National Library of Energy BETA

Sample records for industrial carbon capture

  1. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  2. Industrial Carbon Capture Project Selections | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Carbon Capture Project Selections Industrial Carbon Capture Project Selections Industrial Carbon Capture Project Selections September 2, 2010 These projects have been selected for negotiation of awards; final award amounts may vary. Industrial Carbon Capture Project Selections (71.28 KB) More Documents & Publications ICCS_Project_Selections.pdf CCSTF - Final Report Before the Subcommittee on Energy -- House Science, Space, and Technology Committee

  3. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  4. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  5. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575

  6. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million

  7. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  8. Breakthrough Industrial Carbon Capture, Utilization and Storage Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Begins Full-Scale Operations | Department of Energy Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production

  9. Plastic Bags Might Kickstart the Carbon Capture Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plastic Bags Might Kickstart the Carbon Capture Industry Plastic Bags Might Kickstart the Carbon Capture Industry May 6, 2016 - 5:46pm Addthis This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from electricity generation (coal, gas and oil). Green bars represent CO2

  10. NETL's Carbon Capture Simulation for Industry Impact (CCSI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL's Carbon Capture Simulation for Industry Impact (CCSI 2 ) program is officially extending an opportunity for CO 2 capture technology developers to collaborate with CCSI 2 personnel. CCSI 2 has developed a computational Toolset for computational modeling efforts required for efficiently informing R&D and reducing the risk leading up to commercialization. CCSI 2 is granting developers an opportunity to tap into the CCSI groups' modeling expertise and to become adept at using the CCSI

  11. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory Office of Research and Development (NETL-ORD), in collaboration with researchers

  12. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture involves the separation of carbon dioxide (CO2) from coal-based power plant ... are not ready for implementation on coal-based power plants because they have not ...

  13. DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

  14. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the U.S. Department of Energy’s National Energy Technology Laboratory established the Carbon Capture Simulation Initiative to take carbon-capture concepts from the laboratory to the power plant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. Today, the NETL-led CCSI has proven itself to be a model of successful, effective collaboration among government, industry, and academia.

  15. New Recovery Act Funding Boosts Industrial Carbon Capture and...

    Energy Savers [EERE]

    ... 90 percent CO2 capture from a slipstream of coal-fired flue gas. A six-month field test using the test skid will be conducted at Arizona Public Service's (APS) Cholla Power Plant. ...

  16. Carbon Capture and Storage from Industrial Sources | Department...

    Energy Savers [EERE]

    ... CO2 from an industrial coal-fired source to produce biofuel and other high value co-products. ... Aggregates, Ltd. cement manufacturing plant in San Antonio, Texas. (DOE Share: ...

  17. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  18. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  19. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  20. Carbon Capture Simulation Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research

  1. Secretary Chu Announces First Awards from $1.4 Billion for Industrial Carbon Capture and Storage Projects

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today announced the first round of funding from $1.4 billion from the American Recovery and Reinvestment Act for the selection of 12 projects that will capture carbon dioxide from industrial sources for storage or beneficial use.

  2. Department of Energy Awards $20 Million for Project to Advance Industrial Carbon Capture and Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy has announced that Ramgen Power Systems LLC, Bellevue, Washington, has been awarded $20 million in funding from the American Recovery and Reinvestment Act to scale up a device that uses supersonic shockwaves to compress carbon dioxide (CO2) for capture and storage.

  3. Carbon Capture, Utilization & Storage

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's work to advance capture and safe, sustainable storage of carbon dioxide emissions in underground geologic formations.

  4. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  5. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  6. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  7. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  8. Carbon Capture Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

  9. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to maintain integrity of turbine components. May 10, 2013 Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Captured...

  10. The National Carbon Capture Center

    Office of Scientific and Technical Information (OSTI)

    ... Laboratory OD Outer Diameter OSU Ohio State University PC Pulverized Coal PC4 Post-Combustion Carbon Capture Center PCC Post-Combustion CO 2 Capture PCD Particulate ...

  11. Secretary Chu Announces Nearly $1 Billion Public-Private Investment in Industrial Carbon Capture and Storage

    Broader source: Energy.gov [DOE]

    Three projects will create jobs, reduce carbon emissions, and increase domestic oil production by 10 million barrels of oil per year

  12. Cryogenic Carbon Capture

    SciTech Connect (OSTI)

    2010-07-15

    IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

  13. A Global Technology Roadmap on Carbon Capture and Storage in...

    Open Energy Info (EERE)

    industry sectors, and complements ongoing technology road-mapping exercises for other key energy technologies." References "A Global Technology Roadmap on Carbon Capture and...

  14. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    large-scale industrial carbon capture and storage demonstration project. The Archer Daniels Midland Company (ADM) marked the progress made on construction on the project's...

  15. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 7, 2010 New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development U.S. Energy Secretary Steven Chu today announced the selection of...

  16. Demonstrating carbon capture

    SciTech Connect (OSTI)

    Qader, A.; Hooper, B.; Stevens, G.

    2009-11-15

    Australia is at the forefront of advancing CCS technology. The CO2CRC's H3 (Post-combustion) and Mulgrave (pre-combustion) capture projects are outlined. The capture technologies for these 2 demonstration projects are described. 1 map., 2 photos.

  17. Carbon Capture and Storage Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Carbon Capture and Storage Research Atlas IV Now Available Atlas IV Now Available Carbon storage atlas estimates at least 2,400 billion metric tons of U.S. CO2 storage resource. Read more Industrial CCS Industrial CCS Learn how DOE is capturing and storing CO2 from industrial plants. Read more Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships A nationwide network of federal, state and private sector partnerships are determining the most suitable

  18. Toward transformational carbon capture systems

    SciTech Connect (OSTI)

    Miller, David C.; Litynski, John T.; Brickett, Lynn A.; Morreale, Bryan D.

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  19. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  20. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  1. Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program

    SciTech Connect (OSTI)

    Pawar, Rajesh J.

    2012-04-17

    This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks

  2. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  3. Carbon Capture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture Carbon Capture This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from electricity generation (coal, gas and oil). Green bars represent CO2 emissions by other sources (such as ethanol production, iron-steel production and cement manufacture). Yellow/orange bars signify a

  4. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  5. Synthesis of optimal adsorptive carbon capture processes.

    SciTech Connect (OSTI)

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  6. Carbon Capture Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: Carbon Capture Corporation Address: 7825 Fay Avenue Place: La Jolla, California Zip: 92037 Region: Southern CA Area Sector: Carbon...

  7. Realistic costs of carbon capture

    SciTech Connect (OSTI)

    Al Juaied, Mohammed . Belfer Center for Science and International Affiaris); Whitmore, Adam )

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding

  8. Subsurface capture of carbon dioxide

    DOE Patents [OSTI]

    Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.

    2014-07-22

    A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.

  9. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  10. Carbon Capture and Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil Energy Research Benefits - Carbon Capture and Storage (723.49 KB) More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Fossil Energy Today - Second Quarter, 2011 Fossil Energy FY 2013 Budget-in-Brief

  11. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And fossil fuels also account for almost...

  12. INFOGRAPHIC: Carbon Capture 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture 101 INFOGRAPHIC: Carbon Capture 101 January 7, 2016 - 11:34am Addthis Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be hard to understand. This infographic breaks it down for you. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be

  13. 2011 Department of Energy Investments in Carbon Capture Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon...

  14. EFRC Carbon Capture and Sequestration Activities at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

  15. Toward transformational carbon capture systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, David C.; Litynski, John T.; Brickett, Lynn A.; Morreale, Bryan D.

    2015-10-28

    Since the industrial revolution, fossil energy has promoted economic growth leading to widespread prosperity.

  16. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Office of Fossil Energy (FE) and Bioenergy Technologies Office (BETO) co-hosted the Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on...

  17. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    -- is a process that captures carbon dioxide emissions from sources like coal-fired power plants and either reuses or stores it so it will not enter the atmosphere. We'll...

  18. Membrane-based systems for carbon capture and hydrogen purification

    SciTech Connect (OSTI)

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the

  19. Nuclear Hydrogen and Captured Carbon Dioxide for Alternative...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels. Citation Details In-Document Search Title: Nuclear Hydrogen and Captured Carbon Dioxide for ...

  20. NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS. Citation Details In-Document Search Title: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE ...

  1. Secretary Chu Announces Carbon Capture and Storage Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage Simulation Initiative Secretary Chu Announces Carbon Capture and Storage Simulation Initiative September 8, 2010 - 12:00am Addthis Washington, DC -U.S. ...

  2. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas ...

  3. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    CO2 Capture by Absorption with Potassium Carbonate Citation Details In-Document Search Title: CO2 Capture by Absorption with Potassium Carbonate You are accessing a document ...

  4. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: CO2 Capture by Absorption with Potassium Carbonate Citation Details In-Document Search Title: CO2 Capture by Absorption with Potassium Carbonate You are ...

  5. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect (OSTI)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  6. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  7. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  8. Bioenergy with Carbon Capture and Sequestration Workshop

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) and the Bioenergy Technologies Office (BETO) in the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE) is hosting a Bioenergy with Carbon Capture and Sequestration (BECCS) Workshop on Monday, May 18, 2015 in Washington, DC.

  9. Wyoming Carbon Capture and Storage Institute

    SciTech Connect (OSTI)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  10. Carbon Capture R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research

  11. Carbon Capture, Transport and Storage Regulatory Test Exercise...

    Open Energy Info (EERE)

    Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory...

  12. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  13. Annual Report: Carbon Capture (30 September 2012)

    SciTech Connect (OSTI)

    Luebke, David; Morreale, Bryan; Richards, George; Syamlal, Madhava

    2014-04-16

    Capture of carbon dioxide (CO{sub 2}) is a critical component in reducing greenhouse gas emissions from fossil fuel-based processes. The Carbon Capture research to be performed is aimed at accelerating the development of efficient, cost-effective technologies which meet the post-combustion programmatic goal of capture of 90% of the CO{sub 2} produced from an existing coal-fired power plant with less than a 35% increase in the cost of electricity (COE), and the pre-combustion goal of 90% CO{sub 2} capture with less than a 10% increase in COE. The specific objective of this work is to develop innovative materials and approaches for the economic and efficient capture of CO{sub 2} from coal-based processes, and ultimately assess the performance of promising technologies at conditions representative of field application (i.e., slip stream evaluation). The Carbon Capture research includes seven core technical research areas: post-combustion solvents, sorbents, and membranes; pre-combustion solvents, sorbents, and membranes; and oxygen (O{sub 2}) production. The goal of each of these tasks is to develop advanced materials and processes that are able to reduce the energy penalty and cost of CO{sub 2} (or O{sub 2}) separation over conventional technologies. In the first year of development, materials will be examined by molecular modeling, and then synthesized and experimentally characterized at lab scale. In the second year, they will be tested further under ideal conditions. In the third year, they will be tested under realistic conditions. The most promising materials will be tested at the National Carbon Capture Center (NCCC) using actual flue or fuel gas. Systems analyses will be used to determine whether or not materials developed are likely to meet the Department of Energy (DOE) COE targets. Materials which perform well and appear likely to improve in performance will be licensed for further development outside of the National Energy Technology Laboratory (NETL

  14. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Peer Exchange Call: How Can the Network Meet Your Needs? Call Slides and Meeting Summary, February 27, 2014. Call Slides and Meeting Summary (1.02 MB) More Documents & Publications Better Buildings Residential Network Orientation Key Opportunities and Challenges for Program Sustainability Better Buildings Residential Network Membership Form

    4 likes How Carbon Capture Works Nearly 70 percent of America's electricity is generated from fossil fuels like coal, oil and natural gas. And

  15. New Funding Boosts Carbon Capture, Solar Energy and High Gas...

    Energy Savers [EERE]

    Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - ...

  16. A2BE Carbon Capture LLC | Open Energy Information

    Open Energy Info (EERE)

    Logo: A2BE Carbon Capture LLC Name: A2BE Carbon Capture LLC Address: 2301 Panorama Ave Place: Boulder, Colorado Zip: 80304 Region: Rockies Area Sector: Biofuels Product:...

  17. Today: Live from the Carbon Capture and Storage Forum | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today: Live from the Carbon Capture and Storage Forum Today: Live from the Carbon Capture and Storage Forum September 8, 2010 - 10:10am Addthis John Schueler John Schueler Former ...

  18. Energy Department Advances Carbon Capture and Storage Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - ...

  19. DOE Selects 16 Transformational Carbon Capture Technologies Projects for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding | Department of Energy 16 Transformational Carbon Capture Technologies Projects for Funding DOE Selects 16 Transformational Carbon Capture Technologies Projects for Funding August 13, 2015 - 9:59am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected 16 projects to receive funding through NETL's Carbon Capture Program. The program funds development and testing of transformational carbon dioxide (CO2) capture systems for new and existing

  20. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)

    SciTech Connect (OSTI)

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sun, Xin; Sundaresan, S.; Sahinidis, Nikolaos V.; Zitney, Stephen E.; Bhattacharyya, D.; Agarwal, Deb; Tong, Charles; Lin, Guang; Dale, Crystal; Engel, Dave; Calafiura, Paolo; Beattie, Keith; Shinn, John

    2012-09-30

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify

  1. Carbon Capture and Storage Initiative Aims to Bring Technologies to Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faster | Department of Energy Capture and Storage Initiative Aims to Bring Technologies to Market Faster Carbon Capture and Storage Initiative Aims to Bring Technologies to Market Faster March 16, 2011 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has begun research under the Carbon Capture Simulation Initiative (CCSI), partnering with other national laboratories, universities, and industry to develop state-of-the-art

  2. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  3. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  4. Capture of carbon dioxide by hybrid sorption

    DOE Patents [OSTI]

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  5. Carbon Capture and Storage Poster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Poster Carbon Capture and Storage Poster Educational poster graphically displaying the key components of carbon capture and storage technology. Teachers: If you would like hard copies of this poster sent to you, please contact the FE Office of Communications. Carbon Capture and Storage - In Depth (poster) (55.94 MB) More Documents & Publications Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Training Awards EA-1626: Final Environmental

  6. FE’s Advanced Combustion R&D Seeks Innovative Ways to Lower Cost of Capturing Carbon Emissions from Coal Fired Power Plants

    Broader source: Energy.gov [DOE]

    You’ve probably heard about carbon capture and storage (CCS), a suite of technologies designed to capture and store carbon dioxide (CO2) from power plants and industrial sources.  Because CCS can...

  7. Recent advances in carbon dioxide capture with metal-organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent advances in carbon dioxide capture with metal-organic frameworks Previous Next List ... Great progress in MOF materials for CO2 capture has been made in the past and reviewed ...

  8. Polymer-encapsulated carbon capture liquids that tolerate precipitation of solids for increased capacity

    DOE Patents [OSTI]

    Aines, Roger D; Bourcier, William L; Spadaccini, Christopher M; Stolaroff, Joshuah K

    2015-02-03

    A system for carbon dioxide capture from flue gas and other industrial gas sources utilizes microcapsules with very thin polymer shells. The contents of the microcapsules can be liquids or mixtures of liquids and solids. The microcapsules are exposed to the flue gas and other industrial gas and take up carbon dioxide from the flue gas and other industrial gas and eventual precipitate solids in the capsule.

  9. Secretary Chu Announces $3 Billion Investment for Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sequestration | Department of Energy Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces $3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu announced today the selection of three new projects with a value of $3.18 billion to accelerate the development of advanced coal technologies with carbon capture and storage at commercial-scale. Secretary Chu made today's announcement

  10. Secretary Chu Announces Carbon Capture and Storage Simulation Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Secretary Chu Announces Carbon Capture and Storage Simulation Initiative Secretary Chu Announces Carbon Capture and Storage Simulation Initiative September 8, 2010 - 1:00pm Addthis Washington, DC - U.S. Secretary of Energy Steven Chu announced today the creation of the Carbon Capture and Storage Simulation Initiative with an investment of up to $40 million from the American Recovery and Reinvestment Act. The partnership announced today will bring together national

  11. DOE Approves Field Test for Promising Carbon Capture Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million

  12. Ionic Liquid Sorbents for Carbon Capture - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Ionic Liquid Sorbents for Carbon Capture Ionic liquids for carbon capture and gas separation National Energy Technology Laboratory Contact NETL About This Technology Ionic liquids Ionic liquids Technology Marketing Summary Research is active on technologies for application of ionic liquids to carbon capture or other separation processes in energy systems. The technologies consist of materials and methods that promise to

  13. Department of Energy Announces $67 Million Investment for Carbon Capture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy 7 Million Investment for Carbon Capture Development Department of Energy Announces $67 Million Investment for Carbon Capture Development July 7, 2010 - 12:00am Addthis WASHINGTON, D.C. - The US Department of Energy announced today the selection of ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion. The projects, valued at up to $67 million over three years, focus on reducing the energy and

  14. DOE Science Showcase - Carbon Capture research in DOE Databases | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information DOE Science Showcase - Carbon Capture research in DOE Databases Information Bridge : Natural materials for carbon capture. ... Realistic costs of carbon capture ... Technology and international climate policy Energy Citations Database : What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions ... Effects of warming on the structure and function of a boreal black spruce forest ... ScienceCinema

  15. Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers.

  16. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic ... of CO2 on an alkylamine-appended MOF, mmen-Mg2(dobpdc) employing gas ...

  17. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer Earns Presidential Award for R&D That Could Help Meet DOE Carbon Capture Goals A Carnegie Mellon University professor who worked with the National Energy Technology...

  18. Strategic Analysis of the Global Status of Carbon Capture and...

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Focus Area: Clean Fossil Energy...

  19. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  20. Carbon Capture and Storage (CCS) and Community Engagement | Open...

    Open Energy Info (EERE)

    Engagement Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture and Storage (CCS) and Community Engagement Focus Area: Clean Fossil Energy Topics: Best...

  1. Energy Department Invests to Drive Down Costs of Carbon Capture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects will conduct carbon capture research for two different fossil power generation processes. For traditional, combustion-based power plants - like most coal-fired plants ...

  2. Carbon Capture Turned Upside Down: High-Temperature Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van...

  3. Secretary Moniz Tours Kemper Carbon Capture and Storage Facility

    Broader source: Energy.gov [DOE]

    On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi.

  4. Synthesis, Structure, and Carbon Dioxide Capture Properties of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks Previous Next List Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B....

  5. The National Carbon Capture Center at the Power Systems Development...

    Office of Scientific and Technical Information (OSTI)

    States' energy security through reliable, clean, and affordable energy produced from coal. ... of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. ...

  6. Computational Tools for Accelerating Carbon Capture Process Development

    SciTech Connect (OSTI)

    Miller, David

    2013-01-01

    The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

  7. DOE Signs Cooperative Agreement for Carbon Capture Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil

  8. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  9. World's Largest Post-Combustion Carbon Capture Project Begins

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis News Media Contact 202-586-4940 Department of Energy Supported Project Will Capture 1.4 Million Tons of CO2 Annually Washington, D.C. - Today, the Department of Energy - in partnership with NRG Energy Inc. and JX Nippon - announced that construction has begun on the first

  10. New Computer Model Pinpoints Prime Materials for Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Model Pinpoints Prime Materials for Carbon Capture New Computer Model Pinpoints Prime Materials for Carbon Capture July 17, 2012 NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 UC Berkeley Contact: Robert Sanders, rsanders@berkeley.edu zeolite350.jpg One of the 50 best zeolite structures for capturing carbon dioxide. Zeolite is a porous solid made of silicon dioxide, or quartz. In the model, the red balls are oxygen, the tan balls are silicon. The blue-green area is where carbon

  11. Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Storage | Department of Energy State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage December 20, 2012 - 9:44am Addthis Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy.

  12. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage News FE Carbon Capture and Storage News RSS July 19, 2016 DOE to Invest $30 Million in Projects Developing Components for Advanced Turbine and Supercritical CO2-Based Power Cycles The U.S. Department of Energy's (DOE) National Energy Technology Laboratory has selected six Phase II projects, to further develop innovative technologies for advanced gas turbine components and supercritical carbon dioxide (sCO2) power cycles. The projects were selected from eleven projects

  13. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pore Models Track Reactions in Underground Carbon Capture Pore Models Track Reactions in Underground Carbon Capture September 25, 2014 trebotich2 Computed pH on calcite grains at 1 micron resolution. The iridescent grains mimic crushed material geoscientists extract from saline aquifers deep underground to study with microscopes. Researchers want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of

  14. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  15. Breakthrough Industrial Carbon Capture, Utilization and Storage...

    Energy Savers [EERE]

    at the Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas. ... The two retrofitted Air Products and Chemicals plants produce commercial bulk hydrogen ...

  16. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies

  17. New Membrane Technology for Post-Combustion Carbon Capture Begins

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Test | Department of Energy Membrane Technology for Post-Combustion Carbon Capture Begins Pilot-Scale Test New Membrane Technology for Post-Combustion Carbon Capture Begins Pilot-Scale Test January 26, 2015 - 8:14am Addthis A promising new technology sponsored by the U.S. Department of Energy (DOE) for economically capturing 90 percent of the carbon dioxide (CO2) emitted from a coal-burning power plant has begun pilot-scale testing. The technology is the PolarisTM membrane

  18. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems

  19. FE Carbon Capture and Storage News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC 20585202-586-6660 en NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential http:energy.govfearticlesnetl-s-2015-carbon-storage-atlas-shows-...

  20. Pre-Combustion Carbon Capture Research

    Broader source: Energy.gov [DOE]

    Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and...

  1. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  2. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2013)

    SciTech Connect (OSTI)

    Miller, David C.; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D.; Sundaresan, S.; Sun, Xin; Storlie, C.; Bhattacharyya, D.; Tong, Charles; Zitney, Stephen E; Dale, Crystal; Engel, Dave; Agarwal, Deb; Calafiura, Paolo; Shinn, John

    2014-03-05

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories’ core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI’s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI’s academic participants (Carnegie Mellon University, Princeton University, West

  3. A versatile metal-organic framework for carbon dioxide capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    versatile metal-organic framework for carbon dioxide capture and cooperative catalysis Previous Next List Jinhee Park, Jian-Rong Li, Ying-Pin Chen, Jiamei Yu, Andrey A. Yakovenko, ...

  4. New Funding from DOE Boosts Carbon Capture and Storage Research...

    Energy Savers [EERE]

    "Given the importance of coal to our energy future in the United States, China and other countries, it's crucial that we develop ways to capture and store carbon pollution," said ...

  5. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  6. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide per year. June 16, 2010 Alabama Project Testing Potential for Combining CO2...

  7. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic Frameworks Previous Next List D. Wu, T. M. McDonald, Z. Quan, S. V. Ushakov, P. Zhang, J. R....

  8. Carbon Dioxide Capture in Metal-Organic Frameworks | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun...

  9. Carbon dioxide capture-related gas adsorption and separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu,...

  10. DOE White Paper: Carbon Capture, Utilization, and Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    Carbon capture, utilization, and storage (CCUS) technologies provide a key pathway to address the urgent U.S. and global need for affordable, secure, resilient, and reliable sources of clean energy...

  11. In silico screening of carbon-capture materials | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In silico screening of carbon-capture materials Previous Next List L.-C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W....

  12. World's Largest Post-Combustion Carbon Capture Project Begins...

    Energy Savers [EERE]

    Once completed, the energy technology project will capture about 1.4 million metric tons of carbon dioxide (CO2) annually from an existing coal-fired power plant in Texas. The ...

  13. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect (OSTI)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  14. NETL Carbon Capture Technologies to Be Used in Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass-to-Biofuel Conversion Process with Power Generation | Department of Energy Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation NETL Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation January 20, 2016 - 10:14am Addthis Photo courtesy of Noble Foundation. Some rights reserved Photo courtesy of Noble Foundation. Some rights reserved The National Energy Technology

  15. An early deployment strategy for carbon capture, utilisation, and storage

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: An early deployment strategy for carbon capture, utilisation, and storage Citation Details In-Document Search Title: An early deployment strategy for carbon capture, utilisation, and storage This report describes the current use of CO2 for EOR, and discusses potential expansion of EOR using CO2 from power plants. Analysis of potential EOR development in the USA, where most current CO2-based EOR production takes place, indicates that

  16. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    Facility (Other) | SciTech Connect Other: The National Carbon Capture Center at the Power Systems Development Facility Citation Details In-Document Search Title: The National Carbon Capture Center at the Power Systems Development Facility The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification

  17. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    Facility (Technical Report) | SciTech Connect The National Carbon Capture Center at the Power Systems Development Facility Citation Details In-Document Search Title: The National Carbon Capture Center at the Power Systems Development Facility The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification

  18. COVER PLACEHOLDER Carbon Capture, Utilization, and Storage: Climate Change, Economic

    Office of Environmental Management (EM)

    PLACEHOLDER Carbon Capture, Utilization, and Storage: Climate Change, Economic Competitiveness, and Energy Security August 2016 U.S. Department of Energy SUMMARY Carbon capture, utilization, and storage (CCUS) technologies provide a key pathway to address the urgent U.S. and global need for affordable, secure, resilient, and reliable sources of clean energy. In the United States, fossil fuel-fired power plants account for 30% of total U.S. greenhouse gas (GHG) emissions and will continue to be a

  19. NETL Carbon Capture Technologies to Be Used in CommercialBiomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation NETL Carbon Capture Technologies to Be Used in Commercial ...

  20. Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration

    SciTech Connect (OSTI)

    Dooley, James J.

    2011-06-08

    This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

  1. EIS-0464: Lake Charles Carbon Capture and Storage (CCS) Project in Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by Leucadia Energy, LLC. DOE selected this project for an award of financial assistance through a competitive process under the Industrial Carbon Capture and Sequestration Program.

  2. Progress and new developments in carbon capture and storage

    SciTech Connect (OSTI)

    Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Srivastava, R.D.

    2009-07-01

    Growing concern over the impact on global climate change of the buildup of greenhouse gases (GHGs) in the atmosphere has resulted in proposals to capture carbon dioxide (CO{sub 2}) at large point sources and store it in geologic formations, such as oil and gas reservoirs, unmineable coal seams, and saline formations, referred to as carbon capture and storage (CCS). There are three options for capturing CO{sub 2} from point sources: post-combustion capture, pre-combustion capture, and oxy-combustion. Several processes are available to capture CO{sub 2}, and new or improved processes are under development. However, CO{sub 2} capture is the most expensive part of CCS, typically accounting for 75% of overall cost. CCS will benefit significantly from the development of a lower cost post-combustion CO{sub 2} capture process that can be retrofitted to existing power plants. Once captured, the CO{sub 2} is compressed to about 150 atm and pipelined at supercritical conditions to a suitable storage site. Oil and gas reservoirs, because they have assured seals and are well characterized, are promising early opportunity sites. Saline formations are much more extensive and have a huge potential storage capacity, but are much less characterized. Several commercial and a number of pilot CCS projects are underway around the world.

  3. Speeding Up Zeolite Evaluation for Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the center of this periodic structure is a cavity that might be a good candidate for adsorption of a gas such as carbon dioxide. The seven small red areas at the corners (plus the...

  4. Carbon Capture Technology | Open Energy Information

    Open Energy Info (EERE)

    power plants contains 10-12 percent CO2 by volume, while flue gas from natural gas combined cycle plants contains only 3-6 percent CO2. For effective carbon...

  5. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's

  6. EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas

    Broader source: Energy.gov [DOE]

    DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

  7. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  8. New Funding from DOE Boosts Carbon Capture and Storage Research and Development

    Broader source: Energy.gov [DOE]

    Investment of more than $62 million from Recovery Act reflects Administration's aggressive approach for carbon capture

  9. Secretary Chu Announces $2.4 billion in Funding for Carbon Capture and Storage Projects

    Broader source: Energy.gov [DOE]

    Funds to Advance Research, Development and Deployment of Carbon Capture and Storage Technologies and Infrastructure

  10. New Technical Risk Management Development for Carbon Capture Process

    SciTech Connect (OSTI)

    Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward

    2012-04-30

    The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).

  11. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  12. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  13. Head of UN Economic Commission for Europe: "Capture the Carbon"

    Broader source: Energy.gov [DOE]

    The increased urgency of global climate change has focused the attention of many leaders around the world. While the Department of Energy remains a global leader in carbon capture and storage (CCS) research and development, CCS has grown in prominence as one international solution to an "all-of-the-above" problem.

  14. Novel Application of Carbonate Fuel Cell for Capturing Carbon...

    Office of Scientific and Technical Information (OSTI)

    the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. ... testingmore of an ECM-based CO2 separation and purification system. less ...

  15. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  16. Rule of capture: government and the oil industry

    SciTech Connect (OSTI)

    Tomain, J.P.

    1984-01-01

    In his analysis of the oil industry-government relationship, the author examines the question of whether Big Oil is really bad and, if so, whether the government should leave it alone because it is unmanageable or regulate it for that reason. Responding to Robert Sherrill's The Oil Follies of 1970-1980 and its emphasis on conspiracy and betrayal, he focuses on the replacement of the Rule of Capture, which promoted the production of natural resources, with regulations restricting oil and gas production. He concludes that Big Government has not managed Big Oil well, but proposes an approach based on a series of workable projects instead of antitrust review. These initiatives could include efforts for horizontal and vertical divestiture, restrictions on tax divestiture, regulating cross-ownership, and a reworking of banking and tax laws.

  17. Carbon Constraints and the Electric Power Industry

    SciTech Connect (OSTI)

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  18. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect (OSTI)

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  19. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    SciTech Connect (OSTI)

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO? separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H? selective glassy polymer membranes are an attractive option for energy efficient H?/CO? separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO? separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H?/CO? separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H?/CO? separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.

  20. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  1. Thermokinetic/mass-transfer analysis of carbon capture for reuse/sequestration.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Brady, Patrick Vane; Staiger, Chad Lynn; Luketa, Anay Josephine

    2010-09-01

    Effective capture of atmospheric carbon is a key bottleneck preventing non bio-based, carbon-neutral production of synthetic liquid hydrocarbon fuels using CO{sub 2} as the carbon feedstock. Here we outline the boundary conditions of atmospheric carbon capture for recycle to liquid hydrocarbon fuels production and re-use options and we also identify the technical advances that must be made for such a process to become technically and commercially viable at scale. While conversion of atmospheric CO{sub 2} into a pure feedstock for hydrocarbon fuels synthesis is presently feasible at the bench-scale - albeit at high cost energetically and economically - the methods and materials needed to concentrate large amounts of CO{sub 2} at low cost and high efficiency remain technically immature. Industrial-scale capture must entail: (1) Processing of large volumes of air through an effective CO{sub 2} capture media and (2) Efficient separation of CO{sub 2} from the processed air flow into a pure stream of CO{sub 2}.

  2. Guidelines for carbon dioxide capture, transport and storage

    SciTech Connect (OSTI)

    Hanson, S.

    2008-07-01

    The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

  3. DOE Establishes National Carbon Capture Center to Speed Deployment of CO2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture Processes | Department of Energy DOE Establishes National Carbon Capture Center to Speed Deployment of CO2 Capture Processes DOE Establishes National Carbon Capture Center to Speed Deployment of CO2 Capture Processes May 27, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has announced the creation of a new National Carbon Capture Center (NCCC) to develop and test technologies to capture carbon dioxide (CO2) from coal-based power plants. Managed and operated by

  4. Commerical-Scale CO2 Capture and Sequestration for the Cement Industry

    SciTech Connect (OSTI)

    Adolfo Garza

    2010-07-28

    On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

  5. Risk-Based Comparison of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

    2013-05-01

    In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

  6. Regression analysis study on the carbon dioxide capture process

    SciTech Connect (OSTI)

    Zhou, Q.; Chan, C.W.; Tontiwachiwuthikul, P.

    2008-07-15

    Research on amine-based carbon dioxide (CO{sub 2}) capture has mainly focused on improving the effectiveness and efficiency of the CO{sub 2} capture process. The objective of our work is to explore relationships among key parameters that affect the CO{sub 2} production rate. From a survey of relevant literature, we observed that the significant parameters influencing the CO{sub 2} production rate include the reboiler heat duty, solvent concentration, solvent circulation rate, and CO{sub 2} lean loading. While it is widely recognized that these parameters are related, the exact nature of the relationships are unknown. This paper presents a regression study conducted with data collected at the International Test Center for CO{sub 2} capture (ITC) located at University of Regina, Saskatchewan, Canada. The regression technique was applied to a data set consisting of data on 113 days of operation of the CO{sub 2} capture plant, and four mathematical models of the key parameters have been developed. The models can be used for predicting the performance of the plant when changes occur in the process. By manipulation of the parameter values, the efficiency of the CO{sub 2} capture process can be improved.

  7. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions Control

    Broader source: Energy.gov [DOE]

    Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville, Ala.

  8. Construction Begins on DOE-Sponsored Carbon-Capture Project at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant July 21, ...

  9. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    U.S. China Carbon Capture and Storage Development Project at West Virginia University Citation Details In-Document Search Title: U.S. China Carbon Capture and Storage Development ...

  10. The Energy Department and NETL?s Advances in Carbon Capture and Storage

    ScienceCinema (OSTI)

    None

    2016-07-16

    NETL is innovating cost-effective, safe carbon capturing and storage technologies as part of a long-term strategy for mitigating carbon emissions from fossil fuels.

  11. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect (OSTI)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  12. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    SciTech Connect (OSTI)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  13. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  14. Advanced computational tools for optimization and uncertainty quantification of carbon capture processes

    SciTech Connect (OSTI)

    Miller, David C.; Ng, Brenda; Eslick, John

    2014-01-01

    Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and universities that is developing, demonstrating, and deploying a suite of multi-scale modeling and simulation tools. One significant computational tool is FOQUS, a Framework for Optimization and Quantification of Uncertainty and Sensitivity, which enables basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to rapidly synthesize and optimize a process and determine the level of uncertainty associated with the resulting process. The overall approach of CCSI is described with a more detailed discussion of FOQUS and its application to carbon capture systems.

  15. Using Advanced Modeling to Accelerate the Scale-Up of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Miller, David; Sun, Xin; Storlie, Curtis; Bhattacharyya, Debangsu

    2015-06-18

    Carbon capture and storage (CCS) is one of many approaches that are critical for significantly reducing domestic and global CO2 emissions. The U.S. Department of Energy’s Clean Coal Technology Program Plan envisions 2nd generation CO2 capture technologies ready for demonstration-scale testing around 2020 with the goal of enabling commercial deployment by 2025 [1]. Third generation technologies have a similarly aggressive timeline. A major challenge is that the development and scale-up of new technologies in the energy sector historically takes up to 15 years to move from the laboratory to pre-deployment and another 20 to 30 years for widespread industrial scale deployment. In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale up new carbon capture technologies. The CCSI Toolset (1) enables promising concepts to be more quickly identified through rapid computational screening of processes and devices, (2) reduces the time to design and troubleshoot new devices and processes by using optimization techniques to focus development on the best overall process conditions and by using detailed device-scale models to better understand and improve the internal behavior of complex equipment, and (3) provides quantitative predictions of device and process performance during scale up based on rigorously validated smaller scale simulations that take into account model and parameter uncertainty[2]. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  16. Energy-Related Carbon Emissions, by Industry, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million...

  17. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  18. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  19. The national carbon capture center at the power systems development facility

    SciTech Connect (OSTI)

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  20. Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase | Department of Energy FutureGen 2.0 Project Moves Forward Into Second Phase Carbon Capture and Storage FutureGen 2.0 Project Moves Forward Into Second Phase February 4, 2013 - 7:25pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Following the successful completion of the first phase, the Energy Department today announced the beginning of Phase II of project development with a new cooperative agreement between the FutureGen Industrial Alliance and the Department of Energy for

  1. Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks Previous Next List A. ... of CO2 in open-site Mg-MOF-74, which has emerged as a promising MOF for CO2 capture. ...

  2. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for economically capturing carbon dioxide (CO2) from flue gas has begun at the National ... nominal 1-megawatt-electric (MWe) pilot plant expected to capture 30 tons of CO2 per day. ...

  3. Petra Nova Project Breaks Ground on World’s Largest Post-Combustion Carbon Capture Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Houston-area Petra Nova project is designed to capture 1.4 million tons of CO2 per year -- making it the world's largest post-combustion carbon capture facility.

  4. Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program

    SciTech Connect (OSTI)

    Rychel, Dwight

    2013-09-30

    The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

  5. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  6. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  7. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOE Patents [OSTI]

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  8. U.S. Takes the Helm of International Carbon Capture Test Network |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Takes the Helm of International Carbon Capture Test Network U.S. Takes the Helm of International Carbon Capture Test Network February 24, 2016 - 1:30am Addthis Representatives from the US. and Norway announced today that the U.S. will lead the International Test Center Network (ITCN), a global consortium of facilities conducting research and development (R&D) on carbon capture technologies. The Department of Energy's (DOE) Assistant Secretary for Fossil Energy,

  9. U.S. and Italy Sign Agreement to Collaborate on Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Italy Sign Agreement to Collaborate on Carbon Capture and Storage Technologies U.S. and Italy Sign Agreement to Collaborate on Carbon Capture and Storage Technologies May 23, 2009 - 12:00am Addthis ROME, ITALY - U.S. Energy Secretary Steven Chu today joined with Italian Minister of Economic Development Claudio Scajola to sign a bilateral agreement to advance carbon capture and storage (CCS) technologies in each country. Working together, the U.S. and Italy

  10. Interagency Task Force on Carbon Capture and Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Task Force on Carbon Capture and Storage Interagency Task Force on Carbon Capture and Storage On February 3, 2010, President Obama sent a memorandum to the heads of fourteen Executive Departments and Federal Agencies establishing an Interagency Task Force on Carbon Capture and Storage. The goal was to develop a comprehensive and coordinated Federal strategy to speed the commercial development and deployment of clean coal technologies. The Task Force, co-chaired by the Department of

  11. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect (OSTI)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for

  12. A Strategy for Carbon Capture and Storage (CCS) in the United...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: A Strategy for Carbon Capture and Storage (CCS) in the United Kingdom and Beyond Focus Area: Clean Fossil Energy Topics:...

  13. Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

    Office of Energy Efficiency and Renewable Energy (EERE)

    18 Innovative Carbon Capture Projects Will Help Make Fossil Energy Use Cleaner, Safer and More Sustainable as Part of the Obama Administration’s Climate Action Plan

  14. U.S. and Italy Sign Agreement to Collaborate on Carbon Capture...

    Energy Savers [EERE]

    Carbon Capture and Storage Technologies May 23, 2009 - 12:00am Addthis ROME, ITALY - U.S. Energy Secretary Steven Chu ... technologies, power system simulations, ...

  15. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    Storage Development Project at West Virginia University Citation Details In-Document Search Title: U.S. China Carbon Capture and Storage Development Project at West Virginia ...

  16. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    SciTech Connect (OSTI)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  17. The National Carbon Capture Center at the Power Systems Development Facility: Topical Report

    SciTech Connect (OSTI)

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  18. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect (OSTI)

    None, None

    2014-07-14

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

  19. DOE Program Offers Participants Unique Opportunity to Gain Carbon Capture and Storage Knowledge

    Broader source: Energy.gov [DOE]

    Future leaders and innovators in the area of carbon capture and storage can gain a unique and intensive tutorial on the subject by participating in the U.S. Department of Energy’s Research Experience in Carbon Sequestration program.

  20. GE Awarded DOE Funding to Pilot Carbon Capture Technology | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awarded DOE Project to Pilot CO2 Capture Technology for Power Plants Click to email this ... GE Awarded DOE Project to Pilot CO2 Capture Technology for Power Plants Same class of ...

  1. Secretary Chu Announces $3 Billion Investment for Carbon Capture...

    Broader source: Energy.gov (indexed) [DOE]

    ... retrofit a CO2 capture plant on a 160 megawatt flue gas stream at an existing coal-fired power plant, Alabama Power's Plant Barry, located north of Mobile, AL. The captured CO2 ...

  2. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; SORPTIVE PROPERTIES; POTASSIUM CARBONATES; THERMODYNAMIC MODEL; VAPOR PRESSURE; AIR POLLUTION CONTROL Word Cloud ...

  3. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; POTASSIUM CARBONATES; SORPTIVE PROPERTIES; AMINES; MATERIALS RECOVERY; AIR POLLUTION CONTROL; MATHEMATICAL MODELS ...

  4. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; ABSORPTION; HEAT EXCHANGERS; PILOT PLANTS; POTASSIUM CARBONATES; THERMODYNAMICS; VAPOR PRESSURE; CARBON DIOXIDE; AIR POLLUTION CONTROL; SORPTIVE ...

  5. DOE Awards Cooperative Agreement for Post-Combustion Carbon Capture Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has awarded a cooperative agreement to American Electric Power Service Corporation for the Mountaineer Commercial Scale Carbon Capture and Storage Project to design, construct, and operate a system that will capture and store approximately 1.5 million tons per year of carbon dioxide.

  6. Valuation of carbon capture and sequestration under Greenhouse gas regulations: CCS as an offsetting activity

    SciTech Connect (OSTI)

    Lokey, Elizabeth

    2009-08-15

    When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)

  7. Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today, construction began on an innovative $19.5 million carbon-capture pilot, funded in part by the U.S. Department of Energy, at Kentucky Utilities’ E.W. Brown Generating Station near Harrodsburg, Kentucky. The 2 megawatt thermal system will be the first megawatt-scale carbon-capture pilot unit in the Commonwealth.

  8. Development of a Risk-Based Comparison Methodology of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Thompson, Julie; Leclaire, Rene; Edward, Bryan; Jones, Edward

    2014-06-01

    Given the varying degrees of maturity among existing carbon capture (CC) technology alternatives, an understanding of the inherent technical and financial risk and uncertainty associated with these competing technologies is requisite to the success of carbon capture as a viable solution to the greenhouse gas emission challenge. The availability of tools and capabilities to conduct rigorous, riskbased technology comparisons is thus highly desirable for directing valuable resources toward the technology option(s) with a high return on investment, superior carbon capture performance, and minimum risk. To address this research need, we introduce a novel risk-based technology comparison method supported by an integrated multi-domain risk model set to estimate risks related to technological maturity, technical performance, and profitability. Through a comparison between solid sorbent and liquid solvent systems, we illustrate the feasibility of estimating risk and quantifying uncertainty in a single domain (modular analytical capability) as well as across multiple risk dimensions (coupled analytical capability) for comparison. This method brings technological maturity and performance to bear on profitability projections, and carries risk and uncertainty modeling across domains via inter-model sharing of parameters, distributions, and input/output. The integration of the models facilitates multidimensional technology comparisons within a common probabilistic risk analysis framework. This approach and model set can equip potential technology adopters with the necessary computational capabilities to make risk-informed decisions about CC technology investment. The method and modeling effort can also be extended to other industries where robust tools and analytical capabilities are currently lacking for evaluating nascent technologies.

  9. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  10. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines

    SciTech Connect (OSTI)

    Graeme Puxty; Robert Rowland; Andrew Allport; Qi Yang; Mark Bown; Robert Burns; Marcel Maeder; Moetaz Attalla

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.

  11. Carbon Capture and Storage (CCS) Studies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Y , M A D E N V E R , M A Y 5 , 2 0 1 5 CAPTURING THE GOVERNMENT TAX BASE CAPTURING TAX INCENTIVES * Support for tribal government services * Fire protection, roads, environmental, water, security * Property tax, Sales tax, Possessory interest * "Pickle Rule" and tribal governments, ITC * Value of tax incentives to project * ITC/PTC + Accelerated Depreciation can be more than 50% CAPTURING PROPERTY TAX * Definitions * Personal Property, fixed & mobile assets * Possessory Interest *

  12. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES; POTASSIUM CARBONATES; CARBON DIOXIDE; MATERIALS RECOVERY; AMINES; SOLVENTS; MATERIALS TESTING; ...

  13. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES; POTASSIUM CARBONATES; CARBON DIOXIDE; MATERIALS RECOVERY; AMINES; SOLVENTS; MATERIALS TESTING; ...

  14. DOE Science Showcase - Carbon Capture research in DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    NETL 2010 Carbon Sequestration Atlas of the United States and Canada, NETL Clearer Picture of Carbon Sequestration: Simulations Shed Light on Fate of Sequestered CO2, NERSC 2010 ...

  15. Ohio State Develops Breakthrough Membranes for Carbon Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed a groundbreaking new hybrid membrane that could efficiently separate carbon ... developed a groundbreaking new hybrid membrane that could efficiently separate carbon ...

  16. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; ACID NEUTRALIZING CAPACITY; DESORPTION; POTASSIUM CARBONATES; AMINES; AIR POLLUTION CONTROL; FLUE GAS Word Cloud ...

  17. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; ABSORPTION; PERFORMANCE; POTASSIUM CARBONATES; CHEMICAL REACTION KINETICS; CARBON DIOXIDE; AIR POLLUTION CONTROL; AMINES Word Cloud More Like ...

  18. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical...

    Office of Scientific and Technical Information (OSTI)

    Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from ... The unique chemistry of carbonate fuel cells offers an innovative approach for separation ...

  19. Carbon Capture and Storage in Southern Africa | Open Energy Informatio...

    Open Energy Info (EERE)

    assessment of the rationale, possibilities and capacity needs to enable CO2 capture and storage in Botswana, Mozambique and Namibia AgencyCompany Organization Energy Research...

  20. Evaluating different classes of porous materials for carbon capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emission from power plants. In particular, amongst several separation strategies, adsorption by nano-porous materials is regarded as a potential means to efficiently capture CO2...

  1. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  2. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the

  3. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect (OSTI)

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO{sub 2} capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO{sub 2} capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO{sub 2} capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO{sub 2} solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  4. New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Trucks | Department of Energy Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 - 12:00am Addthis WASHINGTON D.C. --- U.S. Energy Secretary Steven Chu today announced more than $300 million worth of investments that will boost a range of clean energy technologies - including carbon capture from coal, solar power, and high efficiency cars and trucks. The move reflects

  5. Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Coal Power Plants | Department of Energy Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants July 7, 2010 - 1:00pm Addthis Washington, DC - Ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion have been selected by the U.S. Department of Energy (DOE) under its Innovations for Existing Plants

  6. DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Coal-Based Gasification Plants | Department of Energy to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants June 11, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced the selection of nine projects that will develop pre-combustion carbon capture technologies that can reduce CO2 emissions in future

  7. Advanced modeling to accelerate the scale up of carbon capture technologies

    SciTech Connect (OSTI)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  8. An early deployment strategy for carbon capture, utilisation...

    Office of Scientific and Technical Information (OSTI)

    of the technology in the near term. In the longer term, research and development may be sufficient to reduce CO2 capture costs to a point where CCUS would be broadly deployed. ...

  9. Secretary Chu Announces $3 Billion Investment for Carbon Capture...

    Broader source: Energy.gov (indexed) [DOE]

    ... captured CO2 will be treated, compressed and then transported by CO2 pipeline to oilfields in the Permian Basin of West Texas, for use in enhanced oil recovery (EOR) operations. ...

  10. Annual Report: Carbon Capture (30 September 2012) (Technical...

    Office of Scientific and Technical Information (OSTI)

    of the COsub 2 produced from an existing coal-fired power plant with less than a 35% ... and efficient capture of COsub 2 from coal-based processes, and ultimately assess the ...

  11. The IMPACCT of Innovation on Carbon Capture and Storage | Department...

    Energy Savers [EERE]

    the use of our vast domestic coal resources without emitting CO2 into the atmosphere. ... which focuses on technologies that capture CO2 from existing coal-fired power plants. ...

  12. DOE-Supported Project Advances Clean Coal, Carbon Capture Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 capture at less than 40 per metric ton--when integrated into a new or existing coal fired power plant. The successful test moves chemical-looping a step closer to full scale. ...

  13. Energy Department Investments in Innovative Carbon Capture Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... University of Kentucky Research Foundation Lexington, KY An Advanced Catalytic Solvent for Lower Cost Post-combustion CO2 Capture in a Coal-Fired Power Plant Approx. 3 million The ...

  14. DOE Selects 16 Transformational Carbon Capture Technologies Projects...

    Office of Environmental Management (EM)

    ... The project will yield a conceptual design for an algae-based CO2 capture system suitable for integration with a coal-fired power plant. The project will last 24 months. Cost: DOE: ...

  15. New Computer Model Pinpoints Prime Materials for Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Guiding new materials research Coal-fired power plant. Today, there are a few small-scale pilot power plants that capture CO2 through a process called amine scrubbing. These plants ...

  16. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect (OSTI)

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and

  17. Enhanced carbon dioxide capture upon incorporation ofN,N'-dimethyleth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri Previous Next List Thomas M. McDonald, Deanna M. ...

  18. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc) Previous Next List Thomas M. McDonald, Woo Ram Lee, Jarad A. ...

  19. Hydrogen storage and carbon dioxide capture in an iron-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods Previous Next List Kenji Sumida, ...

  20. Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks Previous Next List Weigang Lu, Julian P. Sculley, Daqiang Yuan, Rajamani Krishna, and Hong-Cai Zhou, J....

  1. Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test

    Office of Energy Efficiency and Renewable Energy (EERE)

    The successful bench-scale test of a novel carbon dioxide capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants.

  2. Department of Energy Announces $41 Million Investment for Carbon Capture Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Washington, D.C. — The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide (CO2) from coal...

  3. Department of Energy Announces $41 Million Investment for Carbon Capture Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide from coal-fired power plants.

  4. Science on the Hill: Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from electricity generation (coal, gas and oil), ...orange bars signifying a mix of electricity and ... and the National Energy Technology Laboratory have ...

  5. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department of Energy (DOE) issued a final environmental impact statement (EIS; DOE/EIS-0464) for the Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) in November 2013. DOE announced its decision to provide up to $261.4 million in cost-shared funding to Leucadia Energy, LLC (Leucadia) for the

  6. Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Grid | Department of Energy Chu Meetings on Carbon Capture and Sequestration and State Grid Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and State Grid July 16, 2009 - 12:00am Addthis BEIJING, CHINA - Additional readouts from Secretary Chu's meetings in China are below, courtesy of Dan Leistikow, Public Affairs Director, U.S. Department of Energy. Secretary Chu and his delegation met Thursday morning with Cao Peixi, Chairman of the Huaneng Group to discuss an

  7. International Clean Coal, Carbon Capture Experts to Gather at 28th Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pittsburgh Coal Conference | Department of Energy Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference August 10, 2011 - 1:00pm Addthis Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept.

  8. Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation Action Plan for the Lake Charles Carbon Capture and Sequestration Project U. S. Department of Energy National Energy Technology Laboratory March 2014 1 INTRODUCTION The United States (U.S.) Department of Energy (DOE) issued a final environmental impact statement (EIS; DOE/EIS-0464) for the Lake Charles Carbon Capture and Sequestration Project (Lake Charles CCS Project) in November 2013. DOE announced its decision to provide up to $261.4 million in cost-shared funding to Leucadia

  9. FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0

    Broader source: Energy.gov [DOE]

    The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois.

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  11. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    2 and SOsub 2. Corrosion of carbon steel in uninhibited MEA solution is increased by increased amine concentration, by addition of piperazine, and by greater COsub 2 loading. ...

  12. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extract from saline aquifers deep underground. The goal is to learn what will happen when fluids pass through the material should power plants inject carbon dioxide underground. ...

  13. Pre-Combustion Carbon Capture Research | Department of Energy

    Energy Savers [EERE]

    This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller ... closely with the gasification and hydrogen turbine programs to ensure that ...

  14. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    CONSUMPTION; MASS TRANSFER; PILOT PLANTS; POTASSIUM CARBONATES; VANADIUM; AMINES; AIR POLLUTION CONTROL Word Cloud More Like This Full Text preview image File size NAView Full ...

  15. Annual Report: Carbon Capture Simulation Initiative (CCSI) (30...

    Office of Scientific and Technical Information (OSTI)

    quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry ...

  16. U.S.-Norway Conference Focuses on Advancing Carbon Capture and Storage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy -Norway Conference Focuses on Advancing Carbon Capture and Storage U.S.-Norway Conference Focuses on Advancing Carbon Capture and Storage July 23, 2014 - 10:00am Addthis The DOE team joins their Norwegian counterparts on a a tour of the <a href= "http://www.tcmda.com/en/">CO2 Technology Centre Mongstad project</a> – the world’s largest facility for testing and improving CO2 capture. Located just north of Bergen, this project includes a

  17. Carbon Pollution Being Captured, Stored and Used to Produce More Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil | Department of Energy Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am Addthis Learn more about how the Office of Fossil Energy's carbon capture, utilization and storage program is benefiting the economy and the environment. Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy What does this project do? More than 90% of the CO2 at the

  18. FutureGen Industrial Alliance Announces Carbon Storage Site Selection...

    Office of Environmental Management (EM)

    at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. ...

  19. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  20. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    Extensive measurements of COsub 2 solubility in 7 m MEA at 40 and 60 C have confirmed the work by Jou and Mather. Corrosion of carbon steel without inhibitors increases from 19 ...

  1. Ohio State Develops Breakthrough Membranes for Carbon Capture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Researchers at The Ohio State...

  2. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. December 1, 2010 Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential...

  3. DOE to Provide $36 Million to Advance Carbon Dioxide Capture...

    Broader source: Energy.gov (indexed) [DOE]

    of carbon dioxide (CO2) from the existing fleet of coal-fired power plants. "Currently, the ... and laboratory methods to identify and ... an additive for reducing the stripping ...

  4. COVER PLACEHOLDER Carbon Capture, Utilization, and Storage: Climate...

    Broader source: Energy.gov (indexed) [DOE]

    ... one- sixth of global CO2 emission reductions in ... 2,000 500 megawatt coal-fired power plants, each emitting 3.5 ... term while significantly reducing carbon emissions. ...

  5. Post-Combustion Carbon Capture Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    In 2011, coal-fired power plants produced nearly 35 percent of the total U.S. carbon dioxide ... electricity for a new pulverized coal plant by up to 80 percent and result in a 20 to ...

  6. New Membrane Technology for Post-Combustion Carbon Capture Begins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the carbon dioxide (CO2) emitted from a coal-burning power plant has begun pilot-scale testing. ... greenhouse gas emissions from coal-fired power plants while minimizing the ...

  7. Carbon dioxide capture from a cement manufacturing process

    DOE Patents [OSTI]

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  8. Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities

    SciTech Connect (OSTI)

    Benson, S.M.

    1997-07-01

    This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

  9. Amine enriched solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Gray, McMahan L.; Soong, Yee; Champagne, Kenneth J.

    2003-04-15

    A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

  10. Chu Issues Call to Action on Carbon Capture and Storage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Issues Call to Action on Carbon Capture and Storage Chu Issues Call to Action on Carbon Capture and Storage October 12, 2009 - 12:00am Addthis The attached letter from U.S. Energy Secretary Steven Chu was delivered today to Energy Ministers and other attendees of the Carbon Sequestration Leadership Forum in London, where Secretary Chu is speaking on Monday and Tuesday. For questions, email Tom.Reynolds@hq.doe.gov or Dan.Leistikow@hq.doe.gov Media contact(s): (202) 586-4940 Addthis

  11. Fossil Energy Research Efforts in Carbon Capture and Storage...

    Energy Savers [EERE]

    ... With these building blocks, a new breed of coal plant can be created - one that generates ... of approximately 97 percent of coal-fired and industrial CO2 emissions, about 96 ...

  12. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  13. Amine Functionalized Nanoporous Materials for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Zheng, Feng; Addleman, Raymond S.; Aardahl, Chris L.; Fryxell, Glen E.; Brown, Daryl R.; Zemanian, Thomas S.

    2007-04-04

    Increasing CO2 concentration level in the earth atmosphere and rising global average temperature have raised serious concerns about the effects of anthropogenic CO2 on global climate change. Meanwhile, most analyses project that fossil fuels will continue to be the dominant energy source world wide until at least the middle of the twenty first century. Significant reduction from the current level of CO2 emission due to the consumption of fossil fuels is necessary to stabilize atmospheric concentration of CO2. The focus of this chapter will be on the CO2 capture technologies related to energy production from fossil fuels, as over one third of the worlds CO2 emissions from fossil-fuel use are attributed to fossil-fuel electric power-generation plants. Solid amine sorbents have promise to overcome some of the shortcomings of liquid amines for CO2 capture in energy production. The dispersion, immobilization, and confinement of the amine functional groups into a porous solid support can result in a more stable, more mass transfer efficient, less toxic, and less corrosive material than the corresponding liquid amines. Solid amine sorbents allow a dry scrubbing process where the energy penalty associated with the evaporation of a large amount of water is avoided. Further, the amine functional groups can be tailored for lower regeneration energy requirement. The supports can be tailored independently for high stability and low mass transfer resistance. This book chapter deals with the topics of solid amine sorbents (both supported and tethered amines) as the functional materials for CO2 separation. The design rational and the performance of such materials are discussed in detail. The state of the art in the synthesis and the CO2 capture performance of solid amine sorbent is reviewed.

  14. Carbon dioxide capture from power or process plant gases

    DOE Patents [OSTI]

    Bearden, Mark D; Humble, Paul H

    2014-06-10

    The present invention are methods for removing preselected substances from a mixed flue gas stream characterized by cooling said mixed flue gas by direct contact with a quench liquid to condense at least one preselected substance and form a cooled flue gas without substantial ice formation on a heat exchanger. After cooling additional process methods utilizing a cryogenic approach and physical concentration and separation or pressurization and sorbent capture may be utilized to selectively remove these materials from the mixed flue gas resulting in a clean flue gas.

  15. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE

    SciTech Connect (OSTI)

    Gary T. Rochelle; Eric Chen; J.Tim Cullinane; Marcus Hilliard; Jennifer Lu; Babatunde Oyenekan; Ross Dugas

    2004-07-29

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. CO{sub 2} mass transfer rates are second order in piperazine concentration and increase with ionic strength. Modeling of stripper performance suggests that 5 m K{sup +}/2.5 m PZ will require 25 to 46% less heat than 7 m MEA. The first pilot plant campaign was completed on June 24. The CO{sub 2} penetration through the absorber with 20 feet of Flexipac{trademark} 1Y varied from 0.6 to 16% as the inlet CO{sub 2} varied from 3 to 12% CO{sub 2} and the gas rate varied from 0.5 to 3 kg/m{sup 2}-s.

  16. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  17. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    SciTech Connect (OSTI)

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-12-31

    Under the auspices of the U.S. Department of Energys Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification through PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.

  18. Adding "Utilization" to Carbon Capture and Storage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Adding "Utilization" to Carbon Capture and Storage Adding "Utilization" to Carbon Capture and Storage May 1, 2012 - 4:23pm Addthis Greater application of CO2-EOR could yield a significant boost to the U.S. economy, including increased economic activity, improved balance of trade, job creation, and reduced oil imports. Greater application of CO2-EOR could yield a significant boost to the U.S. economy, including increased economic activity, improved balance of trade,

  19. Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Storage Project in Texas | Department of Energy Up To $154 Million for NRG Energy's Carbon Capture and Storage Project in Texas Secretary Chu Announces Up To $154 Million for NRG Energy's Carbon Capture and Storage Project in Texas March 9, 2010 - 12:00am Addthis Washington - U.S. Secretary of Energy Steven Chu announced today that a project with NRG Energy has been selected to receive up to $154 million, including funding from the American Recovery and Reinvestment Act. Located in

  20. Copper clusters capture and convert carbon dioxide to make fuel | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Copper clusters capture and convert carbon dioxide to make fuel By Payal Marathe * August 6, 2015 Tweet EmailPrint Capture and convert-this is the motto of carbon dioxide reduction, a process that stops the greenhouse gas before it escapes from chimneys and power plants into the atmosphere and instead turns it into a useful product. One possible end product is methanol, a liquid fuel and the focus of a recent study conducted at the U.S. Department of Energy's (DOE)

  1. Carbon Capture Simulation Initiative: A Case Study in Multi-Scale Modeling and New Challenges

    SciTech Connect (OSTI)

    Miller, David; Syamlal, Madhava; Mebane, David; Storlie, Curtis; Bhattacharyya, Debangsu; Sahinidis, Nikolaos V.; Agarwal, Deborah A.; Tong, Charles; Zitney, Stephen E.; Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran; Ryan, Emily M.; Engel, David W.; Dale, Crystal

    2014-04-01

    Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry and universities that is developing and deploying a suite of multi-scale modeling and simulation tools including basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, high-resolution filtered computational-fluid-dynamic (CFD) submodels, validated high-fidelity device-scale CFD models with quantified uncertainty, and a risk analysis framework. These tools and models enable basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to synthesize and optimize a process. The resulting process informs the development of process control systems and more detailed simulations of potential equipment to improve the design and reduce scale-up risk. Quantification and propagation of uncertainty across scales is an essential part of these tools and models.

  2. Carbon Capture Simulation Initiative: A Case Study in Multi-Scale Modeling and New Challenges

    SciTech Connect (OSTI)

    Miller, David C; Syamlal, Madhava; Zitney, Stephen E.

    2014-06-07

    Abstract: Advanced multi-scale modeling and simulation has the potential to dramatically reduce development time, resulting in considerable cost savings. The Carbon Capture Simulation Initiative is a partnership among national laboratories, industry and universities that is developing and deploying a suite of multi-scale modeling and simulation tools including basic data submodels, steady-state and dynamic process models, process optimization and uncertainty quantification tools, an advanced dynamic process control framework, high-resolution filtered computational-fluid-dynamic (CFD) submodels, validated high-fidelity device-scale CFD models with quantified uncertainty, and a risk analysis framework. These tools and models enable basic data submodels, including thermodynamics and kinetics, to be used within detailed process models to synthesize and optimize a process. The resulting process informs the development of process control systems and more detailed simulations of potential equipment to improve the design and reduce scale-up risk. Quantification and propagation of uncertainty across scales is an essential part of these tools and models.

  3. Multi-phase CFD modeling of solid sorbent carbon capture system

    SciTech Connect (OSTI)

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W.; Xu, W.; Huckaby, E. David

    2013-01-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  4. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    SciTech Connect (OSTI)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  5. Fossil Energy Research Benefits Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has become a world leader in carbon capture and storage (CCS) science and technology. ... and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. ...

  6. First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas

    Broader source: Energy.gov [DOE]

    WASHINGTON D.C. — Today, the Department of Energy and Skyonic Corporation marked the opening of a major project demonstration for converting carbon dioxide (CO2) into commercial products. This new plant will use a first-of-its-kind process to capture 75,000 tons of CO2 from a San Antonio, Texas, cement plant and convert the greenhouse gas into other products, including sodium carbonate and sodium bicarbonate, hydrochloric acid and bleach.

  7. FutureGen Industrial Alliance Announces Carbon Storage Site Selection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for FutureGen 2.0 | Department of Energy Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 October 6, 2010 - 12:00am Addthis WASHINGTON -- The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that

  8. New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts

    Broader source: Energy.gov [DOE]

    An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy.

  9. Energy Department Project Captures and Stores One Million Metric Tons of Carbon

    Broader source: Energy.gov [DOE]

    As part of President Obama’s all-of-the-above energy strategy, the Department of Energy announced today that its Illinois Basin-Decatur Project successfully captured and stored one million metric tons of carbon dioxide (CO2) and injected it into a deep saline formation.

  10. Licensing Agreement Moves Two NETL-Patented Carbon Capture Sorbents Closer to Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two new patented sorbents used for carbon dioxide capture from coal-based power plants have moved closer to commercialization as a result of a licensing agreement between the Office of Fossil Energy's National Energy Technology Laboratory and ADA Environmental Solutions.

  11. NETL-Developed Carbon Capture Technology Recognized with an R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    A novel carbon capture technology developed by researchers at the Department of Energy’s National Energy Technology Laboratory and ADA Environmental Solutions has been recognized by R&D Magazine as among the 100 most technologically significant products introduced into commercial marketplace within the past year.

  12. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025

  13. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  14. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  15. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  16. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    DOE Patents [OSTI]

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  17. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approach, which leverages cutting-edge research facilities, world-class scientists and ... pulverized coal power plants and integrated gasification combined cycle (IGCC) plants. ...

  18. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Report of the Interagency Task Force on Carbon Capture and Storage

    SciTech Connect (OSTI)

    2010-08-01

    Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Force on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power

  20. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect (OSTI)

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  1. Highly stable beta-class carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Alvizo, Oscar; Benoit, Mike; Novick, Scott

    2013-04-16

    The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.

  2. Highly stable beta-class carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Alvizo, Oscar; Benoit, Michael R; Novick, Scott J

    2013-08-20

    The present disclosure relates to .beta.-class carbonic anhydrase polypeptides having improved properties including increased thermostability and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides formulations and uses of the polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering. Also provided are polynucleotides encoding the carbonic anhydrase polypeptides and host cells capable of expressing them.

  3. Cooperative Carbon Capture by a Novel Material that Mimics a Plant Enzyme |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Cooperative Carbon Capture by a Novel Material that Mimics a Plant Enzyme Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  4. Global warming and the future of coal carbon capture and storage

    SciTech Connect (OSTI)

    Ken Berlin; Robert M. Sussman

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  5. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect (OSTI)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  6. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  7. Department of Energy Awards $71 Million to Accelerate Innovative Carbon Capture Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that Arizona Public Service (APS), Phoenix, Ariz., has been awarded $70.5 million from the American Recovery and Reinvestment Act (ARRA) to expand an existing industrial and innovative reuse carbon mitigation project.

  8. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ≥ 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  9. Development of Novel Carbon Sorbents for CO{sub 2} Capture

    SciTech Connect (OSTI)

    Krishnan, Gopala; Hornbostel, Marc; Bao, Jianer; Perez, Jordi; Nagar, Anoop; Sanjurjo, Angel

    2013-11-30

    An innovative, low-cost, and low-energy-consuming carbon dioxide (CO{sub 2}) capture technology was developed, based on CO{sub 2}adsorption on a high-capacity and durable carbon sorbent. This report describes the (1) performance of the concept on a bench-scale system; (2) results of parametric tests to determine the optimum operating conditions; (3) results of the testing with a flue gas from coal-fired boilers; and (4) evaluation of the technical and economic viability of the technology. The process uses a falling bed of carbon sorbent microbeads to separate the flue gas into two streams: a CO{sub 2} -lean flue gas stream from which > 90% of the CP{sub 2} is removed and a pure stream of CO{sub 2} that is ready for compression and sequestration. The carbo sorbent microbeads have several unique properties such as high CO{sub 2} capacity, low heat of adsorption and desorption (25 to 28 kJ/mole), mechanically robust, and rapid adsorption and desorption rates. The capture of CO{sub 2} from the flue gas is performed at near ambient temperatures in whic the sorbent microbeads flow down by gravity counter-current with the up-flow of the flue gas. The adsorbed CO{sub 2} is stripped by heating the CO{sub 2}-loaded sorbent to - 100°C, in contact with low-pressure (- 5 psig) steam in a section at the bottom of the adsorber. The regenerated sorben is dehydrated of adsorbed moisture, cooled, and lifted back to the adsorber. The CO{sub 2} from the desorber is essentially pure and can be dehydrated, compressed, and transported to a sequestration site. Bench-scale tests using a simulated flue gas showed that the integrated system can be operated to provide > 90% CO{sub 2} capture from a 15% CO{sub 2} stream in the adsorber and produce > 98% CO{sub 2} at the outlet of the stripper. Long-term tests ( 1,000 cycles) showed that the system can be operated reliably without sorbent agglomeration or attrition. The bench-scale reactor was also operated using a flue gas stream from a coal

  10. NETL-RUA Engineer Earns Presidential Award for R&D That Could Help Meet DOE Carbon Capture Goals

    Broader source: Energy.gov [DOE]

    A Carnegie Mellon University professor who worked with the National Energy Technology Laboratory on research that could help meet carbon capture goals has earned a Presidential Early Career Award for Scientists and Engineers.

  11. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    SciTech Connect (OSTI)

    Yildirim, Taner

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  12. Prospective life-cycle modeling of a carbon capture and storage system using metal-organic frameworks for CO2 capture

    SciTech Connect (OSTI)

    Sathre, R; Masanet, E

    2013-01-01

    Metal-organic frameworks (MOFs) are promising new material media for carbon dioxide (CO2) capture. Their tunable adsorption patterns may allow relatively efficient separation of gases, e.g. from power plant exhaust. Here we conduct scenario-based prospective life-cycle system modeling to estimate the potentials and implications of large-scale MOF application for post-combustion carbon capture and storage (CCS), and estimate the source and magnitude of uncertainties. The methodological approach includes parametric system modeling to quantify relations between system components; scenario projections of plausible pathways for system scale-up; proxy data on analogous materials and processes; and uncertainty analysis of parameter significance. We estimate the system-wide material and energy flows and economic costs associated with projected large-scale CCS deployment. We compare the performance of a MOF-based system to currently more mature amine-based capture technology. We discuss balancing two critical factors that determine the success of CO2 capture media: thermodynamic efficiency of the capture/regeneration cycle, and life-cycle embodied energy and cost of the material and its ancillary systems.

  13. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect (OSTI)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  14. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  15. Optimal Synthesis of a Pulverized Coal Power Plant with Carbon Capture

    SciTech Connect (OSTI)

    Prakash R. Kotecha; Juan M. Salazar; Stephen Zitney

    2009-01-01

    Coal constitutes an important source of fuel for the production of power in the United States. For instance, in January 2009, pulverized coal (PC) power plants alone contributed to over 45 percent of the Nation's total electric power production. However, PC power plants also contribute to increased emissions of greenhouse gases principally carbon-dioxide (CO2). Recently, various carbon capture strategies have been under active investigation so as to make these plants compete with the more environmental friendly renewable energy sources. One such technology that has received considerable success is the capture of CO2 by an amine-based solvent extraction process. However, an aqueous absorption/stripping technology when used in a PC power plant can reduce the net power output of the plant by as much as 20-40%. The energy penalty comes from heating up the solvent in the regenerator, balancing the enthalpy of reaction, and water stripping. This energy penalty poses considerable limitations on commercial viability of the solvent extraction process and, as a result, various energy-saving modifications have been proposed in the literature ranging from the use of hybrid solvents to novel stripper configurations. In this paper, we show that the energy penalty can be further reduced by heat integration of various PC plant components with the carbon capture system. In addition to the release of greenhouse gases to the environment, PC plants also consume a large amount of freshwater. It is estimated that subcritical and supercritical PC plants have water losses of 714 gal/MWh and 639 gal/MWh, respectively. Water loss is based on an overall balance of the plant source and exit streams. This includes coal moisture, air humidity, process makeup, cooling tower makeup (equivalent to evaporation plus blowdown), process losses (including losses through reactions, solids entrainment, and process makeup/blowdown) and flue gas losses. The primary source of water used in PC power plants

  16. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Info (EERE)

    UNIDO Programs 2 References Resources UNIDO Tools A Global Technology Roadmap on Carbon Capture and Storage in Industry COMFAR III: Computer Model for Feasibility Analysis and...

  17. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    SciTech Connect (OSTI)

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mg ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of

  18. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    SciTech Connect (OSTI)

    Meyer, Howard; Zhou, S James; Ding, Yong; Bikson, Ben

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separation membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating

  19. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  20. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  1. Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage

    SciTech Connect (OSTI)

    Swart, Peter

    2013-11-30

    This award was a training grant awarded by the U.S. Department of Energy (DOE). The purpose of this award was solely to provide training for two PhD graduate students for three years in the general area of carbon capture and storage (CCS). The training consisted of course work and conducting research in the area of CCS. Attendance at conferences was also encouraged as an activity and positive experience for students to learn the process of sharing research findings with the scientific community, and the peer review process. At the time of this report, both students have approximately two years remaining of their studies, so have not fully completed their scientific research projects.

  2. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    SciTech Connect (OSTI)

    Jacobs, Wendy ); Chohen, Leah; Kostakidis-Lianos, Leah; Rundell, Sara )

    2009-03-01

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in the absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.

  3. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  4. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    SciTech Connect (OSTI)

    Johnson, J.E.; Bates, T.S. [NOAA, Seattle, WA (United States)

    1993-12-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  5. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  6. Bayesian Treed Multivariate Gaussian Process with Adaptive Design: Application to a Carbon Capture Unit

    SciTech Connect (OSTI)

    Konomi, Bledar A.; Karagiannis, Georgios; Sarkar, Avik; Sun, Xin; Lin, Guang

    2014-05-16

    Computer experiments (numerical simulations) are widely used in scientific research to study and predict the behavior of complex systems, which usually have responses consisting of a set of distinct outputs. The computational cost of the simulations at high resolution are often expensive and become impractical for parametric studies at different input values. To overcome these difficulties we develop a Bayesian treed multivariate Gaussian process (BTMGP) as an extension of the Bayesian treed Gaussian process (BTGP) in order to model and evaluate a multivariate process. A suitable choice of covariance function and the prior distributions facilitates the different Markov chain Monte Carlo (MCMC) movements. We utilize this model to sequentially sample the input space for the most informative values, taking into account model uncertainty and expertise gained. A simulation study demonstrates the use of the proposed method and compares it with alternative approaches. We apply the sequential sampling technique and BTMGP to model the multiphase flow in a full scale regenerator of a carbon capture unit. The application presented in this paper is an important tool for research into carbon dioxide emissions from thermal power plants.

  7. Carbon Fiber and Clean Energy: 4 Uses for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature furnace, where material is converted into carbon fiber at Oak Ridge National Laboratory's Carbon Fiber Technology Facility (CFTC). The CFTC enables companies to test low-cost carbon fiber for use in several industries including the clean energy sector. | Photo courtesy of Oak Ridge National Laboratory Oxidized fibers move to a high

  8. Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption

    SciTech Connect (OSTI)

    Mason, JA; Sumida, K; Herm, ZR; Krishna, R; Long, JR

    2011-08-01

    Two representative metal-organic frameworks, Zn4O(BTB)(2)(BTB3- = 1,3,5-benzenetribenzoate; MOF-177) and Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), are evaluated in detail for their potential use in post-combustion CO2 capture via temperature swing adsorption (TSA). Low-pressure single-component CO2 and N-2 adsorption isotherms were measured every 10 degrees C from 20 to 200 degrees C, allowing the performance of each material to be analyzed precisely. In order to gain a more complete understanding of the separation phenomena and the thermodynamics of CO2 adsorption, the isotherms were analyzed using a variety of methods. With regard to the isosteric heat of CO2 adsorption, Mg-2(dobdc) exhibits an abrupt drop at loadings approaching the saturation of the Mg2+ sites, which has significant implications for regeneration in different industrial applications. The CO2/N-2 selectivities were calculated using ideal adsorbed solution theory (IAST) for MOF-177, Mg-2(dobdc), and zeolite NaX, and working capacities were estimated using a simplified TSA model. Significantly, MOF-177 fails to exhibit a positive working capacity even at regeneration temperatures as high as 200 degrees C, while Mg-2(dobdc) reaches a working capacity of 17.6 wt% at this temperature. Breakthrough simulations were also performed for the three materials, demonstrating the superior performance of Mg-2(dobdc) over MOF-177 and zeolite NaX. These results show that the presence of strong CO2 adsorption sites is essential for a metal-organic framework to be of utility in post-combustion CO2 capture via a TSA process, and present a methodology for the evaluation of new metal-organic frameworks via analysis of single-component gas adsorption isotherms.

  9. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  10. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

    2014-03-31

    This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  11. Projects Aimed at Advancing State-of-the-Art Carbon Capture from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reducing power sector CO2 emissions because it can be added to existing plants... Technology for CO2 Capture from Coal-Fired Power Plant Flue ... integration methods for the capture ...

  12. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  13. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However

  14. Carbon Fiber Technology Facility Set To Scale Up Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational institutions partner with the Carbon Fiber Technology Facility to develop the skilled workforce needed for widespread production of low-cost carbon fiber. Carbon fiber ...

  15. Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sources into Useful Products | Department of Energy Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial

  16. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  17. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    Capture and Storage Development Project at West Virginia University Fletcher, Jerald 01 COAL, LIGNITE, AND PEAT COAL - ENVIRONMENTAL PROCESSES COAL - ENVIRONMENTAL PROCESSES The...

  18. Training CenTers Providing imPorTanT Carbon CaPTure

    Broader source: Energy.gov (indexed) [DOE]

    ... will contribute to reducing our reliance on oil, ... dioxide (CO 2 ) capture technologies for coal-based power plants. ... thousands of years of CO2 emissions and confirm ...

  19. Carbon Capture and Storage Forum Round-Up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sen. Rockefeller: West Virginia's Mountaineer Plant "first coal fired plant to capture and store CO2 emissions on site". CCS Sen. Rockefeller: "People assume that China will do ...

  20. Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage

    SciTech Connect (OSTI)

    Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.; Freeman, Charles J.

    2011-11-30

    Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energy generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity

  1. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  2. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect (OSTI)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  3. GE Awarded DOE Funding to Pilot Carbon Capture Technology | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Awarded DOE Project to Pilot CO2 Capture Technology for Power Plants Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Awarded DOE Project to Pilot CO2 Capture Technology for Power Plants Same class of ingredients found in hair conditioners and fabric softeners could hold key to washing out CO2 from Power

  4. Carbon sequestration technology roadmap and program plan: ensuring the fossil energy systems through the successful deployment of carbon capture and storage technologies

    SciTech Connect (OSTI)

    2007-04-15

    The overall goal of the Carbon Sequestration Program is to develop, by 2012, fossil fuel conversion systems that achieve 90 percent CO{sub 2} capture with 99 percent storage permanence at less than a 10 percent increase in the cost of energy services. This document describes the Technology Roadmap and Program Plan that will guide the Carbon Sequestration Program in 2007 and beyond. An overview of the Program and the key accomplishments in its 10-year history are presented as well as the challenges confronting deployment and successful commercialization of carbon sequestration technologies. The research pathways that will be used to achieve Program goals and information on key contacts and web links related to the Program are included. 23 figs., 2 tabs.

  5. Post-harvest carbon emissions and sequestration in southern United States forest industries

    SciTech Connect (OSTI)

    Row, C.

    1997-12-31

    Whether the forest industries in the southern United States are net emitters or sequesters of carbon from the atmosphere depends on one`s viewpoint. In the short-term, the solid-wood industries-lumber, plywood, and panels--appear to sequester more carbon than is in the fossil fuels they use for processing. The paper industries, however, emit more carbon from fossil fuels than they sequester in the pulp and paper they manufacture. This viewpoint is quite limited. If one considers the life-cycles of solid-wood and paper products from seedlings to landfill, these industries sequester more carbon than they emit from burning fossil fuels. These industries also generate large amounts of energy by replacing fossil fuels with biofuels from processing residues, and wood-based products produce more energy from incineration and landfill gases. Use of the carbon in these biofuels in effect keeps fossil fuel carbon in the ground, considering that at least that amount of carbon would be emitted in producing alternative materials. Another way of looking the emission balances is that wood-based materials, pound for pound or use for use, are the most {open_quotes}carbon efficient{close_quotes} group of major industrial materials. 5 refs., 12 figs.

  6. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  7. Water/carbonate stripping for CO.sub.2 capture adsorber regeneration and CO.sub.2 delivery to photoautotrophs

    DOE Patents [OSTI]

    Chance, Ronald; Koros, William J.; McCool, Benjamin; Noel, James

    2015-06-23

    The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO.sub.2 capture and provides for effective CO.sub.2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO.sub.2 via a dense (non-porous) membrane from a carbonate-based CO.sub.2 snipping solution to a culture medium where the CO.sub.2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.

  8. Water/carbonate stripping for CO.sub.2 capture adsorber regeneration and CO.sub.2 delivery to photoautotrophs

    SciTech Connect (OSTI)

    Chance, Ronald; Koros, William J.; McCool, Benjamin; Noel, James

    2015-08-11

    The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO.sub.2 capture and provides for effective CO.sub.2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO.sub.2 via a dense (non-porous) membrane from a carbonate-based CO.sub.2 snipping solution to a culture medium where the CO.sub.2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.

  9. OSTIblog Articles in the carbon capture Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information capture Topic UC Berkeley in the Spotlight by Kathy Chambers 17 Sep, 2013 in Products and Content 9904 CampanileMtTamalpiasSunset_caption.jpg UC Berkeley in the Spotlight Read more about 9904 Overlooking the eastern shore of the beautiful San Francisco Bay is UC Berkeley, founded during the gold rush days as the flagship institution of the University of California. This campus has become one of the preeminent universities in the world. UC

  10. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    SciTech Connect (OSTI)

    Benson, Steven; Srinivasachar, Srivats; Laudal, Daniel; Browers, Bruce

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  11. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  12. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture

    SciTech Connect (OSTI)

    Bae, TH; Hudson, MR; Mason, JA; Queen, WL; Dutton, JJ; Sumida, K; Micklash, KJ; Kaye, SS; Brown, CM; Long, JR

    2013-01-01

    A series of zeolite adsorbents has been evaluated for potential application in post-combustion CO2 capture using a new high-throughput gas adsorption instrument capable of measuring 28 samples in parallel. Among the zeolites tested, Ca-A exhibits the highest CO2 uptake (3.72 mmol g(-1) and 5.63 mmol cm(-3)) together with an excellent CO2 selectivity over N-2 under conditions relevant to capture from the dry flue gas stream of a coal-fired power plant. The large initial isosteric heat of adsorption of -58 kJ mol(-1) indicates the presence of strong interactions between CO2 and the Ca-A framework. Neutron and X-ray powder diffraction studies reveal the precise location of the adsorption sites for CO2 in Ca-A and Mg-A. A detailed study of CO2 adsorption kinetics further shows that the performance of Ca-A is not limited by slow CO2 diffusion within the pores. Significantly, Ca-A exhibited a higher volumetric CO2 uptake and CO2/N-2 selectivity than Mg-2(dobdc) (dobdc(4-) = 1,4-dioxido-2,5-benzenedicarboxylate; Mg-MOF-74, CPO-27-Mg), one of the best performing adsorbents. The exceptional performance of Ca-A was maintained in CO2 breakthrough simulations.

  13. Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas

    SciTech Connect (OSTI)

    Lee, J.B.; Ryu, C.K.; Baek, J.I.; Lee, J.H.; Eom, T.H.; Kim, S.H.

    2008-07-15

    Dry regenerable sorbent technology is one of the emerging technologies as a cost-effective and energy-efficient technology for CO{sub 2} capture from flue gas. Six sodium-based dry regenerable sorbents were prepared by spray-drying techniques. Their physical properties and reactivities were tested to evaluate their applicability to a fluidized-bed or fast transport-bed CO{sub 2} capture process. Each sorbents contained 20-50 wt% of Na{sub 2}CO{sub 3} or NaHCO{sub 3}. All sorbents except for Sorb NX30 were insufficient with either attrition resistance or reactivity, or both properties. Sorb NX30 sorbent satisfied most of the physical requirements for a commercial fluidized-bed reactor process along with good chemical reactivity. Sorb NX30 sorbent had a spherical shape, an average size of 89 {mu}m, a size distribution of 38-250 {mu}m, and a bulk density of approximately 0.87 g/mL. The attrition index (AI) of Sorb NX30 reached below 5% compared to about 20% for commercial fluidized catalytic cracking (FCC) catalysts. CO{sub 2} sorption capacity of Sorb NX30 was approximately 10 wt% (>80% sorbent utilization) in the simulated flue gas condition compared with 6 of 30 wt% MEA solution (33% sorbent utilization). All sorbents showed almost-complete regeneration at temperatures less than 120{sup o}C.

  14. A Sub-grid Model for an Array of Immersed Cylinders in Coarse-grid Multiphase Flow Simulations of a Carbon Capture Device

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2012-12-01

    A post-combustion carbon-capture system utilizing a bubbling fluidized bed of sorbent particles is currently being developed as a part of the Carbon Capture and Simulation Initiative (CCSI) efforts. Adsorption of carbon dioxide (CO2) by these amine based sorbent particles is exothermic and arrays of immersed cylindrical heat transfer tubes are often utilized to maintain the lower temperatures favorable for CO2 capture. In multiphase computational fluid dynamics (CFD) simulations of the full-scale devices, which can be up to 10 m in size, approximately 103 cells are required in each dimension to accurately resolve the cylindrical tubes, which are only a few centimeters in diameter. Since the tubes cannot be resolved explicitly in CFD simulations, alternate methods to account for the influence of these immersed objects need to be developed.

  15. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; McNemar, Andrea , Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  16. EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia

    Broader source: Energy.gov [DOE]

    DOE evaluates the potential environmental impacts of providing financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale carbon dioxide (C02l capture and storage (CCS) system at AEP's existing Mountaineer Power Plant and other AEP owned properties located near New Haven, West Virginia.

  17. Ab initio carbon capture in open-site metal-organic frameworks

    SciTech Connect (OSTI)

    Dzubak, AL; Lin, LC; Kim, J; Swisher, JA; Poloni, R; Maximoff, SN; Smit, B; Gagliardi, L

    2012-08-19

    During the formation of metal-organic frameworks (MOFs), metal centres can coordinate with the intended organic linkers, but also with solvent molecules. In this case, subsequent activation by removal of the solvent molecules creates unsaturated 'open' metal sites known to have a strong affinity for CO2 molecules, but their interactions are still poorly understood. Common force fields typically underestimate by as much as two orders of magnitude the adsorption of CO2 in open-site Mg-MOF-74, which has emerged as a promising MOF for CO2 capture. Here we present a systematic procedure to generate force fields using high-level quantum chemical calculations. Monte Carlo simulations based on an ab initio force field generated for CO2 in Mg-MOF-74 shed some light on the interpretation of thermodynamic data from flue gas in this material. The force field describes accurately the chemistry of the open metal sites, and is transferable to other structures. This approach may serve in molecular simulations in general and in the study of fluid-solid interactions.

  18. Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness

    SciTech Connect (OSTI)

    Peters, Catherine; Fitts, Jeffrey; Wilson, Elizabeth; Pollak, Melisa; Bielicki, Jeffrey; Bhatt, Vatsal

    2013-03-13

    This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO{sub 2} leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO{sub 2} and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO{sub 2} fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competiveness of CCS in the energy market. This analysis, though qualitative, shows that financial

  19. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  20. Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture

    SciTech Connect (OSTI)

    Dilmore, Robert; Griffith, Craid; Liu, Zhu; Soong, Yee; Hedges, Sheila W.; Koepsel, Richard; Ataai, M [Ataai, Mohammad

    2009-07-01

    A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate Of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2- bearing capacity was evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2- bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2- bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability Of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 degrees C, with complete regeneration occurring at 100 degrees C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis Of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed. Published by Elsevier Ltd.

  1. Metal-Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Herm, Zoey R; Swisher, Joe A; Smit, Berend; Krishna, Rajamani; Long, Jeffrey R

    2011-04-20

    Selected metal–organic frameworks exhibiting representative properties—high surface area, structural flexibility, or the presence of open metal cation sites—were tested for utility in the separation of CO₂ from H₂ via pressure swing adsorption. Single-component CO₂ and H₂ adsorption isotherms were measured at 313 K and pressures up to 40 bar for Zn₄O(BTB)₂ (MOF-177, BTB3- = 1,3,5-benzenetribenzoate), Be12(OH)12(BTB)₄ (Be-BTB), Co(BDP) (BDP2- = 1,4-benzenedipyrazolate), H₃[(Cu₄Cl)₃(BTTri)₈] (Cu-BTTri, BTTri3- = 1,3,5-benzenetristriazolate), and Mg₂(dobdc) (dobdc4- = 1,4-dioxido-2,5-benzenedicarboxylate). Ideal adsorbed solution theory was used to estimate realistic isotherms for the 80:20 and 60:40 H₂/CO₂ gas mixtures relevant to H₂ purification and precombustion CO₂ capture, respectively. In the former case, the results afford CO₂/H₂ selectivities between 2 and 860 and mixed-gas working capacities, assuming a 1 bar purge pressure, as high as 8.6 mol/kg and 7.4 mol/L. In particular, metal–organic frameworks with a high concentration of exposed metal cation sites, Mg₂(dobdc) and Cu-BTTri, offer significant improvements over commonly used adsorbents, indicating the promise of such materials for applications in CO₂}/H₂ separations.

  2. Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    captured carbon dioxide (CO2) emissions from industrial sources into useful products. ... in private cost-share - will seek to use CO2 emissions from industrial sources to create ...

  3. Low-Energy Solvents For Carbon Dioxide Capture Enabled By A Combination Of Enzymes And Vacuum Regeneration

    SciTech Connect (OSTI)

    Salmon, Sonja; House, Alan; Liu, Kun; Frimpong, Reynolds; Liu, Kunlei; Freeman, Charles; Whyatt, Greg; Slater, Jonathan; Fitzgerald, David

    2015-08-31

    An integrated bench-scale system combining the attributes of the bio-renewable enzyme carbonic anhydrase (CA) with low-enthalpy CO2 absorption solvents and vacuum regeneration was designed, built and operated for 500 hours using simulated flue gas. The objective was to develop a CO2 capture process with improved efficiency and sustainability when compared to NETL Case 10 monoethanolamine (MEA) scrubbing technology. The use of CA accelerates inter-conversion between dissolved CO2 and bicarbonate ion to enhance CO2 absorption, and the use of low enthalpy CO2 absorption solvents makes it possible to regenerate the solvent at lower temperatures relative to the reference MEA-based solvent. The vacuum regeneration-based integrated bench-scale system operated successfully for an accumulated 500 hours using aqueous 23.5 wt% K2CO3-based solvent containing 2.5 g/L enzyme to deliver an average 84% CO2 capture when operated with a 20% enzyme replenishment rate per ~7 hour steady-state run period. The total inlet gas flow was 30 standard liters per minute with 15% CO2 and 85% N2. The absorber temperature was 40°C and the stripper operated under 35 kPa pressure with an approximate 77°C stripper bottom temperature. Tests with a 30°C absorber temperature delivered >90% capture. On- and off-line operational measurements provided a full process data set, with recirculating enzyme, that allowed for enzyme replenishment and absorption/desorption kinetic parameter calculations. Dissolved enzyme replenishment and conventional process controls were demonstrated as straightforward approaches to maintain system performance. Preliminary evaluation of a novel flow-through ultrasonically enhanced regeneration system was also conducted, yet resulted in CO2 release within the range of temperature-dependent release, and further work would be needed to validate the benefits of ultrasonic enhanced stripping. A full technology assessment was completed in which four techno-economic cases for

  4. Secretary Chu Announces Up To $55 Million in Funding to Develop Advanced Carbon Capture Technology at Existing Coal-Fired Power Plants

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu announced today that $55 million will be made available to develop advanced technologies that can capture carbon dioxide from flue gases at existing power plants so that the greenhouse gas may be sequestered or put to beneficial use.

  5. U.S. China Carbon Capture and Storage Development Project at West Virginia University

    SciTech Connect (OSTI)

    Fletcher, Jerald

    2013-12-31

    The original overall objective of this activity was to undertake resource evaluation and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China’s coal sector. Several project execution barriers were encountered in the course of this project, most notably a project stop/delay due to funds availability/costing restrictions from the US State Department to the US Department of Energy at the end of CY2012, which halted project execution from January 2, 2013 to April 1, 2013. At the resolution of this project delay, it was communicated to the project team that the overall project period would also be reduced, from a completion date of February 28, 2014 to December 31, 2013. The net impact of all these changes was a reduction in the project period from 24 months (3/1/2012-2/28/2014) to 22 months (3/1/2012-12/31/2013), with a 3 month stop from 1/1/2013-3/31/2013. The project team endeavored to overcome these project time impacts, focusing heavily on technoeconomic modeling that would be deliverable under Task 3 (Ordos Basin Feasibility Study), and choosing to abandon the full investigation into the Demonstration Site (Task 4) due to the reduced project time. The ultimate focus of this project changed to work with the Chinese on a carbon atlas/geologic characterization, and on mechanisms for CO2 storage options from high-quality streams within China.

  6. The screening and scoping of Environmental Impact Assessment and Strategic Environmental Assessment of Carbon Capture and Storage in the Netherlands

    SciTech Connect (OSTI)

    Koornneef, J.; Faaij, A.; Turkenburg, W.

    2008-08-15

    The Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) are procedural tools which have as goal to assess and evaluate possible environmental effects of, respectively, a proposed project or policy plan. The goal of this article is to explore possible bottlenecks in applying both the EIA and SEA procedures on Carbon Capture and Storage (CCS) activities in the Netherlands, as experience is currently minimal or lacking. In this study we focus mainly on the institutional and procedural aspects of the screening and scoping phases of both procedures. This is achieved by reviewing EIA and SEA procedures for analogue projects for the three distinctive process steps of a CCS project, namely the power plant with capture, the transport and finally the underground storage of the CO{sub 2}. Additionally, EIA and SEA or similar procedures on CCS in other countries are reviewed and the legal framework for the Dutch EIA and SEA is studied. This article shows a concise overview of the EIA and SEA procedure in the Netherlands and the relation between both procedures. Based on our findings we have constructed a conceptual taxonomy for the scope of both procedures for CCS in the Netherlands. This taxonomy conceptualizes the possible integration of assessing the environmental impacts for tiered levels of decision making. This integration might be needed for first CCS projects as decisions on the strategic (spatial planning) level are currently absent for CCS in the Netherlands. Perpendicular to such integration is the integration of linked activities in the CCS chain and their alternatives, into one procedure. We argue that it would be beneficial to combine the separate EIA procedures for CCS activities into one procedure or at least provide close linkage between them.

  7. An Analysis Of The Impact Of Selected Carbon Capture And Storage Policy Scenarios On The US Fossil-Based Electric Power Sector

    SciTech Connect (OSTI)

    Davidson, Casie L.; Dooley, James J.; Dahowski, Robert T.; Mahasenan, N Maha

    2003-09-13

    CO2 capture and storage (CCS) is rapidly emerging as a potential key climate change mitigation option. However, as policymakers and industrial stakeholders begin the process of formulating new policy for implementing CCS technologies, participants require a tool to assess large-scale CCS deployment over a number of different possible future scenarios. This paper will analyze several scenarios using two state-of-the-art Battelle developed models, the MiniCAM and the CO2-GIS for examining CCS deployment. Outputs include the total amount of CO2 captured, total annual emissions, and fossil-based generating capacity.

  8. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  9. Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Assurance, Infrastructure Security, Microgrid, National Solar Thermal Test Facility, ... Assurance, Infrastructure Security, Microgrid, National Solar Thermal Test Facility, ...

  10. Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  11. Sandia Energy Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandians Participate in 46th Annual American Geophysical Union (AGU) Conference http:energy.sandia.govsandians-participate-in-46th-annual-american-geophysical-union-agu-conferen...

  12. Carbon Capture FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is primarily applicable to conventional coal-, oil-, or gas-fired power plants. In a typical coal-fired power plant, fuel is burned with air in a boiler to produce steam that ...

  13. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    SciTech Connect (OSTI)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan

    2011-07-31

    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  14. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    SciTech Connect (OSTI)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  15. Relationship between textural properties, fly ash carbons, and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends

    SciTech Connect (OSTI)

    Isabel Surez-Ruiz; Jose B. Parra

    2007-08-15

    In this work, the textural properties of a series of whole anthracitic-derived fly ashes sampled in eight hoppers from the electrostatic precipitators and their sized fractions (from {gt}150 to {lt}25 {mu}m) are investigated. Data from N{sub 2} adsorption isotherms at 77 K, helium density, and mercury porosimetry have contributed to establish a relationship between the Brunauer-Emmett-Teller (BET) surface areas, VTOT, porosity, carbon content (the type of fly ash carbons), and Hg retention in these fly ashes. The unburned carbons in these ashes are macroporous materials, and they are different from the carbons in fly ashes from classes C and F (the latter derived from the combustion of bituminous coals) and show different textural properties. These ashes represent the end member of the fly ash classes C and F with respect to certain textural properties. Although the BET surface area and VTOT values for the studied samples are the lowest reported, they increase with the increase in carbon content, anisotropic carbon content, and particle size of the ashes. Thus, a positive relationship between all these parameters and Hg capture by the coarser ash fractions was found. The finest fraction of carbons ({lt}25 {mu}m) represented an exception. Although it makes a significant contribution to the total carbon of the whole fly ashes and shows relatively higher surface areas and VTOT values, its Hg concentration was found to be the lowest. This suggests that the type of unburned carbons in the finest fraction and/or other adsorption mechanisms may play a role in Hg concentration. Because the textural properties of anisotropic carbons depend on their subtype and on their origin, the need for its differentiation has been evidenced. 54 refs., 8 figs., 3 tabs.

  16. Secretary Chu Announces First Awards from $1.4 Billion for Industrial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage Projects | Department of Energy First Awards from $1.4 Billion for Industrial Carbon Capture and Storage Projects Secretary Chu Announces First Awards from $1.4 Billion for Industrial Carbon Capture and Storage Projects October 2, 2009 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the first round of funding from $1.4 billion from the American Recovery and Reinvestment Act for the selection of 12 projects that will capture

  17. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries

    SciTech Connect (OSTI)

    Ebner, A.D.; Ritter, J.A.

    2009-07-01

    With the growing concern about global warming placing greater demands on improving energy efficiency and reducing CO{sub 2} emissions, the need for improving the energy intensive, separation processes involving CO{sub 2} is well recognized. The US Department of Energy estimates that the separation of CO{sub 2} represents 75% of the cost associated with its separation, storage, transport, and sequestration operations. Hence, energy efficient, CO{sub 2} separation technologies with improved economics are needed for industrial processing and for future options to capture and concentrate CO{sub 2} for reuse or sequestration. The overall goal of this review is to foster the development of new adsorption and membrane technologies to improve manufacturing efficiency and reduce CO{sub 2} emissions. This study focuses on the power, petrochemical, and other CO{sub 2} emitting industries, and provides a detailed review of the current commercial CO{sub 2} separation technologies, i.e., absorption, adsorption, membrane, and cryogenic, an overview of the emerging adsorption and membrane technologies for CO{sub 2} separation, and both near and long term recommendations for future research on adsorption and membrane technologies. Flow sheets of the principal CO{sub 2} producing processes are provided for guidance and new conceptual flow sheets with ideas on the placement of CO{sub 2} separations technologies have also been devised.

  18. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  19. Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide

    SciTech Connect (OSTI)

    Krishnan, Gopala; Jayaweera, Indira; Sanjrujo, Angel; O'Brien, Kevin; Callahan, Richard; Berchtold, Kathryn; Roberts, Daryl-Lynn; Johnson, Will

    2012-03-31

    The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

  20. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  1. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  2. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  3. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  4. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  5. TECHNOLOGY IN AN INTEGRATED ASSESSMENT MODEL: THE POTENTIAL REGIONAL DEPLOYMENT OF CARBON CAPTURE AND STORAGE IN THE CONTEXT OF GLOBAL CO2 STABILIZATION

    SciTech Connect (OSTI)

    Edmonds, James A.; Dooley, James J.; Kim, Son H.; Friedman, S. Julio; Wise, Marshall A.

    2007-11-19

    Technology is a critically important determinant of the cost of meeting any environmental objective. In this paper we examine the role of a particular technology, carbon dioxide capture and storage (CCS), in the stabilization of the concentration of atmospheric carbon dioxide (CO2). While CCS is not presently deployed at scale, it has the potential to deploy extensively during the course of the 21st century if concentrations of atmospheric CO2 are to be stabilized. The existing research literature has focused largely on the cost of capturing CO2, with the implicit assumption that storage options would be relatively cheap, plentiful and located in close proximity to future CO2 point sources. However, CO2 capture and storage will take place at the local and regional scale and will compete with other mitigation options that also exhibit local or regional differences. This paper provides an initial examination of the implications of regionally disaggregated demand for and supply of CO2 storage reservoirs within the context of a globally disaggregated, long-term analysis of both the geology and economics of CCS. This analysis suggests that some regions will see their ability to deploy CCS systems constrained by a lack of quality target reservoirs relative to the demand for storage placed upon these candidate geologic storage reservoirs by large stationary CO2 point sources within the region. Other regions appear to have sufficient storage capacity to easily carry them into the 22nd century. We examined the regional and global economic implications of the distribution of these sources and sinks in meeting various potential limits to atmospheric CO2 concentrations. This analysis confirms that CCS is an important potential response to climate change throughout the 21st century and a technology that can play a key role in controlling the cost of addressing climate change.

  6. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  7. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  8. DOE and Japanese Ministry of Economy, Trade, and Industry Sign Memorandum of Cooperation

    Broader source: Energy.gov [DOE]

    DOE and Japanese Ministry of Economy, Trade, and Industry signed a Memorandum of Cooperation to foster collaboration on carbon capture and storage technologies, along with an Implementing Arrangement to further R&D cooperation on clean energy technology.

  9. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  10. Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture

    SciTech Connect (OSTI)

    Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David A.

    2013-08-15

    We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst-capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst-capture agents on (1) the syngas composition, (2) CO2 and H2S capture, and (3) the steam-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO-CaCO3 chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO3 was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO-CaCO3 cycles. The increased steam-coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2-4% per CaO-CaCO3 cycle. We also discuss an important application of this combined gasifier-calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO4 and ash in the precalcined feedstock.

  11. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  12. Workshop on diamond and diamond-like-carbon films for the transportation industry

    SciTech Connect (OSTI)

    Nichols, F.A.; Moores, D.K.

    1993-01-01

    Applications exist in advanced transportation systems as well as in manufacturing processes that would benefit from superior tribological properties of diamond, diamond-like-carbon and cubic boron nitride coatings. Their superior hardness make them ideal candidates as protective coatings to reduce adhesive, abrasive and erosive wear in advanced diesel engines, gas turbines and spark-ignited engines and in machining and manufacturing tools as well. The high thermal conductivity of diamond also makes it desirable for thermal management not only in tribological applications but also in high-power electronic devices and possibly large braking systems. A workshop has been recently held at Argonne National Laboratory entitled ``Diamond and Diamond-Like-Carbon Films for Transportation Applications`` which was attended by 85 scientists and engineers including top people involved in the basic technology of these films and also representatives from many US industrial companies. A working group on applications endorsed 18 different applications for these films in the transportation area alone. Separate abstracts have been prepared.

  13. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-07-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is the most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuel causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant geological sink for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected regions of the US.

  14. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-04-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is our most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuels causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant {open_quotes}geological sink{close_quotes} for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected re ions of the US.

  15. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Lu, Yongqi

    2014-02-01

    This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

  16. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    SciTech Connect (OSTI)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  17. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    SciTech Connect (OSTI)

    Booras, George; Powers, J.; Riley, C.; Hendrix, H.

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  18. Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...

    Open Energy Info (EERE)

    Grangemouth Advanced CO2 Capture Project GRACE Jump to: navigation, search Name: Grangemouth Advanced CO2 Capture Project (GRACE) Place: United Kingdom Sector: Carbon Product:...

  19. NETL emphasizes CO{sub 2} capture from existing plants

    SciTech Connect (OSTI)

    2008-04-01

    This paper gives brief description of several carbon dioxide capture projects that were directed toward a broader range of capture technologies.

  20. Energy Department Sponsored Project Captures One Millionth Metric...

    Office of Environmental Management (EM)

    ... | Photo courtesy of Air Products and Chemicals Inc. Energy Department Project Captures and Stores more than One Million Metric Tons of CO2 Carbon Pollution Being Captured, ...

  1. PRELIMINARY ENVIRONMENTAL, HEALTH AND SAFETY RISK ASSESSMENT ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND VACUUM REGENERATION WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect (OSTI)

    Fitzgerald, David; Vidal, Rafael; Russell, Tania; Babcock, Doosan; Freeman, Charles; Bearden, Mark; Whyatt, Greg; Liu, Kun; Frimpong, Reynolds; Lu, Kunlei; Salmon, Sonja; House, Alan; Yarborough, Erin

    2014-12-31

    The results of the preliminary environmental, health and safety (EH&S) risk assessment for an enzyme-activated potassium carbonate (K2CO3) solution post-combustion CO2 capture (PCC) plant, integrated with a subcritical pulverized coal (PC) power plant, are presented. The expected emissions during normal steady-state operation have been estimated utilizing models of the PCC plant developed in AspenTech’s AspenPlus® software, bench scale test results from the University of Kentucky, and industrial experience of emission results from a slipstream PCC plant utilizing amine based solvents. A review of all potential emission species and their sources was undertaken that identified two credible emission sources, the absorber off-gas that is vented to atmosphere via a stack and the waste removed from the PCC plant in the centrifuge used to reclaim enzyme and solvent. The conditions and compositions of the emissions were calculated and the potential EH&S effects were considered as well as legislative compliance requirements. Potential mitigation methods for emissions during normal operation have been proposed and solutions to mitigate uncontrolled releases of species have been considered. The potential emissions were found to pose no significant EH&S concerns and were compliant with the Federal legislation reviewed. The limitations in predicting full scale plant performance from bench scale tests have been noted and further work on a larger scale test unit is recommended to reduce the level of uncertainty.

  2. 2011 NETL CO2 Capture Technology Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Pilot Test of Novel Electrochemical Membrane System for Carbon Dioxide Capture and Power Generation (FE0026580) Hossein Ghezel-Ayagh, FuelCell Energy, Inc. 4:00 p.m. CO2 Capture ...

  3. Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America

    SciTech Connect (OSTI)

    Oldenburg, C.; Birkholzer, J.T.

    2011-07-22

    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

  4. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    SciTech Connect (OSTI)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  5. Production, Energy, and Carbon Emissions: A Data Profile of the Iron and Steel Industry

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  6. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  7. Chemical sensing and imaging in microfluidic pore network structures relevant to natural carbon cycling and industrial carbon sequestration

    SciTech Connect (OSTI)

    Grate, Jay W.; Zhang, Changyong; Wilkins, Michael J.; Warner, Marvin G.; Anheier, Norman C.; Suter, Jonathan D.; Kelly, Ryan T.; Oostrom, Martinus

    2013-06-11

    Energy and climate change represent significant factors in global security. Atmospheric carbon dioxide levels, while global in scope, are influenced by pore-scale phenomena in the subsurface. We are developing tools to visualize and investigate processes in pore network microfluidic structures with transparent covers as representations of normally-opaque porous media. In situ fluorescent oxygen sensing methods and fluorescent cellulosic materials are being used to investigate processes related to terrestrial carbon cycling involving cellulytic respiring microorganisms. These structures also enable visualization of water displacement from pore spaces by hydrophobic fluids, including carbon dioxide, in studies related to carbon sequestration.

  8. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  9. Sandia Energy Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research-work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research...

  10. The National Carbon Capture Center

    Office of Scientific and Technical Information (OSTI)

    ... systems to meet the national need for cleaner, m ore efficient power production from coal. ... being off-line during tw o m ajor outages o f Gaston U nit 5. The PC4 has operated ...

  11. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent

  12. Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N-2, and H2O

    SciTech Connect (OSTI)

    Mason, JA; McDonald, TM; Bae, TH; Bachman, JE; Sumida, K; Dutton, JJ; Kaye, SS; Long, JR

    2015-04-15

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N-2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N-2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg-2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 +/- 0.2 mmol/g (16 wt %) at 0.1 bar and 40 degrees C in the presence of a high partial pressure of H2O.

  13. Storing Industry's Carbon Dioxide in Real Time | U.S. DOE Office...

    Office of Science (SC) Website

    that provide a first live look at industrial pollutants reacting with water and minerals. ... into the reactions between scCO2 and the water and minerals commonly found in geologic ...

  14. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  15. Novel Solvent System for Post Combustion CO{sub 2} Capture Brown...

    Office of Scientific and Technical Information (OSTI)

    COsub 2 Capture Brown, Alfred; Brown, Nathan 20 FOSSIL-FUELED POWER PLANTS Clean Coal Technology Coal - Environmental (Carbon Capture) Clean Coal Technology Coal -...

  16. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect (OSTI)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  17. Carbon Storage Partner Completes First Year of CO2 Injection Operations in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illinois | Department of Energy Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois Carbon Storage Partner Completes First Year of CO2 Injection Operations in Illinois November 19, 2012 - 12:00pm Addthis Washington, DC - A project important to demonstrating the commercial viability of carbon capture, utilization and storage (CCUS) technology has completed the first year of injecting carbon dioxide (CO2) from an industrial plant at a large-scale test site in

  18. CO2 Capture Poject CCP | Open Energy Information

    Open Energy Info (EERE)

    CO2 Capture Poject CCP Jump to: navigation, search Name: CO2 Capture Poject (CCP) Place: United Kingdom Sector: Carbon Product: CCP is a partnership of energy companies and...

  19. Pacific Northwest National Laboratory--Capture and Sequestration Support Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest National Laboratory - Capture and Sequestration Support Services Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to reduce green-house gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS)-the capture of CO 2 from large point sources and subsequent injection into deep

  20. PRELIMINARY TECHNICAL AND ECONOMIC FEASIBILITY STUDY ON THE INTEGRATION OF A PROCESS UTILIZING LOW-ENERGY SOLVENTS FOR CARBON DIOXIDE CAPTURE ENABLED BY A COMBINATION OF ENZYMES AND ULTRASONICS WITH A SUBCRITICAL PC POWER PLANT

    SciTech Connect (OSTI)

    Swaminathan, Saravanan; Kuczynska, Agnieszka; Hume, Scott; Mulgundmath, Vinay; Freeman, Charles; Bearden, Mark; Remias, Joe; Ambedkar, Balraj; Salmon, Sonja; House, Alan

    2012-11-01

    The results of the preliminary techno-economic assessment for integrating a process utilizing low-energy solvents for carbon dioxide (CO2) capture enabled by a combination of enzymes and ultrasonics with a subcritical pulverized coal (PC) power plant are presented. Four cases utilizing the enzyme-activated solvent are compared using different methodologies of regeneration against the DOE/NETL reference MEA case. The results are shown comparing the energy demand for post-combustion CO2 capture and the net higher heating value (HHV) efficiency of the power plant integrated with the post-combustion capture (PCC) plant. A levelized cost of electricity (LCOE) assessment was performed showing the costs of the options presented in the study. The key factors contributing to the reduction of LCOE were identified as enzyme make-up rate and the capability of the ultrasonic regeneration process. The net efficiency of the integrated PC power plant with CO2 capture changes from 24.9% with the reference Case 10 plant to between 24.34% and 29.97% for the vacuum regeneration options considered, and to between 26.63% and 31.41% for the ultrasonic regeneration options. The evaluation also shows the effect of the critical parameters on the LCOE, with the main variable being the initial estimation of enzyme dosing rate. The LCOE ($/MWh) values range from 112.92 to 125.23 for the vacuum regeneration options and from 108.9 to 117.50 for the ultrasonic regeneration cases considered in comparison to 119.6 for the reference Case 10. A sensitivity analysis of the effect of critical parameters on the LCOE was also performed. The results from the preliminary techno-economic assessment show that the proposed technology can be investigated further with a view to being a viable alternative to conventional CO2 scrubbing technologies.

  1. Potentials for reductions of carbon dioxide emissions of industrial sector in transitional economies -- A case study of implementation of absorption heat devices and co-generation

    SciTech Connect (OSTI)

    Remec, J.; Dolsak, N.

    1996-12-31

    World carbon dioxide emissions, caused by commercial energy-generation, contribute to about 57% of global warming potential. Central and East European (CEE) countries together with former USSR emitted about 25% of the world carbon dioxide emissions, predominantly because of high energy intensity of their industries and dependence on coal. Energy efficiency improvements can reduce the high level of carbon dioxide emissions per unit of output, which significantly exceeds the levels of the industry in the European Union. CEE countries` most pressing environmental goal is a reduction of local air and water pollution. Therefore, when analyzing potentials for the reduction of greenhouse gases emissions in these countries, they need to concentrate on the activities which would also decrease local pollution. The paper focuses on technologies which would reduce the need for fossil fuel burning by improving energy efficiency in industry. Process industries are very energy intensive. Structure changes of the products are carried out with operations which require input and output of heat. Heat demand is usually met by combustion of fossil fuels, cold is produced with electricity. Technical potentials of absorption heat devices (AHD) and co-generation in process industry as well as their market penetration potentials are analyzed for Slovenia, one of the fastest transforming CEE economies.

  2. Energy Department Project Captures and Stores One Million Metric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Million Metric Tons of Carbon Energy Department Project Captures and Stores One Million Metric Tons of Carbon January 8, 2015 - 11:18am Addthis News Media Contact 202-586-4940 ...

  3. Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes

    SciTech Connect (OSTI)

    2011-02-02

    IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

  4. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  5. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and ...

  6. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  7. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2003 through September 30, 2004

    SciTech Connect (OSTI)

    Andresen, John; Schobert, Harold; Miller, Bruce G

    2006-03-01

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected 10 projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the various subcontractors on March 1, 2004.

  8. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  9. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  10. Carbon Emissions: Chemicals Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 URL: http:www.eia.govemeuefficiencycarbonemissionschemicals.html Contact Us File...

  11. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  12. Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase

  13. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  14. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  15. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    SciTech Connect (OSTI)

    Miller, Bruce G

    2006-09-29

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting

  16. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2004 through September 30, 2005

    SciTech Connect (OSTI)

    Miller, Bruce G

    2006-03-01

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected ten projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten projects have been completed and the final reports for these 2004 projects are attached. An annual funding meeting was held in November 2004 and the council selected

  17. Capturing Energy Upgrades

    Broader source: Energy.gov [DOE]

    Provides an overview of how to capture the value of energy efficiency upgrades in the real estate market, from CNT Energy.

  18. Large-Scale Industrial CCS Projects Selected for Continued Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CCS Projects Selected for Continued Testing Large-Scale Industrial CCS Projects Selected for Continued Testing June 10, 2010 - 1:00pm Addthis Washington, DC - Three Recovery Act funded projects have been selected by the U.S. Department of Energy (DOE) to continue testing large-scale carbon capture and storage (CCS) from industrial sources. The projects - located in Texas, Illinois, and Louisiana - were initially selected for funding in October 2009 as part of a $1.4

  19. The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage

    SciTech Connect (OSTI)

    Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

    2010-03-01

    Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory’s MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

  20. Pi-CO? aqueous post-combustion CO? capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    SciTech Connect (OSTI)

    Blount, G.; Gorensek, M.; Hamm, L.; ONeil, K.; Kervvan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO?) capture system (Pi-CO?) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO? has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO? from local industrial sources.

  1. Pi-CO₂ aqueous post-combustion CO₂ capture: Proof of concept through thermodynamic, hydrodynamic, and gas-lift pump modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blount, G.; Gorensek, M.; Hamm, L.; O’Neil, K.; Kervévan, C.; Beddelem, M. -H.

    2014-12-31

    Partnering in Innovation, Inc. (Pi-Innovation) introduces an aqueous post-combustion carbon dioxide (CO₂) capture system (Pi-CO₂) that offers high market value by directly addressing the primary constraints limiting beneficial re-use markets (lowering parasitic energy costs, reducing delivered cost of capture, eliminating the need for special solvents, etc.). A highly experienced team has completed initial design, modeling, manufacturing verification, and financial analysis for commercial market entry. Coupled thermodynamic and thermal-hydraulic mass transfer modeling results fully support proof of concept. Pi-CO₂ has the potential to lower total cost and risk to levels sufficient to stimulate global demand for CO₂ from local industrial sources.

  2. LanzaTech- Capturing Carbon. Fueling Growth.

    SciTech Connect (OSTI)

    2014-03-07

    LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.

  3. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Works 32 likes Every four minutes, another American home or business goes solar, but how do solar panels turn sunlight into energy? We'll answer that question and more Learn...

  4. How Carbon Capture Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fusion Energy Works 33 likes Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma...

  5. Annual Report: Carbon Capture (30 September 2012)

    Office of Scientific and Technical Information (OSTI)

    ... 39: Percent selectivity increase (top panel) and percent permeability decrease (bottom ... advanced technologies, including the method of deposition of the liquid onto a substrate. ...

  6. INFOGRAPHIC: Carbon Capture 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer Power plants are vital to modern life. They produce the energy we need to light our homes,...

  7. Post-Combustion Carbon Capture Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fossil fuel fired electric generating plants are the cornerstone of America's central power system. Currently, the existing fossil fuel fleet accounts for about two-thirds of all electricity...

  8. Discussion on Carbon Capture and Sequestration Legislation |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the efficiency of both existing and new coal-fired power generation plants, and 4) ... is pursuing R&D to increase base power plant efficiency and thereby reduce the amount ...

  9. Carbon Capture and Storage (CCS) Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multiple files are bound together in this PDF Package. Adobe recommends using Adobe Reader or Adobe Acrobat version 8 or later to work with documents contained within a PDF Package. By updating to the latest version, you'll enjoy the following benefits: * Efficient, integrated PDF viewing * Easy printing * Quick searches Don't have the latest version of Adobe Reader? Click here to download the latest version of Adobe Reader If you already have Adobe Reader 8, click a file in this PDF Package to

  10. CO₂ Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO₂ permeance

  11. CO2 Capture and Storage Project, Education and Training Center...

    Broader source: Energy.gov (indexed) [DOE]

    It's the process of capturing and storing or re-using carbon dioxide (CO2) from coal-fired ... from Archer Daniels Midland's ethanol plant in Decatur, transported via a mile-long ...

  12. NREL Reveals Potential for Capturing Waste Heat via Nanotubes - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Reveals Potential for Capturing Waste Heat via Nanotubes April 4, 2016 A finely tuned carbon nanotube thin film has the potential to act as a thermoelectric power generator that captures and uses waste heat, according to researchers at the Energy Department's National Renewable Energy Laboratory (NREL). The research could help guide the manufacture of thermoelectric devices based on either single-walled carbon nanotube (SWCNT) films or composites containing these nanotubes.

  13. Energy-Related Carbon Emissions in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel...

  14. In Milestone, Energy Department Projects Safely and Permanently Store 10 Million Metric Tons of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Carbon Capture and Storage projects supported by the Department reached a milestone of 10 million tons of carbon dioxide.

  15. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP) MANAGING CLIMATE CHANGE AND SECURING A FUTURE FOR THE MIDWEST'S INDUSTRIAL BASE

    SciTech Connect (OSTI)

    David Ball; Robert Burns; Judith Bradbury; Bob Dahowski; Casie Davidson; James Dooley; Neeraj Gupta; Rattan Lal; Larry Wickstrom

    2005-04-29

    This is the third semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two-year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  16. Capturing and Converting CO2 in a Single Step | U.S. DOE Office...

    Office of Science (SC) Website

    Capturing and Converting CO2 in a Single Step Researchers computationally design a cheap, ... carbon dioxide should provide design strategies for efficient, less expensive catalysts. ...

  17. Probing the Mechanism of CO2 Capture in Diamine-Appended Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    display great promise for carbon capture applications, due to unusual step-shaped adsorption behavior that was recently attributed to a cooperative mechanism in which the...

  18. Novel Solvent System for Post Combustion CO{sub 2} Capture (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 20 FOSSIL-FUELED POWER PLANTS Clean Coal Technology Coal - Environmental (Carbon Capture) Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  19. Spatial Knowledge Capture Library

    Energy Science and Technology Software Center (OSTI)

    2005-05-16

    The Spatial Knowledge Capture Library is a set of algorithms to capture regularities in shapes and trajectories through space and time. We have applied Spatial Knowledge Capture to model the actions of human experts in spatial domains, such as an AWACS Weapons Director task simulation. The library constructs a model to predict the expert’s response to sets of changing cues, such as the movements and actions of adversaries on a battlefield, The library includes amore » highly configurable feature extraction functionality, which supports rapid experimentation to discover causative factors. We use k-medoid clustering to group similar episodes of behavior, and construct a Markov model of system state transitions induced by agents’ actions.« less

  20. Proton capture resonance studies

    SciTech Connect (OSTI)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  1. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

  2. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  3. Carbone Lorraine | Open Energy Information

    Open Energy Info (EERE)

    Carbone Lorraine Jump to: navigation, search Name: Carbone Lorraine Place: France Product: Paris-based company developing industrial applications and systems for the optimal...

  4. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    SciTech Connect (OSTI)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  5. Capture and Sequestration of CO2 at the Boise White Paper Mill

    SciTech Connect (OSTI)

    B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

    2010-06-16

    This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately

  6. Erosion-oxidation of carbon steel in the convection section of an industrial boiler cofiring coal-water fuel and natural gas

    SciTech Connect (OSTI)

    Xie, J.J.; Walsh, P.M.

    1997-07-01

    Walsh et al. (1994) reported measurements of erosion of carbon steel by fly ash and unburned char particles in the convective heat transfer section of an industrial boiler cofiring coal-water fuel and natural gas. Changes in shape of the surface were measured using a surface profiler. Time-averaged maximum erosion rates were obtained from the differences between the original surface height and the lowest points in the profiles. A model was developed by Xie (1995) to describe wastage of tube material in the presence of erosion by particle impacts and oxidation of the metal. The observed changes in erosion rate with temperature and oxygen concentration were consistent with a mechanism based upon the following assumptions: (1) metal was eroded as a ductile material, at a rate that increased with increasing temperature; (2) oxide was eroded as a brittle material, at a rate independent of temperature; (3) the oxide scale was strongly attached to the metal; (4) the erosion resistance of metal and scale was a linear combination of the resistances of the individual components; (5) oxide formed according to the parabolic rate law, with a rate coefficient proportional to the square root of the oxygen partial pressure; (6) erosion resistance from particles sticking to, or embedded in, the surface was negligible. Using the model and rate coefficients for metal and oxide erosion derived from the measurements, estimates were made of the erosion rate of a boiler tube as functions of impaction angle and gas velocity. Under the conditions of metal temperature, gas composition, particle size, particle concentration, and particle composition investigated, erosion of carbon steel is expected to be slower than 0.05 {micro}m/h when the gas velocity in the convection section is less than approximately 8 m/s.

  7. Capturing the Daylight Dividend

    SciTech Connect (OSTI)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  8. Evaluating a new approach to CO2 capture and storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating a new approach to CO2 capture and storage Evaluating a new approach to CO2 capture and storage In a perspective paper published in Greenhouse Gases: Science and Technology, researchers examined a new approach that could potentially overcome many barriers to deployment and jumpstart this process on a commercial scale. September 13, 2015 Map of the contiguous United States shows the location of facilities that produce high-value chemicals/products and the amount of carbon dioxide

  9. Create a Consortium and Develop Premium Carbon Products from Coal

    SciTech Connect (OSTI)

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  10. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    SciTech Connect (OSTI)

    Hatton, T. Alan; Jamison, Timothy

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  11. Particle capture device

    DOE Patents [OSTI]

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  12. Fragment capture device

    DOE Patents [OSTI]

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  13. Robust automated knowledge capture.

    SciTech Connect (OSTI)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  14. Carbon Emissions: Petroleum Refining Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact: Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 Contact Us URL: http:www.eia.govemeuefficiencycarbonemissionspetroleum...

  15. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  16. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  17. Capturing the Government Tax Base

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Y , M A D E N V E R , M A Y 5 , 2 0 1 5 CAPTURING THE GOVERNMENT TAX BASE CAPTURING TAX INCENTIVES * Support for tribal government services * Fire protection, roads, environmental, water, security * Property tax, Sales tax, Possessory interest * "Pickle Rule" and tribal governments, ITC * Value of tax incentives to project * ITC/PTC + Accelerated Depreciation can be more than 50% CAPTURING PROPERTY TAX * Definitions * Personal Property, fixed & mobile assets * Possessory Interest *

  18. Resource capture by single leaves

    SciTech Connect (OSTI)

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  19. Synthetic Catalysts for CO2 Storage: Catalytic Improvement of Solvent Capture Systems

    SciTech Connect (OSTI)

    2010-08-15

    IMPACCT Project: LLNL is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in permeable microspheres that will greatly increase the speed of binding of CO2. The goal of the project is an industry-ready chemical vehicle that can withstand the harsh environments found in exhaust gas and enable new, simple process designs requiring less capital investment.

  20. Carbon Fiber SMC | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sec. Chu speaks about carbon capture and sequestration. | Energy Department Photo Sec. Chu speaks about carbon capture and sequestration. | Energy Department Photo John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu joined Senator Jay Rockefeller at the University of Charleston in West Virginia for a forum on the future of coal and the case for carbon capture and storage. We were at the event, relaying some of the highlights live via twitter

  1. Regenerable Sorbent Technique for Capturing CO2 Using Immobilized Amine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbents - Energy Innovation Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Regenerable Sorbent Technique for Capturing CO2 Using Immobilized Amine Sorbents The BIAS (Basic Immobilized Amine Sorbent) Process National Energy Technology Laboratory Contact NETL About This Technology Technology Marketing Summary This technology allows for optimal CO2 removal capacity for a given absorption and regeneration reactor

  2. Manufacturing Energy and Carbon Footprints Scope

    Broader source: Energy.gov (indexed) [DOE]

    with the objective of capturing the bulk share of energy consumption and carbon emissions. ... Energy consumption and emissions for all manufacturing sectors within NAICS 31 - 33 are ...

  3. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  4. DOE Manual Studies Terrestrial Carbon Sequestration

    Broader source: Energy.gov [DOE]

    There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy.

  5. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  6. solvents-co2-capture-pitt | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability, extremely low vapor pressures, nonflammability, and nontoxicity. Such materials not only have the potential to capture CO2 with minimal solvent loss in the gas stream but are expected to be environmentally benign. NETL's Office of Research and Development is conducting a study involving one general type of

  7. Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio

    Office of Energy Efficiency and Renewable Energy (EERE)

    A novel method to capture carbon dioxide from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy project at a nursery in Ohio.

  8. W.A. Parish Post-Combustion CO{sub 2} Capture and Sequestration...

    Office of Scientific and Technical Information (OSTI)

    Title: W.A. Parish Post-Combustion COsub 2 Capture and Sequestration Project Phase 1 ... and reduce its emissions of carbon dioxide (COsub 2) and other greenhouse gases (GHGs). ...

  9. Radiative capture reactions in astrophysics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  10. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    SciTech Connect (OSTI)

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  11. HAWC Observatory captures first image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers,

  12. Texas CO2 Capture Demonstration Project Hits Three Million Metric Ton Milestone

    Broader source: Energy.gov [DOE]

    On June 30, Allentown, PA-based Air Products and Chemicals, Inc. successfully captured and transported, via pipeline, its 3 millionth metric ton of carbon dioxide (CO2) to be used for enhanced oil recovery. This achievement highlights the ongoing success of a carbon capture and storage (CCS) project sponsored by the U.S. Department of Energy (DOE) and managed by the National Energy Technology Laboratory (NETL).

  13. Neutron-capture nucleosynthesis in the first stars

    SciTech Connect (OSTI)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  14. Research Projects to Convert Captured CO2 Emissions to Useful Products

    Broader source: Energy.gov [DOE]

    Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy.

  15. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  16. Industry Information Practices and the Failure to Remember

    Office of Environmental Management (EM)

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  17. Overview of Carbon Storage Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roughly one third of the United States’ carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the...

  18. Adaptive capture of expert behavior

    SciTech Connect (OSTI)

    Jones, R.D.; Barrett, C.L.; Hand, U.; Gordon, R.C.

    1994-08-01

    The authors smoothed and captured a set of expert rules with adaptive networks. The motivation for doing this is discussed. (1) Smoothing leads to stabler control actions. (2) For some sets of rules, the evaluation of the rules can be sped up. This is important in large-scale simulations where many intelligent elements are present. (3) Variability of the intelligent elements can be achieved by adjusting the weights in an adaptive network. (4) After capture has occurred, the weights can be adjusted based on performance criteria. The authors thus have the capability of learning a new set of rules that lead to better performance. The set of rules the authors chose to capture were based on a set of threat determining rules for tank commanders. The approach in this paper: (1) They smoothed the rules. The rule set was converted into a simple set of arithmetic statements. Continuous, non-binary inputs, are now permitted. (2) An operational measure of capturability was developed. (3) They chose four candidate networks for the rule set capture: (a) multi-linear network, (b) adaptive partial least squares, (c) connectionist normalized local spline (CNLS) network, and (d) CNLS net with a PLS preprocessor. These networks were able to capture the rule set to within a few percent. For the simple tank rule set, the multi-linear network performed the best. When the rules were modified to include more nonlinear behavior, CNLS net performed better than the other three nets which made linear assumptions. (4) The networks were tested for robustness to input noise. Noise levels of plus or minus 10% had no real effect on the network performance. Noise levels in the plus or minus 30% range degraded performance by a factor of two. Some performance enhancement occurred when the networks were trained with noisy data. (5) The scaling of the evaluation time was calculated. (6) Human variation can be mimicked in all the networks by perturbing the weights.

  19. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  20. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOE Patents [OSTI]

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.