Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation Model for Safety Capacity of Chemical Industrial Park Based on Acceptable Regional Risk  

Science Journals Connector (OSTI)

Abstract The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose to explore the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity for chemical industrial park, and then by combining with the safety storage capacity,a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized the regional risk control to the Park effectively.

Guohua Chen; Shukun Wang; Xiaoqun Tan

2014-01-01T23:59:59.000Z

2

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

3

Reporting Conservation Results in the Chemical Industry  

E-Print Network [OSTI]

In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results of the chemical industry to the Federal Energy Administration. The MCA Energy Rate Method has served as a model...

Doerr, R. E.

1979-01-01T23:59:59.000Z

4

Methods in Industrial Biotechnology for Chemical Engineers  

E-Print Network [OSTI]

In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

W. B. Vasantha Kandasamy; Florentin Smarandache

2008-07-13T23:59:59.000Z

5

Sanyo Chemical Industries | Open Energy Information  

Open Energy Info (EERE)

Chemical Industries Chemical Industries Jump to: navigation, search Name Sanyo Chemical Industries Place Tokyo, Japan Zip 103-0023 Product String representation "Sanyo is a petr ... uction process." is too long. References Sanyo Chemical Industries[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sanyo Chemical Industries is a company located in Tokyo, Japan . References ↑ "Sanyo Chemical Industries" Retrieved from "http://en.openei.org/w/index.php?title=Sanyo_Chemical_Industries&oldid=350614" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

6

Rising Oil Prices Hit Chemical Industry  

Science Journals Connector (OSTI)

Rising Oil Prices Hit Chemical Industry ... Rising petroleum prices have dogged chemical makers for more than a year, and in the third quarter, the situation has only gotten worse. ... Although chemical makers had factored high feedstock costs into their planning, the recent sudden spikes in oil costs may have caught the industry off guard. ...

ALEX TULLO

2000-09-18T23:59:59.000Z

7

Estimation and Analysis of Energy Utilities Consumption in Batch Chemical Industry through Thermal Losses Modeling  

Science Journals Connector (OSTI)

A hot water distribution system is mainly used for heating the infrastructure (i.e., keeping the building and pipes at a desired temperature) and is fed by steam condensates. ... As a result, the three-parameters model, whose functional form already integrates this feature, was preferred to calibrate valves distributing liquid utilities both in the multiproduct and the monoproduct plant. ... However, an additional assumption for heat losses is necessary or a detailed and complicated analytical calculation for all components of the heating/cooling utility system. ...

Claude Rérat; Stavros Papadokonstantakis; Konrad Hungerbühler

2012-06-29T23:59:59.000Z

8

Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education?  

Science Journals Connector (OSTI)

Fifty-Year Trends in the Chemical Industry: What Do They Mean for Chemical Education? ... Environmental Chemistry ...

George W. Parshall; Chadwick A. Tolman

1999-02-01T23:59:59.000Z

9

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL...  

Broader source: Energy.gov (indexed) [DOE]

up the Petitioner's company are major chemical manufacturing companies, and includes Air Products and Chemicals, Akzo Nobel, Battelle, DuPont, NL Industries, OxyChem, and...

10

TECHNOLOGY VISION 2020: The U.S. Chemical Industry  

Broader source: Energy.gov [DOE]

The chemical industry faces heightened challenges as it enters the 21st century. Five major forces are among those shaping the topography of its business landscape

11

Chemicals Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The industry greatly influences our safe water supply, food, shelter, clothing, health care, computer technology, transportation, and almost every other facet of modern...

12

ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical Industry, May 2000  

Broader source: Energy.gov [DOE]

Profiles about the ethylene chain, propylene chain, benzene-toulene-xylene chain, agricultural chemicals chain, chlor-alkali industry, and supporting processes

13

Radio Frequency & Microwave Energy for the Petro Chemical Industry  

E-Print Network [OSTI]

Electro-Magnetic Energy has finally made its way into the Petro-Chemical market twenty-five years after market acceptance in the Food Processing Industry. Major factors influencing this change are tighter environmental regulations, price competition...

Raburn, R.

14

Utilization of renewably generated power in the chemical process industry  

Science Journals Connector (OSTI)

The chemical process industry, mainly the production of organic and inorganic ... On the contrary, the dependency of electricity supply in Germany on volatile wind and solar power increases. To use this power eff...

Julia Riese; Marcus Grünewald; Stefan Lier

2014-08-01T23:59:59.000Z

15

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

16

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

17

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

18

Global Intermodal Tank Container Management for the Chemical Industry  

E-Print Network [OSTI]

Global Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank modes: pipeline, bulk tankers, parcel tankers, tank containers, or drums. Pipeline and bulk tankers

Erera, Alan

19

U.S. chemical industry backs free trade with Mexico  

Science Journals Connector (OSTI)

There's no shortage of opposition to the proposed free trade agreement between the U.S. and Mexico, from many in Congress, labor, and agriculture. The chemical industry, however, is solidly behind the idea.Testifying at hearings held recently by the ...

EARL V. ANDERSON

1991-03-04T23:59:59.000Z

20

Enhanced formulations for neutralization of chemical, biological and industrial toxants  

DOE Patents [OSTI]

An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

Tucker, Mark D. (Albuqueque, NM) [Albuqueque, NM

2008-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Corporate Restructuring and R&D: A Panel Data Analysis for the Chemical Industry  

Science Journals Connector (OSTI)

We provide a novel approach to the existing literature on the effects of restructuring on R&D investment by focusing on a single industry, chemicals. The chemical industry is very research intensive and has ex...

Ashish Arora; Marco Ceccagnoli; Marco Da Rin

2004-01-01T23:59:59.000Z

22

ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry  

Broader source: Energy.gov [DOE]

This report represents the November 1999 workshop efforts and subsequent contributions of 50 leading scientific and industry experts in biocatalyst use and development.

23

Chemical production from industrial by-product gases: Final report  

SciTech Connect (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

24

Cogeneration handbook for the chemical process industries. [Contains glossary  

SciTech Connect (OSTI)

The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

25

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

Not Available

2008-12-01T23:59:59.000Z

26

Tribo-Chemical Modeling of Copper CMP  

E-Print Network [OSTI]

TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,Technical Area: CMP (Copper) Abstract We are developing antribo-chemical model of copper CMP that considers abrasive

Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

2006-01-01T23:59:59.000Z

27

Boundary control for an industrial under-actuated tubular chemical reactor  

E-Print Network [OSTI]

Ltd. All rights reserved. Keywords: Polystyrene; Tubular reactor; Control; Optimization; IndustrialBoundary control for an industrial under-actuated tubular chemical reactor D. Del Vecchio a , N and studied for an industrial under-actuated tubular chemical reactor. This work presents a case

28

Regulation and innovation in the chemical industry: A comparison of the EU, Japan and the USA  

Science Journals Connector (OSTI)

This article focuses on three important policy issues related to innovation in the chemical industry. First, what are the structural differences between the notification systems for new chemical substances in ...

M Fleischer

2003-03-01T23:59:59.000Z

29

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering  

E-Print Network [OSTI]

| Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hire a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics to the US Bureau of Labor Statistics, the 2012 average annual wage for industrial engineers is $82

Glowinski, Roland

30

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

31

Chemical resistance determination test scheme and rating system development for industrial glove evaluation  

E-Print Network [OSTI]

CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Industrial Hygiene CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Approved...

Cornils, William Joseph

2012-06-07T23:59:59.000Z

32

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

2005-01-01T23:59:59.000Z

33

Water quality improvement of a lagoon containing mixed chemical industrial wastewater by micro-electrolysis-contact oxidization  

Science Journals Connector (OSTI)

A lagoon in the New Binhai District, a high-speed developing area, Tianjin, China, has long been receiving the mixed chemical industrial wastewater from a chemical industrial park. This lagoon contained comple...

Ya-fei Zhou; Mao Liu; Qiong Wu

2011-05-01T23:59:59.000Z

34

Kinetic Model for Parallel Reactions of CaSO4 with CO in Chemical-Looping Combustion  

Science Journals Connector (OSTI)

Kinetic Model for Parallel Reactions of CaSO4 with CO in Chemical-Looping Combustion ... Industrial & Engineering Chemistry Research2013 52 (11), 4059-4071 ...

Min Zheng; Laihong Shen; Xiaoqiong Feng; Jun Xiao

2011-03-23T23:59:59.000Z

35

Energy Use and Energy Intensity of the U.S. Chemical Industry | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intensity of the U.S. Chemical Industry Intensity of the U.S. Chemical Industry Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

36

Iron and steel industry process model  

SciTech Connect (OSTI)

The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

1980-01-01T23:59:59.000Z

37

Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999  

Broader source: Energy.gov [DOE]

Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

38

Chemical modeling of exoplanet atmospheres  

E-Print Network [OSTI]

The past twenty years have revealed the diversity of planets that exist in the Universe. It turned out that most of exoplanets are different from the planets of our Solar System and thus, everything about them needs to be explored. Thanks to current observational technologies, we are able to determine some information about the atmospheric composition, the thermal structure and the dynamics of these exoplanets, but many questions remain still unanswered. To improve our knowledge about exoplanetary systems, more accurate observations are needed and that is why the Exoplanet Characterisation Observatory (EChO) is an essential space mission. Thanks to its large spectral coverage and high spectral resolution, EChO will provide exoplanetary spectra with an unprecedented accuracy, allowing to improve our understanding of exoplanets. In this work, we review what has been done to date concerning the chemical modeling of exoplanet atmospheres and what are the main characteristics of warm exoplanet atmospheres, which a...

Venot, Olivia

2014-01-01T23:59:59.000Z

39

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization  

E-Print Network [OSTI]

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization and establish a plausible link between consumption structure evolutions and industrial revolutions. In particular, we show that an industrial revolution starts with a "smithian growth process", which is demand

Boyer, Edmond

40

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Broader source: Energy.gov [DOE]

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

42

Contamination from a Coal Tar Processing Chemical Industry: Investigations and Remedial Actions  

Science Journals Connector (OSTI)

One of the major cases of soil contamination in The Netherlands is presented: the site of a coal tar processing chemical industry and its surroundings. The environmental contamination, with PAH’s in particular, i...

Martien W. F. Yland

1986-01-01T23:59:59.000Z

43

2009Asia-Pacific International Chemical Industry Exhibition PACIFIC INTERNATIONAL EXHIBITION (BEIJING) CO., LTD.  

E-Print Network [OSTI]

The Sixth Sino-US Chemical Engineering Forum Exhibition Chemical Industry Achievement Exhibition to remember, and the relevant local societies in various provinces and cities. Overseas Organizations to Support Exhibition of energy commodities and resourses in the world marketplace has appeared the trend to decrease, which could

Jayaram, Bhyravabotla

44

Modeling of Chemical Looping Combustion of Methane Using a Ni-Based Oxygen Carrier  

Science Journals Connector (OSTI)

Modeling of Chemical Looping Combustion of Methane Using a Ni-Based Oxygen Carrier ... The FR and loop seal are both bubbling fluidized beds. ... Industrial & Engineering Chemistry Research (2010), 49 (21), 10200-10211 CODEN: IECRED; ISSN:0888-5885. ...

Ahmed Bougamra; Lu Huilin

2014-03-31T23:59:59.000Z

45

Policy modeling for industrial energy use  

SciTech Connect (OSTI)

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

46

Federal agencies active in chemical industry-related research and development  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

NONE

1995-09-29T23:59:59.000Z

47

Voltage Sag-Related Upsets of Industrial Process Controls in Petroleum and Chemical Industries  

E-Print Network [OSTI]

with PLC controls. The sensitivity of these process controls can stop an essential service motor required for a continuous process such as in a refinery or chemical plant. Typically the controls are sensitive to the common momentary voltage sag caused...

Mansoor, A.; Key, T.; Woinsky, S.

48

Genome Sequence of Pseudomonas putida S12, a Potential Platform Strain for Industrial Production of Valuable Chemicals  

Science Journals Connector (OSTI)

...S12, a Potential Platform Strain for Industrial...Production of Valuable Chemicals Fei Tao a Yaling...is considered a platform strain for the production of many chemicals. Here, we present...S12, a potential platform strain for industrial...production of valuable chemicals. | Pseudomonas...

Fei Tao; Yaling Shen; Ziqi Fan; Hongzhi Tang; Ping Xu

2012-11-01T23:59:59.000Z

49

Chemical kinetics models for semiconductor processing  

SciTech Connect (OSTI)

Chemical reactions in the gas-phase and on surfaces are important in the deposition and etching of materials for microelectronic applications. A general software framework for describing homogeneous and heterogeneous reaction kinetics utilizing the Chemkin suite of codes is presented. Experimental, theoretical and modeling approaches to developing chemical reaction mechanisms are discussed. A number of TCAD application modules for simulating the chemically reacting flow in deposition and etching reactors have been developed and are also described.

Coltrin, M.E.; Creighton, J.R. [Sandia National Labs., Albuquerque, NM (United States); Meeks, E.; Grcar, J.F.; Houf, W.G. [Sandia National Labs., Livermore, CA (United States); Kee, R.J. [Colorado School of Mines, Golden, CO (United States)

1997-12-31T23:59:59.000Z

50

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network [OSTI]

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

51

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

52

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

53

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network [OSTI]

-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies... through industry-wide application of this technology is on the order of 0.5-1 quad per year. 2. Depending on the sales price which can be ob tained for refinery fuel gas displaced by coke generated MBG, the economics of coke gasification can appear...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

54

Results from modeling and simulation of chemical downstream etch systems  

SciTech Connect (OSTI)

This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

1996-05-01T23:59:59.000Z

55

Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ft010pitz2012o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI &...

56

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

57

Industry  

E-Print Network [OSTI]

2004). US DOE’s Industrial Assessment Centers (IACs) are anof Energy’s Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

58

A SYSTEMS APPROACH TO MATHEMATICAL MODELING OF INDUSTRIAL PROCESSES  

E-Print Network [OSTI]

/or partial automation of the creative modeling process. Model Generation is a new modeling paradigm designed specifically for rapid modeling of large multi-scale systems in the industrial practice. It proposes model. Keywords: Dynamic and continuous/discrete simulation, computer-aided modeling, symbolic

Linninger, Andreas A.

59

Energy and cost optimization in industrial models  

Science Journals Connector (OSTI)

A program for Linear Energy Optimization (LEO...) which was used to investigate thermodynamical and technical options of reducing the energy-consumption of industrialized countries is extended to handle the cost ...

H. -M. Groscurth; R. Kümmel

1990-01-01T23:59:59.000Z

60

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Neuro-simulation modeling of chemical flooding  

Science Journals Connector (OSTI)

Chemical flooding has proved to enhance oil recovery of reservoirs considerably. Development strategies of this method are more efficient when they consider both aspects of operation (recovery factor, RF) and economics (net present value, NPV). In this study, a multi-layer perceptron (MLP) neural network is developed for modeling of chemical flooding using surfactant and polymer via prediction of both RF and NPV in a unique model. The modeling algorithm is divided into three processes: training, generalization, and operation. In training process, the initial structure of the network is trained, and then the architecture of the trained network is optimized for reduction of prediction errors in generalization process. Furthermore, the optimum structure is compared with other methods like Radial Basis Function (RBF) neural network, quadratic and multi-objective regressions. The optimum architecture of the network contains one hidden layer with 8 neurons and training function of Bayesian regularization. In operation process, sensitivity analysis is studied for evaluating of effective parameters (inputs) on the performance of chemical flooding. The error is always less than 5% during the implementation of all processes. The results demonstrate that neuro-simulation of chemical flooding is reliable, inexpensive, fast in computational effort, and capable in accurate prediction of both RF and NPV in one model.

M.S. Karambeigi; R. Zabihi; Z. Hekmat

2011-01-01T23:59:59.000Z

62

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

63

US Energy Service Company Industry: History and Business Models  

Broader source: Energy.gov (indexed) [DOE]

Energy Service Company Industry: Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases * Business models in each phase * Financing models in each phase * Factors that forced change to next phase * Lessons learned US ESCO Industry: Five Phases * Pre-1985: The Beginning of Large-scale Energy Efficiency (EE) * 1985-1995: Early ESCo experience * 1995-2000: Consolidation and Growth * 2000-2004: Setbacks * 2004 - present: Growth and new services Beginning of EE: pre-1985 * Federal government mandates utilities to provide energy conservation * Business model: ESCOs provide services - Energy audits, arranging contracting, etc. * Finance model: fee for service - Utilities pay ESCOs for services

64

Chemically Consistent Evolutionary Models with Dust  

E-Print Network [OSTI]

As a tool to interpret nearby and high redshift galaxy data from optical to K-band we present our chemically consistent spectrophotometric evolutionary synthesis models. These models take into account the increasing initial metallicity of successive stellar generations using recently published metallicity dependent stellar evolutionary tracks, stellar yields and model atmosphere spectra. The influence of the metallicity is analysed. Dust absorption is included on the basis of gas content and abundance as it varies with time and galaxy type. We compare our models with IUE template spectra and are able to predict UV fluxes for different spectral types. Combined with a cosmological model we obtain evolutionary and k-corrections for various galaxy types and show the differences to models using only solar metallicity input physics as a function of redshift, wavelength band and galaxy type.

C. S. Möller; U. Fritze-v. Alvensleben; K. J. Fricke; D. Calzetti

1999-06-21T23:59:59.000Z

65

Friction Modeling and Compensation for an Industrial Robot  

E-Print Network [OSTI]

Friction Modeling and Compensation for an Industrial Robot Stephen M. Phillips and Kevin R. Ballou it is assumed to be unpredictable or insignificant. In experiments on the PUMA 560 robot arm, Armstrong' dem

66

Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production  

Science Journals Connector (OSTI)

Abstract In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

Xianzhong Chen; Li Zhou; Kangming Tian; Ashwani Kumar; Suren Singh; Bernard A. Prior; Zhengxiang Wang

2013-01-01T23:59:59.000Z

67

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

68

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

69

Chemical Kinetic Modeling of Non-Petroleum Based Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ft010pitz2011o.pdf More Documents & Publications Chemical Kinetic Modeling of Non-Petroleum Based Fuels Chemical Kinetic Modeling of Fuels Simulation of High Efficiency Clean...

70

Modelling in industrial maintenance and reliability  

Science Journals Connector (OSTI)

......of modelling the reliability of wind turbines and some critical subsystems from...change, through the years, in wind turbines reliability. There were major...research on determining optimal maintenance policies for deteriorating systems......

Wenbin Wang

2010-10-01T23:59:59.000Z

71

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

72

Creative industries urban model: structure and functioning  

E-Print Network [OSTI]

initiate office refurbishment/construction projects and real estate refurbishment/development projects accordingly. In addition, by studying the evolution of land-use transformation displayed by the model, areas not productive to invest are easily... ). Later, their contribution to support urban creativity (Stam and Jeroen et al, 2008; Scott, 2006), facilitate urban regeneration (Pratt, 2009; Evans, 2005), and promote sustainable urban development (Kakiuchi, 2012; Forum for the Future, 2010) is also...

Liu, Helen; Silva, Elisabete A.

2014-01-01T23:59:59.000Z

73

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

74

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

75

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect (OSTI)

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

76

Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future  

SciTech Connect (OSTI)

The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this project: (1) a low-cost, high-temperature heat exchanger, (2) a new radiant heat transfer system, and (3) a hybrid or integral advanced process heater that incorporates a high surface area ceramic heat exchanger and burner combined with either a metallic or ceramic radiant tube and heat transfer elements.

Thomas D. Briselden

2007-10-31T23:59:59.000Z

77

Extreme multistability in a chemical model system  

Science Journals Connector (OSTI)

Coupled systems can exhibit an unusual kind of multistability, namely, the coexistence of infinitely many attractors for a given set of parameters. This extreme multistability is demonstrated to occur in coupled chemical model systems with various types of coupling. We show that the appearance of extreme multistability is associated with the emergence of a conserved quantity in the long-term limit. This conserved quantity leads to a “slicing” of the state space into manifolds corresponding to the value of the conserved quantity. The state space “slices” develop as t?? and there exists at least one attractor in each of them. We discuss the dependence of extreme multistability on the coupling and on the mismatch of parameters of the coupled systems.

Calistus N. Ngonghala; Ulrike Feudel; Kenneth Showalter

2011-05-09T23:59:59.000Z

78

Metathesis of tobacco fatty acid methyl esters: Generation of industrially important platform chemicals  

Science Journals Connector (OSTI)

Abstract Self-methathesis of vegetable oil based unsaturated fatty acids provide a renewable and convenient route for the preparation of a number of platform chemicals useful for the production of polymers, biolubricants and other industrial products. The present study is focused on the use of the unsaturated non-edible oil methyl esters of tobacco (Nicotiana tabacum 82.2%) self- metathesis. Metathesis was carried out reacting equimolar quantities of fatty acid methyl esters (6.8 mm) with Grubbs second generation catalyst (0.3 mm) at 40–45 °C for 36 h. The metathesized products were characterized using GC and GC–MS analysis. Self-metathesis of the tobacco methyl esters resulted in the formation of hydrocarbons, of which 9-octadecene (24%) and a cyclodecacyclododecene (19%) were found to be major. In addition 9-octadecenoic acid methyl ester (17%) and 9,12-octadecadienoic acid methyl esters (11%) were also observed. The study also discusses the molecules involved in the formation of the above intermediates which are useful for the preparation of a number of industrial products.

Yelchuri Vyshnavi; Rachapudi B.N. Prasad; Mallampalli S.L. Karuna

2013-01-01T23:59:59.000Z

79

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3 MJ/Nm3 is insured by its combustible fraction (H2– 12.2%, CO – 19.2%, CH4 – 1.6%). According to syngas composition the thermodynamic cycle was chosen – Otto gas engine. For a given waste feed-in flow considered in our computation of about 110 kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

80

Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products  

E-Print Network [OSTI]

Protection Agency states: "Accelerating the development of fuel cells and hydrogen is one of the most. This solution offers not only reduced cost of the fuel cell catalyst but also improved performance. Benefits for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells Problem

Lightsey, Glenn

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

82

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

83

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

84

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

85

News Briefs: The U.S. chemical industry's Responsible Care program "has not encouraged pollution prevention or greater public access to information about toxic threats,"  

Science Journals Connector (OSTI)

News Briefs: The U.S. chemical industry's Responsible Care program "has not encouraged pollution prevention or greater public access to information about toxic threats," ...

2011-06-08T23:59:59.000Z

86

Singular Vector Analysis for Atmospheric Chemical Transport Models  

E-Print Network [OSTI]

are presented for a simulation of atmospheric pollution in East Asia in March 2001. The singular valuesSingular Vector Analysis for Atmospheric Chemical Transport Models Wenyuan Liao and Adrian Sandu for atmospheric chemical transport models. The distinguishing feature of these models is the presence of stiff

Sandu, Adrian

87

Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier  

E-Print Network [OSTI]

The object-oriented component-based modeling methodology in Modelica (FRITZSON [13]) is well- suitedChemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik for general-purpose chemical process modeling have been built. Multi- ple steady-states in ideal two

Neumaier, Arnold

88

Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...  

Broader source: Energy.gov (indexed) [DOE]

of mechanistic crack growth and grain contact models for chemically induced subcritical crack growth and pressure solution, with porosity-permeability changes * Conduct...

89

Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments...  

Broader source: Energy.gov (indexed) [DOE]

of mechanistic crack growth and grain contact models for chemically induced subcritical crack growth and pressure solution, with porosity-permeability changes * Conduct...

90

A Tomato Detached Leaf Assay for Chemical Genomics of an HLB Model System  

E-Print Network [OSTI]

Leaf Assay for Chemical Genomics of an HLB Model Systemapproach known as chemical genomics with Tomato “Psyllida model of HLB. Chemical genomics involves three key stages

Patne, S.; Eulgem, T.; Roose, M. L.

2014-01-01T23:59:59.000Z

91

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

92

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

93

Fate and control of blistering chemical warfare agents in Kuwait`s desalination industry  

SciTech Connect (OSTI)

Kuwait, as most of the other states located along the Western shores of the Arabian Gulf, relies upon the Gulf as its main drinking water resource via desalination. In case of seawater contamination with blistering chemical warfare agents, traces of the agents and/or degradation products in the finished water might pose a serious health hazard. The objective of the present review is to study the potential contamination, transport, fate, effect and control of blistering chemical warfare agents (CWAs), in the Kuwaiti desalination industry. In general, all the environmental factors involved in the aquatic degradation of CWAs in Kuwait marine environment except for the high salinity in case of blistering agents such as sulphur mustard, and in favor of a fast degradation process. In case of massive releases of CWAs near the Kuwaiti shorelines, turbulence resulting from tidal cycles and high temperature will affect the dissolution process and extend the toxicity of the insoluble agent. Post- and pre-chlorination during the course of seawater desalination will catalyze and significantly accelerate the hydrolysis processes of the CWAs. The heat exerted on CWAs during the power generation-desalination processes is not expected to thermally decompose them. However, the steam heat will augment the agent`s rate of hydrolysis with subsequent acceleration in their rate of detoxification. Conventional pretreatment of feed seawater for reverse-osmosis desalination is theoretically capable of reducing the concentration of CWAs by coprecipitation and adsorption on flocs formed during coagulation. Prechlorination and prolonged detention in time in pretreatment units will simultaneously promote hydrolysis reactions. 50 refs.

Khordagui, H.K. [United Nations Economic and Social Commission for West Asia, Amman (Jordan)

1997-01-01T23:59:59.000Z

94

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

95

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Broader source: Energy.gov (indexed) [DOE]

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

96

Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters  

SciTech Connect (OSTI)

Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

Yaroslav Chudnovsky; Aleksandr Kozlov

2006-10-12T23:59:59.000Z

97

Experiment-Based Model for the Chemical Interactions between Geothermal  

Open Energy Info (EERE)

Experiment-Based Model for the Chemical Interactions between Geothermal Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description The geochemical model will be developed on a foundation of both theory and measurements of chemical and physical interactions between minerals, rocks, scCO2 and water. An experimentally validated reservoir modeling capability is critically important for the evaluation of the scCO2-EGS concept, the adoption of which could significantly enhance energy production in the USA.

98

Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information  

Science Journals Connector (OSTI)

The Online Chemical Modeling Environment is a unique platform on the Web that aims to automate ... typical steps required for QSAR modeling. The platform consists of two major subsystems: the database ... Our int...

I Sushko; AK Pandey; S Novotarskyi; R Körner; M Rupp; W Teetz…

2011-04-01T23:59:59.000Z

99

Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information  

Science Journals Connector (OSTI)

The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database ... in...

Iurii Sushko; Sergii Novotarskyi…

2011-06-01T23:59:59.000Z

100

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy use and energy intensity of the U.S. chemical industry  

E-Print Network [OSTI]

23 5.3 Energy Use and Energy Intensity of Chlorine44314 Energy Use and Energy Intensity of the U.S. ChemicalEnergy Use and Energy Intensity of the U.S. Chemical

Worrell, Ernst; Phylipsen, Dian; Einstein, Dan; Martin, Nathan

2000-01-01T23:59:59.000Z

102

US Energy Service Company Industry: History and Business Models  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the history of US Energy Service Company including industry history, setbacks, and lessons learned.

103

Chemical Kinetic Models for HCCI and Diesel Combustion  

SciTech Connect (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

104

Benefits of Industrial Boiler Control and Economic Load Allocation at AMOCO Chemicals, Decatur, Alabama  

E-Print Network [OSTI]

The objective of this paper is to provide an overview of the economic benefits realized by Amoco's Decatur plant from the utilization of Honeywell's Industrial Boiler Control solution and Turbo Economic Load Allocation packages on an integrated four...

Winter, J.

105

The Waterpinch{trademark} approach to wastewater minimization: A chemical industry case study  

SciTech Connect (OSTI)

For over a decade, Pinch Analysis{trademark} has been applied to the optimization of energy utilization in process industry. One of the latest applications of pinch technology is waste minimization. Pinch Analysis{trademark} has been extended to deal with mass-transfer processes, as well as energy transfer processes. The latest technology in this field focuses on water conservation and wastewater minimization. It contains an integrated strategy for reuse, regeneration, and recycling of wastewater. It has recently been applied to a number of industrial projects, in which it was proven to be a valid and valuable method for significantly reducing fresh water consumption and/or wastewater effluent from several different types of industrial processes. This paper describes the methodology as well as the results from a recent industrial case study.

Kumana, J.D.; Flen, G.J. [Linnhoff March, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

106

Business models for information commons in the pharmaceutical industry  

E-Print Network [OSTI]

The pharmaceutical industry needs new modes of innovation. The industry's innovation system - based on massive investments in R&D protected by intellectual property rights - has worked well for many years, providing ...

Bharadwaj, Ragu

2009-01-01T23:59:59.000Z

107

Mineralogical and chemical characterization of Joule heated soil contaminated by ceramics industry sludge with high Pb contents  

Science Journals Connector (OSTI)

This research deals with the first attempt to vitrify by a Joule heating process soils contaminated by Pb (2.85 wt.%) from ceramic industry sludges. Physical, mineralogical, and chemical characterization of the glasses were obtained by using several imaging and analytical techniques, namely Scanning Electron Microscopy (SEM) with coupled Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF) and by a specifically built-in sensor for “in-situ” temperature measurements of the melt. The chemical stability of the glass produced by the process was determined by leaching tests. The progressive heating and successive melting of the soil led to decomposition of organic compounds and removal of volatile metals. The cooling of the melt formed a monolithic glass with the aim of immobilizing the heavy metals and inorganic contaminants. All the glasses were found, on a macroscopic scale, mineralogically, chemically and morphologically homogeneous independent of the starting composition. However, on a microscopic scale an inhomogeneous glass matrix was observed. SEM-EDS and XRD revealed the presence of micro-sized Pb particles and Zr2SiO4 (zircon) crystals. In agreement with the microscopical observations, leaching tests indicated high leaching behaviour for Pb. These results should be considered as a general study of the technological effectiveness of vitrification by Joule heating technology with a view to scaling up the process on a field scale and to the treatment of large amount of inorganic industrial wastes containing high amounts of Pb.

Francesco Dellisanti; Piermaria L. Rossi; Giovanni Valdrè

2007-01-01T23:59:59.000Z

108

Biological treatment of chemically flocculated agro-industrial waste from the wool scouring industry by an aerobic process without sludge recycle  

Science Journals Connector (OSTI)

A new agro-industrial effluent known as Sirolan CF effluent is the aqueous phase remaining after the chemical flocculation of wool scouring effluent by the Sirolan CF process. This effluent has been characterized, and shown to be effectively treated by biological degradation. It has a high concentration of organic material (5750 mg/L COD), with a low BOD5/COD ratio (0.29). Aerobic biological treatment was tested using laboratory and pilot scale reactors, and shown to remove essentially all BOD5, solvent extractable material and detergent activity. Maximum removal of the COD was 65% leaving a 2000 mg/L residual component of nonbiodegradable organic material. The combined processes of Sirolan CF and biological treatment removed over 90% of the COD and all solvent extractable material from raw wool scouring effluent. This compares favourably to existing treatment systems, and represents a viable and attractive alternative to treat this extremely polluted wastewater.

Andrew J Poole; Ralf Cord-Ruwisch; F.William Jones

1999-01-01T23:59:59.000Z

109

Chemical Geothermometers And Mixing Models For Geothermal Systems | Open  

Open Energy Info (EERE)

Geothermometers And Mixing Models For Geothermal Systems Geothermometers And Mixing Models For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical Geothermometers And Mixing Models For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum

110

The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries  

E-Print Network [OSTI]

rate, temperature, pressure, or chemical concentration, remain in their desirable regions. Monte Carlo simulations are performed to calculate the probability of process variable exceeding the safety boundaries. Component testing/inspection intervals...

Yang, Xiaole

2011-08-08T23:59:59.000Z

111

Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis  

E-Print Network [OSTI]

Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis In the liquefied natural gas (LNG) shipping industry, the phenomenon of slosh- ing can lead to the occurrence in the LNG shipping industry. KEYWORDS: Sloshing, multivariate heavy-tail distribution, asymptotic depen

112

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network [OSTI]

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

113

Chemical characterization of ozone formation in the Houston-Galveston area: A chemical transport model study  

E-Print Network [OSTI]

: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution--urban and regional (0305 of the atmosphere and hence the lifetime of reactive atmospheric pollutants and many re- duced chemical species. O3 model study Wenfang Lei1 and Renyi Zhang Department of Atmospheric Sciences, Texas A&M University

114

EVALUATION OF INDUSTRY FOUNDATION CLASSES FOR PRACTICAL BUILDING INFORMATION MODELING INTEROPERABILITY  

E-Print Network [OSTI]

Standard Project Committee defines a Building Information Model as "a digital representation of physicalEVALUATION OF INDUSTRY FOUNDATION CLASSES FOR PRACTICAL BUILDING INFORMATION MODELING FOR PRACTICAL BUILDING INFORMATION MODELING INTEROPERABILITY ABSTRACT The AEC (Architecture, Engineering

Kamat, Vineet R.

115

Evaluating Indoor Exposure Modeling Alternatives for LCA: A Case Study in the Vehicle Repair Industry  

Science Journals Connector (OSTI)

Evaluating Indoor Exposure Modeling Alternatives for LCA: A Case Study in the Vehicle Repair Industry ... Alternatives for modeling occupational exposure in LCA are evaluated using experimental monitoring data in the vehicle-repair industry. ... In addition to their use in occupational hygiene, exposure models may also be applied in environmental assessments, such as risk assessment (RA) and life-cycle assessment (LCA). ...

Evangelia Demou; Stefanie Hellweg; Michael P. Wilson; S. Katharine Hammond; Thomas E. McKone

2009-06-25T23:59:59.000Z

116

The application of a chemical equilibrium model, SOLTEQ, to predict the chemical speciations in stabilized/solidified waste forms  

E-Print Network [OSTI]

THE APPLICATION OI' A CHEMICAL EQUILIBRIUM MODEL, SOLTEQ, TO PREDICT THK CHEMICAL SPKCIATIONS IN STABILIZED/SOLIDIFIED WASTE FORMS A Thesis by JOO-YANG PARK Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1994 Major Subject: Civil Engineering THE APPLICATION OF A CHEMICAL EQUILIBRIUM MODEL, SOLTEQ, TO PREDICT THE CHEMICAL SPECIATIONS IN STABILIZED/SOLIDIFIED WASTE FORMS A Thesis...

Park, Joo-Yang

1994-01-01T23:59:59.000Z

117

CHEOPS: A tool-integration platform for chemical process modelling and simulation  

Science Journals Connector (OSTI)

A large number of modelling tools exist for the construction and solution of mathematical models of chemical processes. Each (chemical) process modelling tool provides its own model ... This paper presents a conc...

G. Schopfer; A. Yang; L. von Wedel…

2004-08-01T23:59:59.000Z

118

Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment  

SciTech Connect (OSTI)

Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application. It is possible to have confidence in the predictions of many of the existing models because of their fundamental physical and chemical mechanistic underpinnings and the extensive work already done to compare model predictions and empirical observations. The working group recommends that modeling tools be applied for benchmarking PBT/POPs according to exposure-to-emissions relationships, and that modeling tools be used to interpret emissions and monitoring data. The further development of models that couple fate, long-range transport, and bioaccumulation should be fostered, especially models that will allow time trends to be scientifically addressed in the risk profile.

Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

2008-11-01T23:59:59.000Z

119

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect (OSTI)

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

120

2007 Society of Chemical Industry and John Wiley & Sons, Ltd Pretreatment: the key to  

E-Print Network [OSTI]

presents important opportunities to achieve very low costs, pretreatment of naturally resistant cellulosic materials is essential if we are to achieve high yields from biological operations; this operation biological, chemical, physical, and thermal approaches have been investigated over the years, but only those

California at Riverside, University of

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mercury's thermo-chemical evolution from numerical models constrained  

E-Print Network [OSTI]

Mercury's thermo-chemical evolution from numerical models constrained by MESSENGER observations Globe de Paris, France #12;Basics facts about Mercury · Semi-major axis: 0.39 AU · 3:2 spin Earth!) · Black body temperature: 440 K #12;Exploration of Mercury Mariner10 ·First spacecraft to use

Cerveny, Vlastislav

122

Development of Chemical Model to Predict the Interactions between  

Open Energy Info (EERE)

Model to Predict the Interactions between Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Chemical Model to Predict the Interactions between Supercritical CO2 and Fluid, Rocks in EGS Reservoirs Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description In order to develop this model, databases will be assembled and/or updated for thermodynamic and kinetic rate laws for water/brine/rock/CO2 interactions at the pressures and temperatures common to EGS systems. In addition to a literature search, extrapolation of existing data and experimental laboratory work will be conducted to calibrate and verify the datasets.

123

CFD model for the simulation of chemical looping combustion  

Science Journals Connector (OSTI)

Abstract A chemical looping combustion (CLC) system uses a metal oxide solid carrier to combust a source of fuel in isolation from the source of oxygen which produces an exhaust gas of primarily carbon dioxide and water. In this work, a full three-dimensional model of a chemical looping combustion system was developed to simulate the particle–fluid hydrodynamics, thermal characteristics, and reaction efficiency of the CLC system using coal particles as a fuel source. Multiple heterogeneous and homogenous reactions are considered in the CLC model including the oxidation and reduction reactions of the metal oxide carrier and gasification reactions. Within each coal particle, the temperature-dependent devolatilization, moisture release, and particle swelling effects are included. Modeling results showing fluidization regimes, circulation rate, reactor efficiencies, and temperature profiles are presented to demonstrate the utility of the model.

James M. Parker

2014-01-01T23:59:59.000Z

124

Assessing homeland chemical hazards outside the military gates: industrial hazard threat assessments for department of defense installations  

Science Journals Connector (OSTI)

As part of comprehensive joint medical surveillance measures outlined by the Department of Defense, the US Army Center for Health Promotion and Preventive Medicine (USACHPPM) is beginning to assess environmental health threats to continental US military installations. A common theme in comprehensive joint medical surveillance, in support of Force Health Protection, is the identification and assessment of potential environmental health hazards, and the evaluation and documentation of actual exposures in both a continental US and outside a continental US setting. For the continental US assessments, the USACHPPM has utilized the US Environmental Protection Agency (EPA) database for risk management plans in accordance with Public Law 106-40, and the toxic release inventory database, in a state-of the art geographic information systems based program, termed the Consequence Assessment and Management Tool Set, or CATS, for assessing homeland industrial chemical hazards outside the military gates. As an example, the US EPA toxic release inventory and risk management plans databases are queried to determine the types and locations of industries surrounding a continental US military installation. Contaminants of concern are then ranked with respect to known toxicological and physical hazards, where they are then subject to applicable downwind hazard simulations using applicable meteorological and climatological data sets. The composite downwind hazard areas are mapped in relation to emergency response planning guidelines (ERPG), which were developed by the American Industrial Hygiene Association to assist emergency response personnel planning for catastrophic chemical releases. In addition, other geographic referenced data such as transportation routes, satellite imagery and population data are included in the operational, equipment, and morale risk assessment and management process. These techniques have been developed to assist military medical planners and operations personnel in determining the industrial hazards, vulnerability assessments and health risk assessments to continental United States military installations. These techniques and procedures support the Department of Defense Force Protection measures, which provides awareness of a terrorism threat, appropriate measures to prevent terrorist attacks and mitigate terrorism's effects in the event that preventive measures are ineffective.

Jeffrey S Kirkpatrick; Jacqueline M Howard; David A Reed

2002-01-01T23:59:59.000Z

125

Sponsors of CIEEDAC: Environment Canada Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity  

E-Print Network [OSTI]

. This includes the oil and gas extraction industries and the coal mining industry. To analyze changes in GHG; technology innovations; transparency of data availability; location of production facilities; international political dynamics; nuclear development initiatives; frontier exploration initiatives; Canada's Clean Air

126

Problem solving in product development: a model for the advanced materials industries  

Science Journals Connector (OSTI)

Problem solving has been identified as a key aspect of product development. Yet, existing descriptive models of problem solving in product development are derived from experience in traditional fabrication and assembly-based industries. This paper examines the sequence of problem solving activities in the advanced materials industries. As opposed to the paradigm of product development seen in industries based on traditional metal fabrication and assembly production technology, development activities in advanced materials industries are focused around a core effort in process development. The paper characterises the steps of design and the associated testing patterns in the advanced materials industries. The model formalises the emphasis on process design and process experimentation, providing a richer description of the problem-solving sequence than the traditional design-build-test sequence so common in the fabrication/assembly industries.

Brent D. Barnett; Kim B. Clark

1998-01-01T23:59:59.000Z

127

Computational Modeling of Coal Water Slurry Combustion Processes in Industrial Heating Boiler  

Science Journals Connector (OSTI)

Coal water slurry (CWS) is typically composed of 60–70% coal, 30–40% water, and 1% chemical additives. It has been developed over the last 20 years as an alternative to fuel oil mainly in industrial and utility b...

L. J. Zhu; B. Q. Gu

2007-01-01T23:59:59.000Z

128

Martin Karplus and Computer Modeling for Chemical Systems  

Office of Scientific and Technical Information (OSTI)

Martin Karplus and Computer Modeling for Chemical Systems Martin Karplus and Computer Modeling for Chemical Systems Resources with Additional Information · Karplus Equation Martin Karplus ©Portrait by N. Pitt, 9/10/03 Martin Karplus, the Theodore William Richards Professor of Chemistry Emeritus at Harvard, is one of three winners of the 2013 Nobel Prize in chemistry... The 83-year-old Vienna-born theoretical chemist, who is also affiliated with the Université de Strasbourg, Strasbourg, France, is a 1951 graduate of Harvard College and earned his Ph.D. in 1953 at the California Institute of Technology. While there, he worked with two-time Nobel laureate Linus Pauling, whom Karplus described as an important early influence. He shared the Nobel with researchers Michael Levitt of Stanford University and Arieh Warshel of the University of Southern California, Los Angeles. Warshel was once a postdoctoral student of Karplus ...

129

Probabilistic consequence model of accidenal or intentional chemical releases.  

SciTech Connect (OSTI)

In this work, general methodologies for evaluating the impacts of large-scale toxic chemical releases are proposed. The potential numbers of injuries and fatalities, the numbers of hospital beds, and the geographical areas rendered unusable during and some time after the occurrence and passage of a toxic plume are estimated on a probabilistic basis. To arrive at these estimates, historical accidental release data, maximum stored volumes, and meteorological data were used as inputs into the SLAB accidental chemical release model. Toxic gas footprints from the model were overlaid onto detailed population and hospital distribution data for a given region to estimate potential impacts. Output results are in the form of a generic statistical distribution of injuries and fatalities associated with specific toxic chemicals and regions of the United States. In addition, indoor hazards were estimated, so the model can provide contingency plans for either shelter-in-place or evacuation when an accident occurs. The stochastic distributions of injuries and fatalities are being used in a U.S. Department of Homeland Security-sponsored decision support system as source terms for a Monte Carlo simulation that evaluates potential measures for mitigating terrorist threats. This information can also be used to support the formulation of evacuation plans and to estimate damage and cleanup costs.

Chang, Y.-S.; Samsa, M. E.; Folga, S. M.; Hartmann, H. M.

2008-06-02T23:59:59.000Z

130

Self-consistent chemical model of partially ionized plasmas  

Science Journals Connector (OSTI)

A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

Yu. V. Arkhipov, F. B. Baimbetov, and A. E. Davletov

2011-01-21T23:59:59.000Z

131

Industrial environmental performance evaluation: A Markov-based model considering data uncertainty  

Science Journals Connector (OSTI)

Commonly, operational aspects of an industrial process are not included when evaluating the process environmental performance. These aspects are important as operational failures can intensify adverse environmental impacts or can diminish the chance ... Keywords: Decision-making, Environmental model, Industrial process, Maintenance, Markov chain, Uncertainty

Samaneh Shokravi, Alan J. R. Smith, Colin R. Burvill

2014-10-01T23:59:59.000Z

132

On the use of fuzzy inference techniques in assessment models: part II: industrial applications  

Science Journals Connector (OSTI)

In this paper, we study the applicability of the monotone output property and the output resolution property in fuzzy assessment models to two industrial Failure Mode and Effect Analysis (FMEA) problems. First, t...

Kai Meng Tay; Chee Peng Lim

2008-09-01T23:59:59.000Z

133

Modeling ruminant methane emissions from the U.S. beef cattle industry  

E-Print Network [OSTI]

Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

Turk, Danny Carroll

2012-06-07T23:59:59.000Z

134

Use of Fe2O3-Containing Industrial Wastes As the Oxygen Carrier for Chemical-Looping Combustion of Coal: Effects of Pressure and Cycles  

Science Journals Connector (OSTI)

Industrial & Engineering Chemistry Research (2006), 45 (17), 6075-6080 CODEN: IECRED; ISSN:0888-5885. ... Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops ... Shen, L. H.; Wu, J. H.; Gao, Z. P.; Xiao, J. Combust. ...

Shuai Zhang; Chiranjib Saha; Yichao Yang; Sankar Bhattacharya; Rui Xiao

2011-09-13T23:59:59.000Z

135

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network [OSTI]

and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

136

Optimizing Large Scale Chemical Transport Models for Multicore Platforms John C. Linford and Adrian Sandu  

E-Print Network [OSTI]

Optimizing Large Scale Chemical Transport Models for Multicore Platforms John C. Linford and Adrian: Chemical Transport Model, Domain Decom- position, Time Splitting, Multicore, Scalability, IBM Cell Broadband Engine, Intel Quad-Core Xeon. Abstract The performance of a typical chemical transport model

Sandu, Adrian

137

A general model for chemical erosion of carbon materials due to low-energy H + impact  

Science Journals Connector (OSTI)

Modeling the chemical erosion of carbon materials due to low-energy H + impact is of paramount importance for the prediction of the behavior of carbon-based plasma-facing components in nuclear fusion devices. In this paper a simple general model describing both energy and temperature dependence of carbon-based chemical erosion is presented. Enlightened by Hopf’s model {Hopf et al. [J. Appl. Phys.94 2373 (Year: 2003)} the chemical erosion is separated into the contributions from three mechanisms: thermal chemical erosion energetic chemical sputtering and ion-enhanced chemical erosion. Using input from the Monte Carlo code TRIDYN this model is able to reproduce experimental data well.

Shengguang Liu; Jizhong Sun; Shuyu Dai; Thomas Stirner; Dezhen Wang

2010-01-01T23:59:59.000Z

138

Integrated Tribo-Chemical Modeling of Copper CMP  

E-Print Network [OSTI]

Tribochemical Mechanisms of Copper Chemical MechanicalEli, D. Starosvetsky, "Review on copper chemical–mechanicalY. Li, "Investigation of Copper Removal Mechanisms d uring

Shantanu Tripathi; Choi, Seungchoun; Doyle, Fiona M; Dornfeld, David

2009-01-01T23:59:59.000Z

139

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

140

High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes  

SciTech Connect (OSTI)

Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Supporting technology for enhanced oil recovery: Chemical flood predictive model  

SciTech Connect (OSTI)

The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

Ray, R.M.; Munoz, J.D.

1986-12-01T23:59:59.000Z

142

Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds  

Science Journals Connector (OSTI)

Abstract The durability of a polymer electrolyte fuel cell membrane, along with high proton conductivity and mechanical performance is critical to the success of these energy conversion devices. Extending our work in perfluorinated membrane stability, aromatic trifluoromethyl sulfonamide model compounds were prepared, and their oxidative degradation was examined. The chemical structures for the models were based on mono-, di- and tri-perfluorinated sulfonamide modified phenyl rings. Durability of the model compounds was evaluated by exposure to hydroxyl radicals generated using Fenton reagent and UV irradiation of hydrogen peroxide. LC–MS results for the mono-substituted model compound indicate greater stability to radical oxidation than the di-substituted species; loss of perfluorinated fonamide side chains appears to be an important pathway, along with dimerization and aromatic ring hydroxylation. The tri-substituted model compound also shows loss of side chains, with the mono-substituted compound being a major oxidation product, along with a limited amount of hydroxylation and dimerization of the starting material.

Jamela M. Alsheheri; Hossein Ghassemi; David A. Schiraldi

2014-01-01T23:59:59.000Z

143

Mathematical Modeling of Pottery Production in Different Industrial Furnaces  

Science Journals Connector (OSTI)

The traditional process for pottery production was analyzed in this work by developing a fundamental mathematical model that simulates the operation of rustic pottery furnaces as employed by natives of village...

Marco Aurelio Ramírez Argáez…

2008-10-01T23:59:59.000Z

144

The deformation models needed by the steel industry  

Science Journals Connector (OSTI)

...model for process control. pressing at an auto supply company. The design...transferred along the supply chain. In other words...used for process control, have to run in real...feedstock composition and temperature. Figure 12 illus...

1999-01-01T23:59:59.000Z

145

Industrial Application of ObjectOriented Mathematical Modeling and Computer Algebra  

E-Print Network [OSTI]

Industrial Application of Object­Oriented Mathematical Modeling and Computer Algebra in Mechanical of such an en­ vironment including a modeling language (ObjectMath -- Object oriented Mathematical language within a computer algebra language. This environment and language, called ObjectMath (Object oriented

Zhao, Yuxiao

146

An End-To-End Model of an Electrothermal Chemical Gun.  

E-Print Network [OSTI]

??A combined end-to-end electrothermal chemical gun model is presented. An elec- trothermal chemical gun is a conventional artillery piece in which the solid propellant ignition… (more)

Porwitzky, Andrew James

2008-01-01T23:59:59.000Z

147

Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM  

Science Journals Connector (OSTI)

The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

P. Ravi Babu; V. P. Sree Divya

2011-01-01T23:59:59.000Z

148

The application of neural networks with artificial intelligence technique in the modeling of industrial processes  

SciTech Connect (OSTI)

Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

Saini, K. K.; Saini, Sanju [CDLM engg. College Panniwala Mota, Sirsa and Murthal, Sonipat, Haryana (India)

2008-10-07T23:59:59.000Z

149

Chemical Looping Combustion System-Fuel Reactor Modeling  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

Gamwo, I.K.; Jung, J. (ANL); Anderson, R.R.; Soong, Y.

2007-04-01T23:59:59.000Z

150

ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION  

SciTech Connect (OSTI)

Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

Martino, C.; Herman, D.; Pike, J.; Peters, T.

2014-06-05T23:59:59.000Z

151

ATOC/CHEM 5151 Challenge Problem 3 Building a Chemical Kinetics Model Part 1  

E-Print Network [OSTI]

ATOC/CHEM 5151 ­ Challenge Problem 3 Building a Chemical Kinetics Model ­ Part 1 Due Thursday expressions for the rates of changes of all species as the first step toward building a chemical model. Later, October 2, 2014 Final Version Models of atmospheric chemistry have become important tools for describing

Toohey, Darin W.

152

An experimental and detailed chemical kinetic modelling study of 2methyl furan oxidation  

E-Print Network [OSTI]

platform chemical 5hydroxymethylfurfural now a possibility [4], [5], [6] and [7]. 25DMF offers significantAn experimental and detailed chemical kinetic modelling study of 2methyl furan oxidation.55­1.65, initial temperatures of 298­398 K and atmospheric pressure. A detailed chemical kinetic mechanism

Paris-Sud XI, Université de

153

Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water  

Broader source: Energy.gov [DOE]

Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water presentation at the April 2013 peer review meeting held in Denver, Colorado.

154

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

155

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

156

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network [OSTI]

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos García-Diéguez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC ­ PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

Boyer, Edmond

157

header for SPIE use Laboratory Data and Model Comparisons of the Transport of Chemical  

E-Print Network [OSTI]

National Laboratories, Albuquerque, NM b New Mexico Institute of Mining and Technology, Socorro, NM processes are fairly well understood from many years of agricultural and industrial pollution soil physics of explosive chemicals. The humidity of the air flowing through the plenum was set at about 50% RH to generate

Cal, Mark P.

158

Chemical-Looping Combustion With Gaseous Fuels: Thermodynamic Parametric Modeling  

Science Journals Connector (OSTI)

This communication reports the thermodynamic equilibrium analysis of the reactions involved in a chemical-looping combustion (CLC) process using methane, ethane and ... energy minimization technique determining t...

Mohammad M. Hossain

2014-05-01T23:59:59.000Z

159

Chemical Looping Combustion Cold Flow Model commissioning and performance evaluation.  

E-Print Network [OSTI]

?? SINTEF and NTNU are planning to build a 150 kWth Chemical Looping Combustion (CLC) reactor system. This is new technology and the CLC reactor… (more)

Tjøstheim, Sindre

2010-01-01T23:59:59.000Z

160

Mechanics, mechanisms, and modeling of the chemical mechanical polishing process  

E-Print Network [OSTI]

The ever-increasing demand for high-performance microelectronic devices has motivated the semiconductor industry to design and manufacture Ultra-Large-Scale Integrated (ULSI) circuits with smaller feature size, higher ...

Lai, Jiun-Yu

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CHEMICAL MARKETING  

Science Journals Connector (OSTI)

CHEMICAL MARKETING ... The reason, I believe, is that the chemical industry has been blind (until very recently) to the need for paying attention to marketing. ... Its marketing needs are now like those of a mature—no longer a growing—industry. ...

1960-12-19T23:59:59.000Z

162

System dynamics-based modelling and analysis of greening the construction industry supply chain  

Science Journals Connector (OSTI)

Increasing concern on global warming and corporate social responsibility have made environmental issues an area of importance to address for governments and businesses across the world. Among the Middle East countries, the United Arab Emirates (UAE) tops the list in terms of per capita energy spending and per capita carbon footprints. The construction industry is the major contributor to environmental pollution due to its size and nature of activity. The rapid growth of construction sector has a significant environmental impact with increase in carbon footprints. This paper analyses the environmental implications of the rapidly growing construction industry in UAE using system dynamics approach. Quantitative modelling of the construction industry supply chain helps to measure the dynamic interaction between its various factors under multiple realistic scenarios. The potential carbon savings and the impact of each factor are calculated using scenario development analysis. The paper has addressed in detail the various drivers and inhibitors of carbon emission in the construction industry supply chain and ways to evaluate the carbon savings. The paper provides an analytical decision framework to assess emissions of all stages applicable to the construction industry supply chain.

Balan Sundarakani; Arijit Sikdar; Sreejith Balasubramanian

2014-01-01T23:59:59.000Z

163

Tropospheric Nitric Acid Columns from IASI Interpreted with a Chemical Transport Model Matthew Cooper1  

E-Print Network [OSTI]

1 Tropospheric Nitric Acid Columns from IASI Interpreted with a Chemical Transport Model Matthew from the IASI satellite instrument with a global chemical transport model (GEOS-Chem). GEOS the Infrared Atmospheric Sounding Interferometer (IASI) instrument on the MetOp satellite platform. IASI

Martin, Randall

164

A model on chemical looping combustion of methane in a bubbling fluidized-bed process  

Science Journals Connector (OSTI)

We developed a mathematical model to discuss the performance of chemical looping combustion (CLC) of methane in continuous bubbling ... The present model agrees reasonably well with the combustion efficiency meas...

Jeong-Hoo Choi; Pil Sang Youn; Djamila Brahimi…

2012-06-01T23:59:59.000Z

165

Local Dosing in a 3-Mercaptopropionic Acid Chemically-Induced Epileptic Seizure Model with Microdialysis Sampling  

E-Print Network [OSTI]

The focus of this research was the development of an animal model for local administration of 3-mercaptopropionic acid (3-MPA) in a chemically-induced epileptic seizure model using microdialysis sampling with simultaneous electrocorticography...

Mayer, Andrew Philip

2010-12-31T23:59:59.000Z

166

Modeling the determinants of industry political power: industry winners in the Economic Recovery Tax Act of 1981  

E-Print Network [OSTI]

This study uses qualitative comparative analysis (QCA) to examine the basis of industry political power by assessing conditions of economic interdependence and political action associated with the passage of the Economic Recovery Tax Act of 1981...

Kardell, Amy Louise

2004-09-30T23:59:59.000Z

167

CFD modeling of entrained-flow coal gasifiers with improved physical and chemical sub-models  

SciTech Connect (OSTI)

Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. While the turbulent multiphase reacting flow inside entrained-flow gasifiers has been modeled through computational fluid dynamic (CFD), the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented here include a moisture vaporization model with consideration of high mass transfer rate, a coal devolatilization model with more species to represent coal volatiles and heating rate effect on volatile yield, and careful selection of global gas phase reaction kinetics. The enhanced CFD model is applied to simulate two typical oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here indicate that the gasifier models reported in this paper are reliable and accurate enough to be incorporated into process/CFD co-simulations of IGCC power plants for systemwide design and optimization.

Ma, J.; Zitney, S.

2012-01-01T23:59:59.000Z

168

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual ... Keywords: Industrial gas turbine, Local linear model tree (LOLIMOT), Local linear neuro-fuzzy network, Model error modelling, Neural network, Robust fault detection and isolation

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-08-01T23:59:59.000Z

169

Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models  

SciTech Connect (OSTI)

To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. This paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)

Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.; Carrott, M.J.; Mason, C.; Woodhead, D.A.; Maher, C.J. [British Technology Centre, Nexia Solutions, Sellafield, Seascale, CA20 1PG (United Kingdom); Steele, H. [Nexia Solutions, inton House, Risley, Warrington, WA3 6AS (United Kingdom); Koltunov, V.S. [A.A. Bochvar All-Russia Institute of Inorganic Materials, VNIINM, PO Box 369, Moscow 123060 (Russian Federation)

2007-07-01T23:59:59.000Z

170

Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

Jung, Jonghwun (ANL); Gamwo, I.K.

2008-04-21T23:59:59.000Z

171

Modeling and co-simulation of a parabolic trough solar plant for industrial process heat  

Science Journals Connector (OSTI)

In the present paper a tri-dimensional non-linear dynamic thermohydraulic model of a parabolic trough collector was developed in the high-level acausal object-oriented language Modelica and coupled to a solar industrial process heat plant modeled in TRNSYS. The integration is performed in an innovative co-simulation environment based on the TLK interconnect software connector middleware. A discrete Monte Carlo ray-tracing model was developed in SolTrace to compute the solar radiation heterogeneous local concentration ratio in the parabolic trough collector absorber outer surface. The obtained results show that the efficiency predicted by the model agrees well with experimental data with a root mean square error of 1.2%. The dynamic performance was validated with experimental data from the Acurex solar field, located at the Plataforma Solar de Almeria, South-East Spain, and presents a good agreement. An optimization of the IST collector mass flow rate was performed based on the minimization of an energy loss cost function showing an optimal mass flow rate of 0.22 kg/s m2. A parametric analysis showed the influence on collector efficiency of several design properties, such as the absorber emittance and absorptance. Different parabolic trough solar field model structures were compared showing that, from a thermal point of view, the one-dimensional model performs close to the bi-dimensional. Co-simulations conducted on a reference industrial process heat scenario on a South European climate show an annual solar fraction of 67% for a solar plant consisting on a solar field of 1000 m2, with thermal energy storage, coupled to a continuous industrial thermal demand of 100 kW.

R. Silva; M. Pérez; A. Fernández-Garcia

2013-01-01T23:59:59.000Z

172

Chemical Kinetics for Modeling Silicon Epitaxy from Chlorosilanes  

SciTech Connect (OSTI)

A reaction mechanism has been developed that describes the gas-phas 0971 and surface reactions involved in the chemical vapor deposition of Si from chlorosilanes. Good agreement with deposition rate data from a single wafer reactor with no wafer rotation has been attained over a range of gas mixtures, total flow rates, and reactor temperatures.

Balakrishna, A.; Chacin, J.M.; Comita, P.B.; Haas, B.; Ho, P.; Thilderkvist, A.

1998-11-24T23:59:59.000Z

173

Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels  

SciTech Connect (OSTI)

n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

2009-03-30T23:59:59.000Z

174

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

1993-05-01T23:59:59.000Z

175

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 2008 1813 Models for Bearing Damage Detection in Induction  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 2008 1813 Models for Bearing, torque variations. I. INTRODUCTION INDUCTION motors are nowadays widely used in all types of industry applications due to their simple construction, high reliability, and the availability of power converters using

Boyer, Edmond

176

Coupling Chemical Transport Model Source Attributions with Positive Matrix Factorization: Application to Two IMPROVE Sites Impacted by Wildfires  

Science Journals Connector (OSTI)

Coupling Chemical Transport Model Source Attributions with Positive Matrix Factorization: Application to Two IMPROVE Sites Impacted by Wildfires ... § Cooperative

Timothy M. Sturtz; Bret A. Schichtel; Timothy V. Larson

2014-09-02T23:59:59.000Z

177

The American Chemical Industry --A Perspective from an Academic Richard N. Zare, Department of Chemistry, Stanford University, Stanford,  

E-Print Network [OSTI]

Carbide Air Products 1998 R&D Spending as % of Sales: Dow is 4.4 %; Rohm and Haas is 5.6 %; Union Carbide is 2.5 %; Air Products is 2.3 %. #12;Vu-graph 6. R&D SPENDING Pharmaceuticals; $ Millions 0 500 1000 manufacturer of chemical products by a substantial margin with a balance of trade surplus in excess of $15

Zare, Richard N.

178

Physical and chemical characteristics of an interesterified blend of butterfat and cottonseed oil with possible industrial applications  

E-Print Network [OSTI]

: dilatometry, glyceride compositional analysis, thin layer chromatography, gas liquid chromatography, mass spectrometry, and pancreatic lipase hydrolysis. physical/Chemical properties of the Modified pats Use of official methods of the American Oil... butterfat, cottonseed oil, the blend, the interesterified blend, and cheese. The following tests were conducted: Free fatty acids A. O. C. S. official method Ca 5a-40 was used. The molten samples were well mixed and a sample size of 28. 2 g of each...

Rashidi, Nabil

2012-06-07T23:59:59.000Z

179

Ecotoxicological simulation modeling: effects of agricultural chemical exposure on wintering burrowing owls  

E-Print Network [OSTI]

, (2) chemical applications to crops, (3) chemical transfer and fate in the crop soil and prey items, and (4) chemical exposure in the burrowing owl. This model was used to evaluate (1) which components of the model most affect the endpoints, (2... Cotton/Sorghum/Onions crop scenario HD5 Hazardous Dose resulting in mortality of 5% of the population LD50 Lethal Dose resulting in mortality of 50% of the population LEL Lowest Effects Level vii LOEL Lowest Observed Effects Level NASS USDA...

Engelman, Catherine Allegra

2008-10-10T23:59:59.000Z

180

Analysis and reduction of chemical models under uncertainty.  

SciTech Connect (OSTI)

While models of combustion processes have been successful in developing engines with improved fuel economy, more costly simulations are required to accurately model pollution chemistry. These simulations will also involve significant parametric uncertainties. Computational singular perturbation (CSP) and polynomial chaos-uncertainty quantification (PC-UQ) can be used to mitigate the additional computational cost of modeling combustion with uncertain parameters. PC-UQ was used to interrogate and analyze the Davis-Skodje model, where the deterministic parameter in the model was replaced with an uncertain parameter. In addition, PC-UQ was combined with CSP to explore how model reduction could be combined with uncertainty quantification to understand how reduced models are affected by parametric uncertainty.

Oxberry, Geoff; Debusschere, Bert J.; Najm, Habib N.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

2014 Society of Chemical Industry and John Wiley & Sons, Ltd Correspondence to: Yogendra N. Shastri, Room 311, Department of Chemical Engineering, Indian Institute of Technology Bombay,  

E-Print Network [OSTI]

-Champaign. Modeling and Analysis Determining optimal size reduction and densification for biomass feedstock using of this article. Keywords: biomass feedstock; size reduction; densification; BioFeed; hammer milling; Miscanthus and densification of biomass feedstock Size reduction and densification experiments Miscanthus and switchgrass were

182

Impact of the revised OSHA exposure standard on evaluation and control of benzene and other volatile organic chemicals in the liquid petroleum pipeline industry  

SciTech Connect (OSTI)

The primary purpose of this study was to determine the benzene exposure potential of workers in the liquid petroleum pipeline industry and to assess the impact of compliance with the revised standard on this industry. In addition, exposure to ethylene dibromide (EDB), and ethylene dichloride (EDC), which have toxicological profiles similar to that of benzene and are routinely found in this industry, were evaluated and appropriate control protocols were recommended. Exposure potential to benzene in excess of the 0.5 ppm (8-hour TWA) OSHA action level was shown to be limited to three free product handling operations, and that this increased exposure potential was dependent on the length of time necessary to perform the operations. The incidence and magnitude of benzene overexposure was not severe and control could be accomplished with engineering methods, along with work practice controls and personal protective equipment. Through application of a risk assessment model it was shown that 14 excess leukemia deaths per one thousand workers could be expected in the employee population that routinely performs those operation having maximum benzene exposure potential. This compares to less than on excess leukemia death per one thousand workers in the total work population. The evaluation of EDB and EDC indicated that exposure potential to EDB was of greatest concern. Even though exposure could be limited through application of standard industrial hygiene methods, any control protocol short of total elimination of EDB from the product stream may be not sufficient to reduce exposure to accepted levels.

Mercer, D.O.

1989-01-01T23:59:59.000Z

183

Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype  

Science Journals Connector (OSTI)

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data.

Silvio Simani; Cesare Fantuzzi

2006-01-01T23:59:59.000Z

184

Robust model-based fault diagnosis for chemical process systems  

E-Print Network [OSTI]

diagnosis systems, which use limited information about the process model to robustly detect, discriminate, and reconstruct instrumentation faults. Broadly, the proposed method consists of a novel nonlinear state and parameter estimator coupled with a fault...

Rajaraman, Srinivasan

2006-08-16T23:59:59.000Z

185

Development of Chemical Model to Predict the Interactions between...  

Broader source: Energy.gov (indexed) [DOE]

- TOUGH family codes have been widely used in modeling EGS and CCS processes. The fracture-matrix feature can be handled through the MINC module; however, at considerable cost....

186

CFD modelling of thermal distribution in industrial server centres for configuration optimisation and energy efficiency  

Science Journals Connector (OSTI)

The use of servers for computational and communication control tasks is becoming more and more frequent in industries and institutions. Ever increasing computational power and data storage combined with reduction in chipsets size resulted in the increased heat density and need for proper configurations of the server racks to enhance cooling and energy efficiency. While different methods can be used to model and design new server centres and optimise their configuration, there is no clear guideline in the literature on the best way to design them and how to increase energy efficiency of existing server centres. This paper presents a simplified yet reliable computational fluid dynamics (CFD) model used to qualitatively evaluate different cooling solutions of a data centre and proposes guidelines to improve its energy efficiency. The influence of different parameters and configurations on the cooling load of the server room is then analysed.

Pierre-Luc Paradis; Drishtysingh Ramdenee; Adrian Ilinca; Hussein Ibrahim

2014-01-01T23:59:59.000Z

187

An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling  

Science Journals Connector (OSTI)

Abstract This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

Atakan Ongen; H. Kurtulus Ozcan; Semiha Aray?c?

2013-01-01T23:59:59.000Z

188

Integrating model-in-the-loop simulations to model-driven development in industrial control  

Science Journals Connector (OSTI)

Software applications are becoming increasingly important in automation and control systems. This has forced control system vendors and integrators to pursue new, more effective software development practices. One of the promising research paths has ... Keywords: Model-driven development, automation and control, model-in-the-loop, simulations

Timo Vepsäläinen, Seppo Kuikka

2014-12-01T23:59:59.000Z

189

FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa. Relevance of this HS model based result to EOR is established by performing direct numerical simulations of fully developed tertiary displacement in porous media. Results of direct numer- ical simulation

Daripa, Prabir

190

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

2008-05-29T23:59:59.000Z

191

Modeling of thermodynamic and chemical changes in low-temperature geothermal systems  

SciTech Connect (OSTI)

A method was developed to incorporate the transport of several chemical components into a model of the transport of fluid mass and heat within a geothermal system. It was demonstrated that the use of coupled hydrological, thermal and chemical data allows for the determination of field porosities, amounts and regions of cool recharge into the system as well as field permeabilities and the hot reservoir volume. With the additional information a reliable prediction of the long-term cooling rate can be made.

Spencer, A.L.

1986-12-01T23:59:59.000Z

192

PROCESS MODELING AND CONTROL The Department of Chemical Engineering  

E-Print Network [OSTI]

) · S. Ziaii ­ CO2 absorption process modeling and control/power plant energy integration (Joint research in our department #12;· Ensure safe plant operation · Meet product specifications · Optimize/Control · B. Gill ­ Virtual sensors in etch processes (Texas Instruments) · X. Jiang ­ Controller performance

Lightsey, Glenn

193

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-02-13T23:59:59.000Z

194

Modeling and simulation of the industrial numerical distance relay aimed at knowledge discovery in resident event reporting  

Science Journals Connector (OSTI)

In the motivation of tapping the strong potential of computational intelligence in discovering knowledge of protective relay operations using data mining, modeling and simulation of an actual industrial numerical distance relay and its recording facility ... Keywords: Distance protection, Knowledge Discovery in Databases, Rough Set Theory, association rule, computational intelligence, data mining, numerical protective relay, relay modeling

Mohammad Lutfi Othman, Ishak Aris, Noor Izzri Abdul Wahab

2014-06-01T23:59:59.000Z

195

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network [OSTI]

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

Victoria, University of

196

HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence Berkeley National Laboratory, U.S.A.  

E-Print Network [OSTI]

1 HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which

197

Systems Modeling and Analysis Industrial Engineers are interested in optimizing the design and operation of complex systems  

E-Print Network [OSTI]

and operation of complex systems composed of people and machines using information, materials and energySystems Modeling and Analysis Industrial Engineers are interested in optimizing the design to produce goods and services. Analyzing such systems with information-driven models is an essential step

Dyer, Bill

198

Modelling the potential for industrial energy efficiency in IEA’s World Energy Outlook  

Science Journals Connector (OSTI)

The industry sector accounts for more than a third of global final energy consumption and nearly the same share of global energy-related CO2...emissions. Compared with other sectors, however, industrial energy mo...

Fabian Kesicki; Akira Yanagisawa

2014-07-01T23:59:59.000Z

199

A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota  

SciTech Connect (OSTI)

This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T{sub max} for each well. The calculated Rock-Eval T{sub max} values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

Sweeney, J.J.; Braun, R.L.; Burnham, A.K. [Lawrence Livermore National Lab., CA (United States); Gosnold, W.D. [North Dakota Univ., Grand Forks, ND (United States)

1992-10-01T23:59:59.000Z

200

The competition situation analysis of shale gas industry in China: Applying Porter’s five forces and scenario model  

Science Journals Connector (OSTI)

Abstract With the increasing of energy demand and environmental pressure, China government has been exploring a way to diversify energy supply. Shale gas development is becoming an important energy strategy in China in recent years due to giant shale gas reserves. However, the shale gas market is preliminarily shaping in China, so that many factors have great influence on its competition. To find these factors and to control them rationally is good for the cultivating Chinese shale gas market. Five forces model for industry analysis puts an insight into the competitive landscape of shale gas market by showing the forces of supplier power, buyer power, threat of substitution, barriers to entry, and degree of rivalry. Illustrating the key factors that affect competitive landscape provides a view into the situation of shale gas industry. The variation tendency of shale gas industry is analyzed by setting various scenarios. Finally some suggestions are proposed in order to keep the development of shale gas industry positively.

Wu Yunna; Yang Yisheng

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 Framework to Cope with Organizational Reuse Maturity  

E-Print Network [OSTI]

A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 in industrial engineering for solution providers is more and more recognized as a key to economic success for reuse in industrial engineering. Based on an overview and the background of the GDES-Reuse improvement

Mössenböck, Hanspeter

202

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

203

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

204

A kinetic model of diamond nucleation and silicon carbide interlayer formation during chemical vapor deposition  

E-Print Network [OSTI]

A kinetic model of diamond nucleation and silicon carbide interlayer formation during chemical February 2005 Available online 7 April 2005 Abstract The presence of thin silicon carbide intermediate of carbon atoms into the silicon carbide layer and the morphology and orientation of the diamond film

Dandy, David

205

Chemical-equilibrium model of optimal a-Si:H growth from SiH4  

Science Journals Connector (OSTI)

A model of optimal hydrogenated-amorphous-silicon growth based on bulk chemical reactions involving Si-Si and Si-H bonds is proposed. The optimal growth temperature is determined by the balance between the rate of hydrogen diffusion and the rate of film growth.

K. Winer

1990-04-15T23:59:59.000Z

206

Optimized regional and interannual variability of lightning in a global chemical transport model constrained  

E-Print Network [OSTI]

to remove their diurnal sampling bias, we construct a monthly time series of lightning flash rates for 1998, D20307, doi:10.1029/2012JD017934. 1. Introduction [2] The extreme heat in a lightning flash channelOptimized regional and interannual variability of lightning in a global chemical transport model

Jacob, Daniel J.

207

Chemical reactor models of optimal digestion efficiency with constant foraging costs  

E-Print Network [OSTI]

Chemical reactor models of optimal digestion efficiency with constant foraging costs J. David Logan-batch reactor or plug flow reactor. Specifically, we determine the residence time that optimizes the average net , Anthony Joern , & William Wolesensky January 24, 2003 Abstract We develop quantitative optimization

Logan, David

208

Detailed numerical modeling of chemical and thermal nonequilibrium in hypersonic flows  

SciTech Connect (OSTI)

Interest in hypersonic flows has created a large demand for physicochemical models for air flow computations around reentry bodies. Detailed physicochemical models for air in chemical and thermal nonequilibrium are needed for a realistic prediction of hypersonic flowfields. In this paper we develop a model, based on elementary physicochemical processes, for a detailed description of chemical nonequilibrium together with the excitation of internal DOFs. This model is implemented in a 2D Navier-Stokes code in order to show the strong influence of thermal nonequilibrium on the flowfields. The algorithm presented here is based on a fully conservative discretization of the inviscid fluxes in the conservation equations and uses the chain rule conservation law form for the viscous fluxes. The large system of ordinary differential and algebraic equations resulting from the spatial discretization is solved by a time-accurate semiimplicit extrapolation method. 34 refs.

Riedel, U.; Maas, U.; Warnatz, J. (Stuttgart Univ. (Germany))

1993-03-01T23:59:59.000Z

209

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

210

Lean supply chain in pharmaceutical industry : modeling and simulation of a SAP environment  

E-Print Network [OSTI]

The global pharmaceutical business environment has been rapidly changing and has more competitive. Competition in pharmaceutical industry extended far beyond the traditional battle field, research and development. Bayer ...

Hou, Billy

2011-01-01T23:59:59.000Z

211

Study and implementation of mesoscale weather forecasting models in the wind industry.  

E-Print Network [OSTI]

?? As the wind industry is developing, it is asking for more reliable short-term wind forecasts to better manage the wind farms’ operations and electricity… (more)

Jourdier, Bénédicte

2012-01-01T23:59:59.000Z

212

Acid-base chemical reaction model for nucleation rates in the polluted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acid-base chemical reaction model for nucleation rates in the polluted Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer Title Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer Publication Type Conference Paper Year of Publication 2013 Authors Chen, Modi, Mari Titcombe, Jingkun Jiang, Coty Jen, Chongai Kuang, Marc L. Fischer, Fred L. Eisele, Ilja J. Siepmann, David R. Hanson, Jun Zhao, and Peter H. McMurry Conference Name Nucleation and Atmospheric Aerosols: 19th International Conference Publisher AIP Publishing LLC Conference Location Fort Collins, CO Abstract Measurements of aerosol number distributions down to one molecule have provided information that we've used to develop a new approach for modeling atmospheric nucleation rates. Measurements were carried out with the Cluster Chemical Ionization Mass Spectrometer (Cluster CIMS), the scanning mobility spectrometer using a diethylene glycol condensation particle counter as detector (DEG SMPS), and an ambient pressure proton transfer mass spectrometer for ammonia and amines (AmPMS). The model explains nucleation as a result of cluster evolution due to a sequence of acid-base reactions. We conclude that the smallest stable cluster contains four sulfuric acid molecules. The model leads to a simple analytic expression for nucleation rates that is reasonably consistent (i.e., ± 10x) with atmospheric observations. The model predicts that nucleation rates are equal to a prefactor, P<1, times the sulfuric acid vapor collision rate, (i.e., J=P⋅0.5⋅k11 ∗[H2SO4]2).

213

Reactor Design, Cold-Model Experiment and CFD Modeling for Chemical Looping Combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) is an efficient, clean and...2...capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out ...

Shaohua Zhang; Jinchen Ma; Xintao Hu…

2013-01-01T23:59:59.000Z

214

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industryModeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271 kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

215

Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide  

Science Journals Connector (OSTI)

Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide ... Artificial neural networks are composed of simple elements working in a parallel computational strategy. ... These elements are inspired by biological nervous systems(36-40) and are called neurons. ...

Farhad Gharagheizi; Ali Eslamimanesh; Amir H. Mohammadi; Dominique Richon

2010-11-02T23:59:59.000Z

216

CHEMICAL UNIONS FORM ALLIANCE  

Science Journals Connector (OSTI)

CHEMICAL UNIONS FORM ALLIANCE ... The Paper, Allied-Industrial, Chemical & Energy "Workers International Union (PACE) and the United Steelworkers of America (USWA) are industrial unions that have similar histories and many chemical and petroleum industry members, say union officials. ... PACE has created strategic alliances with several companies, said PACE President Boydlfoung in a statement, adding that it made sense to try the same thing with other unions. ...

2004-03-15T23:59:59.000Z

217

Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs  

Broader source: Energy.gov [DOE]

This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

218

Research utilization in the building industry: decision model and preliminary assessment  

SciTech Connect (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

219

Japan Confronts Industry Decline  

Science Journals Connector (OSTI)

Japan Confronts Industry Decline ... The moves are taking place at a time when demand in Japan is weak and companies face competition from lower-cost players in the Middle East and the U.S. ... Only a few months ago, Japan’s largest chemical company, Mitsubishi Chemical, cited deteriorating business conditions when it announced it would close one of its ethylene crackers in Kashima, Ibaraki prefecture, an industrial city a few hours’ drive northeast of Tokyo. ...

JEAN-FRANÇOIS TREMBLAY

2013-02-11T23:59:59.000Z

220

Industry continues to cut energy demand  

Science Journals Connector (OSTI)

The U.S.'s 10 most energy-intensive industries are continuing to reduce their energy demand, with the chemical industry emerging as a leader in industrial energy conservation, says the Department of Energy in a report to Congress.The chemical industry is ...

1981-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Influence of turbulence–chemical interaction on CFD pulverized coal MILD combustion modeling  

Science Journals Connector (OSTI)

MILD (Moderate and Intensive Low oxygen Dilution) combustion is a novel approach to reducing \\{NOx\\} emissions and improving combustion efficiency in fossil fuels power plants. It is characterized by elevated temperature and high dilution of reactants and strong recirculation inside the combustion chamber which produce a low temperature increase, thus reducing \\{NOx\\} formation. The main differences with conventional combustion concern the chemical reactions that take place in almost the entire volume of the combustion chamber and the uniformity of both temperature and the chemical species concentration. For this reason advanced turbulence-chemistry interaction models with detailed kinetic mechanisms are required to accurately simulate MILD by means of CFD calculations. The main aim of this work is to deepen the influence of turbulence-chemistry interaction on pulverized coal MILD combustion and to understand which models are more accurate and suitable to reproduce the process. In particular, two turbulence-chemistry interaction models are analyzed. On one hand, a conventional model based on infinitely fast chemistry Eddy Dissipation Model with a two-step global kinetic mechanism is considered. On the other hand, an advanced model based on finite rate chemistry Eddy Dissipation Concept is considered and used with both a global and detailed kinetic mechanisms. The results are finally compared with an experimental test-case. From the comparison, advanced turbulence-chemistry models used with complex kinetic mechanisms give, as expected, the best agreement with numerical results, despite the higher computational resources required.

M. Vascellari; G. Cau

2012-01-01T23:59:59.000Z

222

Engineering Escherichia coli for the production of polyketide-based platform chemicals.  

E-Print Network [OSTI]

??The current chemical industry produces a diverse array of industrial chemicals from a handful of highly reduced byproducts (termed "platform chemicals") derived from oil refining.… (more)

Park, John

2012-01-01T23:59:59.000Z

223

E-Print Network 3.0 - approach chemical models Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Sciences 26 In its short history, chemical engineering has moved far beyond bulk chemical production. Through identification of funda- Summary: approaches. Chemical...

224

Empirical MOdels for the Uptake of Inorganic Chemicals from Soil by Plants (BJC/OR-133)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

33 33 Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants This document has received the appropriate reviews for release to the public. Date: 9/23/98 BJC/OR-133 Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants Date Issued-September 1998 Prepared for the U.S. Department of Energy Office of Environmental Management BECHTEL JACOBS COMPANY LLC managing the Environmental Management Activities at the East Tennessee Technology Park Oak Ridge Y-12 Plant Oak Ridge National Laboratory Paducah Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant under contract DE-AC05-98OR22700 for the U.S. DEPARTMENT OF ENERGY iii CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . .

225

COSMOLOGICAL SIMULATIONS OF INTERGALACTIC MEDIUM EVOLUTION. I. TEST OF THE SUBGRID CHEMICAL ENRICHMENT MODEL  

SciTech Connect (OSTI)

We present a one-zone galactic chemical enrichment model that takes into account the contribution of stellar winds from massive stars under the effect of rotation, Type II supernovae, hypernovae, stellar winds from low- and intermediate-mass stars, and Type Ia supernovae. This enrichment model will be implemented in a galactic model designed to be used as a subgrid treatment for galaxy evolution and outflow generation in large-scale cosmological simulations, in order to study the evolution of the intergalactic medium. We test our enrichment prescription by comparing its predictions with the metallicity distribution function and the abundance patterns of 14 chemical elements observed in the Milky Way stars. To do so, we combine the effect of many stellar populations created from the star formation history of the Galaxy in the solar neighborhood. For each stellar population, we keep track of its specific mass, initial metallicity, and age. We follow the time evolution of every population in order to respect the time delay between the various stellar phases. Our model is able to reproduce the observed abundances of C, O, Na, Mg, Al, S, and Ca. For Si, Cr, Mn, Ni, Cu, and Zn, the fits are still reasonable, but improvements are needed. We marginally reproduce the nitrogen abundance in very low metallicity stars. Overall, our results are consistent with the predicted abundance ratios seen in previous studies of the enrichment history of the Milky Way. We have demonstrated that our semi-analytic one-zone model, which cannot deal with spatial information such as the metallicity gradient, can nevertheless successfully reproduce the global Galactic enrichment evolution obtained by more complex models, at a fraction of the computational cost. This model is therefore suitable for a subgrid treatment of chemical enrichment in large-scale cosmological simulations.

Côté, Benoit; Martel, Hugo; Drissen, Laurent [Département de physique, de Génie Physique et d'Optique, Université Laval, Québec, QC G1V 0A6 (Canada)

2013-11-10T23:59:59.000Z

226

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual generation, a bank of time-delay multilayer perceptron (MLP) models is used, and in fault detection step, a passive approach based on model error modelling is employed to achieve threshold adaptation. To do so, local linear neuro-fuzzy (LLNF) modelling is utilised for constructing error-model to generate uncertainty interval upon the system output in order to make decision whether a fault occurred or not. This model is trained using local linear model tree (LOLIMOT) which is a progressive tree-construction algorithm. Simple thresholding is also used along with adaptive thresholding in fault detection phase for comparative purposes. Besides, another MLP neural network is utilised to isolate the faults. In order to show the effectiveness of proposed RFDI method, it was tested on a single-shaft industrial gas turbine prototype model and has been evaluated based on the gas turbine data. A brief comparative study with the related works done on this gas turbine benchmark is also provided to show the pros and cons of the presented RFDI method.

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-01-01T23:59:59.000Z

227

Process modeling aspects of chemical-looping with oxygen uncoupling and chemical-looping combustion for solid fuels.  

E-Print Network [OSTI]

??Chemical-looping combustion (CLC) is one of the candidate technologies that is currently being explored to reduce the energy penalty associated with capturing CO2 from coal-fired… (more)

Sahir, Asad Hasan

2013-01-01T23:59:59.000Z

228

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network [OSTI]

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

229

Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques  

E-Print Network [OSTI]

Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed...

Viar, W. L.

1984-01-01T23:59:59.000Z

230

Study on the Model of Coal Industry Cycle Economic Development and Evaluation System  

Science Journals Connector (OSTI)

Firstly, the development status and existing problems of China’s coal industry is analyzed. Then, the circular ... . In order to achieve the rationalization of coal exploration and use, the circular economy and coal

Bo Wang; Wei Jiang; Ji-hui Zhang…

2013-01-01T23:59:59.000Z

231

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

SciTech Connect (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

232

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

233

CURRENT - A Computer Code for Modeling Two-Dimensional, Chemically Reaccting, Low Mach Number Flows  

SciTech Connect (OSTI)

This report documents CURRENT, a computer code for modeling two- dimensional, chemically reacting, low Mach number flows including the effects of surface chemistry. CURRENT is a finite volume code based on the SIMPLER algorithm. Additional convergence acceleration for low Peclet number flows is provided using improved boundary condition coupling and preconditioned gradient methods. Gas-phase and surface chemistry is modeled using the CHEMKIN software libraries. The CURRENT user-interface has been designed to be compatible with the Sandia-developed mesh generator and post processor ANTIPASTO and the post processor TECPLOT. This report describes the theory behind the code and also serves as a user`s manual.

Winters, W.S.; Evans, G.H.; Moen, C.D.

1996-10-01T23:59:59.000Z

234

Modeling the chemical shift of lanthanide 4f electron binding energies  

Science Journals Connector (OSTI)

Lanthanides in compounds can adopt the tetravalent [Xe]4fn?1 (like Ce4+, Pr4+, Tb4+), the trivalent [Xe]4fn (all lanthanides), or the divalent [Xe]4fn+1 configuration (like Eu2+, Yb2+, Sm2+, Tm2+). The 4f-electron binding energy depends on the charge Q of the lanthanide ion and its chemical environment A. Experimental data on three environments (i.e., the bare lanthanide ions where A=vacuum, the pure lanthanide metals, and the lanthanides in aqueous solutions) are employed to determine the 4f-electron binding energies in all divalent and trivalent lanthanides. The action of the chemical environment on the 4f-electron binding energy will be represented by an effective ambient charge QA=?Q at an effective distance from the lanthanide. This forms the basis of a model that relates the chemical shift of the 4f-electron binding energy in the divalent lanthanide with that in the trivalent one. Eu will be used as the lanthanide of reference, and special attention is devoted to the 4f-electron binding energy difference between Eu2+ and Eu3+. When that difference is known, the model provides the 4f-electron binding energies of all divalent and all trivalent lanthanide ions relative to the vacuum energy.

Pieter Dorenbos

2012-04-06T23:59:59.000Z

235

A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals  

SciTech Connect (OSTI)

The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such a way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.

Peyret, Thomas [DSEST, Universite de Montreal, Canada H3T 1A8 (Canada); Poulin, Patrick [Consultant, 4009 rue Sylvia Daoust, Quebec City, Quebec, G1X 0A6 (Canada); Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca [DSEST, Universite de Montreal, H3T 1A8 (Canada)

2010-12-15T23:59:59.000Z

236

Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry  

E-Print Network [OSTI]

International Journal of LCA submitted. Schmidt, W. -P. ,to Chemicals with LCA: The Examples of Trichloroethylene andToxic Substances in the Frame of LCA-The Multi-Media Fate,

Demou, Evangelia

2010-01-01T23:59:59.000Z

237

CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers  

E-Print Network [OSTI]

for optimum rate design. REFERENCES 1. Kumana, J D and R Nath, "Demand Side Dispatching, Part 1 - A Novel Approach for Industrial Load Shaping Applications", IETC Proceedings (March 93) 2. R Nath, D A Cerget, and E T Henderson, "Demand Side... Dispatching, Part 2 - An Industrial Application", IETC Proceedings (March 93) 3. R Nath and J D Kumana, "NOx Dispatching in Plant Utility Systems using Existing Software Tools", IETC Proceedings (April 92) 4. R Nath, J D KUJIl3I13, and J F Holiday...

Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

238

Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation  

Science Journals Connector (OSTI)

Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now, there is still little knowledge concerning the process of technological innovation in this field. What does exist is outdated due to rapid change in technology. In this paper, we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new ''environmental technology'', proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and ''moving'' them from laboratories to production caused some years delay in their diffusion. On the basis of this ''paradigmatic'' case, we argue that existing economic and organisational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organisational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1. regulations concerning introduction of ZEV ''create'' market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2. each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture and reducing effects of path dependency; 3. product differentiation increases firm capabilities to plan at the same time technology introduction and customer selection, while meeting requirements concerning ''network externalities''; 4. it is necessary to find and/or create alternative funding sources for each research, development and design stage of the new technologies. From this discussion, we will draw some conclusions and issues for further researches concerning government policy and firms' strategies for sustaining the process of technological innovation and transfer.

Woodrow W. Clark II; Emilio Paolucci

2001-01-01T23:59:59.000Z

239

Econometric model of the U.S. sheep and mohair industries for policy analysis  

E-Print Network [OSTI]

, and predator losses. In an effort to slow the rate of decline in the U.S. sheep industry, the U.S. Congress passed the Wool Act of 1954. In 1993, Congress passed a three-year phase out of the Wool Act incentive payments with the last payments occurring in 1996...

Ribera Landivar, Luis Alejandro

2005-08-29T23:59:59.000Z

240

A model of the exchange of inorganic chemicals between water and sediments  

SciTech Connect (OSTI)

A simple mathematical model is developed to describe the movement of radioisotopes added to lake enclosures, first during initial loss from water to sediments, and second during release from sediments into isotope-free water. The model is based on the concept of aquivalent concentration, an equilibrium criterion analogous to fugacity, but suitable for involatile chemicals. It treats two homogeneous compartments, water and an active layer of sediments, and exchange by bidirectional diffusion, sediment deposition, and resuspension. Model simulations of isotope loss agree well with experimental results obtained for seven isotopes added to two lake enclosures. Simulations of isotope release from sediments were satisfactory but less accurate. The results illustrate that the behavior of isotopes can be estimated from their differing particle-sorption characteristics, as quantified by the isotope-specific K{sub p} and by enclosure-specific suspended particle concentrations and sediment deposition/resuspension rates.

Diamond, M.L.; Mackay, D. (Univ. of Toronto, Ontario (Canada)); Cornett, R.J.; Chant, L.A. (Chalk River Nuclear Labs., Ontario (Canada))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mathematical modelling of some chemical and physical processes in underground coal gasification  

SciTech Connect (OSTI)

Underground coal gasification normally involves two vertical wells which must be linked by a channel having low resistance to gas flow. There are several ways of establishing such linkage, but all leave a relatively open horizontal hole with a diameter on the order of a meter. To increase our understanding of the chemical and physical processes governing underground coal gasification LLNL has been conducting laboratory scale experiments accompanied by mathematical modelling. Blocks of selected coal types are cut to fit 55 gallon oil drums and sealed in place with plaster. A 1 cm. diameter hole is drilled the length of the block and plumbing attached to provide a flow of air or oxygen/steam mixture. After an instrumented burn the block is sawed open to examine the cavity. Mathematical modelling has been directed towards predicting the cavity shape. This paper describes some sub-models and examines their impact on predicted cavity shapes.

Creighton, J. R.

1981-08-01T23:59:59.000Z

242

CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

Fox, K.; Marra, J.

2014-08-14T23:59:59.000Z

243

THE JOURNAL OF CHEMICAL PHYSICS 140, 224502 (2014) Search for a liquid-liquid critical point in models of silica  

E-Print Network [OSTI]

from pure sil- ica are widely used by the telecommunications industry and, because silica and silicates in models of silica Erik Lascaris,1 Mahin Hemmati,2 Sergey V. Buldyrev,3 H. Eugene Stanley,1 and C. Austen indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high

Stanley, H. Eugene

244

Properties of the massive Gross-Neveu model with nonzero baryon and isospin chemical potentials  

Science Journals Connector (OSTI)

The properties of the two-flavored Gross-Neveu model with nonzero current quark mass are investigated in the (1+1)-dimensional space-time at finite isospin ?I as well as quark number ? chemical potentials and zero temperature. The consideration is performed in the limit Nc??, i.e., in the case with an infinite number of colored quarks. In the plane of parameters ?I, ? a rather rich phase structure is found, which contains phases with and without pion condensation. We have found a great variety of one-quark excitations of these phases, including gapless and gapped quasiparticles. Moreover, the mesonic mass spectrum in each phase is also investigated.

D. Ebert and K. G. Klimenko

2009-12-11T23:59:59.000Z

245

Model-based testing in the automotive industry challenges and solutions  

E-Print Network [OSTI]

Test specification System integration testing ­ model-based Test executionTest model Documentation... Requirements System integration testing ­ model-based SUT Sensors/busses Input interfaces Actors/busses Output interfaces #12;9 Overview 1. Model-based system integration testing 2. Integrating external models in the HW

Peleska, Jan - Fachbereich 3

246

The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector  

SciTech Connect (OSTI)

In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

247

An effectiveness evaluation model for the web-based marketing of the airline industry  

Science Journals Connector (OSTI)

In the air transportation industry the web-based marketing has already been widely applied to service the frequent customers as well as to attract new customers. For it, normally the airlines must invest amount of enterprise resources to develop the ... Keywords: Analytic Network Process (ANP), Decision Making Trial and Evaluation Laboratory (DEMATEL), Multiple criteria decision-making (MCDM), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Web-based marketing, Website evaluation

Wen-Hsien Tsai; Wen-Chin Chou; Jun-Der Leu

2011-11-01T23:59:59.000Z

248

EPRI's Industrial Energy Management Program  

E-Print Network [OSTI]

EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... and other industrial activity effects on our environment. Energy efficiency programs and new electrical processes can playa major role in restoring the environment and in creating a stronger industrial sector in the national economy. Since 1984...

Mergens, E.; Niday, L.

249

Physical and Computational Modeling for Chemical and Biological Weapons Airflow Applications  

SciTech Connect (OSTI)

There is a need for information on dispersion and infiltration of chemical and biological agents in complex building environments. A recent collaborative study conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) and Bechtel Corporation Research and Development had the objective of assessing computational fluid dynamics (CFD) models for simulation of flow around complicated buildings through a comparison of experimental and numerical results. The test facility used in the experiments was INEEL’s unique large Matched-Index-of-Refraction (MIR) flow system. The CFD code used for modeling was Fluent, a widely available commercial flow simulation package. For the experiment, a building plan was selected to approximately represent an existing facility. It was found that predicted velocity profiles from above the building and in front of the building were in good agreement with the measurements.

McEligot, Donald Marinus; Mc Creery, Glenn Ernest; Pink, Robert John; Barringer, C.; Knight, K. J.

2002-11-01T23:59:59.000Z

250

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Networks. Industrial & Engineering Chemistry Research. 2013;Models, Industrial & Engineering Chemistry. Glasser, D. ,networks. Industrial & Engineering Chemistry Research 2008a;

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

251

DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY  

SciTech Connect (OSTI)

Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

252

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

253

Modelling and simulation of acid gas condensation in an industrial chimney - article no. A39  

SciTech Connect (OSTI)

Coal power stations as well as waste incinerators produce humid acid gases which may condense in industrial chimneys. These condensates can cause corrosion of chimney internal cladding which is made of stainless steel, nickel base alloys or non metallic materials. In the aim of polluting emission reduction and material optimal choice, it is necessary to determine and characterize all the phenomena which occur throughout the chimney and more especially condensation and dissolution of acid gases (in this particular case, sulfur dioxide SO{sub 2}).

Serris, E.; Cournil, M.M.; Peultier, J. [Ecole des Mines de St Etienne, St Etienne (France)

2009-07-01T23:59:59.000Z

254

Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling  

SciTech Connect (OSTI)

This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

Eric Wachsman; Keith L. Duncan

2006-09-30T23:59:59.000Z

255

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

256

The Mork Family Department of Chemical  

E-Print Network [OSTI]

in automotive and space-related industries to materials used in the biomedical and electronics elds. Chemical

Zhou, Chongwu

257

chemical (CHE) CHE overview programs available  

E-Print Network [OSTI]

in automotive and space-related industries to materials used in the biomedical and electronics fields. Chemical

Rohs, Remo

258

Beyond the pseudo-time-dependent approach: chemical models of dense core precursors  

E-Print Network [OSTI]

Context: Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-sho...

Hassel, G E; Bergin, E A

2010-01-01T23:59:59.000Z

259

Artificial Neural Network Estimator Design for the Inferential Model Predictive Control of an Industrial Distillation Column  

Science Journals Connector (OSTI)

The ANN architecture is a multilayer perceptron (MLP), which is a typical feed-forward (layered) neural network.2 A collection of neurons connected to each other forms the artificial neural network. ... It is shown that the how artificial neural networks can model the column, and demonstrated that the network model is as good or better than a simplified first principles model when used for model predictive control. ... A dynamic, nonlinear, multi-input multi-output application using the recurrent dynamic neuron network (RDNN) model is presented for a two-by-two distn. ...

Alm?la Bahar; Canan Özgen; Kemal Leblebicio?lu; U?ur Hal?c?

2004-08-12T23:59:59.000Z

260

Evaluation of Oxy-coal Combustion Modelling at Semi-industrial Scale  

Science Journals Connector (OSTI)

Duringthe oxy-fuelcombustion processpulverizedcoalisburntinan atmosphere consistingofpureO2mixedwith recycled ?uegas whereas during the conventional process air serves as the only oxidant. This entails speci?c conditions regarding thermo-physical properties which impact both combustion characteristics and heat transfer. Accordingly, adjustments within CFD codes are required in order to maintain accuracyand prediction quality criteria within simula–tions of oxy-coal combustion. The CFD code AIOLOS was used to evaluate recent oxy-coal speci?c implementations concerning the global chemistry mechanism and the heat transfer. For validation purposes extensive tests have been carried out at IFK's semi-industrial scale furnace (500kWth). Simulations have been performed for both, conventional air-?ring and oxy-coal combustion conditions with US bituminous coal, and a comparison of simulation results and corresponding experimental data is given. In general, satisfactory agreement is observed.

Michael Müller; Uwe Schnell; Simon Grathwohl; JörgMaier; Günter Scheffknecht

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

262

Improving baseline forecasts in a 500-industry dynamic CGE model of the USA.  

E-Print Network [OSTI]

??MONASH-style CGE models have been used to generate baseline forecasts illustrating how an economy is likely to evolve through time. One application of such forecasts… (more)

Mavromatis, Peter George

2013-01-01T23:59:59.000Z

263

ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the U.S. Chemical Industry, May 2000 profilefull.pdf More Documents & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and...

264

Modeling the Energy Demands and Greenhouse Gas Emissions of the Canadian Oil Sands Industry  

Science Journals Connector (OSTI)

In this study, the energy requirements associated with producing synthetic crude oil (SCO) and bitumen from oil sands are modeled and quantified, on the basis of current commercially used production schemes. The production schemes were (a) mined bitumen, ...

Guillermo Ordorica-Garcia; Eric Croiset; Peter Douglas; Ali Elkamel; Murlidhar Gupta

2007-06-01T23:59:59.000Z

265

Modeling corner solutions with panel data: Application to the industrial energy demand in France  

Science Journals Connector (OSTI)

This paper provides an empirical application of Lee and Pitt’s (1986) approach to the problem of corner solutions in the case of panel data. This model deals with corner solutions in a manner consistent with the ...

Raja Chakir; Alain Bousquet; Norbert Ladoux

2004-01-01T23:59:59.000Z

266

Reilly Industries Is Acquired By Investment Firm  

Science Journals Connector (OSTI)

Reilly Industries Is Acquired By Investment Firm ... Arsenal Managing Director Barry Siadat says his firm invests in niche market leaders in the specialty chemical ... ...

MICHAEL MCCOY

2005-10-10T23:59:59.000Z

267

Electrified Separation Processes in Industry  

E-Print Network [OSTI]

For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

Appleby, A. J.

1983-01-01T23:59:59.000Z

268

Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN  

SciTech Connect (OSTI)

Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

Chipman, V D

2011-09-20T23:59:59.000Z

269

Kinetics Study of Solid Ammonia Borane Hydrogen Release – Modeling and Experimental Validation for Chemical Hydrogen Storage  

SciTech Connect (OSTI)

Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

2014-02-24T23:59:59.000Z

270

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network [OSTI]

a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter1 The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research

Liu, Y. A.

271

Chemicals from Biomass  

Science Journals Connector (OSTI)

...Added Chemicals from Biomass. Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (www1.eere.energy.gov/biomass/pdfs/35523.pdf) . 6. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical...

David R. Dodds; Richard A. Gross

2007-11-23T23:59:59.000Z

272

Business models and strategies in the video game industry : an analysis of Activision-Blizzard and Electronic Arts  

E-Print Network [OSTI]

In recent years the video game industry has been of great importance in the business world beyond the role of a cultural medium. With its huge size and potential for more growth, the industry has attracted many newcomers. ...

Lee, Ruri

2013-01-01T23:59:59.000Z

273

Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements  

E-Print Network [OSTI]

Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume “a net cost” perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a...

Laitner, J. A.

2007-01-01T23:59:59.000Z

274

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

275

Modeling and Optimization of Next Generation Feedstock Development for Chemical Process  

E-Print Network [OSTI]

Metals Other 13% Petroleum 8% 13% Feedstock 55% · natural gas · liquefiedand Coal Products 33% Energy 45% Chemicals 24% liquefied petroleum gas · natural gas liquids Food 6%Paper 11% NMP 5% NMP Chemical Manufacturing #12;Motivation ­ Why Biomass? Possible Alternative Feedstocks for CPI Coal

Grossmann, Ignacio E.

276

A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis  

SciTech Connect (OSTI)

The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

Zheng, L.; Samper, J.; Montenegro, L.

2011-04-01T23:59:59.000Z

277

TransCom model simulations of CH? and related species: linking transport, surface flux and chemical loss with CH? variability in the troposphere and lower stratosphere  

E-Print Network [OSTI]

A chemistry-transport model (CTM) intercomparison experiment (TransCom-CH?) has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model ...

Patra, P. K.

278

Industrial process surveillance system  

DOE Patents [OSTI]

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

279

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

280

Modeling of a CO chemical laser produced by supersonically mixing CS/S with O/sub 2/  

SciTech Connect (OSTI)

A computer model of a CO chemical laser produced by supersonic mixing of CS/S with O/sub 2/ is presented. The model has been shown to accurately predict measured gain coefficients of P/sub 7/(14) and P/sub 5/(18) lines, hence it was utilized for further parametric studies leading to a better understanding of the processes involved in laser operation. The model predicts high gain and high specific available energy in v = 1..-->..0 to v = 20..-->..19 transitions. A maximum gain was obtained for each of the parameters investigated. For certain operational conditions, complete population inversion was observed.

Tilleman, M.M.; Stricker, J.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19  

SciTech Connect (OSTI)

To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song [Southeast University (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2009-07-01T23:59:59.000Z

282

Hydrodynamic modeling of poly-solid reactive circulating fluidized beds: Application to Chemical Looping Combustion.  

E-Print Network [OSTI]

??Une étude précise des écoulements gaz-particules poly-solides et réactifs rencontrés dans les lits fluidisés circulants (LFC) appliqués au procédé de Chemical Looping Combustion (CLC) est… (more)

Nouyrigat, Nicolas

2012-01-01T23:59:59.000Z

283

Hydrodynamic modeling of poly-solid reactive circulating fluidized beds : Application to Chemical Looping Combustion.  

E-Print Network [OSTI]

??Une étude précise des écoulements gaz-particules poly-solides et réactifs rencontrés dans les lits fluidisés circulants (LFC) appliqués au procédé de Chemical Looping Combustion (CLC) est… (more)

Nouyrigat, Nicolas

2012-01-01T23:59:59.000Z

284

Physical understanding and modeling of chemical mechanical planarization in dielectric materials  

E-Print Network [OSTI]

Chemical mechanical planarization (CMP) has become the enabling planarization technique of choice for current and emerging silicon integrated circuit (IC) fabrication processes. This work studies CMP in dielectric materials ...

Xie, Xiaolin, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

285

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

286

Control-Based Modeling and Simulation of the Chemical-Looping Combustion Process  

Science Journals Connector (OSTI)

The system consists of two fluidized-bed reactors connected through loop seals. ... Son, S. R.; Kim, S. D. Chemical-Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops Ind. Eng. ... Garcia-Labiano, F.; de Diego, L.; Adanez, J.; Abad, A.; Gayan, P. Temperature variations in the oxygen carrier particles Turing their reduction and oxidation in a Chemicals-looping combustión system Chem. ...

S. Balaji; Jovan Ilic; B. Erik Ydstie; Bruce H. Krogh

2010-04-13T23:59:59.000Z

287

"A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"  

SciTech Connect (OSTI)

Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we will attempt to secure funding from alternate sources that have been referenced by our contract monitor. It remains our hope and goal to follow this project through to completion, thereby achieving the objectives outlined at the start of our effort.

Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

2007-11-01T23:59:59.000Z

288

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

289

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

290

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

291

Chemical Safety Program - Related Links | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of incidents. American Chemical Society (ACS) American Conference of Government Industrial Hygienists (ACGIH) American Institute of Chemical Engineers (AIChE) American...

292

Chemical Engineering Journal 113 (2005) 205214 A detailed model of a biofilter for ammonia removal  

E-Print Network [OSTI]

facilities and other industrial sources. Com- mon air pollution control processes for polluted emissions 935813302; fax: +34 935812013. E-mail address: david.gabriel@uab.es (D. Gabriel). polluted air emissions, Marc A. Deshussesb, Xavier Gamisansa, David Gabrielc,, Javier Lafuentec a Department of Mining

293

A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions  

SciTech Connect (OSTI)

This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

Zhang, Fan [ORNL; Yeh, Gour-Tsyh [University of Central Florida, Orlando; Parker, Jack C [ORNL; Brooks, Scott C [ORNL; Pace, Molly [ORNL; Kim, Young Jin [ORNL; Jardine, Philip M [ORNL; Watson, David B [ORNL

2007-01-01T23:59:59.000Z

294

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

295

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network [OSTI]

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical...

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

296

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

297

Structural-chemical modeling of transition of coals to the plastic state  

SciTech Connect (OSTI)

The structural-chemical simulation of the formation of plastic state during the thermal treatment (pyrolysis, coking) of coals is based on allowance for intermolecular interactions in the organic matter. The feasibility of transition of coals to the plastic state is determined by the ratio between the onset plastic state (softening) and runaway degradation temperatures, values that depend on the petrographic composition and the degree of metamorphism of coals and the distribution of structural and chemical characteristics of organic matter. 33 refs., 8 figs., 2 tabs.

A.M. Gyul'maliev; S.G. Gagarin [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)

2007-02-15T23:59:59.000Z

298

Lattice QCD at non-zero chemical potential and the resonance gas model  

E-Print Network [OSTI]

We present results from lattice calculations on the thermodynamics of QCD at non-zero temperature and baryon chemical potential and discuss the role of resonances for the occurrence of the transition to the quark-gluon plasma in hot and dense matter. Properties of a hadronic resonance gas are compared to lattice results on the equation of state at zero as well as non-zero baryon chemical potential. Furthermore, it is shown that the quark mass dependence of the transition temperature can be understood in terms of lines of constant energy density in a resonance gas.

Frithjof Karsch

2004-01-26T23:59:59.000Z

299

Platts 2nd Annual Renewable Chemicals Conference  

Gasoline and Diesel Fuel Update (EIA)

Sugars, Renewable Chemicals & Fuels Sugars, Renewable Chemicals & Fuels US EIA AEO 2013 Biofuels Worshop Washington, DC March 2013 1 * PROMOTUM is a management consulting firm focused on the chemicals, fuels and materials industries. We help clients analyze markets and technology, develop strategy, and conduct business development. 2 1. Comparison of the first wave of Biotechnology with today's wave of Industrial Biotechnology 2. Where are we status of: C-Sugars, Renewable Chemicals & Advanced Biofuels 3. Derivates as chemical building blocks - butanol an example 3 Sugar, Fuel & Chemical Agenda - Where are we? 4 Aggregate Biotechnology Industry Performance - The First 30 Years 5 "There is little doubt that, since the invention of genetic

300

Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Compensator Control For Chemical Vapor Deposition Film Growth Using Reduced Order Design Models  

E-Print Network [OSTI]

in a high pressure chemical vapor deposition (HPCVD) reactor that in­ cludes multiple species and controls optoelectronic integrated circuits. This can sometimes be addressed, in part, through open­loop optimization [7 reactor with real­time sensing and control as an innovative feature of this proto­ type reactor. Previous

302

Modeling and Optimization of the Condensing Steam Turbine Network of a Chemical Plant  

Science Journals Connector (OSTI)

The model manager implements the thermodynamic and empirical modeling structure shown in Figure 3. Two models are newly built or rebuilt for each steam turbine on an offline basis. ... If the RMSE is beyond the predefined threshold, the model manager is used to rebuild the models, to remove the process-model mismatch. ... The optimization client serves to show the current and optimal operating values and the performance indicators on the process flow diagrams wherever the intranet is available. ...

In-Su Han; Young-Hak Lee; Chonghun Han

2005-12-13T23:59:59.000Z

303

Chemical and physical properties of gas jets in comets: I. Monte Carlo model of an inner cometary coma  

Science Journals Connector (OSTI)

We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale–Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale–Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].

S.M. Lederer; H. Campins; D.J. Osip

2009-01-01T23:59:59.000Z

304

Recent Results of the Hadron Resonance Gas Model and the Chemical Freeze-out of Strange Hadrons  

E-Print Network [OSTI]

A detailed discussion of recent results obtained within the hadron resonance gas model with the multi-component hard core repulsion is presented. Among them there are the adiabatic chemical freeze-out criterion, the concept of separate chemical freeze-out of strange particles and the effects of enhancement and sharpening of wide resonances and quark gluon bags occurring in a thermal medium. These findings are discussed in order to strengthen the planned heavy-ion collision experimental programs at low collision energies. We argue, that due to found effects, at the center of mass collision energy 4-8 GeV the quark gluon bags may appear directly or in decays as new heavy resonances with the narrow width of about 50-150 MeV and with the mass above 2.5 GeV.

Bugaev, K A; Oliinychenko, D R; Nikonov, E G; Sagun, V V; Zinovjev, G M

2014-01-01T23:59:59.000Z

305

Industry Perspective  

Broader source: Energy.gov [DOE]

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

306

Computational Model of Forward and Opposed Smoldering Combustion with Improved Chemical Kinetics (PhD. Thesis)  

E-Print Network [OSTI]

for modeling urethane foam insulation performance, Journalinsulation, upholstery, shock absorbing, and soundproofing. PU foam

Rein, Guillermo

2005-01-01T23:59:59.000Z

307

Two-Temperature Two-Dimensional Non Chemical Equilibrium Modeling of Ar–CO2–H2 Induction Thermal Plasmas at Atmospheric Pressure  

Science Journals Connector (OSTI)

Here the authors developed a two-dimensional two-temperature chemical non-equilibrium (2T-NCE) model of Ar–...2–H2 inductively coupled thermal plasmas (ICTP) around atmospheric pressure (760 torr). Assuming 22 di...

Sharif Abdullah Al-Mamun; Yasunori Tanaka…

2010-02-01T23:59:59.000Z

308

Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels  

SciTech Connect (OSTI)

n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

2009-03-09T23:59:59.000Z

309

ET Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

310

Sisal Fibers: Surface Chemical Modification Using Reagent Obtained from a Renewable Source; Characterization of Hemicellulose and Lignin as Model Study  

Science Journals Connector (OSTI)

Sisal Fibers: Surface Chemical Modification Using Reagent Obtained from a Renewable Source; Characterization of Hemicellulose and Lignin as Model Study ... Instituto de Química de São Carlos, Universidade de São Paulo, USP, C.P. 780, CEP 13560-970 São Carlos, SP, Brazil, and Université Bordeaux 1, US2B, UMR 5103 CNRS-INRA-UBx1, F-33405 Talence Cedex, France ... The main advantage of lignocellulosic fibers upon their mineral counterpart is their environmental friendliness, due, for instance, to the CO2 neutral life cycle and possibility of incineration for energy recovery after disposal (3). ...

Jackson D. Megiatto, Jr.; William Hoareau; Christian Gardrat; Elisabete Frollini; Alain Castellan

2007-09-15T23:59:59.000Z

311

ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a second key R&D focus area. Specific opportunities that the group recognized include oil shale in situ production, followed by stranded gas technology to liquefy it in situ, and...

312

The Chemical and Petrochemical Industries [and Discussion  

Science Journals Connector (OSTI)

...make best use of materials and energy, and to conserve the environment economically. In all areas the pace of technological development...closely integrated production complexes. The scientist and the engineer welcome the aid of the computer to extend their own abilities...

1973-01-01T23:59:59.000Z

313

Origins of the Modern Chemical Industry  

Science Journals Connector (OSTI)

...carbonate by treatment in a furnace with coke and calcium...the undesirability of venting it into the atmosphere...escape no-ticing their high rate of failure and the...go in im-proving the efficiency of their opera-tions...makers, the quest for higher yields was retarded until...

JOHN J. BEER

1980-08-22T23:59:59.000Z

314

The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model  

E-Print Network [OSTI]

We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density $\\epsilon$ done on the lattice at finite chemical potential $\\mu$, we find that the hadron resonance gas model under the condition of constant $\\epsilon$ describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density $s$. The $s$-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.

A. Tawfik

2004-10-25T23:59:59.000Z

315

History of the Division of Industrial and Engineering Chemistry  

Science Journals Connector (OSTI)

History of the Division of Industrial and Engineering Chemistry ... When the SOCIETY met in December of that year, the committee reported to the Industrial Chemistry Section its recommendation that a journal of industrial and engineering chemistry be established and that the SOCIETY organize a division of industrial chemists and chemical engineers. ...

E. M . BILLINGS; HOWARD S. GARDNER

1940-12-10T23:59:59.000Z

316

Modelling Rates of Gasification of a Char Particle in Chemical Looping Combustion  

E-Print Network [OSTI]

, m 2 s-1 Deq Effective diffusivity in a fluidised bed = Dm?mf, m 2 s-1 Dm Constant mean diffusivity, m 2 s-1 Ej Activation energy for the rate constant j, kJ mol -1 f(X) Relative change in the surface area available for reaction over conversion... when gasification with CO2 was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. The kinetics of the gasification were found to be significantly faster in the presence...

Saucedo, Marco A.; Dennis, John S.; Scott, Stuart A.

2014-07-15T23:59:59.000Z

317

INDUSTRIAL LITERATURE  

Science Journals Connector (OSTI)

Anionic Surfactants. Features, properties, and applications of the Igepon series of anionic surfactants which have found use in textile wet processing, detergents, cosmetics, and agricultural chemicals. Bulletin 10M-7-58. GENERAL ANILINE & FILM CORP. ...

1958-10-13T23:59:59.000Z

318

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network [OSTI]

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

319

Modeling foreign economic policy in strategic setting: the automotive industry of the U.S. and Japan  

E-Print Network [OSTI]

. For this study, I examined a specific case study in which the U.S. was in a dispute with a foreign country and how the U.S. dealt with the situation. This particular dispute spans a timeline of 15 years and involves the automotive industry of Japan and the U...

Au-Young, Marie Lily

2013-02-22T23:59:59.000Z

320

Chemical Conversions of Natural Precursors  

Science Journals Connector (OSTI)

Many products from the flavour industry are primary products from renewable resources or secondary products obtained by chemical conversions of the primary products. In general these secondary products are key...

Peter H. van der Schaft

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy  

E-Print Network [OSTI]

We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular ...

Ramasesha, Krupa

322

On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent  

SciTech Connect (OSTI)

Dissolution of silica and calcite in the presence of a chelating agent (NTA) at a high pH was successfully demonstrated in laboratory experiments using a high-temperature flow reactor. (Note that the term 'silica' used here includes amorphous silica, quartz, and silicate glass bead). The mineral dissolution and associated porosity enhancement in the experiments were reproduced by reactive transport modeling using TOUGHREACT. The chemical stimulation method was applied by numerical modeling to a field geothermal injection well system to investigate its effectiveness. Parameters applicable to the quartz monzodiorite unit at the Enhanced Geothermal Systems (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase, while avoiding precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well. Injection at a lower temperature of 120 C (over 160 C in the base-case) results in a porosity increase that is smaller close to the injection point, but extends to a larger radial distance. A slower kinetic rate results in less aggressive mineral dissolution close to the injection point and larger extent along the flow path, which is favorable for chemical stimulation.

Xu, T.; Rose, P.; Fayer, S.; Pruess, K.

2009-05-01T23:59:59.000Z

323

CHEMICAL KINETICS MODELS FOR THE FATIGUE BEHAVIOR OF FUSED SILICA OPTICAL FIBER  

E-Print Network [OSTI]

of stress, temperature and activity of the corroding species (e.g. water). A power law degradation kinetics the degradation depends on the applied stress. Subcritical Crack Growth Model The reliability of silica optical fiber under stress is usually described by the subcritical crack growth model. It is assumed

Matthewson, M. John

324

Project Profile: Predictive Physico-Chemical Modeling of Intrinsic Degradation Mechanisms for Advanced Reflector Materials  

Broader source: Energy.gov [DOE]

NREL, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be developing a physics-based computational degradation model to assess the kinetic oxidation rates; realistic model light attenuation and transport; and multi-layer treatment with variable properties Simulation based experimental design.

325

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

326

Industrial Low Temperature Waste Heat Utilization  

E-Print Network [OSTI]

In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

Altin, M.

1981-01-01T23:59:59.000Z

327

Industrial Heat Pumps: Where and When  

E-Print Network [OSTI]

pump analysis. INDUSTRIAL HEAT PUMPS: WHAT NEXT? There is definitely a need to develop heat pump systems with higher delivery temperatures. Chemical heat pumps (based on two-step endothermic/exothermic reactions) seem promising in this regard...

Ranade, S. M.; Chao, Y. T.

328

Research and Development in British Industry  

Science Journals Connector (OSTI)

... organization of basic research for the British chemical industry was followed in May by Sir Ronald Holroyd's Brotherton Memorial Lecture to the same Society at Leeds, in which he ... of Technology and of Britain's economic situation generally.

1965-10-09T23:59:59.000Z

329

A tiered modelling approach for condition based maintenance of industrial assets with load sharing interaction and fault propagation  

E-Print Network [OSTI]

of one or more of the critical components, thus causing the asset to deteriorate faster than the normal rate. For instance, stay cables are some of the most important elements in span bridge. It consists of multiple parallel wires (critical components... need from the lower layer. Using this information, the optimal maintenance and inspection strategies can be found directly using equation (1) and (2). 4. Conclusion Motivated by industrial cases such as maintenance of stay cables, we propose a 2-tiered...

Liang, Zhenglin; Parlikad, Ajith Kumar

2014-05-24T23:59:59.000Z

330

Development of an Energy Consumption Model at a Multi-Product Chemical Plant  

E-Print Network [OSTI]

Carlo technique. In some units, energy consumption does not correlate with production rate, which indicates that energy savings may be possible through better control of energy usage. The model should also lay the framework for an on-line energy...

Wyhs, N. A.; Logsdon, J. E.

1980-01-01T23:59:59.000Z

331

Curvature-based criteria for model reduction in chemical kinetics via optimization of trajectories  

E-Print Network [OSTI]

that the computational effort for a full simulation of reactive flows, e.g. of fluid transport involving combustion processes, is computationally extremely expensive. For a simulation in reasonable time reduced models

Gorban, Alexander N.

332

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

333

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect (OSTI)

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

334

Chemistry and the Motor Car Industry  

Science Journals Connector (OSTI)

Chemistry and the Motor Car Industry ... It so happens that this chemical reaction, the production of water and carbon dioxide (which in proper combination gives you seltzer water), is accompanied by the generation of heat which is used to produce power, and after all, power is what primarily concerns the automotive industry. ...

CHARLES F. KETTERING

1943-06-10T23:59:59.000Z

335

Model nebulae and determination of the chemical composition of the Magellanic Clouds  

Science Journals Connector (OSTI)

...devices. Some advantages and limitations...devices. Some advantages and limitations...devices. Some advantages and limitations...from one to five solar masses are believed...whose emergent energy flux is presumed...There are several disadvantages in the model nebular...

L. H. Aller; C. D. Keyes; S. J. Czyzak

1979-01-01T23:59:59.000Z

336

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

337

Cyclical dynamics of airline industry earnings  

E-Print Network [OSTI]

Aggregate airline industry earnings have exhibited large-amplitude cyclical behavior since deregulation in 1978. To explore the causes of these cycles we develop a behavioral dynamic model of the airline industry with ...

Pierson, Kawika

338

Macro-Industrial Working Group 2  

Gasoline and Diesel Fuel Update (EIA)

Peter Gross Peter Gross Office of Energy Consumption and Efficiency Analysis, EIA March 20, 2013 | Washington, DC Chemicals Production in the Annual Energy Outlook Model Current representation of chemicals in the AEO 2 * Baseline fuel & feedstock consumption data (MECS) * Fuel & feedstock projections - Macroeconomic driven: chemical shipments/production - Feedstock price determinants (NGL vs. naphtha) are employed - Ethane consumption = ethane supply - Heat & power efficiency improvements * Macroeconomic chemical drivers: bulk chemicals (organic, inorganic, resins, agricultural chemicals), other chemicals (pharma, paints, soaps) - Bulk chemical shipments influenced by fuel prices - No explicit assumptions about origins of chemicals (petroleum vs. biobased)

339

Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes  

SciTech Connect (OSTI)

Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

2011-03-16T23:59:59.000Z

340

Characterizing two-phase flow relative permeabilities in chemical flooding using a pore-scale network model  

E-Print Network [OSTI]

in reservoir simulation of chemical flooding, when no site-Flooding In this section, a series of dynamic pore-scale network simulationssimulation techniques (e.g. , for analyzing chemical flooding)

Liu, Qingjie; Shen, Pingping; Wu, Yu-Shu

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A comparative study of vibrational relaxation and chemical reaction models for the Martian entry vehicle  

E-Print Network [OSTI]

different chemistry sets and rates. The analyses have been carried out at an altitude of 50. 1 km and at speeds of 7. 387 km/sec and 8. 0 km/sec. The results indicate that the flow is in a highly nonequilibrium state. Due to the rapid dissociation of CO...: QUANTUM MECHANICAL PROPERTIES VITA 133 136 LIST OF TABLES Page 1. Temperature Models studied at 7. 387 km/sec, 53 2. Heat Transfer Rates at the Wall for Non-catalytic and Partially Catalytic Walls . 94 3. Thermodynamic Properties of the Species 4...

Koteshwar, Rajeev

1992-01-01T23:59:59.000Z

342

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies CD-ROMs Publications The following publications are available for download as Adobe PDF documents. Download Acrobat Reader. Chemicals Annual Report (PDF 509 KB) This report provides a summary of activities and R&D projects in fiscal year 2004. Order the Annual Report from the ITP Clearinghouse at 1-800-862-2086. Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. Chemical Bandwidth Study Analyzes Energy Savings Opportunities ITP's Chemicals portfolio works with the chemical industry to develop energy-efficient technologies. Read this report (PDF 1.16 MB)

343

Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier  

SciTech Connect (OSTI)

A mathematical model for a bubbling fluidized bed has been developed to simulate the performance of the fuel-reactor in chemical-looping combustion (CLC) systems. This model considers both the fluid dynamic of the fluidized bed and freeboard and the kinetics of reduction of the oxygen-carrier, here CuO impregnated on alumina. The main outputs of the model are the conversion of the carrier and the gas composition at the reactor exit, the axial profiles of gas concentrations and the fluid dynamical structure of the reactor. The model was validated using measurements when burning CH{sub 4} in a 10 kW{sub th} prototype using a Cu-based oxygen-carrier. The influence of the circulation rate of solids, the load of fuel gas, the reactor temperature and size of the oxygen-carrier particles were analyzed. Combustion efficiencies predicted by the model showed a good agreement with measurements. Having validated the model, the implications for designing and optimizing a fuel-reactor were as follows. The inventory of solids for a high conversion of the fuel was sensitive to the reactor's temperature, the solids' circulation rate and the extent to which the solids entering to the reactor had been regenerated. The optimal ratio of oxygen-carrier to fuel was found to be 1.7-4 for the Cu-based oxygen-carrier used here. In this range, the inventory of solids to obtain a combustion efficiency of 99.9% at 1073 K was less than 130 kg/MW{sub th}. In addition, the model's results were very sensitive to the resistance to gas diffusing between the emulsion and bubble phases in the bed, to the decay of solids' concentration in the freeboard and to the efficiency contact between gas and solids in the freeboard. Thus, a simplified model, ignoring any restriction to gas and solids contacting each other, will under-predict the inventory of solids by a factor of 2-10. (author)

Abad, Alberto; Adanez, Juan; Garcia-Labiano, Francisco; de Diego, Luis F.; Gayan, Pilar [Instituto de Carboquimica (CSIC), Department of Energy and Environment, Miguel Luesma Castan 4, 50018 Zaragoza (Spain)

2010-03-15T23:59:59.000Z

344

University at Buffalo (SUNY) Department of Industrial Engineering Scheduling Theory  

E-Print Network [OSTI]

University at Buffalo (SUNY) Department of Industrial Engineering IE 661 Scheduling Theory Chapter 2 Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) #12;University at Buffalo (SUNY) Department of Industrial Engineering Chapter 2: Deterministic Models Preliminaries

Nagi, Rakesh

345

Comparing the Effects of Mutualism and Competition on Industrial Districts  

E-Print Network [OSTI]

refining, chemical and bio-chemical produc- tion facilities, as well as heavy industrial facilities the industrial economy of the Humber region. Obviously such an intricate network of relationships is not unique to the Humber region. In fact, any economy which has a regional component could be represented by a complicated

Hoyle, Rebecca B.

346

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

347

3426 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008 Modeling and Control of the Yaw Channel  

E-Print Network [OSTI]

the modeling and flight- control-system design for the yaw channel of an unmanned- aerial-vehicle (UAV and Control of the Yaw Channel of a UAV Helicopter Guowei Cai, Student Member, IEEE, Ben M. Chen, Fellow, IEEE found that the commonly used yaw dynamical model for the UAV helicopter proposed in the literature

Benmei, Chen

348

Automatic control in petroleum, petrochemical and desalination industries  

SciTech Connect (OSTI)

This is the second IFAC workshop on the subject of Automatic Control in Oil and Desalination Industries. Presentations and discussions underscored the priorities of oil and desalination industries in getting better overall quality, improved energy use, lower cost, and better safety and security. These factors will take on added importance to oil exporting nations that have been hit recently by large oil price declines, which are forcing them to improve the efficiency of their industries and rationalize all new capital expenditures. Papers presented at the workshop included reviews of theoretical developments in control and research in modelling, optimization, instrumentation and control. They included the latest developments in applications of control systems to petroleum, petrochemical and desalination industries such as refineries, multi-stage flash desalination, chemical reactors, and bioreactors. The papers covered the latest in the applications of adaptive control, robust control, decentralized control, bilinear control, measurement techniques, plant optimization and maintenance, and artificial intelligence. Several case studies on modernization of refineries and controls and its economics were included. Two panel discussions, on new projects at the Kuwait National Petroleum Company (KNPC) and needs for control systems were held. Participation in the workshop came from the oil industry and academic institutions.

Kotob, S.

1986-01-01T23:59:59.000Z

349

Industry Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

350

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

351

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

352

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

353

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network [OSTI]

developers also market ‘fuzzy logic’ control systems, e.g. ,so- called 'fuzzy logic' or expert control, or rule-basedsystems or fuzzy logic is model-predictive control using

Sathaye, J.

2011-01-01T23:59:59.000Z

354

776 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 4, JULY/AUGUST 1998 Switched Reluctance Motor Modeling with  

E-Print Network [OSTI]

-line parameter estimation using recursive identification for switched reluctance motors (SRM's) is presented. Index Terms-- Parameter identification, switched reluctance motor modeling, switched reluctance motors. I. INTRODUCTION THE switched reluctance motor (SRM) is a simple, low- cost, and robust motor

Husain, Iqbal

355

A comparative study of Lotka-Volterra and system dynamics models for simulation of technology industry dynamics  

E-Print Network [OSTI]

Scholars have developed a range of qualitative and quantitative models for generalizing the dynamics of technological innovation and identifying patterns of competition between rivals. This thesis compares two predominant ...

Ünver, Hakk? Özgür

2008-01-01T23:59:59.000Z

356

Panel Discussion: Does Chemical Evidence Give Diagnostic Tests for the Credibility of Physical Models of the Origin of the Solar System?  

Science Journals Connector (OSTI)

29 July 1988 research-article Panel Discussion: Does Chemical Evidence Give Diagnostic Tests for the Credibility of Physical Models of the Origin of the Solar System? M. M. Woolfson G. J. Wasserburg P. Pellas G. Turner H. Wanke J. T...

1988-01-01T23:59:59.000Z

357

Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site  

Broader source: Energy.gov [DOE]

Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site through Natural Isotopic Reactive Tracers and Geochemical Investigation presentation at the April 2013 peer review meeting held in Denver, Colorado.

358

Fate and Exposure Modeling of Environmental Contaminants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fate and Exposure Modeling of Environmental Contaminants Fate and Exposure Modeling of Environmental Contaminants Speaker(s): Mathew MacLeod Date: June 29, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Thomas McKone Chemical products pervade modern society, and furnish unprecedented wealth and comfort to citizens of countries with industrialized economies. Demand for products such as pesticides, industrial chemicals, flame-retardants and additives for consumer products requires large scale production and distribution of these chemicals, and they are inevitably released into the environment. Responsible management of chemicals therefore requires a quantitative understanding of amounts released, how the chemicals partition and travel in the environment, and how they might expose and thus adversely affect human and ecological populations. This

359

Three Dimensional Non-linear Anisotropic Thermo-Chemo-Poro-Elastoplastic Modelling of Borehole Stability in Chemically Active Rocks.  

E-Print Network [OSTI]

??Borehole stability problems are mostly encountered when drilling through chemically active formations such as shales. Shales are highly laminated rocks with transversely isotropic behaviour, and… (more)

Roshan, Hamid

2011-01-01T23:59:59.000Z

360

Physical and Chemical Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL  

SciTech Connect (OSTI)

Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps.

Prahl, C.J.

1992-01-01T23:59:59.000Z

362

Industrial Carbon Capture Project Selections  

Broader source: Energy.gov (indexed) [DOE]

(Partner Organizations) Funding Lead Organization Location (City, State) Project Title - Project Description 1) Large Scale Testing of Advanced Gasification Technologies Air Products & Chemicals, Inc. $71,700,000 Allentown, PA Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems Air Products will accelerate commercial manufacture of ion transport membranes modules and initiate the development a 2,000 TPD pre- commercial scale facility ahead of schedule, enabling this technology

363

Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor: Experimental measurements, model  

E-Print Network [OSTI]

Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor-wafer, lamp-heated chemical vapor deposition system were used to study the wafer temperature response to gas composition. A physically based simulation procedure for the process gas and wafer temperature was developed

Rubloff, Gary W.

364

Chemical Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chemical Science Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. Read more. Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty

365

Subsurface flow and transport of organic chemicals: an assessment of current modeling capability and priority directions for future research (1987-1995)  

SciTech Connect (OSTI)

Theoretical and computer modeling capability for assessing the subsurface movement and fate of organic contaminants in groundwater was examined. Hence, this study is particularly concerned with energy-related, organic compounds that could enter a subsurface environment and move as components of a liquid phase separate from groundwater. The migration of organic chemicals that exist in an aqueous dissolved state is certainly a part of this more general scenario. However, modeling of the transport of chemicals in aqueous solution has already been the subject of several reviews. Hence, this study emphasizes the multiphase scenario. This study was initiated to focus on the important physicochemical processes that control the behavior of organic substances in groundwater systems, to evaluate the theory describing these processes, and to search for and evaluate computer codes that implement models that correctly conceptualize the problem situation. This study is not a code inventory, and no effort was made to identify every available code capable of representing a particular process.

Streile, G.P.; Simmons, C.S.

1986-09-01T23:59:59.000Z

366

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Chemical Industry of the Future The DOE Chemical Industry of the Future program is a set of collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. Texas Industries of the Future The Texas Industries of the Future program facilitates the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive performance. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations within your state, please refer to the DOE Office of Energy Efficiency and Renewable Energy State Specific Information website.

367

Steam System Opportunity Assessment for the Pulp and Paper, Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper,...

368

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network [OSTI]

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

369

China's industrial sector in an international context  

SciTech Connect (OSTI)

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

370

Implementing multi-step chemical kinetics models in opposed-flow flame spread over cellulose and a comparison to single-step chemistry  

SciTech Connect (OSTI)

Multi-step, gas-phase chemical kinetics are introduced into flame spread modeling efforts. An unsteady multi-step, gas-phase kinetics model both with and without steady-state species assumptions, and including nonunit Lewis number, is compared with a model including a single, finite-rate gas-phase reaction, which has been the usual approach in flame spread modeling. Laminar diffusion flames over a thin fuel in an opposing O{sub 2}/N{sub 2} flow are considered with the solution in two-dimensional space of momentum, energy, and 12 gas-phase species. Results for the multi-step models show detailed flame structure in terms of species and heat release distributions throughout the flame and the role of chemical kinetics as a controlling mechanism in flame spread. Of particular interest is the potential of multi-step chemical kinetics in solutions at near-extinction limit conditions. While the incorporation of nonunit Le alone affords more detailed species transport, in high opposing flows it was found to give only minor structural differences form the single-step unit Le model. The multi-step chemistry allows for the gas kinetics to be self-adjusting to environmental conditions. As a result, the distribution of endothermicity and exothermicity throughout the flame and for particular reversible reactions is found to be a function of the flow environment, which overcomes a major drawback of single-step models, namely a fixed heat of combustion independent of environmental conditions, or one that must be determined separately from the model itself.

Wolverton, M.K.; Altenkirch, R.A.; Tang, L. [Mississippi State Univ., MS (United States)] [Mississippi State Univ., MS (United States)

1999-07-01T23:59:59.000Z

371

Hydrodynamic Analysis of a Three-Fluidized Bed Reactor Cold Flow Model for Chemical Looping Hydrogen Generation: Pressure Characteristics  

Science Journals Connector (OSTI)

Chemical looping hydrogen generation (CLHG) can produce pure hydrogen with inherent separation of CO2 from fossils fuel. The process involves a metal oxide, as an oxygen carrier, such as iron oxide. The CLHG syst...

Zhipeng Xue; Wenguo Xiang; Shiyi Chen…

2013-01-01T23:59:59.000Z

372

and Industrial Engineering  

E-Print Network [OSTI]

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

373

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

374

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

375

Industrial pulverized coal low-NO{sub x} burner. Phase 1, Final report  

SciTech Connect (OSTI)

Arthur D. Little, Inc., jointly with its university partner, the Massachusetts Institute of Technology, and its industrial partner, Hauck Manufacturing Corporation, is developing a low NO{sub x} pulverized coal burner for use in industrial processes, including those which may require preheated air or oxygen enrichment. The design of the burner specifically addresses the critical performance requirements of industrial systems, namely: high heat release rates, short flames, even heat flux distribution, and high combustion efficiency. The design is applicable to furnaces, industrial boilers, and cement kilns. The development program for this burner includes a feasibility analysis, performance modelling, development of the burner prototype design, and assessment of the economic viability of the burner. The Phase 1 activities covered by this report consisted of three principal tasks: preliminary burner design; fluid flow/combustion modelling and analyses; and market evaluation. The preliminary design activities included the selection of a design coal for the Phase 1 design, preliminary design layout, and preliminary sizing of the burner components. Modelling and analysis were conducted for the coal pyrolysis zone, the rich combustion zone and the lean bumout zone. Both chemical kinetics and one-dimensional coal combustion modelling were performed. The market evaluation included a review of existing industrial coal use, identification of potential near- and long-term markets and an assessment of the optimum burner sizes.

Not Available

1993-12-01T23:59:59.000Z

376

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

377

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways U.S. chemical producers recognize that energy efficiency offers a competitive edge in world markets. In 1996 the U.S. industry entered into partnership with ITP to work toward shared goals. Since then, the Chemical Industry of the Future partnership has been feeding the technology pipeline so that U.S. chemical producers will have the technologies they need to achieve their long-term economic, energy, and environmental goals. The DOE's Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to target cost-shared solicitations and guide development of a

378

Chemical and Petroleum Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

Chemical and Petroleum Engineering Petroleum Engineering Minor Students their skills by taking a minor in petroleum engineering. Energy is the largest global industry at $3 trillion annually, and petroleum supplies 60 percent

Calgary, University of

379

Tools for chemical synthesis in microsystems  

E-Print Network [OSTI]

Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such “flow chemistry” applications are now found in pharmaceutical and ...

Jensen, Klavs F.

380

Small Wind Turbine Certifications Signal Maturing Industry  

Broader source: Energy.gov [DOE]

More than a dozen small wind turbine models have received certification to the U.S. industry standard from accredited certification bodies. This progress signals a maturing industry and that the DOE Wind Program is on track to reach its goal of certifying 40 turbine models by 2020.

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling of energy utilization of tourism industry to predict the future energy demand to showcase Sri Lanka - The ‘Miracle of Asia’.  

E-Print Network [OSTI]

?? Tourism industry in Sri Lanka shares a substantial amount of GDP (Gross Domestic Product) and predicts an immense expansion within a short time frame.… (more)

Amarawardhana, Kumudu Nanditilaka

2014-01-01T23:59:59.000Z

382

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

383

Statistical and computational intelligence techniques for inferential model development: a comparative evaluation and a novel proposition for fusion  

Science Journals Connector (OSTI)

In industry today many products are sold for their efficacy rather than their chemical composition. Many variables (dependent variables), which characterize the quality of the final product in a manufacturing process, can be difficult to measure in real-time. ... Keywords: Coating industry, Empirical modelling, Inferential measurements, Neural networks, Principal component analysis

K. Warne; G. Prasad; S. Rezvani; L. Maguire

2004-12-01T23:59:59.000Z

384

Cell fleet planning : an industry case study  

E-Print Network [OSTI]

The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

Silva, Armando C.

1984-01-01T23:59:59.000Z

385

Review Article Clay and non-clay minerals in the pharmaceutical and cosmetic industries  

E-Print Network [OSTI]

Review Article Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II Pharmaceutical industry Cosmetic industry Active ingredients Physical and physico-chemical properties A wide range and variety of minerals are used in the pharmaceutical industry as active ingredients

Ahmad, Sajjad

386

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

387

Industrial energy-efficiency-improvement program  

SciTech Connect (OSTI)

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

388

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

389

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

390

Career Map: Industrial Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

391

CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network  

SciTech Connect (OSTI)

This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

Yeh, G.T.

1983-09-01T23:59:59.000Z

392

Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor  

E-Print Network [OSTI]

rugged and less susceptible to joint leakage prob lems, corrosion, fouling and breakage. The waste heat recovery program includes work in advanced heat pumps utilizing chemical absorp tion systems, chemical heat of reaction sys tems and magnetic... for additional improved models for other plants. Two high temperature burner duct recuperators, with somewhat different designs, are being developed by Garrett and Babcock & Wilcox under cost-sharing contracts. The Garrett unit uses ceramic tubes with a...

Gross, T. J.

393

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

394

Climate VISION: Private Sector Initiatives: Chemical Manufacturing: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon dioxide emissions (MMTCO2) based upon the Annual Energy Outlook 2007. According to EIA "Annual Energy Outlook 2007" data, energy-related CO2 emissions projected for the Bulk Chemical industry was 349.0 MMTCO2 in 2004. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2007 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005-2030. The AEO2007 reflects data and information available as of September 15, 2006. Source: Annual Energy Outlook 2007 with projections to 2030, U.S.

395

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

396

The US coal industry 1996  

SciTech Connect (OSTI)

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z

397

A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES  

SciTech Connect (OSTI)

The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

2004-11-01T23:59:59.000Z

398

A Framework to Design and Optimize Chemical Flooding Processes  

SciTech Connect (OSTI)

The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

2006-08-31T23:59:59.000Z

399

A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES  

SciTech Connect (OSTI)

The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectives of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.

Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

2005-07-01T23:59:59.000Z

400

Air Quality Considered Site Selection for New Chemical Plants  

Science Journals Connector (OSTI)

Abstract Geographic allocation of chemical plants significantly affects industrial business sustainability as well as regional environmental sustainability. According to site selection rules, the air quality impact to surrounding communities for a newly constructed chemical plant must be taken into account. To address this issue, regional background air-quality information, new plant emissions, and local statistical meteorological conditions have to be simultaneously considered. Based on that, the potential air-quality impacts from candidate sites of a new chemical plant can be thoroughly evaluated and the final site determination can be optimized to minimize air-quality impacts based on the likelihood of local meteorological conditions. In this paper, a systematic methodology for this purpose has been developed. It includes the modeling and optimization work to apply Monte Carlo optimization for optimal site selection of new chemical plants with their given emission data. This study can not only determine the potential impact for the distribution of new chemical plants with respect to regional statistical meteorological conditions, but also identify an optimal site for each new chemical plant with the minimal environment impact to surrounding communities. Case studies are employed to demonstrate the efficacy of the developed methodology.

Tianxing Cai; Sujing Wang; Qiang Xu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift  

SciTech Connect (OSTI)

We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

Kanematsu, Yusuke; Tachikawa, Masanori [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)] [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

2014-04-28T23:59:59.000Z

402

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

403

Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry  

E-Print Network [OSTI]

Green’ with FCC Expander Technology,” Chemical EngineeringCONCAWE 2008, “Refinery Technology Support Group, Impact ofEnergy, Industrial Technologies Program, Nov. 2007.

Morrow III, William R.

2014-01-01T23:59:59.000Z

404

Air Pollution Assessment in the Dnepropetrovsk Industrial Megapolice of Ukraine  

Science Journals Connector (OSTI)

The territory of the Dnepropetrovsk Region has been exposed to severe anthropogenous influence caused by intensive mineral mining operations and a great number of chemical, metallurgical and mining industries con...

Larisa V. Shupranova; Valentina M. Khlopova…

2014-01-01T23:59:59.000Z

405

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network [OSTI]

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

406

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network [OSTI]

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

Waterland, A. F.

1980-01-01T23:59:59.000Z

407

DOE - Office of Legacy Management -- Seaway Industrial Park ...  

Office of Legacy Management (LM)

to LaGrone; Authorization for remedial Action at the Seaway Industrial Park and Ashland Oil Co. (I) Sites at Tonawanda, NY, and Mallinckrodt Chemical Co., St. Louis, MO; June 22,...

408

Disintermediation of traditional chemical intermediary roles in the Electronic Business-to-Business (e-B2B) exchange world  

Science Journals Connector (OSTI)

The traditional chemical distribution industry is a multi-billion dollar business and with the introduction of Electronic Business-to-Business (e-B2B) exchanges to the global chemical industry there is some concern about the future roles of traditional ... Keywords: Chemical industry, Disintermediation, Supply chain management, e-B2B exchanges

Kin Bee Tay; John Chelliah

2011-09-01T23:59:59.000Z

409

Catalyzing innovations for sustainable chemicals & fuels  

E-Print Network [OSTI]

Catalyzing innovations for sustainable chemicals & fuels Annual Report 2013-2014 #12;a unique resource for industrial catalysis Simple and Safer Processes Skilled Scientists and Engineers Waste!on and the Environmental Protec!on Agency, creates a network for designing sustainable chemicals. A successful renewal

410

Temperature effects on chemical reactor  

Science Journals Connector (OSTI)

In this paper we had to study some characteristics of the chemical reactors from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature it is a mathematical processing of a chemical problem that was already studied but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid?gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology especially in our century.

M. Azzouzi

2008-01-01T23:59:59.000Z

411

Implementing Green Chemistry in Chemical Manufacturing: A Survey Report  

Science Journals Connector (OSTI)

(2) While process integration and other forms of energy conservation have helped reduce distillation energy consumption in the chemical process industries (CPI), the promise of new low energy separation methods in chemical manufacturing has not been realized. ... The National Research Council(2) identified “reducing the energy intensity of the CPI” as a “grand challenge for sustainability in the chemical industry”. ... By articulating the requirements for industrial application of sustainable chem., this review also seeks to bridge any existing gap between academia and industry regarding the R&D and engineering challenges needed to ensure green chem. ...

Robert J. Giraud; Paul A. Williams; Amit Sehgal; Ettigounder Ponnusamy; Alan K. Phillips; Julie B. Manley

2014-09-02T23:59:59.000Z

412

working with industry Engineering and  

E-Print Network [OSTI]

of interests including: · laser physics · semiconductor optoelectronics · photonics in manufacturing · solar · micromechanics and condition monitoring · renewable energy modelling · carbon capture and storage Our institute to applied systems. We have a wide ranging programme of current work with many industrial companies in key

Painter, Kevin

413

Regional-scale chemical transport modeling in support of the analysis of observations obtained during the TRACE-P experiment  

E-Print Network [OSTI]

during the TRACE-P experiment G. R. Carmichael,1 Y. Tang,1 G. Kurata,3 I. Uno,2 D. Streets,4 J.-H. Woo,1 H. Huang,1 J. Yienger,1 B. Lefer,5 R. Shetter,5 D. Blake,6 E. Atlas,5 A. Fried,5 E. Apel,5 F. Eisele the TRACE-P experiment is used to evaluate how well the CFORS/STEM-2K1 regional-scale chemical transport

Clarke, Antony

414

Equilibrium Model and Performances of an Isopropanol–Acetone–Hydrogen Chemical Heat Pump with a Reactive Distillation Column  

Science Journals Connector (OSTI)

The acetone and hydrogen are then fed into the exothermic reactor after being heated up to the temperature TH in the heater. ... Ajah, A. N.; Mesbah, A.; Grievink, J.; Herder, P. M.; Falcao, P. W.; Wennekes, S.On the robustness, effectiveness and reliability of chemical and mechanical heat pumps for low-temperature heat source district heating: A comparative simulation-based analysis and evaluation Energy 2008, 33, 908– 929 ... heat pump is best suited for high energy demand space heating. ...

Min Xu; Fang Xin; Xunfeng Li; Xiulan Huai; Jiangfeng Guo; Hui Liu

2013-02-25T23:59:59.000Z

415

Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution  

E-Print Network [OSTI]

The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

Auh, Jae Hyuck, 1969-

2003-01-01T23:59:59.000Z

416

The Use of Modern Third-Generation Air Quality Models (MM5-EMIMO-CMAQ) for Real-Time Operational Air Quality Impact Assessment of Industrial Plants  

Science Journals Connector (OSTI)

In many cases, a substantial proportion of large industrial emissions are located in the surrounding areas of cities and are the cause of an important part of air concentrations over the city and surrounding area...

R. San José; J. L. Pérez; J. L. Morant…

2009-04-01T23:59:59.000Z

417

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

418

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

419

Industry strengths open new services opportunities  

SciTech Connect (OSTI)

The environmental service industry is in a state of transition in which innovative technologies are increasingly playing a critical role. These changes play to the strengths of the chemical industry, and several firms are effectively growing environmental businesses. At the same time, chemical companies, which are among the largest buyers of environmental services, are making decisions that reflect the changes. Du Pont, for example, has decided to rethink its involvement with the controversial Waste Technologies Industries (WTI) hazardous waste incinerator in East Liverpool, OH. Initially expecting a shortage of incineration capacity, Du Pont had signed a contract - along with BASF and Chemical Waste Management - for a share of capacity at the 60,000-tons/year WTI unit. A number of chemical firms are leveraging their strengths. Air Products and Chemicals (Allentown, PA), for one, has partnerships in the waste-to-energy and flue-gas desulfurization businesses. The company runs cogeneration plants that can burn a combination of coal and natural gas to make both steam and electricity. Air Products assorted businesses can be strong at different times, says Hinman. The flue-gas desulfurization business, for example, was active during the first phase of enforcement of the 1990 Clean Air Act requirements for lower sulfur dioxide (SO[sub 2]) emissions.

Heller, K.

1993-03-10T23:59:59.000Z

420

Transformative CAD based industrial robot program generation  

Science Journals Connector (OSTI)

Industrial robots are widely used in various processes of surface manufacturing, such as spray painting, spray forming, rapid tooling, spray coating, and polishing. Robot programming for these applications is still time consuming and costly. Typical ... Keywords: CAD model, Industrial robot, Robot programming, Surface manufacturing

Heping Chen; Weihua Sheng

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Safe controllers design for industrial automation systems  

Science Journals Connector (OSTI)

The design of safe industrial controllers is one of the most important domains related to Automation Systems research. To support it, synthesis and analysis techniques are available. Among the analysis techniques, two of the most important are Simulation ... Keywords: Formal verification, Industrial systems behaviour modelling, Real-time systems, Safe controllers, Simulation

José Machado; Eurico Seabra; José C. Campos; Filomena Soares; Celina P. Leão

2011-05-01T23:59:59.000Z

422

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

423

Industry 4.0  

Science Journals Connector (OSTI)

Industry is the part of an economy that produces material goods which are highly mechanized and automatized. Ever since the beginning of industrialization, technological leaps have led to paradigm shifts which to...

Dr. Heiner Lasi…

2014-08-01T23:59:59.000Z

424

Chemistry Industry in Egypt  

Science Journals Connector (OSTI)

Chemistry Industry in Egypt ... FROM antiquity the Egyptian economy has been predominately agricultural. ... Nevertheless, it is most probable that the ancient Egyptians were the world's first practical or industrial chemists. ...

1953-08-10T23:59:59.000Z

425

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network [OSTI]

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

426

Industrial Green | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the...

427

The Industrial Electrification Program  

E-Print Network [OSTI]

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

428

Systems and Industry Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems and industry analyses News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program...

429

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

430

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

431

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

432

Linking Energy Efficiency and ISO: Creating a Framework for Sustainable Industrial Energy Efficiency  

E-Print Network [OSTI]

application of energy efficiency standards in China andfor Sustainable Industrial Energy Efficiency in China. ”Model for Industrial Energy Efficiency”, In Proceedings of

McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams, Robert

2005-01-01T23:59:59.000Z

433

Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques  

SciTech Connect (OSTI)

A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

1984-02-01T23:59:59.000Z

434

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

435

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

436

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

437

Analysis of the validity of analytical models used for assessment of forty-five waste site areas: Subsurface flow and chemical transport  

SciTech Connect (OSTI)

Closure actions at 45 waste sites were analyzed using an analytical model. A quality assurance program, which consisted of (1) comparison to analytical solutions with different boundary conditions, (2) comparison of model results to measured concentrations, (3) comparison with layered numerical solutions, and (4) evaluation and sensitivity analysis of input data, suggests that this type of analysis is a reasonable screening tool. Boundary conditions and controlling processes, such as chemical speciation, must be properly identified when defining input parameters; also, transient models that account for unsaturated zone processes predict higher peak concentrations than steady-state models such as the EPA VHS model. Assessment of complex systems that have multiple flow paths, or studies of remedial actions (such as ground water withdrawal and treatment) may require numerical modeling to meet the required objectives. However, the quality assurance analysis for the subject waste sites indicates that analytical approximations are sufficiently accurate to make relative environmental assessments (e.g., prioritizing sites or assessing various closure actions).

Looney, B.B.; Fjeld, R.A.; Merrell, G.B.; Duffield, G.M.; Andrews, C.B.

1987-01-01T23:59:59.000Z

438

Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico  

SciTech Connect (OSTI)

Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and permeability reduction due to calcite precipitation, which is promoted by the retrograde solubility of this mineral. Using treated water that performed well in the laboratory flow experiments was found to avoid excessive precipitation, and allowed injection to proceed.

Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

2008-10-01T23:59:59.000Z

439

MESTRADO EM MICROBIOLOGIA SEGURANA E HIGIENE INDUSTRIAL Instituto Superior Tcnico  

E-Print Network [OSTI]

MESTRADO EM MICROBIOLOGIA SEGURAN�A E HIGIENE INDUSTRIAL ­ Instituto Superior Técnico Objectivos for Engineers, 2º Ed, 2006 John Wiley & Sons, Inc. -D.A. Crowl, J.F. Louvar, Chemical Process Safety, 2ª Ed, 1989 -T. Klets, Still Going Wrong, Elsevier, USA, 2003 #12;-R.E. Sanders, Chemical process Safety

Instituto de Sistemas e Robotica

440

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

442

Interacting With the Pharmaceutical Industry  

E-Print Network [OSTI]

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

443

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name: Benteler Industries Place: Grand Rapids, MI Website: http:www.bentelerindustries. References: Benteler Industries1 Information...

444

LANSCE | Lujan Center | Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact the Lujan...

445

Fact Sheet for Industrial Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Industrial Facilities May 2012 Overview Public utilities in the Pacific Northwest serve more than 2,200 megawatts of industrial load, making industrial sector users a vitally...

446

Uranium industry annual 1998  

SciTech Connect (OSTI)

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

447

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

448

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

449

A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0  

SciTech Connect (OSTI)

Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

2013-11-13T23:59:59.000Z

450

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

451

Chemical wellbore plug for zone isolation in horizontal wells  

E-Print Network [OSTI]

of chemicals that could be used to make wellbore plugs with sufficiently high holding pressures. Three chemicals, used in the oil industry for gas and/or water shut-off, were selected for the study. The commercial names of these chemicals were SEAL, PERMASEAL...

Saavedra, Nestor Fernando

1996-01-01T23:59:59.000Z

452

Review of tribological sinks in six major industries  

SciTech Connect (OSTI)

Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

1985-09-01T23:59:59.000Z

453

Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-  

E-Print Network [OSTI]

, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant, and Data, 2009 #12;Front cover. Industrial wastewater-treatment plant outflow in Worthington, Minnesota

454

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

455

ACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 1 Modeling and Simulation of Air Compressor Energy Use  

E-Print Network [OSTI]

is described. Techniques for calibrating the software to measured energy use data, and estimating energy assessments of mid-sized industries, we found that the average unit energy cost of compressed air ranges from% of a plant's annual electric costs. The wide range in unit energy costs is a function of many factors

Kissock, Kelly

456

The application of an Eulerian chemical and transport model (CMAQ) at fine scale resolution to the UK   

E-Print Network [OSTI]

Present-day numerical air quality models are considered essential tools for predicting future air pollutant concentrations and depositions, contributing to the development of new effective strategies for the control and ...

Pederzoli, Anna

2008-01-01T23:59:59.000Z

457

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Broader source: Energy.gov (indexed) [DOE]

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

458

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

459

Chemical Occurrences  

Broader source: Energy.gov [DOE]

Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

460

Electrotechnologies in Process Industries  

E-Print Network [OSTI]

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Si deposition rates in a two-dimensional CVD (chemical vapor deposition) reactor and comparisons with model calculations  

SciTech Connect (OSTI)

Deposition rates are presented for silicon from silane in a helium carrier gas using a tubular CVD reactor with a two-dimensional flow geometry. Measured surface-temperature profiles, inlet gas velocities, total pressures, and silane/helium concentrations are reported, providing exact boundary conditions that can be used in a two-dimensional numerical CVD model. Comparisons are made between this data and two variations of a model by Coltrin, Kee, and Miller in which different empirical expressions for the silane and disilane reactive sticking coefficient are used.

Breiland, W.G.; Coltrin, M.E.

1989-10-01T23:59:59.000Z

462

Nonlocal Polyakov-Nambu-Jona-Lasinio model with wave function renormalization at finite temperature and chemical potential  

SciTech Connect (OSTI)

We study the phase diagram of strongly interacting matter in the framework of a nonlocal SU(2) chiral quark model which includes wave function renormalization and coupling to the Polyakov loop. Both nonlocal interactions based on the frequently used exponential form factor, and on fits to the quark mass and renormalization functions obtained in lattice calculations are considered. Special attention is paid to the determination of the critical points, both in the chiral limit and at finite quark mass. In particular, we study the position of the critical end point as well as the value of the associated critical exponents for different model parametrizations.

Contrera, G. A. [Physics Department, Comision Nacional de Energia Atomica, Av.Libertador 8250, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Orsaria, M. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); Scoccola, N. N. [Physics Department, Comision Nacional de Energia Atomica, Av.Libertador 8250, 1429 Buenos Aires (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Favaloro, Solis 453, 1078 Buenos Aires (Argentina)

2010-09-01T23:59:59.000Z

463

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

464

Industrial Energy Efficiency Assessments  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

465

Industrial Security Specialst  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve in a developmental capacity assisting senior specialists in carrying out a variety of industrial security and oversight functions.

466

Window industry technology roadmap  

SciTech Connect (OSTI)

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

467

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

468

An industrial policy  

Science Journals Connector (OSTI)

An industrial policy ... There are problems that are very much intertwined with national policy, but there are strengths, too, and they are worth noting. ...

1984-03-05T23:59:59.000Z

469

Industrial and Grid Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial and Grid Security Establishing resilient infrastructures that operate when sensors and physical assets are perturbed is an important national objective. Two related LDRD...

470

A Conceptual Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling  

Broader source: Energy.gov [DOE]

Conceptual models for low temperature combustion diesel engines are offered based on recent research within optically accessible engines and combustion chambers.

471

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to

472

Development of the Conceptual Models for Chemical Conditions and Hydrology Used in the 1996 Performance Assessment for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the ''40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant'' (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on March 28, 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evacuating the potential for groundwater to dissolve the Salado Formation (the repository host formation), development of a regional model for hydrologic conditions, development of a stochastic, probabilistic representation of hydraulic properties in the Culebra Member of the Rustler Formation; characterization of physical transport in the Culebra, and the evaluation of brine and gas flow in the Salado. Additional confidence in the conceptual models used in the 1996 WIPP PA was gained through independent peer review in many stages of their development.

LARSON, KURT W.

2000-05-24T23:59:59.000Z

473

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions  

SciTech Connect (OSTI)

Contents: Introduction; Technical Description of ISC-COMPDEP; Modeling Input Parameters; Discussion of Modeling Results; Summary and Major Assumptions; and References.

NONE

1997-05-01T23:59:59.000Z

474

Bio-based C-3 Platform Chemical: Biotechnological Production and -Conversion of 3-Hydroxypropionaldehyde.  

E-Print Network [OSTI]

??Demands for efficient, greener, economical and sustainable production of chemicals, materials and energy have led to development of industrial biotechnology as a key technology area… (more)

Rezaei, Roya

2013-01-01T23:59:59.000Z

475

ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction  

Broader source: Energy.gov [DOE]

Energy used to drive separation processes accounts for approximately sixty percent of the total energy used by the chemical and petroleum industries.

476

Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2  

Science Journals Connector (OSTI)

Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2 ... Industrial & Engineering Chemistry Research2014 53 (42), 16341-16348 ...

Duane D. Miller; Ranjani Siriwardane

2013-02-28T23:59:59.000Z

477

Promoting the Reduction Reactivity of Ilmenite by Introducing Foreign Ions in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Promoting the Reduction Reactivity of Ilmenite by Introducing Foreign Ions in Chemical Looping Combustion ... Industrial & Engineering Chemistry Research2014 53 (39), 15157-15166 ...

Jinhua Bao; Zhenshan Li; Ningsheng Cai

2013-04-15T23:59:59.000Z

478

Reducible Supports for Ni-based Oxygen Carriers in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Reducible Supports for Ni-based Oxygen Carriers in Chemical Looping Combustion ... Industrial & Engineering Chemistry Research2014 53 (42), 16341-16348 ...

Saurabh Bhavsar; Götz Veser

2013-03-29T23:59:59.000Z

479

Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion  

Science Journals Connector (OSTI)

Ilmenite Activation during Consecutive Redox Cycles in Chemical-Looping Combustion ... Industrial & Engineering Chemistry Research2014 53 (42), 16341-16348 ...

Juan Adánez; Ana Cuadrat; Alberto Abad; Pilar Gayán; Luis F. de Diego; Francisco García-Labiano

2010-01-07T23:59:59.000Z

480

Investigation of Chemical Looping Combustion of Coal with CuFe2O4 Oxygen Carrier  

Science Journals Connector (OSTI)

Investigation of Chemical Looping Combustion of Coal with CuFe2O4 Oxygen Carrier ... Industrial & Engineering Chemistry Research2013 52 (5), 1795-1805 ...

Baowen Wang; Rong Yan; Haibo Zhao; Ying Zheng; Zhaohui Liu; Chuguang Zheng

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "industrial chemical model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Kinetics of Hematite to Wüstite by Hydrogen for Chemical Looping Combustion  

Science Journals Connector (OSTI)

Kinetics of Hematite to Wüstite by Hydrogen for Chemical Looping Combustion ... Industrial & Engineering Chemistry Research (1989), 28 (8), 1130-40 CODEN: IECRED; ISSN:0888-5885. ...

Esmail R. Monazam; Ronald W. Breault; Ranjani Siriwardane

2014-07-01T23:59:59.000Z

482

NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating...  

Broader source: Energy.gov (indexed) [DOE]

of successful, effective collaboration among government, industry, and academia. The heart of the initiative is the CCSI Toolset, a suite of computer models and computational...

483

Calling All Coders: Help Advance America's Wave Power Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

The second round of coding competition kicks off that will help industry develop models and tools that improve the design, development, and optimization of marine and hydrokinetic devices.

484

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

485

Growing Hawaii's agriculture industry,  

E-Print Network [OSTI]

Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

486

Conference on Industrial Physics  

Science Journals Connector (OSTI)

... THE first Conference on Industrial Physics to be held in Great Britain took place in Manchester under the ... auspices of the Institute of Physics on March 28-30. The subject chosen for the Conference was “Vacuum Devices in Research and Industry”, and its chief object was to ...

HERBERT R. LANG

1935-04-06T23:59:59.000Z

487

Industrial Optimization Compact Course  

E-Print Network [OSTI]

Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

Kirches, Christian

488

Industrial electrotechnology development  

Science Journals Connector (OSTI)

New and improved industrial technologies have a tremendous role in enhancing productivity, minimising waste, reducing overall energy consumption, and mitigating environmental impacts. The electric utility industry plays a major role in developing these new and improved technologies. This paper describes several major advances and their potential impacts.

Clark W. Gellings

1997-01-01T23:59:59.000Z

489

Japan's Rayon Industry  

Science Journals Connector (OSTI)

THE RAYON INDUSTRY of Japan has constantly expanded for the past eight years at a pace which has surpassed the development of all the other manufacturing industries of the Empire. At the end of 1926, the combined total output of rayon companies in this ...

KEHTI SISIDO

1934-08-10T23:59:59.000Z

490

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

491

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

492

Uranium industry annual 1995  

SciTech Connect (OSTI)

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

493

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested-volt region. Thus chemical accelerators can provide the same type of information for elemen- tary chemical

Zare, Richard N.

494

Posted 3/2/13 Medline Industries Industrial Engineer  

E-Print Network [OSTI]

Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

Heller, Barbara

495

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

496

INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

Rohs, Remo

497

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

498

Carbon Capture and Storage from Industrial Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated Recovery Act funds to more than 25 projects that capture and sequester CO2 emissions from industrial sources - such as cement plants, chemical plants, refineries, paper mills, and manufacturing facilities - into underground formations. Large-Scale Projects Three projects are aimed at testing large-scale industrial carbon capture

499

ON THE FORMATION LOCATION OF URANUS AND NEPTUNE AS CONSTRAINED BY DYNAMICAL AND CHEMICAL MODELS OF COMETS  

SciTech Connect (OSTI)

The D/H enrichment observed in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Given the predicted strong variation of D/H with heliocentric distance in the solar nebula, this observation links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. That is, comets from the nearly-isotropic class were most likely fed into their current reservoir, the Oort cloud, from a source region near the formation location of Enceladus. Dynamical simulations of the formation of the Oort cloud indicate that Uranus and Neptune are, primarily, responsible for the delivery of material into the Oort cloud. In addition, Enceladus formed from material that condensed from the solar nebula near the location at which Saturn captured its gas envelope, most likely at or near Saturn's current location in the solar system. The coupling of these lines of evidence appears to require that Uranus and Neptune were, during the epoch of the formation of the Oort cloud, much closer to the current location of Saturn than they are currently. Such a configuration is consistent with the Nice model of the evolution of the outer solar system. Further measurements of the D/H enrichment in comets, particularly in ecliptic comets, will provide an excellent discriminator among various models of the formation of the outer solar system.

Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Mousis, Olivier; Petit, Jean-Marc [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, 25010 Besancon Cedex (France); Weaver, Harold A., E-mail: JJ.Kavelaars@nrc.gc.ca [Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099 (United States)

2011-06-20T23:59:59.000Z

500

NSLS Industrial User Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.