey Questionnaire on Environmental Management Practices: Summary of Results by Industry and practices

    E-Print Network [OSTI]

    Delmas, Magali A; Toffel, Michael W.

    2008-01-01T23:59:59.000Z

    the majority of the automotive industry respondents haverespondents in the automotive industry have successfullyElectrical Chemicals Automotive Machinery Industry Figure 3:

  9. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect (OSTI)

    Moller, Nancy; Weare J. H.

    2008-05-29T23:59:59.000Z

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

  10. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    profilefull.pdf More Documents & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Chemicals:...

  11. Beyond the pseudo-time-dependent approach: chemical models of dense core precursors

    E-Print Network [OSTI]

    Hassel, G E; Bergin, E A

    2010-01-01T23:59:59.000Z

    Context: Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-sho...

  12. Chemical Enrichment at High Redshifts: Understanding the Nature of Damped Ly$?$ Systems in Hierarchical Models

    E-Print Network [OSTI]

    P. B. Tissera; D. G. Lambas M. B. Mosconi; S. A. Cora

    2001-04-18T23:59:59.000Z

    We use cosmological hydrodynamical simulations including star formation and metal enrichment to study the evolution of the chemical properties of galaxy-like objects at high redshift in the range $0.25Hydrogen column densities with abundances and scatter comparable to those observed in damped Lyman-$\\alpha$ systems (DLAs).The unweighted mean of abundance ratios and least square linear regressions through the simulated DLAs yield intrinsic metallicity evolution for the [Zn/H] and [Fe/H], consistent with results obtained from similar analysis of available observations. Our model statistically reproduces the mild evolution detected in the metallicity of the neutral hydrogen content of the Universe, given by mass-weighted means,if observational constraints are considered (as suggested by Boiss\\'ee et al. 1998). For the $\\alpha$-elements in the simulated DLAs, we find neither enhancement nor dependence on metallicity. Our results support the hypotheses that DLAs trace a variety of galactic objects with different formation histories and that both SNI and SNII are contributing to the chemical enrichment of the gas component at least since $z \\approx 2$. This study indicates that DLAs could be understood as the building blocks that merged to form today normal galaxies within a hierarchical clustering scenario.

  13. MODELING THE ATOMIC-TO-MOLECULAR TRANSITION AND CHEMICAL DISTRIBUTIONS OF TURBULENT STAR-FORMING CLOUDS

    SciTech Connect (OSTI)

    Offner, Stella S. R. [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Bisbas, Thomas G.; Viti, Serena [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6B (United Kingdom); Bell, Tom A., E-mail: stella.offner@yale.edu [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, E-28850 Madrid (Spain)

    2013-06-10T23:59:59.000Z

    We use 3D-PDR, a three-dimensional astrochemistry code for modeling photodissociation regions (PDRs), to post-process hydrodynamic simulations of turbulent, star-forming clouds. We focus on the transition from atomic to molecular gas, with specific attention to the formation and distribution of H, C{sup +}, C, H{sub 2}, and CO. First, we demonstrate that the details of the cloud chemistry and our conclusions are insensitive to the simulation spatial resolution, to the resolution at the cloud edge, and to the ray angular resolution. We then investigate the effect of geometry and simulation parameters on chemical abundances and find weak dependence on cloud morphology as dictated by gravity and turbulent Mach number. For a uniform external radiation field, we find similar distributions to those derived using a one-dimensional PDR code. However, we demonstrate that a three-dimensional treatment is necessary for a spatially varying external field, and we caution against using one-dimensional treatments for non-symmetric problems. We compare our results with the work of Glover et al., who self-consistently followed the time evolution of molecule formation in hydrodynamic simulations using a reduced chemical network. In general, we find good agreement with this in situ approach for C and CO abundances. However, the temperature and H{sub 2} abundances are discrepant in the boundary regions (A{sub v} {<=} 5), which is due to the different number of rays used by the two approaches.

  14. Density functional investigation of intermolecular effects on {sup 13}C NMR chemical-shielding tensors modeled with molecular clusters

    SciTech Connect (OSTI)

    Holmes, Sean T.; Dybowski, Cecil [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Iuliucci, Robbie J. [Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301 (United States); Mueller, Karl T. [Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-10-28T23:59:59.000Z

    A quantum-chemical method for modeling solid-state nuclear magnetic resonance chemical-shift tensors by calculations on large symmetry-adapted clusters of molecules is demonstrated. Four hundred sixty five principal components of the {sup 13}C chemical-shielding tensors of 24 organic materials are analyzed. The comparison of calculations on isolated molecules with molecules in clusters demonstrates that intermolecular effects can be successfully modeled using a cluster that represents a local portion of the lattice structure, without the need to use periodic-boundary conditions (PBCs). The accuracy of calculations which model the solid state using a cluster rivals the accuracy of calculations which model the solid state using PBCs, provided the cluster preserves the symmetry properties of the crystalline space group. The size and symmetry conditions that the model cluster must satisfy to obtain significant agreement with experimental chemical-shift values are discussed. The symmetry constraints described in the paper provide a systematic approach for incorporating intermolecular effects into chemical-shielding calculations performed at a level of theory that is more advanced than the generalized gradient approximation. Specifically, NMR parameters are calculated using the hybrid exchange-correlation functional B3PW91, which is not available in periodic codes. Calculations on structures of four molecules refined with density plane waves yield chemical-shielding values that are essentially in agreement with calculations on clusters where only the hydrogen sites are optimized and are used to provide insight into the inherent sensitivity of chemical shielding to lattice structure, including the role of rovibrational effects.

  15. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    energy efficiency in the petrochemical industry,” Chapter 3steel, petroleum and petrochemical, chemical, non-ferrousintensive process in the petrochemical industry with an

  16. A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion

    SciTech Connect (OSTI)

    Aceves, S M; Flowers, D L; Martinez-Frias, J; Smith, J R; Westbrook, C; Pitz, W; Dibble, R; Wright, J F; Akinyemi, W C; Hessel, R P

    2000-11-29T23:59:59.000Z

    We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.

  17. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30T23:59:59.000Z

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.

  18. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    SciTech Connect (OSTI)

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)

    2011-01-15T23:59:59.000Z

    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

  19. Econometric model of the U.S. sheep and mohair industries for policy analysis

    E-Print Network [OSTI]

    Ribera Landivar, Luis Alejandro

    2005-08-29T23:59:59.000Z

    . The 2002 Farm Bill included a marketing loan program for wool. The loan rates are set to $0.40 per pound for un-graded wool, $1.00 per pound for graded wool. In recent years exchange rate changes have had a large impact on the industry affecting lamb...

  20. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    for energy policy assessments compared to those which more properly reflect a trade-off between new capital investment and end-use energy savings – as both capital and energy are used to satisfy a specific industrial service demand. The paper builds on a...

  1. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals chemicals result from the direct or indirect actions of humans. Build- ing materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  2. Appendix H. Chemicals Appendix H. Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals chemicals result from the direct or indirect actions of humans. Build- ing materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  3. Implications and mitigation of model mismatch and covariance contamination for hyperspectral chemical agent detection

    E-Print Network [OSTI]

    Niu, Sidi

    Most chemical gas detection algorithms for long-wave infrared hyperspectral images assume a gas with a perfectly known spectral signature. In practice, the chemical signature is either imperfectly measured and/or exhibits ...

  4. The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

  5. 11 2011 Society of Chemical Industry and John Wiley & Sons, Ltd | Greenhouse Gas Sci Technol. 1:1120 (2011); DOI: 10.1002/ghg3 Perspective

    E-Print Network [OSTI]

    Zhou, Quanlin

    2011-01-01T23:59:59.000Z

    Online Library (wileyonlinelibrary.com). DOI: 10.1002/ghg3.001 On scale and magnitude of pressure build-up, such as oil produc- tion. Large-scale pressure build-up in response to the injection may limit the dynamic of pressure build-up induced by industrial-scale CO2 storage projects is presented. Also dis- cussed

  6. The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and

    E-Print Network [OSTI]

    Liu, Y. A.

    Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

  7. Industrial Conflict, Mass Demonstrations, and Economic and Political Change in Postwar France: An Econometric Model

    E-Print Network [OSTI]

    Borrel, Monique J

    2004-01-01T23:59:59.000Z

    Business Cycle: An Econometric Analysis. Oxford, Blackwell,in Postwar France: An Econometric Model Monique Borrel I.to political vagaries. The econometric model presented here

  8. Industrial Conflict, Mass Demonstrations, and Economic and Political Change in Postwar France: An Econometric Model

    E-Print Network [OSTI]

    Borrel, Monique J

    2002-01-01T23:59:59.000Z

    Business Cycle: An Econometric Analysis. Oxford, Blackwell,in Postwar France: An Econometric Model Monique Borrel I.to political vagaries. The econometric model presented here

  9. TWO-COMPONENT GALACTIC BULGE PROBED WITH RENEWED GALACTIC CHEMICAL EVOLUTION MODEL

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Bekki, Kenji, E-mail: taku.tsujimoto@nao.ac.jp [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009 (Australia)

    2012-03-10T23:59:59.000Z

    Results of recent observations of the Galactic bulge demand that we discard a simple picture of its formation, suggesting the presence of two stellar populations represented by two peaks of stellar metallicity distribution (MDF) in the bulge. To assess this issue, we construct Galactic chemical evolution models that have been updated in two respects: first, the delay time distribution of Type Ia supernovae (SNe Ia) recently revealed by extensive SN Ia surveys is incorporated into the models. Second, the nucleosynthesis clock, the s-processing in asymptotic giant branch stars, is carefully considered in this study. This novel model first shows that the Galaxy feature tagged by the key elements, Mg, Fe, and Ba, for the bulge as well as thin and thick disks is compatible with a short-delay SN Ia. We present a successful modeling of a two-component bulge including the MDF and the evolutions of [Mg/Fe] and [Ba/Mg], and reveal its origin as follows. A metal-poor component (([Fe/H]) {approx} -0.5) is formed with a relatively short timescale of {approx}1 Gyr. These properties are identical to the thick disk's characteristics in the solar vicinity. Subsequently from its remaining gas mixed with a gas flow from the disk outside the bulge, a metal-rich component (([Fe/H]) {approx} +0.3) is formed with a longer timescale ({approx}4 Gyr) together with a top-heavy initial mass function that might be identified with the thin disk component within the bulge.

  10. Energy Systems Modeling Symposium Co-Sponsored by

    E-Print Network [OSTI]

    Knowlton School of Architecture, OSU Natural Gas Infrastructure Modeling: From Local Distribution to Transboundary Networks Bhavik Bakshi Chemical and Biomolecular Engineering, OSU The Role of Natural Capital Industrial and Systems Engineering, OSU Integrating Energy Modeling with the Environment, Economy & Society

  11. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect (OSTI)

    Chipman, V D

    2011-09-20T23:59:59.000Z

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  12. Kinetics Study of Solid Ammonia Borane Hydrogen Release – Modeling and Experimental Validation for Chemical Hydrogen Storage

    SciTech Connect (OSTI)

    Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

    2014-02-24T23:59:59.000Z

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  13. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15T23:59:59.000Z

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  14. The application of a chemical equilibrium model, SOLTEQ, to predict the chemical speciations in stabilized/solidified waste forms 

    E-Print Network [OSTI]

    Park, Joo-Yang

    1994-01-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . . ?. .. , . . . . . . . . . . . . 55 10 Prediction of porewater pH . 11 Effects of pH on predictions of various species . . . 12 Prediction of Al concentration 13 Prediction of Fe concentration 14 Prediction of SO4 concentration . 15 Prediction of Ca concentration . 16...A hydration (16). However, Reardon (9) indicated that equilibrium models using current K, ?values of these minerals tend to predict the thermodynamic stability of ettringite over monosulfate. Because the hydration of C4AF is analogous to that of CsA, C4AF...

  15. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01T23:59:59.000Z

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  16. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    E-Print Network [OSTI]

    Galitsky, Christina

    2009-01-01T23:59:59.000Z

    solid waste from the chemical industry, some paints, solvents and waste sludge from water treatment.

  17. Mathematical modeling of Fischer-Tropsch synthesis in an industrial slurry bubble column - article no. A 23

    SciTech Connect (OSTI)

    Nasim Hooshyar; Shohreh Fatemi; Mohammad Rahmani [University of Tehran (Iran)

    2009-07-01T23:59:59.000Z

    The increase in society's need for fuels and decrease in crude oil resources are important reasons to make more interest for both academic and industry in converting gas to liquids. Fischer-Tropsch synthesis is one of the most attractive methods of Gas-to-Liquids (GTL) processes and the reactor in which, this reaction occurs, is the heart of this process. This work deals with modeling of a commercial size slurry bubble column reactor by two different models, i.e. single bubble class model (SBCM) and double bubble class model (DBCM). The reactor is assumed to work in a churn-turbulent flow regime and the reaction kinetic is a Langmuir-Hinshelwood type. Cobalt-based catalyst is used for this study as it plays an important role in preparing heavy cuts and the higher yield of the liquid products. Parameter sensitivity analysis was carried out for different conditions such as catalyst concentration, superficial gas velocity, H{sub 2} over CO ratio, and column diameter. The results of the SBCM and DBCM revealed that there is no significant difference between single and double bubble class models in terms of temperature, concentration and conversion profiles in the reactor, so the simpler SBCM with less number of model parameters can be a good and reliable model of choice for analyzing the slurry bubble column reactors.

  18. Model-Based Control of Nonlinear Systems Subject to Sensor Data Losses: A Chemical Process Case Study

    E-Print Network [OSTI]

    Sontag, Eduardo

    Model-Based Control of Nonlinear Systems Subject to Sensor Data Losses: A Chemical Process Case, Los Angeles, CA 90095-1592, USA, davidmps@ucla.edu, pdc@seas.ucla.edu. Controller Process x Data feedback control of nonlinear uncertain systems subject to sensor data losses. We compare three different

  19. A Hybrid Model Based and Statistical Fault Diagnosis System for Industrial Process

    E-Print Network [OSTI]

    Lin, Chen-Han

    2014-11-21T23:59:59.000Z

    This thesis presents a hybrid model based and statistical fault diagnosis system, which applied on the nonlinear three-tank model. The purpose of fault diagnosis is generating and analyzing the residual to find out the fault occurrence. This fault...

  20. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  1. A BRIEF HISTORY OF INDUSTRIAL CATALYSIS

    E-Print Network [OSTI]

    Heinemann, Heinz

    2013-01-01T23:59:59.000Z

    greater in chemical and petrochemical applications than inMonomers Olefin Petrochemicals Bimetallic reformingsales and values; for the Petrochemical Industry (Table B) X

  2. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Research & Development Roadmap: Next-Generation Appliances Cooling, Heating, and Power for...

  3. Modelling of two phase flow and application in industries CR/ARH | 20/12/2007 | Robert Bosch GmbH 2007. All rights reserved, also regarding any disposal, exploitation, reproduction, editing,

    E-Print Network [OSTI]

    Helluy, Philippe

    for industrial property rights. Modelling of cavitating flow Control volume liquid Steam and air bubbles Volume1 Modelling of two phase flow and application in industries CR/ARH | 20/12/2007 | © Robert Bosch, distribution, as well as in the event of applications for industrial property rights. Dr. Uwe Iben Robert Bosch

  4. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    SciTech Connect (OSTI)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01T23:59:59.000Z

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  5. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, ERB 1016B, Madison, WI 53706 (United States)

    2008-12-15T23:59:59.000Z

    A reduced chemical kinetic mechanism for the oxidation of primary reference fuel (PRF) has been developed and applied to model internal combustion engines. Starting from an existing reduced reaction mechanism for n-heptane oxidation, a new reduced n-heptane mechanism was generated by including an additional five species and their relevant reactions, by updating the reaction rate constants of several reactions pertaining to oxidation of carbon monoxide and hydrogen, and by optimizing reaction rate constants of selected reactions. Using a similar approach, a reduced mechanism for iso-octane oxidation was built and combined with the n-heptane mechanism to form a PRF mechanism. The final version of the PRF mechanism consists of 41 species and 130 reactions. Validation of the present PRF mechanism was performed with measurements from shock tube tests, and HCCI and direct injection engine experiments available in the literature. The results show that the present PRF mechanism gives reliable performance for combustion predictions, as well as computational efficiency improvements for multidimensional CFD simulations. (author)

  6. Chemical Reaction Mechanisms for Modeling the Fluorocarbon Plasma Etch of Silicon Oxide and Related Materials

    SciTech Connect (OSTI)

    HO,PAULINE; JOHANNES,JUSTINE E.; BUSS,RICHARD J.; MEEKS,ELLEN

    2001-05-01T23:59:59.000Z

    As part of a project with SEMATECH, detailed chemical reaction mechanisms have been developed that describe the gas-phase and surface chemistry occurring during the fluorocarbon plasma etching of silicon dioxide and related materials. The fluorocarbons examined are C{sub 2}F{sub 6}, CHF{sub 3} and C{sub 4}F{sub 8}, while the materials studied are silicon dioxide, silicon, photoresist, and silica-based low-k dielectrics. These systems were examined at different levels, ranging from in-depth treatment of C{sub 2}F{sub 6} plasma etch of oxide, to a fairly cursory examination of C{sub 4}F{sub 8} etch of the low-k dielectric. Simulations using these reaction mechanisms and AURORA, a zero-dimensional model, compare favorably with etch rates measured in three different experimental reactors, plus extensive diagnostic absolute density measurements of electron and negative ions, relative density measurements of CF, CF{sub 2}, SiF and SiF{sub 2} radicals, ion current densities, and mass spectrometric measurements of relative ion densities.

  7. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    SciTech Connect (OSTI)

    Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

    2009-10-01T23:59:59.000Z

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

  8. Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical transport model

    E-Print Network [OSTI]

    Liu, Hongyu

    Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical. (2006), Radiative effect of clouds on tropospheric chemistry in a global three-dimensional chemical frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical

  9. Comparing the Effects of Mutualism and Competition on Industrial Districts

    E-Print Network [OSTI]

    Hoyle, Rebecca B.

    stations. The diversity of industries situated in the region include food processing industries, oil refining, chemical and bio-chemical produc- tion facilities, as well as heavy industrial facilitiesComparing the Effects of Mutualism and Competition on Industrial Districts Christopher J.K. Knighta

  10. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01T23:59:59.000Z

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  11. TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere

    E-Print Network [OSTI]

    Patra, P. K.

    A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

  12. THERMODYNAMIC MODELING AND EXPERIMENTAL INVESTIGATION OF BRAZED JOINTS USED IN AEROSPACE INDUSTRY

    E-Print Network [OSTI]

    Medraj, Mamoun

    of these deleterious phases is transient liquid phase bonding (TLP), also known as diffusion brazing. The diffusion and experimental investigations. It was observed that the boron diffusion model and migrating solid were used as base metals; however, silicon diffusion model was more accurate for stainless steel base

  13. From International Computer Performance and Dependability Symposium, Erlangen, Germany, April 1995, pp.285 294 MODELING RECYCLE: A CASE STUDY IN THE INDUSTRIAL USE OF

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    85721 Center for Reliable and High-Performance Computing Coordinated Science Laboratory UniversityFrom International Computer Performance and Dependability Symposium, Erlangen, Germany, April 1995, pp.285 294 MODELING RECYCLE: A CASE STUDY IN THE INDUSTRIAL USE OF MEASUREMENT AND MODELING Luai M

  14. Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19

    SciTech Connect (OSTI)

    Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song [Southeast University (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2009-07-01T23:59:59.000Z

    To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

  15. CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers

    E-Print Network [OSTI]

    Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

    the available options and appropriate strategy is to properly understand the customers’ thermal and electric energy needs, and the existing Combined Heat and Power (CHP) system. This paper outlines an approach for developing such models at low cost, and using...

  16. Industry Motivated Advancements of Current Combustion Instability Model: The Conversion of

    E-Print Network [OSTI]

    Flandro, Gary A.

    INSTABILITY CHARACTERISTICS IN GAS TURBINES ...................- 5 - 1.5. COMBUSTION INSTABILITYIndustry Motivated Advancements of Current Combustion Instability Model: The Conversion of Volume to thank Dr. Flandro. His eternal knowledge of Combustion Instability has resonated in this work and his

  17. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  18. Appendix G: Chemicals Appendix G: Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  19. Appendix H: Chemicals Appendix H: Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    actions of humans. Building materials used for the construction of homes may contain chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  20. Appendix B: Chemicals Appendix B: Chemicals B-3

    E-Print Network [OSTI]

    Pennycook, Steve

    such as pharmaceuticals, building materials, housewares, pesticides, and industrial chemicals. Through the use materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people

  1. Physical understanding and modeling of chemical mechanical planarization in dielectric materials

    E-Print Network [OSTI]

    Xie, Xiaolin, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Chemical mechanical planarization (CMP) has become the enabling planarization technique of choice for current and emerging silicon integrated circuit (IC) fabrication processes. This work studies CMP in dielectric materials ...

  2. Development of a Fast and Detailed Model of Urban-Scale Chemical and Physical Processing

    E-Print Network [OSTI]

    Prinn, Ronald G.

    A reduced form metamodel has been produced to simulate the effects of physical, chemical, and meteorological processing of highly reactive trace species in hypothetical urban areas, which is capable of efficiently simulating ...

  3. Chemical modeling of arsenic(III, V) and selenium(IV, VI) adsorption by soils surrounding ash disposal facilities

    SciTech Connect (OSTI)

    Goldberg, S.; Hyun, S.; Lee, L.S. [USDA, Riverside, CA (United States). US Salinity Laboratory

    2008-11-15T23:59:59.000Z

    Leachate derived from coal ash disposal facilities is a potential anthropogenic source of As and Se to the environment. To establish a practical framework for predicting attenuation and transport of As and Se in ash leachates, the adsorption of As(III), As(V), Se(IV), and Se(VI) had been characterized in prior studies for 18 soils obtained downgradient from ash landfill sites and representing a wide range of soil properties. The constant capacitance model was applied for the first time to describe As(III), As(V), Se(IV), and Se(VI) adsorption on soils as a function of equilibrium solution As(III), As(V), Se(IV), and Se(VI) concentrations. Prior applications of the model had been restricted to describing Se(IV) and As(V) adsorption by soils as a function of solution pH. The constant capacitance model was applied for the first time to describe As(III) and Se(VI) adsorption by soils. The model was able to describe adsorption of these ions on all soils as a function of solution ion concentration by optimizing only one adjustable parameter, the anion surface complexation constant. This chemical model represents an advancement over adsorption isotherm equation approaches that contain two empirical adjustable parameters. Incorporation of these anion surface complexation constants obtained with the constant capacitance model into chemical speciation transport models will allow simulation of soil solution anion concentrations under diverse environmental and agricultural conditions.

  4. Business models and strategies in the video game industry : an analysis of Activision-Blizzard and Electronic Arts

    E-Print Network [OSTI]

    Lee, Ruri

    2013-01-01T23:59:59.000Z

    In recent years the video game industry has been of great importance in the business world beyond the role of a cultural medium. With its huge size and potential for more growth, the industry has attracted many newcomers. ...

  5. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  6. Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01T23:59:59.000Z

    Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume “a net cost” perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a...

  7. Simple multistage closed-(box+reservoir) models of chemical evolution: an application to the inner Galactic halo

    E-Print Network [OSTI]

    Caimmi, R

    2010-01-01T23:59:59.000Z

    Simple closed-box (CB) models of chemical evolution are extended on two respects: (i) simple closed-(box+reservoir) (CBR) models allowing gas outflow from the box into the reservoir or gas inflow into the box from the reservoir with same composition as the preexisting gas and rate proportional to the star formation rate, and (ii) simple multistage closed-(box+reservoir) (MCBR) models allowing different stages of evolution characterized by different inflow or outflow rates. The stellar initial mass function is assumed to be universal, and mass conservation holds for the whole system (box+reservoir) while it is violated for each subsystem (box and reservoir). The theoretical differential oxygen abundance distribution (TDOD) predicted by the model, under the assumption of instantaneous recycling, is a continuous broken line, where different slopes are related to different inflow rates. For an application of the model (a) a fictitious sample is built up from two distinct samples and taken as representative of the...

  8. From Refining Sugar to Growing Tomatoes: Industrial Ecology and Business Model Evolution

    E-Print Network [OSTI]

    Short, Samuel W.; Bocken, Nancy M.P.; Barlow, Claire Y.; Chertow, Marian R.

    2014-10-13T23:59:59.000Z

    innovation – Important process improvements, but not proactive business model innovation. 1998: Combined heat and Power (CHP) New CHP installation – combined cycle gas turbine (CCGT) CHP generating steam for on-site use, and electricity. Lower... and distillation BETAINE for cosmetics, 11kt CO2 liquefaction Feedback to assist growers Flue gas CO2 Steam In-situ composting Rain water harvesting Screen and pack Grade and pack Dry, screen, mix Screen, grade CO2 emissions Sugar extract Low temperature...

  9. Industrial hygiene report: preliminary plant visit of formaldehyde-production facilities at Tenneco Chemicals, Inc. , Fords, New Jersey, October 1, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-04-12T23:59:59.000Z

    A preliminary hygiene survey was conducted at Tenneco Chemicals, Inc., Fords, New Jersey to evaluate worker exposure to formaldehyde and the safety with which silver and metal oxide catalysts were used at the site. The facility had an active safety program. Workers wore safety glasses, hard hats, and safety shoes. A manual existed on respiratory protection, safety and emergency procedures. The medical program consisted of yearly physical exams for all employees including a pulmonary function test, hearing test, eye examination, chest x-ray, blood test and a medical-history questionnaire. Area air samples taken indicated less than 1 part per million (ppm) formaldehyde as a time-weighted average. Control methods at the methanol unloading and handling area, control areas, process areas, storage areas, and at the truck-loading facility were described. Problem areas in the silver unit included the use of packed seals for the volatile formaldehyde solution, and the interior storage tank in the silver catalyst unit. It is recommended that a greater effort be made to control formaldehyde vapors in the silver unit by improving housekeeping and maintenance or replacing equipment.

  10. 4.0 Application of Chemical Reaction Models Computerized chemical reaction models based on thermodynamic principles may be used to calculate

    E-Print Network [OSTI]

    . Of the contaminants selected for consideration in this project [chromium, cadmium, cesium, tritium (3 H), lead/reduction, adsorption/desorption, and mineral precipitation/dissolution for contaminants in soil-water systems reaction models, their utility to understanding the solution chemistry of contaminants, and the MINTEQA2

  11. Structural-chemical modeling of transition of coals to the plastic state

    SciTech Connect (OSTI)

    A.M. Gyul'maliev; S.G. Gagarin [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-02-15T23:59:59.000Z

    The structural-chemical simulation of the formation of plastic state during the thermal treatment (pyrolysis, coking) of coals is based on allowance for intermolecular interactions in the organic matter. The feasibility of transition of coals to the plastic state is determined by the ratio between the onset plastic state (softening) and runaway degradation temperatures, values that depend on the petrographic composition and the degree of metamorphism of coals and the distribution of structural and chemical characteristics of organic matter. 33 refs., 8 figs., 2 tabs.

  12. An interregional trade flow model for the Texas feed grain industry

    E-Print Network [OSTI]

    Knudson, Lawrence Bruce

    1976-01-01T23:59:59.000Z

    of Feedyards 52 '12 10 Percent of Total 24 10 P4 18 VI VII Rei'er to Figure 7 (page 21 }. CHAPTER IV MODEL IMPLEMENTATION The volumes of grain that were used to derive the matrices present- ed in this chapter were obtained from the surveys... 64 REG I IV 2820 2452 624 59872 3652 1385 48 0 N V 907 921 520 1269 93768 339 144 VI 520 241 514 167 29 44246 92 VI I 3004 15655 1233 2591 6/1 2081 7635 Sum of Re)as ( a ) 206?07 86152 22092 68038 s)81 Bc I) R...

  13. Resolving discrepancies between hydraulic and chemical calibration data for seawater intrusion groundwater flow models by considering climate-driven sea level change.

    SciTech Connect (OSTI)

    J. Chapman; A. Hassan; K. Pohlmann

    2001-10-18T23:59:59.000Z

    Groundwater models of seawater intrusion environments can be calibrated using both hydraulic and chemical information. The possible impact of the long-term transient process of sea level change is difficult to identify, but important to accurate simulation of present conditions. The response times of the pressure and chemical fields to major fluctuations in sea level change are investigated

  14. From Geometric Modeling to Product Data Models: Collaboration Between Engineering, Computer Science, and Industry at Leeds University

    E-Print Network [OSTI]

    Whitney, Daniel

    to include concurrent engineering.1 In both cases, the Unit has established strong ties with the Computer with defining product data models that will support concurrent engineering. Both fabrication and assembly in manufacturing must be structured like concurrent engineering activities: the users of the research must be part

  15. "A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"

    SciTech Connect (OSTI)

    Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

    2007-11-01T23:59:59.000Z

    Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we will attempt to secure funding from alternate sources that have been referenced by our contract monitor. It remains our hope and goal to follow this project through to completion, thereby achieving the objectives outlined at the start of our effort.

  16. A THREE-DIMENSIONAL MODELING STUDY OF THE EFFECTS OF SOLID-PHASE HYDROMETEOR-CHEMICAL INTERACTIONS IN CUMULONIMBUS CLOUDS ON TROPOSPHERIC CHEMICAL DISTRIBUTIONS

    E-Print Network [OSTI]

    Stuart, Amy L.

    - and mixed-phase hydrometeors (cloud ice, snow, graupel, and hail) are often excluded or limited due of interactions of ice-phase cloud hydrometeors with volatile chemicals have found that they may significantly. 2. ICE- AND MIXED-PHASE CHEMISTRY 2.1 Gas-Solid Transfer Gas-phase chemical species can diffuse

  17. Robust Constrained Model Predictive Control using Linear Matrix Inequalities \\Lambda

    E-Print Network [OSTI]

    Balakrishnan, Venkataramanan "Ragu"

    dynamical systems, such as those encountered in chemical process control in the petrochemical, pulp process models as well as many performance criteria of significance to the process industries can

  18. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09T23:59:59.000Z

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  19. Risk and Vulnerability Assessment Using Cybernomic Computational Models: Tailored for Industrial Control Systems

    SciTech Connect (OSTI)

    Abercrombie, Robert K [ORNL; Sheldon, Federick T. [University of Memphis; Schlicher, Bob G [ORNL

    2015-01-01T23:59:59.000Z

    There are many influencing economic factors to weigh from the defender-practitioner stakeholder point-of-view that involve cost combined with development/deployment models. Some examples include the cost of countermeasures themselves, the cost of training and the cost of maintenance. Meanwhile, we must better anticipate the total cost from a compromise. The return on investment in countermeasures is essentially impact costs (i.e., the costs from violating availability, integrity and confidentiality / privacy requirements). The natural question arises about choosing the main risks that must be mitigated/controlled and monitored in deciding where to focus security investments. To answer this question, we have investigated the cost/benefits to the attacker/defender to better estimate risk exposure. In doing so, it s important to develop a sound basis for estimating the factors that derive risk exposure, such as likelihood that a threat will emerge and whether it will be thwarted. This impact assessment framework can provide key information for ranking cybersecurity threats and managing risk.

  20. The Chemical Engineer's Role in Economic Recovery

    E-Print Network [OSTI]

    Felch, D. E.; Stine, L. O.; Vickers, A. G.

    1984-01-01T23:59:59.000Z

    Chemical engineers must lead industry to a clearer view of the thermodynamic potential of existing plants and more realistic expectations for emerging new technologies...

  1. Climate VISION: Private Sector Initiatives: Chemical Manufacturing

    Office of Scientific and Technical Information (OSTI)

    American Chemistry Council (ACC), representing 85% of the chemical industry production in the U.S., has agreed American Chemistry Council Logo to an overall greenhouse gas...

  2. 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 HIGLY PREDICTIVE MODELLING OF ENTIRE SI SOLAR CELLS FOR INDUSTRIAL APPLICATIONS

    E-Print Network [OSTI]

    On leave from: Institute for Solar Energy Systems, Sun Yat-Sen University, 510006, Guangzhou, China24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, Sept. 2009 1 HIGLY PREDICTIVE MODELLING OF ENTIRE SI SOLAR CELLS FOR INDUSTRIAL APPLICATIONS P.P. Altermatt,1,2 S. Steingrube,1,2 Y. Yang

  3. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09T23:59:59.000Z

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  4. HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence Berkeley National Laboratory, U.S.A.

    E-Print Network [OSTI]

    sharing and exchange in the building and construction industry across the life-cycle of a building of the vendors of interoperable industry software formed a partnership in 2000, the Building Lifecycle's lifecycle [BLIS 2000]. EnergyPlus, the "new generation" building energy performance simulation engine

  5. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  6. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    cesses listed. Chart1-lndustrial Target Groups SIC CODE INDUSTRY 201 Meat Products 204 Feed and Grain 207 Fats and Oils 26 Paper and Allied Products 28 Chemicals and Allied Products 30 Rubber and Plastics 33 Primary Metals 34 Fabricated Metals... industry seminars. In the preparation of workbooks for industrial processes, a screening of engineering firms was 763 ESL-IE-82-04-139 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 conducted in order...

  7. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14T23:59:59.000Z

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  8. Computational Model of Forward and Opposed Smoldering Combustion with Improved Chemical Kinetics (PhD. Thesis)

    E-Print Network [OSTI]

    Rein, Guillermo

    2005-01-01T23:59:59.000Z

    fixed beds of oil shale grains: governing parameters and global regimes, Combustionfixed beds of oil shale grains. A three-dimensional microscale numerical model, Combustion

  9. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy

    E-Print Network [OSTI]

    Ramasesha, Krupa

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular ...

  10. BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA

    E-Print Network [OSTI]

    COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC technology decision. A survey of 259 industrial firms in Canada was administered in 2002 and a discrete

  11. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15T23:59:59.000Z

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  12. EPRI's Industrial Energy Management Program

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... are funded at a level in excess of SlO million annually. By providing technical guidance and sponsoring research and development projects, these Centers and Offices are a key element in EPRI's role of improving the value of electricity to consumers...

  13. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial heat integrated distillation column Truls Larsson Sigurd Skogestad ÝDepartment of Chemical. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process QH column

  14. T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial

    E-Print Network [OSTI]

    Skogestad, Sigurd

    T. Larsson, S. Skogestad Control of a industrial heat integrated distillation column Control of a industrial heat integrated distillation column Truls Larsson Sigurd Skogestad y Department of Chemical. Larsson, S. Skogestad Control of a industrial heat integrated distillation column The process Q H column

  15. How Soil Organic Matter Composition Controls Hexachlorobenzene-Soil-Interactions: Adsorption Isotherms and Quantum Chemical Modelling

    E-Print Network [OSTI]

    Ahmed, Ashour; Kühn, Oliver

    2013-01-01T23:59:59.000Z

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soil soil soil+3 HWE soil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption behaviour combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HC...

  16. Ecotoxicological simulation modeling: effects of agricultural chemical exposure on wintering burrowing owls

    E-Print Network [OSTI]

    Engelman, Catherine Allegra

    2008-10-10T23:59:59.000Z

    are the OP insecticides chlorpyrifos, dicrotophos, and disulfoton, the oxadiazine insecticide indoxacarb, the herbicide trifluralin, and the defoliants tribufos and paraquat. The results of this model demonstrate the usefulness of simulation modeling... Organochlorine Insecticide OP Organophosphate Insecticide PAN Pesticide Action Network database PIF Partners in Flight PIP Pesticide Information Profiles database SANCO European Commission. Health & Consumer Protection Directorate- General SRD Alberta...

  17. Project Profile: Predictive Physico-Chemical Modeling of Intrinsic Degradation Mechanisms for Advanced Reflector Materials

    Broader source: Energy.gov [DOE]

    NREL, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be developing a physics-based computational degradation model to assess the kinetic oxidation rates; realistic model light attenuation and transport; and multi-layer treatment with variable properties Simulation based experimental design.

  18. Survey Questionnaire on Environmental Management Practices: Summary of Results by Industry and practices

    E-Print Network [OSTI]

    Delmas, Magali A; Toffel, Michael W.

    2008-01-01T23:59:59.000Z

    and Engineering-Design Departments Management Utilities Refining Industry Paper Metals Machinery Electronics/Electrical ChemicalsEngineering - Design Department Utilities Refining Industry Paper Metals Machinery Electronics/Electrical Chemicals

  19. Platform Chemicals from an Oilseed Biorefinery

    SciTech Connect (OSTI)

    Tupy, Mike; Schrodi Yann

    2006-11-06T23:59:59.000Z

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

  20. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for low-cost separation technologies and processes. Improved separation could improve carbon dioxide sequestration, improve process performance, and reduce capital expenses....

  1. Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change 

    E-Print Network [OSTI]

    Sinha, P.; Wise, M.; Smith, S.

    2006-01-01T23:59:59.000Z

    . Characterization of the U.S. Industrial/Commercial Boiler Population (May 2005),Submitted to Oak RidgeNational Laboratory, http://www.eea-inc.com/natgas_reports/BoilersFinal.pdf Edmonds J, Clarke K, Dooley J, Kim S.H, Smith SJ. (2004) “Stabilization of CO2 in a B2...-003 Xenergy,Inc.United States Industrial Electric Motor Systems Market Opportunities Assessment, (December 2002), Prepared for US Department of Energy’s THE U.S. Department Of Energy’s Office Of Industrial Technologies And Oak RidgeNational Laboratory. http://eereweb.ee.doe.gov/industry/bestpractices/pdfs/mtrmkt.pdf ...

  2. Temperature profile and heat transfer model for a chemical wastewater treatment plant

    SciTech Connect (OSTI)

    Brown, E.V. (CH2M HILL, Atlanta, GA (United States)); Enzminger, J.D. (CH2M HILL, Parsippany, NJ (United States))

    1991-08-01T23:59:59.000Z

    This paper presents a heat transfer model for equalization, activated sludge, and trickling filter unit processes than can be used to assess the effect of operating temperature on unit process selection, materials of construction selection, and heat retention and cooling requirements. In developing this model, the individual variables that affect the operating temperature of biological systems were first identified. Mathematical relationships were then developed to describe system behavior, based on conservation laws and rate equations. The heat transfer models were then used to developed a temperature profile of the two alternative WWTP configurations.

  3. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 2009 |TechnologyTools for

  4. Department of Chemical and Petroleum Engineering

    E-Print Network [OSTI]

    Habib, Ayman

    Real World Process from Inception to Pre-construction ­ Apply Concepts Learned in Class to Industrial Quality and Air Pollution Control Chemical Engineering Energy & Env. Specialization #12;CHEMICAL World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed

  5. Conservation in a Gulf Coast Chemical Plant

    E-Print Network [OSTI]

    Murray, F.

    1983-01-01T23:59:59.000Z

    The MCA reports chemical industry energy compared to 1972 to be 24.2% (1981 data). This paper will describe the activity of one Gulf Coast chemical industry plant which has reduced consumption by 41%. Improvements have been made via energy...

  6. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  7. A Two-Dimensional Model of Chemical Vapor Infiltration With Radio Frequency Heating

    E-Print Network [OSTI]

    Economou, Demetre J.

    either in a conven- tional microwave oven or by using a radio frequency (RF) induction coil-consistently the power absorbed by the preform from a radio frequency induction coil. The model equations were solved

  8. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    SciTech Connect (OSTI)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01T23:59:59.000Z

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

  9. Fast Prediction of HCCI and PCCI Combustion with an Artificial Neural Network-Based Chemical Kinetic Model

    SciTech Connect (OSTI)

    Piggott, W T; Aceves, S M; Flowers, D L; Chen, J Y

    2007-09-26T23:59:59.000Z

    We have added the capability to look at in-cylinder fuel distributions using a previously developed ignition model within a fluid mechanics code (KIVA3V) that uses an artificial neural network (ANN) to predict ignition (The combined code: KIVA3V-ANN). KIVA3V-ANN was originally developed and validated for analysis of Homogeneous Charge Compression Ignition (HCCI) combustion, but it is also applicable to the more difficult problem of Premixed Charge Compression Ignition (PCCI) combustion. PCCI combustion refers to cases where combustion occurs as a nonmixing controlled, chemical kinetics dominated, autoignition process, where the fuel, air, and residual gas mixtures are not necessarily as homogeneous as in HCCI combustion. This paper analyzes the effects of introducing charge non-uniformity into a KIVA3V-ANN simulation. The results are compared to experimental results, as well as simulation results using a more physically representative and computationally intensive code (KIVA3V-MPI-MZ), which links a fluid mechanics code to a multi-zone detailed chemical kinetics solver. The results indicate that KIVA3V-ANN produces reasonable approximations to the more accurate KIVA3V-MPI-MZ at a much reduced computational cost.

  10. Aggregate Production Planning for Process Industries under Competition

    E-Print Network [OSTI]

    Karmarkar, U. S.; Rajaram, K.

    2008-01-01T23:59:59.000Z

    as petro- refining, petrochemicals, basic chemicals, cement,the context of the petrochemical industry, these producerscorrespond to the ten major petrochemical refining companies

  11. Chemical Enrichment at High Redshifts Understanding the Nature of Damped Ly$\\alpha$ Systems in Hierarchical Models

    E-Print Network [OSTI]

    Tissera, P B; Cora, S A

    2001-01-01T23:59:59.000Z

    We use cosmological hydrodynamical simulations including star formation and metal enrichment to study the evolution of the chemical properties of galaxy-like objects at high redshift in the range $0.25Hydrogen column densities with abundances and scatter comparable to those observed in damped Lyman-$\\alpha$ systems (DLAs).The unweighted mean of abundance ratios and least square linear regressions through the simulated DLAs yield intrinsic metallicity evolution for the [Zn/H] and [Fe/H], consistent with results obtained from similar analysis of available observations. Our model statistically reproduces the mild evolution detected in the metallicity of the neutral hydrogen content of the Universe, given by mass-weighted means,if observational constraints are considered (as suggested by Boiss\\'ee et al. 1998). For the $\\alpha$-elements in the simulated DLAs, we find n...

  12. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24T23:59:59.000Z

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  13. Chemical and Physical Properties of Nanomaterials for Model Catalytic Systems and Smart Polymer Membranes 

    E-Print Network [OSTI]

    Skiles, Stephanie Lyn

    2014-10-24T23:59:59.000Z

    desire for improvement have led to the study of smart materials and model systems. Smart materials are designed to have a significant property change in response to a stimulus. Smart polymers can be synthesized that respond to a variety of stimuli...

  14. Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics

    E-Print Network [OSTI]

    Zachariah, Michael R.

    that the generation of SiOHx species from fast gas- phase reactions can significantly degrade film quality. Based conservation equations and a moment-type aerosol dynamics model were formulated for a batch reactor undergoing to impurity diffusion.1 During LPCVD film deposition rates are limited by the gas-phase nucleation

  15. Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

    SciTech Connect (OSTI)

    Havstad, Mark A [Lawrence Livermore National Laboratory (LLNL); Aceves, Salvador M [Lawrence Livermore National Laboratory (LLNL); McNenly, Matthew J [Lawrence Livermore National Laboratory (LLNL); Piggott, William T [Lawrence Livermore National Laboratory (LLNL); Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Daw, C Stuart [ORNL; FINNEY, Charles E A [ORNL

    2010-01-01T23:59:59.000Z

    We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (-0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (-0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  16. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    SciTech Connect (OSTI)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12T23:59:59.000Z

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  17. Development of an Energy Consumption Model at a Multi-Product Chemical Plant

    E-Print Network [OSTI]

    Wyhs, N. A.; Logsdon, J. E.

    1980-01-01T23:59:59.000Z

    A plant-wide energy model is being developed to be used primarily as a planning tool to evaluate the impact of energy conservation projects and plant expansions on the total plant energy balance. Statistical analysis of historical data from each...

  18. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

  19. Acidbase chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    E-Print Network [OSTI]

    June 18, 2012) Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmo be a significant source of condensation nuclei (2) and cloud condensation nuclei (CCN) (3). The cloud albedo effect

  20. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  1. Simulating the formation of massive seed black holes in the early Universe. I: An improved chemical model

    E-Print Network [OSTI]

    Glover, Simon

    2015-01-01T23:59:59.000Z

    The direct collapse model for the formation of massive seed black holes in the early Universe attempts to explain the observed number density of supermassive black holes (SMBHs) at $z \\sim 6$ by assuming that they grow from seeds with masses M > 10000 solar masses that form by the direct collapse of metal-free gas in atomic cooling halos in which H2 cooling is suppressed by a strong extragalactic radiation field. The viability of this model depends on the strength of the radiation field required to suppress H2 cooling, $J_{\\rm crit}$: if this is too large, then too few seeds will form to explain the observed number density of SMBHs. In order to determine $J_{\\rm crit}$ reliably, we need to be able to accurately model the formation and destruction of H2 in gas illuminated by an extremely strong radiation field. In this paper, we use a reaction-based reduction technique to analyze the chemistry of H2 in these conditions, allowing us to identify the key chemical reactions that are responsible for determining the...

  2. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes

    SciTech Connect (OSTI)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

    2011-03-16T23:59:59.000Z

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

  3. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  4. CHEMICAL MODELING OF INFRARED DARK CLOUDS: THE ROLE OF SURFACE CHEMISTRY

    SciTech Connect (OSTI)

    Vasyunina, T.; Vasyunin, A. I.; Herbst, Eric [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Linz, H. [Max Planck Institute for Astronomy (MPIA), Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01T23:59:59.000Z

    We simulate the chemistry of infrared dark clouds (IRDCs) with a model in which the physical conditions are homogeneous and time independent. The chemistry is solved as a function of time with three networks: one purely gas phase, one that includes accretion and desorption, and one, the complete gas-grain network, that includes surface chemistry in addition. We compare our results with observed molecular abundances for two representative IRDCs-IRDC013.90-1 and IRDC321.73-1-using the molecular species N{sub 2}H{sup +}, HC{sub 3}N, HNC, HCO{sup +}, HCN, C{sub 2}H, NH{sub 3}, and CS. IRDC013.90-1 is a cold IRDC, with a temperature below 20 K, while IRDC321.73-1 is somewhat warmer, in the range 20-30 K. We find that the complete gas-grain model fits the data very well, but that the goodness of fit is not sharply peaked at a particular temperature. Surface processes are important for the explanation of the high gas-phase abundance of N{sub 2}H{sup +} in IRDC321.73-1. The general success of the zero-dimensional model in reproducing single-dish observations of our limited sample of eight species shows that it is probably sufficient for an explanation of this type of data. To build and justify more complicated models, including spatial temperature and density structure, contraction, and heating, we require high-resolution interferometric data.

  5. Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

    SciTech Connect (OSTI)

    Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

    2005-01-07T23:59:59.000Z

    Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

  6. Rationale for chemical control of feedwater and boiler water. Volume 1. Concentration models. Final report

    SciTech Connect (OSTI)

    Bawden, R.J.; Mann, G.M.W.

    1984-01-01T23:59:59.000Z

    Operating PWR units in the USA have experienced very severe corrosion of the tube support plate at the crevice between the tube and the support. This results in distortion of the plate and crushing of the tube (denting). The first task of this project required that currently available computational methods to estimate the pH attained by concentrating boiler water under various fault conditions such as condenser leakage of river waters and faulty operation of condensate polishing plant. Particular attention has been paid to systems in which sulfate predominates. In the second task, the mechanisms are discussed by which solutions become concentrated in porous deposits on a boiling heat transfer surface. It is concluded that more experimental data are needed to test the validity of existing models. High solution concentrations in the deposit may occur at a heat flux close to the critical value for drying out the base of the deposit. The pore to bulk concentration ratio is calculated for a porous deposit modelled as a set of capillaries with various size distributions. The uniform pore-size model overestimates the concentration ratio.

  7. Modeling foreign economic policy in strategic setting: the automotive industry of the U.S. and Japan 

    E-Print Network [OSTI]

    Au-Young, Marie Lily

    2013-02-22T23:59:59.000Z

    . For this study, I examined a specific case study in which the U.S. was in a dispute with a foreign country and how the U.S. dealt with the situation. This particular dispute spans a timeline of 15 years and involves the automotive industry of Japan and the U...

  8. Electrified Separation Processes in Industry

    E-Print Network [OSTI]

    Appleby, A. J.

    1983-01-01T23:59:59.000Z

    distillation, in the chemical and related industries is very considerable. The majority of the energy used for these separations is thermal input in the form of the low heating-value of oil or gas. From the national viewpoint, it would be advantageous...

  9. Improved Indoor Tracking Based on Generalized t-Distribution Noise Model

    E-Print Network [OSTI]

    Shuo, Liu; Le, Yin; Khuen, Ho Weng; Voon, Ling Keck

    2015-01-01T23:59:59.000Z

    objective function. Industrial & engineering chemistryfunction approac. Industrial & Engineering Chem- istrynoise model. Industrial & Engineering Chemistry Research,

  10. Modeling Regional Air Quality Using the Near-Explicit Master Chemical Mechanism

    E-Print Network [OSTI]

    Li, Jingyi

    2014-08-01T23:59:59.000Z

    C. ................................................................................................................. 32 Figure 2-6 Pollutant rose for isopentane at C35C. Panels (a)-(c) are based on the data where the predicted wind direction and wind speed agree well with observations. Panels (d)-(f) are based on the remaining data. Units are ppb... during the entire episode. Model performance criteria and goals for particulate matter are based on the recommendations of Boylan and Russell (2006). MFB=2/N×?(Cp-Co)/(Cp+Co). Cp=predictions; Co=observations; N=number of data points. (b) Predicted...

  11. Appendix G. Chemicals Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    by the development of chemicals such as pharmaceuticals, building materials, housewares, pesticides, and industrial more hazardous chemicals result from the direct or indirect actions of humans. Building materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  12. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  13. Hierarchical production scheduling in the process industry

    E-Print Network [OSTI]

    Hierarchical production scheduling in the process industry Anna Lindholm Nils-Petter Nytz are handled. The activities are are denoted production scheduling (PS) and detailed production scheduling (DPS. The focus is on production scheduling for chemical process industries with continuous production

  14. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    SciTech Connect (OSTI)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah

    2014-09-24T23:59:59.000Z

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  15. AGRI-SCIENCE CHEMICAL BIOLOGY

    E-Print Network [OSTI]

    photosynthetic efficiency Improve chemical agronomic and agro-ecological control measures Modelling through translation of chemical biology tools and technologies Control weeds, disease and pests Minimise a platform to steer future research and policy directions. · Encourage external outreach to engage

  16. UNDERGRADUATE DEGREES Industrial and Systems Engineering

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    control, information technologies, and electronics and solar power assembly and reliability. Students solving. Students delve into systems modeling and simulation, systems design and the simplificationUNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial

  17. Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder

    SciTech Connect (OSTI)

    Rothman, A.B.

    1996-02-01T23:59:59.000Z

    Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

  18. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  19. Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times and a Validated Chemical Kinetic Model

    SciTech Connect (OSTI)

    Dooley, S.; Burke, M. P.; Chaos, M.; Stein, Y.; Dryer, F. L.; Zhukov, V. P.; Finch, O.; Simmie, J. M.; Curran, H. J.

    2010-01-01T23:59:59.000Z

    The oxidation of methyl formate (CH{sub 3}OCHO) has been studied in three experimental environments over a range of applied combustion relevant conditions: 1. A variable-pressure flow reactor has been used to quantify reactant, major intermediate and product species as a function of residence time at 3 atm and 0.5% fuel concentration for oxygen/fuel stoichiometries of 0.5, 1.0, and 1.5 at 900 K, and for pyrolysis at 975 K. 2. Shock tube ignition delays have been determined for CH{sub 3}OCHO/O{sub 2}/Ar mixtures at pressures of ? 2.7, 5.4, and 9.2 atm and temperatures of 1275–1935 K for mixture compositions of 0.5% fuel (at equivalence ratios of 1.0, 2.0, and 0.5) and 2.5% fuel (at an equivalence ratio of 1.0). 3. Laminar burning velocities of outwardly propagating spherical CH{sub 3}OCHO/air flames have been determined for stoichiometries ranging from 0.8–1.6, at atmospheric pressure using a pressure-release-type high-pressure chamber. A detailed chemical kinetic model has been constructed, validated against, and used to interpret these experimental data. The kinetic model shows that methyl formate oxidation proceeds through concerted elimination reactions, principally forming methanol and carbon monoxide as well as through bimolecular hydrogen abstraction reactions. The relative importance of elimination versus abstraction was found to depend on the particular environment. In general, methyl formate is consumed exclusively through molecular decomposition in shock tube environments, while at flow reactor and freely propagating premixed flame conditions, there is significant competition between hydrogen abstraction and concerted elimination channels. It is suspected that in diffusion flame configurations the elimination channels contribute more significantly than in premixed environments.

  20. Biomonitoring for the photovoltaics industry

    SciTech Connect (OSTI)

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01T23:59:59.000Z

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  1. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  2. University at Buffalo (SUNY) Department of Industrial Engineering Scheduling Theory

    E-Print Network [OSTI]

    Nagi, Rakesh

    University at Buffalo (SUNY) Department of Industrial Engineering IE 661 Scheduling Theory Chapter 2 Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) #12;University at Buffalo (SUNY) Department of Industrial Engineering Chapter 2: Deterministic Models Preliminaries

  3. Identification of geometrical and elastostatic parameters of heavy industrial robots

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Identification of geometrical and elastostatic parameters of heavy industrial robots A. Klimchik, Y modeling of heavy industrial robots with gravity compensators. The main attention is paid of huge aircraft compo- nents where industrial robots successfully replace conven- tional CNC

  4. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

  5. analysis quantitative chemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deals, including the following: ENERGY: Chemical engineers work in all aspects of the energy industry developing Firestone, Jeremy 6 Conservation biology Quantitative analysis...

  6. Scale-up of continuous chemical synthesis systems

    E-Print Network [OSTI]

    Heider, Patrick Louis

    2013-01-01T23:59:59.000Z

    Continuous flow systems for chemical synthesis have become increasingly important in the pharmaceutical and fine chemical industry in the past decade. Initially, this work was confined primarily to microfluidic systems, ...

  7. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  8. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  9. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  10. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    SciTech Connect (OSTI)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30T23:59:59.000Z

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  11. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  12. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  13. Electric Power Reliability in Chemical Plants

    E-Print Network [OSTI]

    Cross, M. B.

    The quality and reliability of utility-generated electric power is presently receiving a great deal of attention from the chemical and refining industry. What changes have taken place to make electric power reliability a major topic of discussion...

  14. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    target for the U.S. (7%) and the EU (8%). During the same period, chemical industry production rose 41%. As a result, GHG emissions intensity improved 38%. Indirect greenhouse gas...

  15. Climate VISION: Private Sector Initiatives: Chemical Manufacturing...

    Office of Scientific and Technical Information (OSTI)

    Technology Pathways U.S. chemical producers recognize that energy efficiency offers a competitive edge in world markets. In 1996 the U.S. industry entered into partnership with ITP...

  16. Tools for chemical synthesis in microsystems

    E-Print Network [OSTI]

    Jensen, Klavs F.

    Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such “flow chemistry” applications are now found in pharmaceutical and ...

  17. MULTISCALE MODEL. SIMUL. c 2005 Society for Industrial and Applied Mathematics Vol. 4, No. 2, pp. 359389

    E-Print Network [OSTI]

    Carter, Emily A.

    prediction of dislocation nucleation and the effects of varying alloy composition. The model is illustrated and Department of Mechanical and Aerospace Engineering, D404A Engineering Quadrangle, Princeton, NJ 08544 (eac

  18. A comparative study of Lotka-Volterra and system dynamics models for simulation of technology industry dynamics

    E-Print Network [OSTI]

    Ünver, Hakk? Özgür

    2008-01-01T23:59:59.000Z

    Scholars have developed a range of qualitative and quantitative models for generalizing the dynamics of technological innovation and identifying patterns of competition between rivals. This thesis compares two predominant ...

  19. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    EIA) Manufacturing Energy Consumption Survey (MECS) ModelEIA), 2005. 2002 Manufacturing Energy Consumption Survey onSurvey (MECS), such as crosscutting technologies like process controls, building controls, waste heat recovery or adjustable speed drives (EIA

  20. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  1. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  2. Thermodynamic Phase And Chemical Equilibrium At 0-110 C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

    SciTech Connect (OSTI)

    Nichols,T.T.; Taylor,D.D.

    2003-09-26T23:59:59.000Z

    A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100 C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110 C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry's law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry's law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

  3. Thermodynamic Phase And Chemical Equilibrium At 0-110°C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

    SciTech Connect (OSTI)

    Todd T. Nichols; Dean D. Taylor

    2003-09-01T23:59:59.000Z

    A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100° C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110° C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry.s law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry’s law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.

  4. Industrial applications of electron accelerators

    E-Print Network [OSTI]

    Cleland, M R

    2006-01-01T23:59:59.000Z

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  5. 776 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 4, JULY/AUGUST 1998 Switched Reluctance Motor Modeling with

    E-Print Network [OSTI]

    Husain, Iqbal

    Department, General Motors Research and Development Center, Warren, MI 48090 USA. I. Husain and M. E. Elbuluk Reluctance Motor Modeling with On-Line Parameter Identification Sayeed Mir, Member, IEEE, Iqbal Husain-line parameter estimation using recursive identification for switched reluctance motors (SRM's) is presented

  6. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 2008 1813 Models for Bearing Damage Detection in Induction

    E-Print Network [OSTI]

    Boyer, Edmond

    be supervised by measur- ing quantities such as noise, vibration, and temperature. The implementation Damage Detection in Induction Motors Using Stator Current Monitoring Martin Blödt, Member, IEEE, Pierre analytical model for the influence of rolling-element bearing faults on induction motor stator current

  7. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  8. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01T23:59:59.000Z

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

  9. Classical ab initio van der Waals interactions from many-body dispersion and multipole machine learning models trained in chemical space

    E-Print Network [OSTI]

    Bereau, Tristan; von Lilienfeld, O Anatole

    2015-01-01T23:59:59.000Z

    Accurate predictions of van der Waals forces require faithful models of dispersion, permanent and induced multipole-moments, as well as penetration and repulsion. We introduce a universal combined physics- and data-driven model of dispersion and multipole-moment contributions, respectively. Atomic multipoles are estimated "on-the-fly" for any organic molecule in any conformation using a machine learning approach trained on quantum chemistry results for tens of thousands of atoms in varying chemical environments drawn from thousands of organic molecules. Globally neutral, cationic, and anionic molecular charge states can be treated with individual models. Dispersion interactions are included via recently-proposed classical many-body potentials. For nearly one thousand intermolecular dimers, this approximate van der Waals model is found to reach an accuracy similar to that of state-of-the-art force fields, while bypassing the need for parametrization. Estimates of cohesive energies for the benzene crystal confi...

  10. Department of Energy, Environmental & Chemical Engineering

    E-Print Network [OSTI]

    Subramanian, Venkat

    Department of Energy, Environmental & Chemical Engineering Opportunities for Undergraduate Students laboratory is a good way to expand your classroom experience. department of energy, environmental & chemicalIndustryPlantTour.Thedepartmentoffers twoplanttourseachfall. Cover: International Experience Brazil 2012 in sugar can mill, Usina Ester, Campina, Brazil #12

  11. Excellence in biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Neufeld, S.

    1999-04-23T23:59:59.000Z

    The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

  12. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  13. Emerging Opportunities in Industrial Electrification Technologies 

    E-Print Network [OSTI]

    Schmidt, P. S.

    1989-01-01T23:59:59.000Z

    in the manufacturing sector. Nearly half of manufacturing energy use was in the process industries, which include chemicals, petroleum products, pulp and paper, foods, textiles, and tobacco. Metals production, primarily aluminum and steel, accounted for about 21... %, and metals fabrication, including transportation, machinery, instrumentation and electronics, and other metal products, about 19%. The balance of about 14% was used in other non-metals industries, such as stone, clay, and glass, rubber and plastics...

  14. Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change

    E-Print Network [OSTI]

    Sinha, P.; Wise, M.; Smith, S.

    2006-01-01T23:59:59.000Z

    in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

  15. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect (OSTI)

    Kanematsu, Yusuke; Tachikawa, Masanori [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)] [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2014-04-28T23:59:59.000Z

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  16. Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

    SciTech Connect (OSTI)

    Som, S; Longman, D. E.; Luo, Z; Plomer, M; Lu, T; Senecal, P.K.; Pomraning, E (Energy Systems); (Univ. of Connecticut); (CONVERGENT Science)

    2012-01-01T23:59:59.000Z

    Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.

  17. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. Though the possibility...

  18. Measurement and prediction of aerosol formation for thesafe utilization of industrial fuids 

    E-Print Network [OSTI]

    Krishna, Kiran

    2004-09-30T23:59:59.000Z

    Mist or aerosol explosions present a serious hazard to process industries. Heat transfer fluids are widely used in the chemical process industry, are flammable above their flash points, and can cause aerosol explosions. ...

  19. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect (OSTI)

    Liang Sai [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Xu Yijian [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); China Academy of Urban Planning and Design, Beijing 100037 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  20. Dimension Reduction of Chemical Process Simulation Data

    E-Print Network [OSTI]

    Truemper, Klaus

    of a laminar methane/air combustion process described by 29 chemical species, 3 thermodynamic properties] for the computational effort carried out for some 3-dimensional models. Reduced chemical schemes, for example, ILDM-based memory as well. These chemical schemes are based on an analysis of chemical pathways that identifies

  1. Life Cycle Assessment and Sustainability of Chemical Products 

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Energy Technology Conference New Orleans, LA. May 20-23, 2014 Chemicals Manufacturing & Industry Energy Industry Other Quadrillion BTUs 1990 2015 2040 0 50 100 150 200 250 Industry energy demand increases ExxonMobil 2014 Outlook for Energy ESL-IE-14...

  2. Development of PUNDA (Parametric Universal Nonlinear Dynamics Approximator) Models for Self-Validating Knowledge-Guided Modelling of Nonlinear Processes in Particle Accelerators \\& Industry

    SciTech Connect (OSTI)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric

    2007-10-07T23:59:59.000Z

    The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.

  3. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krssig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H....

  4. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01T23:59:59.000Z

    Sixth Annual Industrial Energy Technology Conference, VolumeBNL). 2001. The Energy Technology Systems AnalysisKramer Environmental Energy Technologies Division July 2012

  5. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  6. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  7. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  8. Cell fleet planning : an industry case study

    E-Print Network [OSTI]

    Silva, Armando C.

    1984-01-01T23:59:59.000Z

    The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

  9. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  10. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  11. A Low Cost Energy Management Program at Engelhard Industries Division

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  12. Energy Management in a Multi-Industry Organization

    E-Print Network [OSTI]

    Lawrence, J.

    1981-01-01T23:59:59.000Z

    Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification...

  13. Design of regulated velocity flow assurance device for petroleum industry 

    E-Print Network [OSTI]

    Yardi, Chaitanya Narendra

    2005-02-17T23:59:59.000Z

    The petroleum industry faces problems in transportation of crude petroleum be- cause of the deposition of paraffins, hydrates and asphaltenes on the insides of the pipeline. These are conventionally removed using either chemical inhibitors...

  14. The Analysis and Development of Large Industrial Steam Systems

    E-Print Network [OSTI]

    Waterland, A. F.

    1980-01-01T23:59:59.000Z

    Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

  15. On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01T23:59:59.000Z

    A simple linear kinetic rate expression for formation of Caexpression was used in the calibration of the kinetic model

  16. Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model

    E-Print Network [OSTI]

    Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    network model, enhanced oil recovery. Corresponding author.many tertiary or enhanced oil recovery (EOR) techniques have

  17. Evaluating the DSM Potential for Industrial Electrotechnologies and Management Practices

    E-Print Network [OSTI]

    Harrell, P. J.; Pavone, A.

    -side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes of industrial customers within HL&P's service area. Each technology... practices (technologies) for possible inclusion in an industrial demand-side management (DSM) program. This paper outlines the procedures used to evaluate technologies that may impact oil refining, pulp & paper production, and 26 major chemical processes...

  18. Benchmarks for industrial energy efficiency

    SciTech Connect (OSTI)

    Amarnath, K.R. [Electric Power Research Inst., Palo Alto, CA (United States); Kumana, J.D. [Linnhoff March, Inc., Houston, TX (United States); Shah, J.V. [Electric Power Research Inst., Pittsburgh, PA (United States). Chemicals and Petroleum Center

    1996-12-31T23:59:59.000Z

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  19. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  20. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  1. Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10-18 mm coal grain sizes

    SciTech Connect (OSTI)

    Ozdeniz, A.H.; Yilmaz, N. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

    2009-07-01T23:59:59.000Z

    Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. In order to achieve this goal, the electrical signal conversion of temperatures sensed by 17 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analog-digital conversion unit after applying necessary filtration and upgrading processes, and the record of these information into a database in particular time intervals are provided. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. Afterwards, these measurement values were used for training and testing of an artificial neural network model. Comparison of the experimental and artificial neural network results, accuracy rates of training and testing were found to be 99.5% and 99.17%, respectively. It is shown that possible coal stockpile behavior with this artificial neural network model is powerfully estimated.

  2. Computers and Chemical Engineering 26 (2002) 10771085 Backstepping control of chemical tubular reactors

    E-Print Network [OSTI]

    Krstic, Miroslav

    of the system using boundary control of temperature and concentration on the inlet side of the reactor. We that globally stabi- lizes an unstable steady state is designed for a chemical tubular reactor. The control industrial applications for chemical tubular reactors, the problem of monitoring and controlling them

  3. Industry strengths open new services opportunities

    SciTech Connect (OSTI)

    Heller, K.

    1993-03-10T23:59:59.000Z

    The environmental service industry is in a state of transition in which innovative technologies are increasingly playing a critical role. These changes play to the strengths of the chemical industry, and several firms are effectively growing environmental businesses. At the same time, chemical companies, which are among the largest buyers of environmental services, are making decisions that reflect the changes. Du Pont, for example, has decided to rethink its involvement with the controversial Waste Technologies Industries (WTI) hazardous waste incinerator in East Liverpool, OH. Initially expecting a shortage of incineration capacity, Du Pont had signed a contract - along with BASF and Chemical Waste Management - for a share of capacity at the 60,000-tons/year WTI unit. A number of chemical firms are leveraging their strengths. Air Products and Chemicals (Allentown, PA), for one, has partnerships in the waste-to-energy and flue-gas desulfurization businesses. The company runs cogeneration plants that can burn a combination of coal and natural gas to make both steam and electricity. Air Products assorted businesses can be strong at different times, says Hinman. The flue-gas desulfurization business, for example, was active during the first phase of enforcement of the 1990 Clean Air Act requirements for lower sulfur dioxide (SO[sub 2]) emissions.

  4. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    E-Print Network [OSTI]

    Zheng, L.

    2012-01-01T23:59:59.000Z

    Geochemical model of the granite-bentonite- groundwaterconductivity scale effects in granite (Full-scale EngineeredSamper et al. , 2008a). granite heater Relative humidity (%)

  5. Chemical and isotopic characteristics of fluids within the Baca...

    Open Energy Info (EERE)

    by conductive reheating during downward movement. Chemical modeling using the EQ3NR computer code indicates chemical stability with the mineral assemblage quartz, albite, K-mica,...

  6. A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0

    SciTech Connect (OSTI)

    Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

    2013-11-13T23:59:59.000Z

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  7. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  8. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01T23:59:59.000Z

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  9. ESTIMATION AND CONTROL OF INDUSTRIAL PROCESSES WITH PARTICLE FILTERS

    E-Print Network [OSTI]

    de Freitas, Nando

    ESTIMATION AND CONTROL OF INDUSTRIAL PROCESSES WITH PARTICLE FILTERS Rub´en Morales of industrial processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model to describe an industrial heat exchanger. The parameters of this model are identi- fied with the expectation maximisation

  10. Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution

    E-Print Network [OSTI]

    Auh, Jae Hyuck, 1969-

    2003-01-01T23:59:59.000Z

    The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

  11. The application of an Eulerian chemical and transport model (CMAQ) at fine scale resolution to the UK 

    E-Print Network [OSTI]

    Pederzoli, Anna

    2008-01-01T23:59:59.000Z

    Present-day numerical air quality models are considered essential tools for predicting future air pollutant concentrations and depositions, contributing to the development of new effective strategies for the control and ...

  12. Measurement and modeling of Ar/H2/CH4 arc jet discharge chemical vapor deposition reactors. I. Intercomparison

    E-Print Network [OSTI]

    Bristol, University of

    of thin, polycrystalline diamond films, and the results of a two-dimensional r,z computer model domains. dc arc jets offer considerable advantages as a route to deposition of polycrystalline diamond

  13. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  14. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01T23:59:59.000Z

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  15. Spontaneous polarization in an interfacial growth model for actin filament networks with a rigorous mechano-chemical coupling

    E-Print Network [OSTI]

    Karin John; Denis Caillerie; Chaouqi Misbah

    2014-10-02T23:59:59.000Z

    Many processes in eukaryotic cells, including cell motility, rely on the growth of branched actin networks from surfaces. Despite its central role the mechano-chemical coupling mechanisms which guide the growth process are poorly understood, and a general continuum description combining growth and mechanics is lacking. We develop a theory that bridges the gap between mesoscale and continuum limit and propose a general framework providing the evolution law of actin networks growing under stress. This formulation opens an area for the systematic study of actin dynamics in arbitrary geometries. Our framework predicts a morphological instability of actin growth on a rigid sphere, leading to a spontaneous polarization of the network with a mode selection corresponding to a comet, as reported experimentally. We show that the mechanics of the contact between the network and the surface plays a crucial role, in that it determines directly the existence of the instability. We extract scaling laws relating growth dynamics and network properties offering basic perspectives for new experiments on growing actin networks.

  16. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    SciTech Connect (OSTI)

    Mac Low, Mordecai-Mark [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Glover, Simon C. O., E-mail: mordecai@amnh.org, E-mail: glover@uni-heidelberg.de [Zentrum der Astrophysik der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Strasse 2, 69120 Heidelberg (Germany)

    2012-02-20T23:59:59.000Z

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R{sub mol} and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H{sub 2} from cold atomic gas. The formation timescale for H{sub 2} is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H{sub 2} formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H{sub 2} formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H{sub 2}. The observed correlation of R{sub mol} with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R{sub mol} with density. If we examine the value of R{sub mol} in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  17. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2006-02-01T23:59:59.000Z

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  18. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25T23:59:59.000Z

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  19. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  20. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  1. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    technologicalandlogisticssystemsbygathering, structuring, and managing information. Indus- trial engineers apply their knowledge not only45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle

  2. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  3. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  4. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Different regulations for some industries in Canada, the U.S. and Europe ie. telecommunications, energy of energy, materials, industrial waste, byproducts #12;Contact Constance Adamson Stauffer Library adamsonc

  5. Journal of Engineering for Industry, ASME, New York, NY, Vol. 118, No. 1, 1996, pp. 37-44. SPREAD SHEET MODEL OF CONTINUOUS CASTING

    E-Print Network [OSTI]

    Thomas, Brian G.

    ) transient solidification heat transfer model of the solidifying shell. The model structure and equations

  6. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  7. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  8. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01T23:59:59.000Z

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  9. Physical and chemical properties of the regional mixed layer of Mexico's Megapolis – Part II: Evaluation of measured and modeled trace gases and particle size distributions

    SciTech Connect (OSTI)

    Ochoa, Carlos; Baumgardner, Darrel; Grutter, M.; Allan, James D.; Fast, Jerome D.; Rappengluck, B.

    2012-10-31T23:59:59.000Z

    This study extends the work of Baumgardner et al. (2009) in which measurements of trace gases and particles at a remote, high-altitude mountain site 60 km from Mexico City were analyzed with respect to the origin of air masses. In the current evaluation, the temperature, water vapor, ozone (O3), carbon monoxide (CO), acyl peroxy nitrate (APN) and particle size distributions (PSDs) of the mass concentrations of sulfate, nitrate, ammonium and organic mass (OM) were simulated with the WRF-Chem chemical transport model and compared with the measurements at the mountain site. The model prediction of the diurnal trends of the gases were well correlated with the measurements before the regional boundary layer reached the measurement site but underestimated the concentrations after that time. The differences are caused by an overly rapid growth of the boundary layer by the model with too much dilution. There also appears to be more O3 produced by photochemical production, downwind of the emission sources, than predicted by the model. The measured and modeled PSDs compare very well with respect to their general shape and diameter of the peak concentrations. The spectra are log normally distributed with most of the mass in the accumulation mode and the geometric diameter centered at 200 ±20 nm, with little observed or predicted change with respect to the origin of the air mass or the time when the RBL is above the Altzomoni research. Only the total mass changed with time and air mass origin. The invariability of the average diameter of the accumulation mode suggests that there is very little growth of the particles by condensation or coagulation after six hours of aging downwind of the major sources of anthropogenic emissions in Mexico’s Megapolis.

  10. A Blueprint for Forest Products Industry

    E-Print Network [OSTI]

    Major Model Components - Resource Assessment - Industry Structure - Product/Market Strategy - Economic Impacts Workforce Training Network Formation Resource Assessment Government Support Financing Economic Development Technology Profitability Resource Assessment Current & projected Commercial species Lesser-used species

  11. Lean enterprise in the construction industry

    E-Print Network [OSTI]

    Marchini-Blanco, Juan, 1971-

    2004-01-01T23:59:59.000Z

    This thesis explores the application of the Lean Enterprise Model (LEM) to construction firms. LEM is a framework derived from lean manufacturing principles by MIT's Lean Aerospace Initiative (LAI) for the aerospace industry. ...

  12. Industrial motivations: Conceptual Automotive Styling Tools (CAST)

    E-Print Network [OSTI]

    Toronto, University of

    Industrial motivations: Conceptual Automotive Styling Tools (CAST) Karan Singh #12;Conceptual. · What makes automotive design unique. · Existing modeling trends. · A proposed workflow for conceptual automotive design. #12;Conceptual design desirables · Abstraction from underlying surface math. · Invite

  13. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  14. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  15. LANSCE | Lujan Center | Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact Fredrik...

  16. Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response

    SciTech Connect (OSTI)

    Hauschild, Veronique [U.S. Army Public Health Command] [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

  17. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials | Center forChemical

  18. COOEE bitumen: chemical aging

    E-Print Network [OSTI]

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2013-01-01T23:59:59.000Z

    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  19. Faculty for Factory: A University-Industry Link Program in Jordan

    E-Print Network [OSTI]

    , mining, cement, and inorganic chemicals · Industrial production growth rate is about 1% #12;Challenges for mechatronics in Jordan · The size of the "production, automation, and manufacturing" industry is small and rubber 9. Construction 10. Wood industry and furniture #12;FFF Projects over the years 0 20 40 60 80 100

  20. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

  1. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  2. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  3. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  4. External research and energy efficiency in the process industries

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01T23:59:59.000Z

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  5. Molecular Thermodynamic Modeling of Droplet-Type Microemulsions

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Firoozabadi* Department of Chemical and Environmental Engineering, Mason Laboratory, Yale University, New modifiers in a variety of chemical and industrial processes, from enhanced oil recovery to biotechnology

  6. Characterization of Stem Growth and Chemical Composition in Sorghum Bicolor

    E-Print Network [OSTI]

    Anderson Jr, Robert Taylor

    2014-03-31T23:59:59.000Z

    Sorghum bicolor is a subtropical grass grown throughout the world for human consumption, animal feed and for the growing biofuels industry. In this thesis I characterize sorghum stem growth and chemical composition, and identify QTL and candidate...

  7. Decision support tools for environmentally conscious chemical process design

    E-Print Network [OSTI]

    Cano Ruiz, José Alejandro, 1969-

    1999-01-01T23:59:59.000Z

    The environment has emerged as an important determinant of the performance of the modern chemical industry. Process engineering in the 21st century needs to evolve to include environmental issues as part of the design ...

  8. 600 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 50, NO. 1, JANUARY/FEBRUARY 2014 Time-Dependent Finite-Volume Model of

    E-Print Network [OSTI]

    Pugh, Mary

    alternative to heat engines in the harvesting of waste heat. Electrical­thermal analogs are often employed, thermoelectric devices, thermoelectric energy conversion, thermoelectricity. I. INTRODUCTION WASTE heat of waste heat are produced by industry; low-grade heat (heat sources roughly under 100 C) is also

  9. Life Cycle Assessment and Sustainability of Chemical Products

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Life Cycle Assessment & Sustainability of Chemical Products Abdelhadi Sahnoune ExxonMobil Chemical Company Industrial Energy Technology Conference (IETC 2014) New Orleans, May 20-23, 2014 ESL-IE-14-05-38 Proceedings of the Thrity-Sixth Industrial... Energy Technology Conference New Orleans, LA. May 20-23, 2014 Products in our daily lives Plastics Packaging - Protects and extends shelf life Building & Construction – Insulation, design, flooring Plastics in Automotive Applications - Light weighting...

  10. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01T23:59:59.000Z

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  11. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  12. Air quality model evaluation data for organics. 1. Bulk chemical composition and gas/particle distribution factors

    SciTech Connect (OSTI)

    Fraser, M.P.; Cass, G.R. [California Inst. of Technology, Pasadena, CA (United States)] [California Inst. of Technology, Pasadena, CA (United States); Grosjean, D.; Grosjean, E. [DGA, Inc., Ventura, CA (United States)] [DGA, Inc., Ventura, CA (United States); Rasmussen, R.A. [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)] [Oregon Graduate Inst. of Science and Technology, Beaverton, OR (United States)

    1996-05-01T23:59:59.000Z

    During the period of September 8-9, 1993, the South Coast Air Basin that surrounds Los Angeles experienced the worst photochemical smog episode in recent years; ozone concentrations exceeded 0.29 ppm 1-h average, and NO{sub 2} concentrations peaked at 0.21 ppm 1-h average. Field measurements were conducted at a five-station air monitoring network to obtain comprehensive data on the identity and concentration of the individual organic compounds present in both the gas and particle phases during that episode. The data will also serve to support future tests of air quality models designed to study organic air pollutant transport and reaction. Air samples taken in stainless steel canisters were analyzed for 141 volatile organic compounds by GC/ECD, GC/FID, and GC/MS; PAN and PPN were measured by GC/ECD; particulate organics collected by filtration were analyzed for total organics and elemental carbon by thermal evolution and combustion and for individual organic compounds by GC/ MS; semivolatile organics were analyzed by GC/MS after collection on polyurethane foam cartridges. The present paper describes this experiment and present the concentrations of major organic compound classes and their relationship to the inorganic pollutants present. 104 refs., 9 figs.

  13. SOFTWARE AGENTS IN HANDLING ABNORMAL SITUATIONS IN INDUSTRIAL PLANTS

    E-Print Network [OSTI]

    SOFTWARE AGENTS IN HANDLING ABNORMAL SITUATIONS IN INDUSTRIAL PLANTS Sami Syrjälä and Seppo Kuikka. The abnormal situation handling in industrial plants is a challenging application area due to the complexity-model, abnormal situation handling, industrial plants 1. Introduction This paper is based on the work made

  14. Optimization of Industrial Applications with Hardware in the Loop

    E-Print Network [OSTI]

    Boyer, Edmond

    of industrial robots integrated in complex robot cells. Trajectory optimizers are usually based on models and with changes of the robot task. Index Terms Industrial robotics, Trajectory optimization, Derivative free with Hardware in the Loop I. INTRODUCTION To reduce production costs, industrial robots must work as fast

  15. The new model of chemical evolution of r-process elements based on the hierarchical galaxy formation. I. Ba and Eu

    SciTech Connect (OSTI)

    Komiya, Yutaka; Suda, Takuma [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Yamada, Shimako [Department of Cosmoscience, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Fujimoto, Masayuki Y. [Nuclear reaction data center, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)

    2014-03-10T23:59:59.000Z

    We investigate the chemical enrichment of r-process elements in the early evolutionary stages of the Milky Way halo within the framework of hierarchical galaxy formation using a semi-analytic merger tree. In this paper, we focus on heavy r-process elements, Ba and Eu, of extremely metal-poor (EMP) stars and give constraints on their astronomical sites. Our models take into account changes of the surface abundances of EMP stars by the accretion of interstellar medium (ISM). We also consider metal-enrichment of intergalactic medium by galactic winds and the resultant pre-enrichment of proto-galaxies. The trend and scatter of the observed r-process abundances are well reproduced by our hierarchical model with ?10% of core-collapse supernovae in low-mass end (?10 M {sub ?}) as a dominant r-process source and the star formation efficiency of ?10{sup –10} yr{sup –1}. For neutron star mergers as an r-process source, their coalescence timescale has to be ?10{sup 7} yr, and the event rates ?100 times larger than currently observed in the Galaxy. We find that the accretion of ISM is a dominant source of r-process elements for stars with [Ba/H] < –3.5. In this model, a majority of stars at [Fe/H] < –3 are formed without r-process elements, but their surfaces are polluted by the ISM accretion. The pre-enrichment affects ?4% of proto-galaxies, and yet, is surpassed by the ISM accretion in the surface of EMP stars.

  16. Measurement and modeling of Ar/H2/CH4 arc jet discharge chemical vapor deposition reactors II: Modeling of the spatial dependence of expanded

    E-Print Network [OSTI]

    Bristol, University of

    and used to deposit thin films of polycrystalline diamond. This reactor has been the subject of many prior of micro- and nanocrystalline diamond and diamondlike carbon films. The model incorporates gas activation-containing radical species incident on the growing diamond surface C atoms and CH radicals within this reactor

  17. Proceedings of the Fourth Conference on Process Integration, Modeling, and Optimization for Energy Savings and Pollution Prevention (PRES'01), Ed. Jiri Klemes, p. 1-6, Italian Association of Chemical Engineers, AIDIC, Serizi

    E-Print Network [OSTI]

    Pike, Ralph W.

    and sustainable costs. Introduction The business focus of chemical companies has moved from a regional to a globalProceedings of the Fourth Conference on Process Integration, Modeling, and Optimization for Energy ON ECONOMIC, ENVIRONMENTAL AND SUSTAINABLE COSTS T. A. Hertwiga , A. Xub , A. B. Nagyc , R. W. Pikeb , J. R

  18. Qualitative Aspects of the Solutions of a Mathematical Model for the Dynamic Analysis of the Reversible Chemical Reaction SO2(g)+1/2O2(g)SO3(g) in a Catalytic Reactor

    E-Print Network [OSTI]

    Angulo Wilfredo; Contreras Joyne

    2014-12-19T23:59:59.000Z

    We present some qualitative aspects concerning the solution to the mathematical model describing the dynamical behavior of the reversible chemical reaction SO2(g)+1/2O2(g)SO3(g) carried out in a catalytic reactor used in the process of sulfuric acid production.

  19. Energy Management at Dow Chemical Co.

    E-Print Network [OSTI]

    Almaguer, J.

    2008-01-01T23:59:59.000Z

    As one of the largest industrial consumers of energy in the world, The Dow Chemical Company and its 46,000 employees have put energy efficiency at the very core of its business – both as a cost savings initiative and as a primary corporate social...

  20. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...