Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Closed inductively coupled plasma cell  

DOE Patents (OSTI)

A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

Manning, T.J.; Palmer, B.A.; Hof, D.E.

1990-11-06T23:59:59.000Z

2

Mobile inductively coupled plasma system  

DOE Patents (OSTI)

A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

D`Silva, A.P.; Jaselskis, E.J.

1999-03-30T23:59:59.000Z

3

Starter for inductively coupled plasma tube  

DOE Patents (OSTI)

A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

Hull, D.E.; Bieniewski, T.M.

1988-08-23T23:59:59.000Z

4

Starter for inductively coupled plasma tube  

DOE Patents (OSTI)

A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

Hull, Donald E. (969 Nambe Loop, Los Alamos, NM 87544); Bieniewski, Thomas M. (285 Donna Ave., Los Alamos, NM 87544)

1988-01-01T23:59:59.000Z

5

Method of processing materials using an inductively coupled plasma  

DOE Patents (OSTI)

A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

6

Method of processing materials using an inductively coupled plasma  

SciTech Connect

A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

7

Method of processing materials using an inductively coupled plasma  

DOE Patents (OSTI)

A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

Hull, D.E.; Bieniewski, T.M.

1987-04-13T23:59:59.000Z

8

Inductively coupled plasma torch with laminar flow cooling  

DOE Patents (OSTI)

An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

Rayson, Gary D. (Las Cruces, NM); Shen, Yang (Las Cruces, NM)

1991-04-30T23:59:59.000Z

9

Thin film coating process using an inductively coupled plasma  

DOE Patents (OSTI)

Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

Kniseley, Richard N. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Merkle, Brian D. (Ames, IA)

1990-01-30T23:59:59.000Z

10

Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry  

SciTech Connect

Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

2009-11-01T23:59:59.000Z

11

High resolution inductively coupled plasma etching of 30 nm lines ...  

The electrostatic shield around the ICP tube is used to ensure that the ICP power is purely inductively coupled ~i.e., ‘‘true ICP’’!, hence elimi-

12

Low-pressure water-cooled inductively coupled plasma torch  

DOE Patents (OSTI)

An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

Seliskar, C.J.; Warner, D.K.

1984-02-16T23:59:59.000Z

13

Low-pressure water-cooled inductively coupled plasma torch  

DOE Patents (OSTI)

An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

Seliskar, Carl J. (Cincinnati, OH); Warner, David K. (Centerville, OH)

1988-12-27T23:59:59.000Z

14

Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation  

SciTech Connect

The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

2001-07-01T23:59:59.000Z

15

Effect of capacitive coupling in a miniature inductively coupled plasma source  

SciTech Connect

Two-dimensional axisymmetric particle-in-cell simulations with a Monte Carlo collision algorithm (PIC-MCC) have been conducted to investigate the effect of capacitive coupling in a miniature inductively coupled plasma source (mICP) by using two models: an inductive model and a hybrid model. The mICP is 3 mm in radius and 6 mm in height with a three-turn planar coil, where argon plasma is sustained. In the inductive model, the coil is assumed to be electrostatically shielded, and thus the discharge is purely inductive coupling. In the hybrid model, we assume that the different turns of the coil act like electrodes in capacitive discharge to include the effect of capacitive coupling. The voltage applied to these electrodes decreases linearly from the powered end of the coil towards the grounded end. The numerical analysis has been performed for rf frequencies in the range of 100-1000 MHz, and the power absorbed by the plasma in the range of 5-50 mW at a fixed pressure of 500 mTorr. The PIC-MCC results show that potential oscillations at the plasma-dielectric interface are not negligible, and thus the major component of the absorbed power is caused by the axial motion of electrons in the hybrid model, although almost all of the power absorption is due to the azimuthal motion of electrons in the inductive model. The effect of capacitive coupling is more significant at lower rf frequencies and at higher absorbed powers under the calculation conditions examined. Moreover, much less coil currents are required in the hybrid model.

Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2012-11-01T23:59:59.000Z

16

Etching characteristics of ZnO thin films in chlorine-containing inductively coupled plasmas  

Science Conference Proceedings (OSTI)

This study examined the plasma etching characteristics of ZnO thin films etched in BCl"3/Ar, BCl"3/Cl"2/Ar and Cl"2/Ar plasmas with a positive photoresist mask. The ZnO etch rates were increased in a limited way by increasing the gas flow ratio of the ... Keywords: BCl3, Chlorine, Inductively coupled plasma, Plasma etching, Zinc oxychloride, ZnO

S. W. Na; M. H. Shin; Y. M. Chung; J. G. Han; S. H. Jeung; J. H. Boo; N. -E. Lee

2006-02-01T23:59:59.000Z

17

Control of Chlorine inductively coupled plasma using optical-emission spectroscopy  

Science Conference Proceedings (OSTI)

Magneto-resistive random access memory (MRAM) technology is recognized as one of the next key advances in computer memory. To create MRAM, various metals are successively laid down by sputtering to create stacks, which are then etched into suitable patterns. ... Keywords: ICP, MRAM, OES, chlorine, dry etching, inductively coupled plasma, online control, optical-emission spectroscopy, plasma-induced damage

R. B. Young; T. L. Scott; K. A. Prisbrey

2002-10-01T23:59:59.000Z

18

In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy  

DOE Patents (OSTI)

A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

Braymen, Steven D. (Ames, IA)

1996-06-11T23:59:59.000Z

19

Fabrication of Si nano-pillar array through Ni nano-dot mask using inductively coupled plasma  

E-Print Network (OSTI)

Fabrication of Si nano-pillar array through Ni nano-dot mask using inductively coupled plasma Mun-Dong, Jangan-Gu, Suwon, 440-746, South Korea Available online 9 September 2004 Abstract We formed Si nano-pillar array using inductively coupled plasma (ICP) etching of Si with Ni nano-dot mask. For the formation

Yeom, Geun Young

20

A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere  

SciTech Connect

A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

2012-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen  

Science Conference Proceedings (OSTI)

Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

Zaka-ul-Islam, M.; Niemi, K. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom); Gans, T.; O'Connell, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom); York Plasma Institute, Department of Physics, University of York, Innovation Way, Heslington York YO10 5DQ (United Kingdom)

2011-07-25T23:59:59.000Z

22

Two-dimensional modeling of high plasma density inductively coupled sources for materials processing  

SciTech Connect

Inductively coupled plasma sources are being developed to address the need for high plasma density (10[sup 11]--10[sup 12] cm[sup [minus]3]), low pressure (a few to 10--20 mTorr) etching of semiconductor materials. One such device uses a flat spiral coil of rectangular cross section to generate radio-frequency (rf) electric fields in a cylindrical plasma chamber, and capacitive rf biasing on the substrate to independently control ion energies incident on the wafer. To investigate these devices we have developed a two-dimensional hybrid model consisting of electromagnetic, electron Monte Carlo, and hydrodynamic modules; and an off line plasma chemistry Monte Carlo simulation. The results from the model for plasma densities, plasma potentials, and ion fluxes for Ar, O[sub 2], Ar/CF[sub 4]/O[sub 2] gas mixtures will be presented.

Ventzek, P.L.G.; Hoekstra, R.J.; Kushner, M.J. (Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States))

1994-01-01T23:59:59.000Z

23

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network (OSTI)

C. Andes, and E. Hudson, Plasma Processes and Polymers 6,J. P. Booth, and G. Cunge, Plasma Sources Sci. Technol. 5,and B. M. Alexandrovich, Plasma Sources Sci. Technol. 1,

Titus, Monica Joy

2010-01-01T23:59:59.000Z

24

In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy  

DOE Patents (OSTI)

A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

Braymen, S.D.

1996-06-11T23:59:59.000Z

25

Optical diagnostics for a high power, rf-inductively coupled plasma  

SciTech Connect

Emission spectroscopy and laser-induced fluorescence have been used to monitor the field and tail-flame regions of a Hull-design inductively coupled plasma. This plasma is used for a variety of syntheses including SiC, TiC, BN, A1N and diamond. Temporally- and spatially-resolved spectra of both pure Ar and Ar/gas mixtures have been studied as a function of RF power, pressure and flow rate. Preliminary data suggest that the system is far from local thermodynamic equilibrium.

Nogar, N.S.; Keaton, G.L.; Anderson, J.E.; Trkula, M.

1988-01-01T23:59:59.000Z

26

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network (OSTI)

inert atomic gas plasma 20,33 ), and thermal conduction andplasma ………………………………………………………………… Ratio of displacement to conductionplasmas focusing on heating contribution from thermal heat conduction

Titus, Monica Joy

2010-01-01T23:59:59.000Z

27

Flow and temperature fields in a free discharge inductively coupled plasma  

SciTech Connect

Computations were made of the flow and temperature fields in an inductively coupled argon plasma at atmospheric pressure under confined and free discharge conditions. The model takes into account gravity effects and swirl in the sheath gas. Natural convection was found to have a negligible effect on the flow and temperature fields under confined discharge conditions but a significant effect for the free discharge. The back flow in the discharge was substantially reduced in the presence of swirl for swirl velocities over the range 0-50 m/s. Also with a mode-rate increase in swirl, the conduction heat flux to the wall decreased but increased with the further increase in swirl. From an overall energy balance point of view, conductive heat flux to the wall of the plasma confinement tube was substantially lower for a free plasma discharge compared to that for a confined plasma.

Gagne, R.; Boulos, M.I.; Barnes, R.M.

1979-01-01T23:59:59.000Z

28

Two-dimensional fluid model simulation of bell jar top inductively coupled plasma  

SciTech Connect

In the present paper, argon (Ar) plasmas in a bell jar inductively coupled plasma (ICP) source are systematically studied over pressures from 5 to 20 mtorr and power inputs from 0.2 to 0.5 kW. In this study, both a two-dimensional (2-D) fluid model simulation and global model calculation are compared. The 2-D fluid model simulation with a self-consistent power deposition is developed to describe the Ar plasma behavior as well as predict the plasma parameter distributions. Finally, a quantitative comparison between the global model and the fluid model is made to test their validity. Low-pressure ICP has been employed for etching processing for the last few years.

Wu, H.M.; Yu, B.W. [CFD Research Corp., Huntsville, AL (United States); Li, M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering; Yang, Y. [Chinese Academy of Sciences, Beijing (China). Inst. of Mechanics

1997-02-01T23:59:59.000Z

29

Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry  

Science Conference Proceedings (OSTI)

Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

2007-11-13T23:59:59.000Z

30

Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy  

DOE Green Energy (OSTI)

Atomic emission spectroscopy using an inductively coupled plasma (ICP) source permits the rapid acquisition of multielement geochemical data from a wide variety of geologic materials. Rocks or other solid samples are taken into solution with a four acid digestion procedure and introduced directly into the plasma; fluid samples are acidified or analyzed directly. The entire process is computer-controlled, fully-automated, and requires less than five minutes per sample for quantitative determination of 37 elements. The procedures and instrumentation employed at the ESL for multielement ICP analysis of geologic materials are described and these are intended as a guide for evaluating analytic results reported from this laboratory. The quality of geochemical data can be characterized by precision, limits of quantitative determination, and accuracy. Precision values are a measure of the repeatability of analyses. In general, major element and analyses have precision of better than 5% and trace elements of better than 10% of the amount present. (MHR)

Christensen, O.D.; Kroneman, R.L.; Capuano, R.M.

1980-03-01T23:59:59.000Z

31

Induction plasma tube  

DOE Patents (OSTI)

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, D.E.

1982-07-02T23:59:59.000Z

32

Induction plasma tube  

DOE Patents (OSTI)

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, Donald E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

33

Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy  

Science Conference Proceedings (OSTI)

Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

2009-03-29T23:59:59.000Z

34

Studies of selenium and xenon in inductively coupled plasma mass spectrometry  

SciTech Connect

Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

Bricker, T.

1994-07-27T23:59:59.000Z

35

Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry  

Science Conference Proceedings (OSTI)

This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

Ebert, Christopher Hysjulien [Ames Laboratory

2012-07-27T23:59:59.000Z

36

Investigation of magnetic-pole-enhanced inductively coupled nitrogen-argon plasmas  

SciTech Connect

This article presented the features of the mixed mode and H mode in magnetic pole enhanced, inductively coupled Ar-N{sub 2} plasmas using RF-compensated Langmuir probe measurements. To fully characterize plasma parameters and electron energy probability functions (EEPFs), the gas pressure and argon content were varied. It was observed that with increasing the nitrogen content and gas pressure, the critical RF power to sustain H mode increases; this increase was more prominent for pure nitrogen discharge at higher pressure. The electron number density (n{sub e}) shows increasing trend with increasing RF power, while at higher gas pressures, the electron number density decreases at fixed RF power. Mostly, the EEPFs show a Maxwellian distribution even at low RF power (for higher argon content in the discharge) and at moderate RF power (for higher or pure nitrogen content in the discharge) for pressures of 15-60 mTorr. With increasing the nitrogen content in the mixture, the low energy part of the EEPF is more Druyvesteyn with a distorted high energy tail at low RF power. At fixed RF power, the slope of EEPF changes sharply with increasing pressure. It was observed that in hybrid mode, the EEPF at higher gas pressure (75 mTorr) in a pure nitrogen discharge shows a flat hole near the average electron energy of 3 eV and changes to Maxwellian distribution in H mode. The skin depth versus RF power shows that the skin depth is smaller than the critical dimension of the chamber, regardless of the gas type and the gas pressure.

Jan, F.; Zakaullah, M. [Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320 (Pakistan); Khan, A. W.; Saeed, A. [National Centre for Physics, Quaid-i-Azam University Campus Islamabad, Islamabad 45320 (Pakistan)

2012-09-15T23:59:59.000Z

37

Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry  

SciTech Connect

The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

Niu, Hongsen

1995-02-10T23:59:59.000Z

38

{sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)  

Science Conference Proceedings (OSTI)

A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

Lewis, L.A.

1998-05-01T23:59:59.000Z

39

Dry etching of CoFe films using a CH{sub 4}/Ar inductively coupled plasma for magnetic random access memory application  

Science Conference Proceedings (OSTI)

In this study, the CoFe thin film was studied using an inductively coupled plasma system in CH{sub 4}-based gas chemistries. The etch rate of the CoFe thin film was systemically studied by the process parameters including the gas mixing ratio, the rf power, the dc-bias power, and the process pressure. The best gas composition for etching was in CH{sub 4} (20%)/Ar (80%) ratio. As the rf power and the dc-bias voltage were increased, the etch rate of the CoFe thin film increased in a CH{sub 4}/Ar inductively coupled plasma system. The best process pressure condition for etching was 10 mTorr in the CH{sub 4}/Ar inductively coupled plasma system. The changes in the components on the surface of the CoFe thin film were investigated with energy dispersive x ray.

Um, Doo-Seung; Kim, Dong-Pyo; Woo, Jong-Chang; Kim, Chang-Il; Lee, Sung-Kwon; Jung, Tae-Woo; Moon, Seung-Chan [School of Electrical and Electronics Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Hynix Semiconductor Inc., San 136-1, Ami-ri, Bubal-eub, Icheon-si, Kyoungki-do 467-701 (Korea, Republic of)

2009-07-15T23:59:59.000Z

40

Cl{sub 2}-based dry etching of the AlGaInN system in inductively coupled plasmas  

DOE Green Energy (OSTI)

Cl{sub 2}-based Inductively Coupled Plasmas with low additional dc self- biases(-100V) produce convenient etch rates(500-1500 A /min) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas(Ar, N{sub 2}, H{sub 2}), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl{sub 2} in the discharge for all three mixtures, and to have an increase(decrease) in etch rate with source power(pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

Cho, Hyun; Vartuli, C.B.; Abernathy, C.R.; Donovan, S.M.; Pearton, S.J. [Florida Univ., Gainesville, FL (United States). Dept. of Materials Science and Engineering; Shul, R.J.; Han, J. [Sandia National Labs., NM (United States)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Etching kinetics and surface roughening of polysilicon and dielectric materials in inductively coupled plasma beams  

E-Print Network (OSTI)

Plasma etching processes often roughen the feature sidewalls forming anisotropic striations. A clear understanding of the origin and control of sidewall roughening is extremely desirable, particularly at the gate level ...

Yin, Yunpeng, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

42

Decreasing high ion energy during transition in pulsed inductively coupled plasmas  

Science Conference Proceedings (OSTI)

Pulsed RF plasmas sustained in electronegative gas mixtures are increasingly being employed for plasma etching at future technological nodes. During the plasma transition from the afterglow to the active-glow, ion energies at the wafer can substantially increase due to the high voltage required to deposit bias power into few electrons. These high energy ions, albeit few, increase the possibility of ion bombardment damage and are, therefore, detrimental to the etching process. Strategies to decrease the high ion energies during transition are investigated using a two-dimensional computational plasma model. Results for poly-Si etch in an Ar/Cl{sub 2} gas mixture indicate that the high ion energies can be reduced by offsetting the bias pulse from the source pulse with minimal impact on the etch depth rates.

Agarwal, Ankur; Stout, Phillip J.; Banna, Samer; Rauf, Shahid; Collins, Ken [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States)

2012-01-23T23:59:59.000Z

43

Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry  

Science Conference Proceedings (OSTI)

A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

Osterlund, Helene [Division of Applied Geology, Lulea University of Technology, S-971 87 Lulea (Sweden); ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Lulea (Sweden)], E-mail: Helene.Osterlund@alsglobal.com; Rodushkin, Ilia [Division of Applied Geology, Lulea University of Technology, S-971 87 Lulea (Sweden); ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Lulea (Sweden); Ylinenjaervi, Karin; Baxter, Douglas C. [ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Lulea (Sweden)

2009-04-15T23:59:59.000Z

44

RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY  

Science Conference Proceedings (OSTI)

A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

2010-06-23T23:59:59.000Z

45

DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY  

Science Conference Proceedings (OSTI)

A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

Maxwell, S.

2010-07-26T23:59:59.000Z

46

Capacitively-coupled inductive sensor  

DOE Patents (OSTI)

It is therefore an object of the present invention to provide a capacitively-coupled inductive shunt current sensor. To achieve the other object, and in accordance with the purpose of the present invention, as embodied and broadly described herein, the apparatus of this invention may comprise a capacitively coupled inductive shunt current sensor comprising: annular inductive channel means formed in a conductor carrying a high voltage pulsed current; an electrode capacitively coupled to said conductor on opposite sides of said annular inductive channel means; voltage dividing capacitor means connected in series with said electrode for reducing the magnitude of the detected output signal; output coupling means connected to said voltage dividing capacitor means for producing an output signal representative of said high voltage pulsed current.

Ekdahl, C.A.

1981-04-13T23:59:59.000Z

47

Interlaboratory Validation of EPA 1600 Series Methods: Draft EPA Method 1638 for Analysis of Metals in Water by Inductively Coupled Plasma -- Mass Spectrometry (ICP-MS)  

Science Conference Proceedings (OSTI)

Federal and state permits are requiring wastewater dischargers to monitor for ever lower concentrations of trace metals, in some cases at levels that may preclude reliable measurement. In this joint EPA-EPRI interlaboratory data collection effort, eight laboratories evaluated draft EPA Method 1638: Determination of Trace Elements in Ambient Water by Inductively Coupled Plasma-Mass Spectrometry. This method is intended for the analysis of low levels (parts per trillion) of antimony, cadmium, copper, lead,...

2000-11-27T23:59:59.000Z

48

Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source  

SciTech Connect

A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki [Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

2012-12-15T23:59:59.000Z

49

Capacitively-coupled inductive sensor  

DOE Patents (OSTI)

A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.

Ekdahl, Carl A. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

50

LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM  

SciTech Connect

This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

SEIDEL CM; JAIN J; OWENS JW

2009-02-23T23:59:59.000Z

51

LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM  

SciTech Connect

This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

LOCKREM LL; OWENS JW; SEIDEL CM

2009-03-26T23:59:59.000Z

52

Wafer heating mechanisms in a molecular gas, inductively coupled plasma: in situ, real time wafer surface measurements and three-dimensional thermal modeling  

Science Conference Proceedings (OSTI)

The authors report measurements and modeling of wafer heating mechanisms in an Ar/O{sub 2} inductively coupled plasma (ICP). The authors employed a commercially available on-wafer sensor system (PlasmaTemp developed by KLA-Tencor) consisting of an on-board electronics module housing battery power and data storage with 30 temperature sensors embedded onto the wafer at different radial positions. This system allows for real time, in situ wafer temperature measurements. Wafer heating mechanisms were investigated by combining temperature measurements from the PlasmaTemp sensor wafer with a three-dimensional heat transfer model of the wafer and a model of the ICP. Comparisons between pure Ar and Ar/O{sub 2} discharges demonstrated that two additional wafer heating mechanisms can be important in molecular gas plasmas compared to atomic gas discharges. The two mechanisms are heating from the gas phase and O-atom surface recombination. These mechanisms were shown to contribute as much as 60% to wafer heating under conditions of low bias power. This study demonstrated how the 'on-wafer' temperature sensor not only yields a temperature profile distribution across the wafer, but can be used to help determine plasma characteristics, such as ion flux profiles or plasma processing temperatures.

Titus, M. J.; Graves, D. B. [Department of Chemical Engineering, University of California, Berkeley, California 94720 (United States)

2008-09-15T23:59:59.000Z

53

Stress-induced VO{sub 2} films with M2 monoclinic phase stable at room temperature grown by inductively coupled plasma-assisted reactive sputtering  

SciTech Connect

We report on growth of VO{sub 2} films with M2 monoclinic phase stable at room temperature under atmospheric pressure. The films were grown on quartz glass and Si substrates by using an inductively coupled plasma-assisted reactive sputtering method. XRD-sin{sup 2}{Psi} measurements revealed that the films with M2 phase are under compressive stress in contrast to tensile stress of films with M1 phase. Scanning electron microscopy observations revealed characteristic crystal grain aspects with formation of periodical twin structure of M2 phase. Structural phase transition from M2 to tetragonal phases, accompanied by a resistance change, was confirmed to occur as the temperature rises. Growth of VO{sub 2} films composed of M2 phase crystalline is of strong interest for clarifying nature of Mott transition of strongly correlated materials.

Okimura, Kunio; Watanabe, Tomo [School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Sakai, Joe [GREMAN, UMR 7347 CNRS, Universite Francois Rabelais de Tours, Parc de Grandmont 37200 Tours (France)

2012-04-01T23:59:59.000Z

54

Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates  

SciTech Connect

This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

Witte, Travis

2011-11-30T23:59:59.000Z

55

Etching characteristics and mechanisms of SiC thin films in inductively-coupled HBr-Ar, N{sub 2}, O{sub 2} plasmas  

Science Conference Proceedings (OSTI)

Etch characteristics and mechanisms of SiC thin films in HBr-Ar, HBr-N{sub 2}, and HBr-O{sub 2} inductively-coupled plasmas were studied using a combination of experimental and modeling methods. The etch rates of SiC thin films were measured as functions of the additive gas fraction in the range of 0-100% for Ar, N{sub 2}, and O{sub 2} at a fixed gas pressure (6 mTorr), input power (700 W), bias power (200 W), and total gas flow rate (40 sccm). The plasma chemistry was analyzed using Langmuir probe diagnostics and a global (zero-dimensional) plasma model. The good agreement between the behaviors of the SiC etch rate and the H atom flux could suggest that a chemical etch pathway is rather controlled by the gasification of carbon through the CH{sub x} or CH{sub x}Br{sub y} compounds.

Efremov, Alexander; Kang, Sungchil; Kwon, Kwang-Ho; Seok Choi, Won [Department of Electronic Devices and Materials Technology, State University of Chemistry and Technology, 7 F. Engels St., 153000 Ivanovo (Russian Federation); Department of Control and Instrumentation Engineering, Korea University, Chungnam 339-700 (Korea, Republic of); Department of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

2011-11-15T23:59:59.000Z

56

Recombination probability of oxygen atoms on dynamic stainless steel surfaces in inductively coupled O{sub 2} plasmas  

Science Conference Proceedings (OSTI)

The authors have investigated the influence of plasma exposure time (t) on the Langmuir-Hinshelwood (i.e., delayed) recombination of O atoms on electropolished stainless steel surfaces using the spinning-wall method. They found a recombination probability ({gamma}{sub O}) of 0.13{+-}0.01 after about 60 min of plasma exposure. {gamma}{sub O} decreased to 0.09{+-}0.01 for t{>=}12 h and was independent of the O flux impinging onto the surface. These recombination probabilities are much lower than those obtained in plasma chambers exclusively made of stainless steel, but similar to values recorded in stainless steel reactors with large silica surfaces exposed to the plasma. Near real-time elemental analysis by in situ Auger electron spectroscopy showed that the stainless steel surface became rapidly coated with a Si-oxide-based layer (Fe:[Si+Al]:O{approx_equal}2:1:9 for t=60 min and 1:2:9 for t=12 h), due to the slow erosion of the silica discharge tube and anodized Al chamber walls. Thus, the recombination probability of oxygen atoms on stainless steel in plasma reactors with large amounts of exposed silica is largely determined by the amount of sputtered silica coating the chamber walls.

Stafford, Luc; Guha, Joydeep; Donnelly, Vincent M. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

2008-05-15T23:59:59.000Z

57

Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source  

SciTech Connect

This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

Shen, Luan

1995-10-06T23:59:59.000Z

58

Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes  

SciTech Connect

This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

2010-07-15T23:59:59.000Z

59

Inductively coupled plasma-atomic emission spectrometry (ICP-AES) in support of nuclear waste management. [HHDECMP (hexyl hexyl-N,N diethylcarbamolymethylphosphonate) and n-octyl(phenyl)-N,N diisobutylcarbamoylmethylphosphine oxide  

SciTech Connect

Simulated complex nuclear waste solutions are characterized by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AEC). The system uses and ICP source focused on both a polychromator and a computer-controlled scanning monochromator for intensity measurements. This instrumentation allows for simultaneous and sequential measurements of liquid extraction distribution coefficients needed in the development of process flow sheets for component separations. A large number of elements are determined rapidly with adequate sensitivity and accuracy. The focus of this investigation centers on the analysis of nuclear fission products. 13 references, 13 tables.

Huff, E.A.; Horwitz, E.P.

1984-01-01T23:59:59.000Z

60

Perspectives on Geospace Plasma Coupling  

Science Conference Proceedings (OSTI)

There are a large variety of fascinating and instructive aspects to examining the coupling of mass and energy from the solar wind into the Earth's magnetosphere. Past research has suggested that magnetic reconnection (in a fluid sense) on the day-side magnetopause plays the key role in controlling the energy coupling. However, both linear and nonlinear coupling processes involving kinetic effects have been suggested through various types of innovative data analysis. Analysis and modeling results have also indicated a prominent role for multi-scale processes of plasma coupling. Examples include evidence of control by solar wind turbulence in the coupling sequence and localized (finite gyroradius) effects in dayside plasma transport. In this paper we describe several solar wind-magnetosphere coupling scenarios. We particularly emphasize the study of solar wind driving of magnetospheric substorm, and related geomagnetic disturbances.

Baker, Daniel N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303-7814 (United States)

2011-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Hassanain, Babiker

2011-01-01T23:59:59.000Z

62

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

63

Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research  

SciTech Connect

This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle ensemble. This would cause the analysis to be skewed. The use of a gelatin substrate allows the ablation a particle ensemble without disturbing other particles or the gelatin surface. A method to trap and ablate particles on filter paper using collodion was also investigated. The laser was used to dig through the collodion layer and into the particle ensemble. Both of these methods fix particles to allow spatial resolution of the particle ensembles. The use of vanillic acid as a possible enhancement to ablation was also studied. A vanillic acid coating of the particles fixed on top of the gelatin substrate was not found to have any positive effect on either signal intensity or precision. The mixing of vanillic acid in the collodion solution used to coat the filter paper increased ablation signal intensity by a factor of 4 to 5. There was little effect on precision, though. The collodion on filter paper method and the gelatin method of resolving particles have shown themselves to be possible tools in fighting proliferation of nuclear weapons and material. Future applications of LA-ICP-MS are only limited by the imagination of the investigator. Any material that can be ablated and aerosolized is a potential material for analysis by LA-ICP-MS. Improvements in aerosol transport, ablation chamber design, and laser focusing can make possible the ablation and analysis of very small amounts of material. This may perhaps lead to more possible uses in forensics. A similar method to the one used in Chapter 3 could perhaps be used to match drug residue to the place of origin. Perhaps a link could be made based on the elements leached from the soil by plants used to make drugs. This may have a specific pattern based on where the plant was grown. Synthetic drugs are produced in clandestine laboratories that are often times very dirty. The dust, debris, and unique materials in the lab environment could create enough variance to perhaps match drugs produced there to samples obtained off the street. Even if the match was not strong enough to be evidence, the knowledge that many sa

Messerly, Joshua D.

2008-08-26T23:59:59.000Z

64

Thyristor stack for pulsed inductive plasma generation  

Science Conference Proceedings (OSTI)

A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 {mu}s and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/{mu}s.

Teske, C.; Jacoby, J.; Schweizer, W.; Wiechula, J. [Plasmaphysics Group, Institute of Applied Physics, Johann-Wolfgang-Goethe University, 60438 Frankfurt am Main (Germany)

2009-03-15T23:59:59.000Z

65

Coupled-magnetic filters with adaptive inductance cancellation  

E-Print Network (OSTI)

Conventional filter circuits suffer from a number of limitations, including performance degradation due to capacitor parasitic inductance and the size and cost of magnetic elements. Coupled-magnetic filters have been ...

Lymar, Daria S

2005-01-01T23:59:59.000Z

66

Effect of O{sub 2} gas partial pressure on mechanical properties of Al{sub 2}O{sub 3} films deposited by inductively coupled plasma-assisted radio frequency magnetron sputtering  

SciTech Connect

The effect of O{sub 2} partial pressure on the mechanical properties of Al{sub 2}O{sub 3} films is studied. Using films prepared by inductively coupled plasma-assisted radio frequency magnetron sputtering, the deposition rate of Al{sub 2}O{sub 3} decreases rapidly when oxygen is added to the argon sputtering gas. The internal stresses in the films are compressive, with magnitude decreasing steeply from 1.6 GPa for films sputtered in pure argon gas to 0.5 GPa for films sputtered in argon gas at an O{sub 2} partial pressure of 0.89 Multiplication-Sign 10{sup -2} Pa. Stress increases gradually with increasing O{sub 2} partial pressure. Using a nanoindentation tester with a Berkovich indenter, film hardness was measured to be about 14 GPa for films sputtered in pure argon gas. Hardness decreases rapidly on the addition of O{sub 2} gas, but increases when the O{sub 2} partial pressure is increased. Adhesion, measured using a Vickers microhardness tester, increases with increasing O{sub 2} partial pressure. Electron probe microanalyzer measurements reveal that the argon content of films decreases with increasing O{sub 2} partial pressure, whereas the O to Al composition ratio increases from 1.15 for films sputtered in pure argon gas to 1.5 for films sputtered in argon gas at O{sub 2} partial pressures over 2.4 Multiplication-Sign 10{sup -2} Pa. X-ray diffraction measurements reveal that films sputtered in pure argon gas have an amorphous crystal structure, whereas {gamma}-Al{sub 2}O{sub 3} is produced for films sputtered in argon gas with added O{sub 2} gas. Atomic force microscopy observations reveal that the surface topography of sputtered Al{sub 2}O{sub 3} films changes from spherical to needlelike as O{sub 2} partial pressure is increased. Fracture cross sections of the films observed by scanning electron microscopy reveal that the film morphology exhibits no discernible features at all O{sub 2} partial pressures.

Fujiyama, Hirokazu; Sumomogi, Tsunetaka; Nakamura, Masayoshi [Faculty of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295 (Japan); Faculty of Engineering, Hiroshima Kokusai Gakuin University, 6-20-1 Nakano, Aki-ku, Hiroshima 739-0321 (Japan)

2012-09-15T23:59:59.000Z

67

Enhanced laser beam coupling to a plasma  

DOE Patents (OSTI)

Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

Steiger, Arno D. (Pleasanton, CA); Woods, Cornelius H. (Livermore, CA)

1976-01-01T23:59:59.000Z

68

Mode coupling of electron plasma waves  

SciTech Connect

The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta$sup 2$/sub ko/k lambda/sub De/ less than 1 where eta$sup 2$/ sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at $omega$/sub ek/, the Bohn Gross frequency, and at $Omega$/sub k/, the ion acoustic frequency, subject to the damping rates $nu$/sub ek/ and $nu$/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, $omega$/sub pe/ the plasma frequency. (auth)

Harte, J.A.

1975-10-31T23:59:59.000Z

69

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Chesler, Paul M

2009-01-01T23:59:59.000Z

70

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Paul M. Chesler

2009-07-26T23:59:59.000Z

71

Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions  

Science Conference Proceedings (OSTI)

We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic (longitudinal) plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of two. The results are relevant to understanding the micro-physics at the interface region of an astrophysical jet with the interstellar plasma, for example, the edge of a wide jet or the jet-termination point.

Ng, Johnny S.T.; Noble, Robert J.; /SLAC

2005-07-13T23:59:59.000Z

72

Analysis of Thermal Induction Plasmas between Coaxial Cylinders  

Science Conference Proceedings (OSTI)

A previously derived approximate solution of the one?dimensional energy?balance equation for steady thermal induction plasmas is applied to the case of an annular plasma contained between coaxial cylinders. It is assumed that heat conduction is the only loss mechanism and that both walls are at zero temperature. Charted material is presented to facilitate determination of heat loads to either wall and calculation of temperature distributions across the gap. Results for an atmospheric?pressure argon discharge are compared with both exact numerical calculations and with experimental data. With the former

H. U. Eckert

1972-01-01T23:59:59.000Z

73

Shock waves in strongly coupled plasmas  

E-Print Network (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically $AdS_5$ space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light $v\\to 1$ the penetration depth $\\ell$ scales as $\\ell\\sim (1-v^2)^{1/4}$. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Sergei Khlebnikov; Martin Kruczenski; Georgios Michalogiorgakis

2010-04-21T23:59:59.000Z

74

Shock waves in strongly coupled plasmas  

Science Conference Proceedings (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907 (United States)

2010-12-15T23:59:59.000Z

75

Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma  

Science Conference Proceedings (OSTI)

Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago 22 (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2011-10-15T23:59:59.000Z

76

Plasma sweeper to control the coupling of RF power to a magnetically confined plasma  

DOE Patents (OSTI)

A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, Robert W. (Princeton, NJ); Glanz, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

77

Combination induction plasma tube and current concentrator for introducing a sample into a plasma  

SciTech Connect

An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

78

The Coupling of Electromagnetic Power to Plasmas  

Science Conference Proceedings (OSTI)

Heating and Current Drive / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

R. Koch

79

Strongly Coupled Plasmas via Rydberg-Blockade of Cold Atoms  

E-Print Network (OSTI)

We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.

Bannasch, G; Pohl, T

2013-01-01T23:59:59.000Z

80

Component framework for coupled integrated fusion plasma simulation  

Science Conference Proceedings (OSTI)

Successful simulation of the complex physics that affect magnetically confined fusion plasma remains an important target milestone towards the development of viable fusion energy. Major advances in the underlying physics formulations, mathematical modeling, ... Keywords: components, coupled simulation, framework, fusion

Wael R. Elwasif; David E. Bernholdt; Lee A. Berry; Donald B. Batchelor

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Inductive power coupling for an electric highway system  

DOE Green Energy (OSTI)

A Dual Mode Electric Transporation (DMET) system is under development in which energy is electromagnetically transferred from a powered roadway to moving vehicles. Energy from the roadway can be used for high-speed, long-range travel and for replenishing energy stored in the vehicle in batteries or flywheels. The stored energy is then available for short-range travel off the powered highway network. The power coupling between roadway and vehicle is functionally similar to a transformer. A source is embedded in the roadway flush with the surface. When the vehicle's pickup is suspended over the source, energy is magnetically coupled through the clearance air gap between pickup and roadway source. The electromagnetic coupling mechanism was extensively studied through computer models, circuit analyses, and by tests of a full-size physical prototype. The results of these tests are described.

Bolger, J.G.; Kirsten, F.A.; Ng, L.S.

1978-01-01T23:59:59.000Z

82

Methods for producing the plasma initiation pulse in ohmic heating circuits in tokamak power reactors: resistive dissipation, transient inductive storage, and transient capacitive storage  

DOE Green Energy (OSTI)

This paper compares the resistive dissipation method with transient storage methods: inductive and capacitive. While the capacitive method is relatively well known through its variant, the ''Inall circuit,'' the inductive transient storage method to produce the plasma initiation pulse is less well known. It consists of two closely coupled coils, one connected with a system of differentially compounded slow discharge homopolar machines. The magnetic energy is suddenly taken from the ohmic heating circuit and temporarily stored in the mutual inductance of the two coils--thus producing the pulse.

Driga, M.D.; Mayhall, D.J.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

1977-01-01T23:59:59.000Z

83

Viscoelastic modes in a strongly coupled, cold, magnetized dusty plasma  

SciTech Connect

A generalized hydrodynamical model has been used to study the low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to the strong correlations among dust particles and the tensile stresses imparted by the magnetic field. It has been shown that longitudinal compressional Alfven modes and elasticity modified transverse shear mode exist in such a medium. The features of these collective modes are established and discussed.

Banerjee, Debabrata; Mylavarapu, Janaki Sita; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, I/AF Bidhannagar, Calcutta 700 064 (India)

2010-11-15T23:59:59.000Z

84

Shock waves in strongly coupled plasmas II  

E-Print Network (OSTI)

In a recent paper we have analyzed the AdS/CFT duals to shock waves propagating in the N=4 plasma. Here we study further properties of the system. In the gravity description we consider the properties of the dual black holes, showing in particular that they are stationary black holes with expanding horizons. This is possible because the horizon is not compact; in the fluid, this corresponds to the situation when entropy is being produced and carried away to infinity. We also consider shocks in dimensionalities d other than four and find that, for plasmas whose duals are given by asymptotically AdS spaces, the exponential tail of the shock on the supersonic side shrinks as gamma^(-2/d) as the velocity approaches the speed of light (the Lorentz factor gamma goes to infinity). This generalizes the behavior gamma^(-1/2) we have found previously for d=4. Finally, we consider corrugations of the shock front and show that the shock is stable under such perturbations. There are, however, long lived modes, excitations of which describe generation of sound by the shock wave, the energy for this being provided by the incoming fluid.

Sergei Khlebnikov; Martin Kruczenski; Georgios Michalogiorgakis

2011-05-06T23:59:59.000Z

85

Parton picture for the strongly coupled SYM plasma  

E-Print Network (OSTI)

Deep inelastic scattering off the strongly coupled N=4 supersymmetric Yang-Mills plasma at finite temperature can be computed within the AdS/CFT correspondence, with results which are suggestive of a parton picture for the plasma. Via successive branchings, essentially all partons cascade down to very small values of the longitudinal momentum fraction x and to transverse momenta smaller than the saturation momentum Q_s\\sim T/x. This scale Q_s controls the plasma interactions with a hard probe, in particular, the jet energy loss and its transverse momentum broadening.

E. Iancu

2008-05-27T23:59:59.000Z

86

Model for a transformer-coupled toroidal plasma source  

Science Conference Proceedings (OSTI)

A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH{sub 3} plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH{sub 3}, NH{sub x}{sup +} ions are more prevalent near the gas inlet and Ar{sup +} ions are the dominant ions farther downstream. NH{sub 3} and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH{sub 3} dissociates more readily and NH{sub x}{sup +} ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH{sub 3} dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH{sub 4}{sup +} ions are produced and dissociation by-products have higher concentrations near the outlet.

Rauf, Shahid; Balakrishna, Ajit; Chen Zhigang; Collins, Ken [Applied Materials, Inc., 974 E. Arques Avenue, Sunnyvale, California 94085 (United States)

2012-01-15T23:59:59.000Z

87

An experimental study and modeling of Transformer-Coupled Toroidal Plasma processing of materials  

E-Print Network (OSTI)

The Transformer Coupled Toroidal Plasma (TCTP) source uses a high power density plasma formed in a toroidal-shaped chamber by transformer coupling using a magnetic core. The objectives of the thesis are (1) to characterize ...

Bai, Bo, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

88

Test of the performance and characteristics of a prototype inductive power coupling for electric highway systems  

DOE Green Energy (OSTI)

Development of an inductively coupled power system for highway applications was begun in 1976. The power system was designed to provide energy to vehicles that also carry a supply of stored energy, thus providing a large measure of operational flexibility to the vehicles and reducing the necessary inventory of powered roadways. The highway power system can support the high-speed, long-range portions of driving cycles, while the stored energy can meet the requirements of driving on non-powered streets. The system thus has been referred to as a ''dual-mode'' system because of the use of the two sources of energy. The results of testing a prototype coupling are presented. No physical contact between the vehicle and the power source is required, i.e., the coupling magnetically links the power system of the vehicle to a power source in the roadway (inductive coupling). Tests were performed to determine the magnetic force and flux distribution, electrical characteristics, thermal efforts and acoustic noise. The test equipment and methods are discussed. The tests confirmed the technical feasibility of this type of non-contacting electrical power coupling, and demonstrated that its components are suited to ordinary materials and manufacturing processes. The test results were found to be consistent with expected characteristics in all important respects.

Bolger, J.G.; Ng, L.S.; Green, M.I.; Wallace, R.I.

1978-07-01T23:59:59.000Z

89

Thermal photon production in a strongly coupled anisotropic plasma  

E-Print Network (OSTI)

Photons produced in heavy ion collisions escape virtually unperturbed from the surrounding medium, thus representing an excellent probe of the conditions at the emission point. Using the gauge/gravity duality, we calculate the rate of photon production in an anisotropic, strongly coupled N=4 plasma with Nfconductivity. These quantities can be larger or smaller than the isotropic ones, depending on the direction of propagation and polarization of the photons. The total production rate is however always larger than the isotropic one, independently of the frequency, direction of propagation, and value of the anisotropy.

Leonardo Patino; Diego Trancanelli

2012-11-09T23:59:59.000Z

90

Heat conduction in 2D strongly-coupled dusty plasmas  

E-Print Network (OSTI)

We perform non-equilibrium simulations to study heat conduction in two-dimensional strongly coupled dusty plasmas. Temperature gradients are established by heating one part of the otherwise equilibrium system to a higher temperature. Heat conductivity is measured directly from the stationary temperature profile and heat flux. Particular attention is paid to the influence of damping effect on the heat conduction. It is found that the heat conductivity increases with the decrease of the damping rate, while its magnitude confirms previous experimental measurement.

Hou, Lu-Jing

2008-01-01T23:59:59.000Z

91

Coupled MHD-Monte Carlo transport model for dense plasmas  

SciTech Connect

A two-dimensional, two fluid model of the MHD equations has been coupled to a Monte Carlo transport model of high energy, non-Maxwellian ions. The MHD part of the model assumes complete ionization and includes a perfect gas law for a scalar pressure, a tensor artificial viscosity, electron and ion thermal conduction, electron-ion coupling, and a radiation loss term. A simple Ohm's Law is used with a B/sub theta/ magnetic field. The MHD equations were solved in Lagrangian coordinates. The conservation equations were differenced explicitly and the diffusion-type equations implicitly using the splitting technique. The Monte Carlo model solves the equation of motion for high energy ions, moving through and suffering small and large angle collisions with the fluid Maxwellian plasma. The source of high energy ions is the thermonuclear reactions of the hydrogen isotopes, or it may be an externally injected beam of neutralized ions. In addition to using the usual Maxwell averaged thermonuclear cross sections for calculating the number of reactions taking place within the Maxwellian plasma, the high energy ions may suffer collisions resulting in a reaction. In the Monte Carlo model all neutrons are assumed to escape, and all energetic ions of Z less than or equal to 2 are followed. (auth)

Chandler, W.P.

1975-06-01T23:59:59.000Z

92

Complex (dusty) plasmas-kinetic studies of strong coupling phenomena  

SciTech Connect

'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M. [Max-Planck-Institut fuer Extraterrestrische Physik, D-85740 Garching (Germany)

2012-05-15T23:59:59.000Z

93

Classical strongly coupled quark-gluon plasma. VII. Energy loss  

Science Conference Proceedings (OSTI)

We use linear response analysis and the fluctuation-dissipation theorem to derive the energy loss of a heavy quark in the SU(2) classical Coulomb plasma in terms of the l=1 monopole and nonstatic structure factor. The result is valid for all Coulomb couplings {Gamma}=V/K, the ratio of the mean potential to kinetic energy. We use the Liouville equation in the collisionless limit to assess the SU(2) nonstatic structure factor. We find the energy loss to be strongly dependent on {Gamma}. In the liquid phase with {Gamma}{approx_equal}4, the energy loss is mostly metallic and soundless with neither a Cerenkov nor a Mach cone. Our analytical results compare favorably with the SU(2) molecular dynamics simulations at large momentum and for heavy quark masses.

Cho, Sungtae; Zahed, Ismail [Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794 (United States)

2010-12-15T23:59:59.000Z

94

Strongly coupled copper plasma generated by underwater electrical wire explosion  

Science Conference Proceedings (OSTI)

A number of theoretical approaches to the analysis of the parameters of a discharge channel consisting of strongly coupled plasma generated in the process of underwater electrical wire explosion are presented. The analysis is based on experimental results obtained from discharges employing Cu wire. The obtained experimental data included electrical measurements and optical observations from which information about the dynamics of the water flow was extrapolated. Numerical calculation based on a 1D magnetohydrodynamic model was used to simulate the process of underwater wire explosion. A wide range conductivity model was applied in this calculation and good agreement with a set of experimental data was obtained. A method of determining the average temperature of the discharge channel based on this model and experimental results is proposed, and the limits of this method's applicability are discussed.

Grinenko, A.; Gurovich, V.Tz.; Saypin, A.; Efimov, S.; Krasik, Ya.E.; Oreshkin, V.I. [Physics Department, Technion, 32000 Haifa (Israel); Institute of High Current Electronics, SB RAN, 634055 Tomsk (Russian Federation)

2005-12-15T23:59:59.000Z

95

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents (OSTI)

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

96

Plasma sweeper to control lower hybrid wave coupling  

SciTech Connect

Experimental tests of an anti E x anti B plasma sweeper, designed to control the plasma density near the mouth of a phased waveguide array, are described.

Motley, R.W.; Glanz, J.

1981-11-01T23:59:59.000Z

97

Coupled simulation of an indirect field oriented controlled induction motor drive.  

E-Print Network (OSTI)

??Conventionally, system simulations of induction motor drives use lumped parameters model of the motor. This approach assumes motor parameters to be constant during the entire… (more)

Legesse, Michael.

2008-01-01T23:59:59.000Z

98

Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Carbon Dioxide Sequestration Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization Background The United States Department of Energy (DOE) is leading an effort to find novel approaches to reduce carbon dioxide (CO 2 ) emissions from industrial sources. The Industrial Carbon Capture and Sequestration (ICCS) program is funded by the American Recovery and Reinvestment Act (ARRA) to encourage development of processes that

99

A spectral Galerkin method for the coupled Orr-Sommerfeld and induction equations for free-surface MHD  

Science Conference Proceedings (OSTI)

We develop and test spectral Galerkin schemes to solve the coupled Orr-Sommerfeld and induction equations for parallel, incompressible MHD in free-surface and fixed-boundary geometries. The schemes' discrete bases consist of Legendre internal shape functions, ... Keywords: 65L15, 65L60, 76E05, 76E17, 76E25, Eigenvalue problems, Free-surface MHD, Hydrodynamic stability, Orr-Sommerfeld equations, Spectral Galerkin method

Dimitrios Giannakis; Paul F. Fischer; Robert Rosner

2009-03-01T23:59:59.000Z

100

Thermo-magneto coupling in a dipole plasma  

SciTech Connect

We observe the generation of a magnetic moment in a dipole plasma as a levitating magnet-plasma system moves in response to electron cyclotron heating and increasing {beta} (magnetically confined thermal energy). We formulate a thermodynamic model that interprets heating as injection of microscopic magnetic moments; the corresponding chemical potential is the ambient magnetic field.

Yoshida, Z.; Yano, Y.; Morikawa, J.; Saitoh, H. [Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals  

Science Conference Proceedings (OSTI)

In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

Hamidi, S. M. [Laser and Plasma Research Institute, G. C., Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

2012-01-15T23:59:59.000Z

102

Molecular dynamics simulation of strongly coupled QCD plasmas  

E-Print Network (OSTI)

The properties of a strongly interacting quark plasma are investigated by molecular dynamics method including non-abelian quark-quark potential. Our main goal is to study the thermalization process in this system. We find an interesting resonance-like behaviour: at a characteristic time close to the inverse plasma frequency the quark plasma is heated up substantially via energy transfer from quark potential energy into one particle kinetic energy. Color rotation mechanism enhances the effectivity of this heating process, leading to a very fast thermalization with high temperature.

P. Hartmann; Z. Donko; P. Levai; G. J. Kalman

2006-01-06T23:59:59.000Z

103

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents (OSTI)

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

Tsai, Chin-Chi (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

104

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents (OSTI)

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

Tsai, C.C.; Haselton, H.H.

1994-03-08T23:59:59.000Z

105

Plasma effect in Silicon Charge Coupled Devices (CCDs)  

E-Print Network (OSTI)

Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

Juan Estrada; Jorge Molina; J. Blostein; G. Fernandez

2011-05-16T23:59:59.000Z

106

Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach  

Science Conference Proceedings (OSTI)

The dynamic characteristics of strongly coupled one-component plasmas are studied within the moment approach. Our results on the dynamic structure factor and the dynamic local-field correction satisfy the sum rules and other exact relations automatically. A quantitative agreement is obtained with numerous simulation data on the plasma dynamic properties, including the dispersion and decay of collective modes. Our approach allows us to correct and complement the results previously found with other treatments.

Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E. [Department of Optics and Plasma Physics, Al-Farabi Kazakh National University, Tole Bi 96, Almaty 050012 (Kazakhstan); Ballester, D. [School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Tkachenko, I. M. [Instituto de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Zwicknagel, G. [Institut fuer Theoretische Physik II, Erlangen-Nuernberg Universitaet, Staudtstr. 7, D-91058 Erlangen (Germany)

2010-02-15T23:59:59.000Z

107

CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS  

SciTech Connect

The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

Ekechukwu, A

2009-04-20T23:59:59.000Z

108

In situ determination of the static inductance and resistance of a plasma focus capacitor bank  

SciTech Connect

The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L{sub 0}, and resistance r{sub 0} to be obtained using lightly damped sinusoid equations given the bank capacitance C{sub 0}. However, for a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.

Saw, S. H. [INTI University College, Nilai 71800 (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone, Victoria 3148 (Australia); Lee, S. [INTI University College, Nilai 71800 (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone, Victoria 3148 (Australia); National Institute of Education, Nanyang Technological University, Singapore 637616 (Singapore); Roy, F.; Chong, P. L.; Vengadeswaran, V.; Sidik, A. S. M.; Leong, Y. W.; Singh, A. [INTI University College, Nilai 71800 (Malaysia)

2010-05-15T23:59:59.000Z

109

Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code  

SciTech Connect

A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G. Park

2012-08-29T23:59:59.000Z

110

Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code  

Science Conference Proceedings (OSTI)

A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

2012-08-29T23:59:59.000Z

111

Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges  

Science Conference Proceedings (OSTI)

We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V{sub dc}/V{sub pp} ratio becomes a minimum.

Kwon, Deuk-Chul; Yoon, Jung-Sik [Convergence Plasma Research Center, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2011-07-15T23:59:59.000Z

112

TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS  

E-Print Network (OSTI)

nominal o Field excitation, DC volts XBL 786-9048 Figure 13.JL- ..L. _ Induced volts per turn XBL 786-9054 Figuresystem efficiency vs induced volts per turn in coupling with

Bolger, J.G.

2010-01-01T23:59:59.000Z

113

On stability of collisional coupling between relativistic electrons and ions in hot plasmas  

Science Conference Proceedings (OSTI)

The collisional coupling of relativistic electrons and non-relativistic ions in hot plasmas has been analysed. It is found that relativistic effects produce a new feature: while the condition T{sub e}75 keV, collisional decoupling between relativistic electrons and ions becomes impossible.

Marushchenko, I.; Azarenkov, N. A. [V. N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv (Ukraine); Marushchenko, N. B. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany)

2012-11-15T23:59:59.000Z

114

Longitudinal singular response of dusty plasma medium in weak and strong coupling limits  

Science Conference Proceedings (OSTI)

The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.

Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)

2012-01-15T23:59:59.000Z

115

The discharge condition to enhance electron density of capacitively coupled plasma with multi-holed electrode  

Science Conference Proceedings (OSTI)

The multi-holed electrode that has been reported to enhance the electron density of the capacitively coupled plasma is now being adopted to speed up the processes. However, the discharge condition when the multi-holed electrode enhances the electron density of the discharge at fixed power is not studied. At low pressure, the multi-holed electrode increased the electron density of the plasma at fixed power. However, the multi-holed electrode is experimentally revealed to lower the electron density at high pressure. In this paper, the different roles of the multi-holed electrode are experimentally studied.

Lee, Hun Su [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do, 565-902 (Korea, Republic of); Lee, Yun Seong; Chang, Hong Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2012-09-15T23:59:59.000Z

116

Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system  

DOE Patents (OSTI)

An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

Post, Richard F. (Walnut Creek, CA)

2001-01-01T23:59:59.000Z

117

Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration Kurt A. Polzin  

E-Print Network (OSTI)

, which will both be less than one in a real pulsed electromagnetic accelerator. · The inductance ratio, L with decreasing L showing the importance of increasing the ratio LC/L0 in a pulsed electromagnetic accelerator

Choueiri, Edgar

118

Energy loss and thermalization of heavy quarks in a strongly-coupled plasma  

E-Print Network (OSTI)

Using the AdS/CFT correspondence, we compute the medium-induced energy loss of a decelerating heavy quark moving through a strongly-coupled supersymmetric Yang Mills plasma. In the regime where the deceleration is small, a perturbative calculation is possible and we obtain the first two corrections to the energy-loss rate of a heavy quark with constant velocity. The thermalization of the heavy quark is also discussed.

Marquet, C; Xiao, B -W

2009-01-01T23:59:59.000Z

119

The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation  

SciTech Connect

High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

120

Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)  

Science Conference Proceedings (OSTI)

A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity ({approx}15-50 km/s), jet length ({approx}20-100 cm), and 3D expansion.

Merritt, Elizabeth C. [Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Lynn, Alan G. [Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Gilmore, Mark A. [Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Thoma, Carsten [Voss Scientific LLC, Albuquerque, New Mexico 87108 (United States); Loverich, John [Tech-X Corporation, Boulder, Colorado 80303 (United States); Hsu, Scott C. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

“Age” Determination of Irradiated Materials Utilizing Inductively Coupled Plasma Mass Spectrometric (ICP-MS) Detection  

SciTech Connect

A gas pressurized extraction chromatography (GPEC) system has been developed to perform elemental separations on radioactive samples to determine total and isotopic compositions of Cs and Ba from an irradiated salt sample, fuel sample and two sealed radiation sources. The separation is necessary to remove isobaric interferences in the determination of 137Cs, 135Cs, 137Ba, 135Ba, which are used to determine the age of a sample from radioactive decay or purification. The micro-column extraction chromatography system employs compressed nitrogen to move liquid through the system, compared to gravity or pumped liquids that are typically used for separations. The use of compressed gas allows for accurate and precise recovery of all liquids put into the chromatography system, enabling very accurate dilutions. The use of a small analytical column permits the use of very small amounts of liquids to be used. As a benefit, the amount of radiological waste that is generated in the separation process is minimized. For this work, a commercially available Sr-Resin™ was used to perform the separation for the above mentioned analytes. The column consists of a 7 inch piece of 1/16 in. O.D. x 0.030 in I.D. Teflon™ tubing having an internal volume of 81 µL. To this column, 49 mg of resin was added. The columns are re-usable after regeneration with 3 M HNO3. All samples were separated using batch collection, although real time analysis is possible with the current experimental design. A 1 % acetic acid solution was determined to be the best extractant for Ba. A flow rate of 0.1 mL/min was determined to be optimal for the separation of Ba. Complete recovery of the Cs and Ba was achieved, within the systematic error of the experiments.

James Sommers; Jeffrey J. Giglio, Ph,D,; Daniel Cummings; Kevin P. Carney, Ph.D>

2009-11-01T23:59:59.000Z

122

Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device  

Science Conference Proceedings (OSTI)

This paper presents a theory of coupled whistler (W) and electron temperature gradient (ETG) mode using two-fluid model in high beta plasma. Non-adiabatic ion response, parallel magnetic field perturbation ({delta}B{sub z}), perpendicular magnetic flutter ({delta}B{sub perpendicular}), and electron collisions are included in the treatment of theory. A linear dispersion relation for whistler-electron temperature gradient (W-ETG) mode is derived. The numerical results obtained from this relation are compared with the experimental results observed in large volume plasma device (LVPD) [Awasthi et al., Phys. Plasma 17, 42109 (2010)]. The theory predicts that the instability grows only where the temperature gradient is finite and the density gradient flat. For the parameters of the experiment, theoretically estimated frequency and wave number of W-ETG mode match with the values corresponding to the peak in the power spectrum observed in LVPD. By using simple mixing length argument, estimated level of fluctuations of W-ETG mode is in the range of fluctuation level observed in LVPD.

Singh, S. K.; Awasthi, L. M.; Singh, R.; Kaw, P. K.; Jha, R.; Mattoo, S. K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2011-10-15T23:59:59.000Z

123

Scaling of Energy Confinement With Rotation for Advanced Inductive Plasmas in DIII-D  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 56, 239 (2011)53rd American Physical Society Annual Meeting of Division of Plasma Physics Salt Lake City Utah, US, 2011999618998

Politzer, P.A.

2011-08-02T23:59:59.000Z

124

Influence of the Edge Plasma Profile and Parameters on the Coupling of an ICRH Antenna. Application to ITER  

Science Conference Proceedings (OSTI)

The coupling to the fast wave of an ICRH antenna is principally determined by its distance to an optimum plasma density correlated to the cutoff one and by the density gradient between this optimum density and the bulk plasma. This explains the differences in coupling for the various heating and current drive phasings as predicted for different plasma edge profiles considered for ITER. For a given electron density edge profile the ion mix, the steady magnetic field and the frequency have also a significant effect on the coupling performances. These quantities affect the coupling mainly by influencing the position of the optimum density in the profile. A marked perturbation of the coupling leading to a large edge power deposition can occur when the Alfven resonance lies in the edge profile. The results are applied to different ICRF scenarios considered for ITER at full and half toroidal field.

Messiaen, A.; Koch, R.; Weynants, R. [LPP-ERM/KMS, EURATOM-Belgian State Association, Trilateral Euregio Cluster, Brussels (Belgium)

2011-12-23T23:59:59.000Z

125

A direct electron bombarded charge coupled device for dynamic plasma imaging applications (abstract)  

Science Conference Proceedings (OSTI)

A variety of plasma physics experiments require the recording of continuous time history of x-ray emission. Many laboratories have developed x-ray streak camera technology in order to time resolve x-ray spectra or images produced by laser-driven plasma experiments. These cameras record x rays by converting photons to electrons, which in turn are focused and swept across an electron sensitive area detector as a function of time. X-ray photons impinging on a transmission type photocathode generate photoelectrons which are accelerated to energies between 10 and 20 keV and focused onto a phosphor screen. The light from the phosphor image may be intensified using a microchannel plate, and is usually optically coupled directly onto film or an optical charge coupled device. We have designed and built an x-ray sensitive streak camera readout where we replaced the microchannel plate based intensifier and film package with a modified charge coupled device area detector to directly absorb accelerated photoelectrons emitted from the cathode. This system has been integrated into the streak tube arrangement. We will present a set of system performance data, which have been obtained from both bench top experiments on a dc source and dynamic measurements at the Nova laser facility. X-ray images at various exposure times show better spatial resolution, improved signal to noise ratio, and higher dynamic range. Other advantages include instantaneous data readout, which enables fast postprocessing, and no increase in overall cost for an engineered system.

Weber, F.; Celliers, P.; Bell, P.; Diamond, C.

2001-01-01T23:59:59.000Z

126

Real-time control of electron density in a capacitively coupled plasma  

SciTech Connect

Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

Keville, Bernard; Gaman, Cezar; Turner, Miles M. [National Centre for Plasma Science and Technology (NCPST), Research and Engineering Building, Dublin City University, Glasnevin, Dublin 9 (Ireland) and School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Zhang Yang; Daniels, Stephen [National Centre for Plasma Science and Technology (NCPST), Research and Engineering Building, Dublin City University, Glasnevin, Dublin 9 (Ireland) and School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9 (Ireland); Holohan, Anthony M. [School of Electronic Engineering, Dublin City University, Glasnevin, Dublin 9 (Ireland)

2013-05-15T23:59:59.000Z

127

Negative Off-Diagonal Conductivities in a Weakly Coupled Quark Gluon Plasma  

E-Print Network (OSTI)

We calculate the conductivity matrix of a weakly coupled quark-gluon plasma at the leading-log order. By setting all quark chemical potentials to be identical, the diagonal conductivities become degenerate and positive, while the off-diagonal ones become degenerate but negative (or zero when the chemical potential vanishes). This means a potential gradient of a certain fermion flavor can drive backward currents of other flavors. A simple explanation is provided for this seemingly counter intuitive phenomenon. It is speculated that this phenomenon is generic and most easily measured in cold atom experiments.

Jiunn-Wei Chen; Yen-Fu Liu; Shi Pu; Yu-Kun Song; Qun Wang

2013-08-13T23:59:59.000Z

128

Negative Off-Diagonal Conductivities in a Weakly Coupled Quark Gluon Plasma  

E-Print Network (OSTI)

We calculate the conductivity matrix of a weakly coupled quark-gluon plasma at the leading-log order. By setting all quark chemical potentials to be identical, the diagonal conductivities become degenerate and positive, while the off-diagonal ones become degenerate but negative (or zero when the chemical potential vanishes). This means a potential gradient of a certain fermion flavor can drive backward currents of other flavors. A simple explanation is provided for this seemingly counter intuitive phenomenon. It is speculated that this phenomenon is generic and most easily measured in cold atom experiments.

Chen, Jiunn-Wei; Pu, Shi; Song, Yu-Kun; Wang, Qun

2013-01-01T23:59:59.000Z

129

Kelvin-Helmholtz instability in a strongly coupled dusty plasma medium  

Science Conference Proceedings (OSTI)

The Kelvin-Helmholtz (KH) instability in the context of strongly coupled dusty plasma medium has been investigated. In particular, the role of transverse shear and the compressional acoustic modes in both the linear and nonlinear regimes of the KH instability has been studied. It is observed that in addition to the conventional nonlocal KH instability, there exists a local instability in the strong coupling case. The interplay of the KH mode with this local instability shows up in the simulations as an interesting phenomenon of recurrence in the nonlinear regime. Thus, a cyclic KH instability process is observed to occur. These cyclic events are associated with bursts of activity in terms of transverse and compressional wave generation in the medium.

Tiwari, Sanat Kumar; Das, Amita; Patel, Bhavesh G. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Angom, Dilip [Physical Research Laboratory, Ahmedabad 380 009 (India); Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Physical Research Laboratory, Ahmedabad 380 009 (India)

2012-07-15T23:59:59.000Z

130

Comparison of matrix effects in inductively coupled plasma using laser ablation and solution nebulization for dry and wet plasma conditions  

E-Print Network (OSTI)

by the Office of Environmental Waste Management and OfficeOffice of Basic Energy Science, Chemical Science Division and by the Environmental Management

Chan, George C.-Y.; Chan, Wing-Tat; Mao, Xianglei; Russo, Richard E.

2001-01-01T23:59:59.000Z

131

Timescales for NonInductive Current Buildup In LowAspectRatio Toroidal Geometry  

E-Print Network (OSTI)

boundary conditions coupled to the changing currents in the poloidal field coils. For definiteness in the magnetic field evolution equation whereas non­inductive current drive takes the form of a source term. An associated and compounding effect is that inductive current drive changes the plasma flux most near

132

Time-scales for Non-Inductive Current Buildup In Low-Aspect-Ratio Toroidal Geometry  

E-Print Network (OSTI)

boundary conditions coupled to the changing currents in the poloidal field coils. For definiteness in the magnetic field evolution equation whereas non-inductive current drive takes the form of a source term. An associated and compounding effect is that inductive current drive changes the plasma flux most near

133

COUPLING  

DOE Patents (OSTI)

This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

Hawke, B.C.

1963-02-26T23:59:59.000Z

134

A minimal model of plasma membrane heterogeneity requires coupling cortical actin to criticality  

E-Print Network (OSTI)

We present a minimal model of plasma membrane heterogeneity that combines criticality with connectivity to cortical cytoskeleton. Our model is motivated by recent observations of micron-sized critical fluctuations in plasma membrane vesicles that are detached from their cortical cytoskeleton. We incorporate criticality using a conserved order parameter Ising model coupled to a simple actin cytoskeleton interacting through point-like pinning sites. Using this minimal model, we recapitulate several experimental observations of plasma membrane raft heterogeneity. Small (r~20nm) and dynamic fluctuations at physiological temperatures arise from criticality. Including connectivity to cortical cytoskeleton disrupts large fluctuations, prevents macroscopic phase separation at low temperatures (T<=22{\\deg}C), and provides a template for long lived fluctuations at physiological temperature (T=37{\\deg}C). Cytoskeleton-stabilized fluctuations produce significant barriers to the diffusion of some membrane components in a manner that is weakly dependent on the number of pinning sites and strongly dependent on criticality. More generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over large distances.

Benjamin B. Machta; Stefanos Papanikolaou; James P. Sethna; Sarah L. Veatch

2010-09-10T23:59:59.000Z

135

Multi-chord fiber-coupled interferometry of supersonic plasma jets andcomparisons with synthetic data  

Science Conference Proceedings (OSTI)

A multi-chord fiber-coupled interferometer [Merritt et al., Rev. Sci. Instrum. 83, 033506 (2012)] is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment [Hsu et al., Bull. Amer. Phys. Soc. 56, 307 (2011)]. The long coherence length of the laser (> 10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which an initially positive phase shift becomes negative when the ionization fraction drops below a certain threshold. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity ({approx} 15-50 km/s), jet length ({approx} 20-100 cm), and 3D expansion.

Merritt, Elizabeth C. [Los Alamos National Laboratory; Lynn, Alan G. [Los Alamos National Laboratory; Gilmore, Mark A. [Los Alamos National Laboratory; Thoma, Carsten [Voss Scientific LLC; Loverich, John [Tech-X Corporation; Hsu, Scott C. [Los Alamos National Laboratory

2012-05-03T23:59:59.000Z

136

Thermodynamic properties of strongly coupled plasma in presence of external magnetic field  

E-Print Network (OSTI)

Thermodynamic properties of a Yukawa system consisting of dust particles in plasma are studied in presence of an external magnetic field. It is assumed that dust particles interact with each other by modified potential in presence of magnetic field. Accordingly, a modified expression for internal energy has been obtained. A molecular dynamics code is developed to calculate this internal energy for the entire system. Based on the values of internal energy given by the code Helmholtz free energy and pressure are calculated for the system. Our study shows novel kind of behaviour for internal energy in presence of magnetic field. Thermodynamic properties are affected significantly by magnetic field. The study helps to express internal energy as a function of Coulomb coupling parameter and magnetic field.

Begum, Mahmuda; Das, Nilakshi

2013-01-01T23:59:59.000Z

137

Enhanced thermal photon and dilepton production in strongly coupled N=4 SYM plasma in strong magnetic field  

E-Print Network (OSTI)

We calculate the DC conductivity tensor of strongly coupled N=4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B>>T^2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled N=4 SYM plasma in the presence of the strong external magnetic field B>>T^2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled N=4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

Kiminad A. Mamo

2012-10-28T23:59:59.000Z

138

DOI: 10.1021/bi101428e Hydrogen Bonding in the Active Site of Ketosteroid Isomerase: Electronic Inductive Effects and Hydrogen Bond Coupling  

E-Print Network (OSTI)

ABSTRACT: Computational studies are performed to analyze the physical properties of hydrogen bonds donated by Tyr16 and Asp103 to a series of substituted phenolate inhibitors bound in the active site of ketosteroid isomerase (KSI). As the solution pKa of the phenolate increases, these hydrogen bond distances decrease, the associated nuclear magnetic resonance (NMR) chemical shifts increase, and the fraction of protonated inhibitor increases, in agreement with prior experiments. The quantum mechanical/molecular mechanical calculations provide insight into the electronic inductive effects along the hydrogen bonding network that includes Tyr16, Tyr57, and Tyr32, as well as insight into hydrogen bond coupling in the active site. The calculations predict that the most-downfield NMR chemical shift observed experimentally corresponds to the Tyr16-phenolate hydrogen bond and that Tyr16 is the proton donor when a bound naphtholate inhibitor is observed to be protonated in electronic absorption experiments. According to these calculations, the electronic inductive effects along the hydrogen bonding network of tyrosines cause the Tyr16 hydroxyl to be more acidic than the Asp103 carboxylic acid moiety, which is immersed in a relatively nonpolar environment. When one of the distal tyrosine residues in the network is mutated to phenylalanine, thereby diminishing this inductive effect, the Tyr16-phenolate hydrogen bond becomes longer and the Asp103-phenolate hydrogen bond shorter, as observed in NMR experiments. Furthermore, the calculations suggest that

Philip Hanoian; Paul A. Sigala; Daniel Herschlag; Sharon Hammes-schiffer

2010-01-01T23:59:59.000Z

139

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 1, JANUARY 2004 75 Optimal Pulse Shaping for Plasma Processing  

E-Print Network (OSTI)

and control of next generation plasma process reactors must be explored. Standard operation of plasma reactors describes the bulk plasma region of a pure argon inductively coupled reactor and is developed using a zeroIEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 1, JANUARY 2004 75 Optimal Pulse

Raja, Laxminarayan L.

140

Laser ablation of electronic materials including the effects of energy coupling and plasma interactions  

E-Print Network (OSTI)

20, 171 5. K. Jain, Excimer laser lithography (SPIE OpticalGijbels, F. Adams (Eds. ), Laser Ionization Mass Analysis (G. Befeki, Principles of laser plasmas (Wiley Interscience,

Zeng, Xianzhong

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)  

Science Conference Proceedings (OSTI)

The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

Gallimore, David L. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

142

One-dimensional hybrid simulation of the dc/RF combined driven capacitively coupled CF{sub 4} plasmas  

Science Conference Proceedings (OSTI)

We developed a one-dimensional hybrid model to simulate the dc/RF combined driven capacitively coupled plasma for CF{sub 4} discharges. The numerical results show the influence of the dc source on the plasma density distribution, ion energy distributions (IEDs), and ion angle distributions (IADs) on both RF and dc electrodes. The increase of dc voltage impels more ions with high energy to the electrode applied to the dc source, which makes the IEDs at the dc electrode shift toward higher energy and the peaks in IADs shift toward the small angle region. At the same time, it also decreases ion-energy at the RF electrode and enlarges the ion-angles which strike the RF electrode.

Wang Shuai [School of Science, Northeastern University, Shenyang 110891 (China); Xu Xiang; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2012-11-15T23:59:59.000Z

143

Laser ablation of electronic materials including the effects of energy coupling and plasma interactions  

E-Print Network (OSTI)

conduction, (2) electron-ion (exothermic) recombination on the cavity walls, (3) short-wavelength thermal plasmaconduction, electron-ion recombination and condensation of vapor on the cavity walls, and the plasma

Zeng, Xianzhong

2004-01-01T23:59:59.000Z

144

Inductively Coupled Plasma-Mass Spectrometry with Collision/Reaction Cell Technology for Analysis of Flue Gas Desulfurization Wastew aters  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) wastewater is produced by pollution control equipment used on coal-fired power plants to reduce sulfur dioxide emissions to air. Wet FGD scrubbers produce an aqueous blowdown stream that contains trace levels of metals that have been adsorbed from flue gas. Power plant owners need to measure concentrations of these metals for purposes of process control, discharge monitoring, or design and operation of wastewater treatment systems. FGD water is a very difficult matrix ...

2012-09-20T23:59:59.000Z

145

Size exclusion chromatography-inductively coupled plasma atomic emission spectrographic study of Fe in bitumens derived from tar sands  

SciTech Connect

This paper reports on bitumens extracted from tar sands from various locations (Utah, California, Kentucky, and Alberta) that were examined by size exclusion chromatography with on-line element-specific detection to study the Fe concentration as a function of size. In most cases, the resulting profiles exhibit unimodal distributions at relatively large molecular size with very similar times for maximum elution. specifically, Sunnyside (Utah) and McKittrick (California) tar-sand bitumens exhibited very intense maxima consistent with extremely high bulk Fe contents. Arroyo Grande (California) exhibited an additional maximum at very large molecular size. This size behavior of the Fe appears to correlate with the large molecular size Ni and V components eluted under the same conditions.

Reynolds, J.G. (Lawrence Livermore National Lab., Livermore, CA (US)); Biggs, W.R. (Chevron Research Co., Richmond, CA (US))

1992-01-01T23:59:59.000Z

146

Plasma Damage in p-GaN  

SciTech Connect

The effect of Inductively Coupled Plasma H{sub 2} or Ar discharges on the breakdown voltage of p-GaN diodes was measured over a range of ion energies and fluxes. The main effect of plasma exposure is a decrease in net acceptor concentration to depths of 400-550{angstrom}. At high ion fluxes or energies there can be type conversion of the initially p-GaN surface. Post etch annealing at 900 C restores the initial conductivity.

Cao, X.A.; Dang, G.T.; Hickman, R.A.; Pearton, S.J.; Ren, F.; Shul, R.J.; Van Hove, J.M.; Zhang, A.P.; Zhang, L.

1999-06-30T23:59:59.000Z

147

Coupled modes in magnetized dense plasma with relativistic-degenerate electrons  

SciTech Connect

Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

Khan, S. A. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan)

2012-01-15T23:59:59.000Z

148

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 2, APRIL 1999 555 Coupled Thermal-Electromagnetic  

E-Print Network (OSTI)

impedance profile for the incident wave and therefore acts as a nonlinear distributed load. Coupled thermal an efficient simulation tool for the analysis of various phenomena. The two-scale model presented in this paper of the temperature and power-dissipation profiles. Variations in the (microwave) impedance profile in the medium due

Jerby, Eli

149

Studies of plasma transport  

SciTech Connect

This report discusses the charge-coupled device camera and other plasma diagnostic equipment used to measure plasma density and other plasma properties. (LSP)

Malmberg, J.H.; O' Neil, T.M.; Driscoll, C.F.

1991-07-22T23:59:59.000Z

150

Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge  

SciTech Connect

We show experimental observations of collisionless electron heating by the combinations of the capacitive radio frequency (RF) bias power and the inductive power in low argon gas pressure RF biased inductively coupled plasma (ICP). With small RF bias powers in the ICP, the electron energy distribution (EED) evolved from bi-Maxwellian distribution to Maxwellian distribution by enhanced plasma bulk heating and the collisionless sheath heating was weak. In the capacitive RF bias dominant regime, however, high energy electrons by the RF bias were heated on the EEDs in the presence of the ICP. The collisionless heating mechanism of the high energy electrons transited from collisionless inductive heating to capacitive coupled collisionless heating by the electron bounce resonance in the RF biased ICP.

Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2012-12-10T23:59:59.000Z

151

60 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 1, FEBRUARY 1999 Plasmoid Formation and Multiple Steady States in a  

E-Print Network (OSTI)

60 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 27, NO. 1, FEBRUARY 1999 Plasmoid Formation in a low pressure inductively coupled plasma in chlorine gas. A bowl-shaped bright structure with sharply was chilled with a water- Manuscript received July 7, 1998. This work was supported by the National Science

Economou, Demetre J.

152

Acceleration of Plasma Flows in the Solar Atmosphere Due to Magnetofluid Coupling - Simulation and Analysis  

E-Print Network (OSTI)

Within the framework of a two-fluid description possible pathways for the generation of fast flows (dynamical as well as steady) in the lower solar atmosphere is established. It is shown that a primary plasma flow (locally sub-Alfv\\'enic) is accelerated when interacting with emerging/ambient arcade--like closed field structures. The acceleration implies a conversion of thermal and field energies to kinetic energy of the flow. The time-scale for creating reasonably fast flows ($\\gtrsim 100$ km/s) is dictated by the initial ion skin depth while the amplification of the flow depends on local $\\beta $. It is shown, for the first time, that distances over which the flows become "fast" are $\\sim 0.01 R_s$ from the interaction surface; later the fast flow localizes (with dimensions $\\lesssim 0.05 R_S$) in the upper central region of the original arcade. For fixed initial temperature the final speed ($\\gtrsim 500 km/s$) of the accelerated flow, and the modification of the field structure are independent of the time-duration (life-time) of the initial flow. In the presence of dissipation, these flows are likely to play a fundamental role in the heating of the finely structured Solar atmosphere.

Swadesh M. Mahajan; Nana L. Shatashvili; Solomon V. Mikeladze; Ketevan I. Sigua

2005-02-17T23:59:59.000Z

153

Acceleration of Plasma Flows in the Solar Atmosphere Due to Magnetofluid Coupling - Simulation and Analysis  

E-Print Network (OSTI)

Within the framework of a two-fluid description possible pathways for the generation of fast flows (dynamical as well as steady) in the lower solar atmosphere is established. It is shown that a primary plasma flow (locally sub-Alfv\\'enic) is accelerated when interacting with emerging/ambient arcade--like closed field structures. The acceleration implies a conversion of thermal and field energies to kinetic energy of the flow. The time-scale for creating reasonably fast flows ($\\gtrsim 100$ km/s) is dictated by the initial ion skin depth while the amplification of the flow depends on local $\\beta $. It is shown, for the first time, that distances over which the flows become "fast" are $\\sim 0.01 R_s$ from the interaction surface; later the fast flow localizes (with dimensions $\\lesssim 0.05 R_S$) in the upper central region of the original arcade. For fixed initial temperature the final speed ($\\gtrsim 500 km/s$) of the accelerated flow, and the modification of the field structure are independent of the time-d...

Mahajan, S M; Mikeladze, S V; Sigua, K I; Mahajan, Swadesh M.; Shatashvili, Nana L.; Mikeladze, Solomon V.; Sigua, Ketevan I.

2005-01-01T23:59:59.000Z

154

Study on the Properties of Ionized Metal Plasma Methodology on Titanium  

Science Conference Proceedings (OSTI)

Ionized Metal Plasma (IMP) deposition was used in depositing metal interconnection of titanium metal film. Inductively coupled plasma (ICP) was attached to chamber wall where it creates an electromagnetic field, thus, ionizing the sputtered metal atoms from target. The film morphology was observed by scanning electron microscope (SEM). Acoustic measurement of titanium film thickness showed that there was a comparable result with film resistance measured by 4-point probe. Results show that higher plasma density would cause tensile properties on the film stress.

Leow, M. T. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Infineon Technologies (Kulim) Sdn Bhd, Lot 10 and 11, Jalan Hi-Tech 7, Industrial Zone Phase 2, Kulim Hi-Tech Park, 09000, Kulim, Kedah Darul Aman (Malaysia); Hassan, Z. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Lee, K. E.; Omar, G.; Lim, S. P.; Chan, C. F.; Siew, E. T.; Chuah, Z. M. [Infineon Technologies (Kulim) Sdn Bhd, Lot 10 and 11, Jalan Hi-Tech 7, Industrial Zone Phase 2, Kulim Hi-Tech Park, 09000, Kulim, Kedah Darul Aman (Malaysia)

2010-07-07T23:59:59.000Z

155

Implementation of load resilient ion cyclotron resonant frequency (ICRF) systems to couple high levels of ICRF power to ELMy H-mode plasmas in JET  

Science Conference Proceedings (OSTI)

The paper summarizes the continuous developments made to the ion cyclotron resonant frequency (ICRF) system at JET in order to improve the reliability of the power coupled to plasma. It details the changes and improvements made to the system so that more power is coupled during ELMy plasmas as well as increasing the power density to demonstrate reliable operation in the range of the requirements for ITER. Results obtained using the conventional matching (stubs and trombones) system, 3 dB couplers and the conjugate-T scheme with variable matching elements outside the wave launching structure (external conjugate-T) and inside the wave launching structure (ITER-like antenna) are described. The presence of the three different approaches to load resilient ICRF systems at JET creates a unique opportunity to compare these methods under very similar plasma conditions and to assess the results of ICRF power delivery to ELMy plasmas, an important issue for ITER. The impact of the availability of increased levels of reliable ICRF power on plasma physics studies in JET is illustrated.

Graham, M. [EURATOM / UKAEA, Abingdon, UK; Mayoral, M. -L. [EURATOM / UKAEA, Abingdon, UK; Monakhov, I. [EURATOM / UKAEA, Abingdon, UK; Ongena, J. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Blackman, T. [EURATOM / UKAEA, Abingdon, UK; Goulding, Richard Howell [ORNL

2012-01-01T23:59:59.000Z

156

Induction Melting  

Science Conference Proceedings (OSTI)

...form part of a resonance circuit. In a series inverter, the capacitors are connected in series with the induction

157

Observation of Higher-Order Sideband Transitions and First-Order Sideband Rabi Oscillations in a Superconducting Flux Qubit Coupled to a SQUID Plasma Mode  

E-Print Network (OSTI)

We report results of spectroscopic measurements and time-domain measurements of a superconducting flux qubit. The dc superconducting quantum interference device (SQUID), used for readout of the qubit, and a shunt capacitor formed an LC resonator generating a SQUID plasma mode. Higher-order red and blue sidebands were observed in a simple measurement scheme because the resonant energy of the resonator, 600 MHz, was comparable to the thermal energy. We also observed Rabi oscillations on the carrier transition and the first-order sideband transitions. Because the qubit was coupled to a single arm of the dc SQUID, the qubit-SQUID coupling was significant at zero bias current, where these phenomena were observed. The ratios between the Rabi periods for the carrier transition and the sideband transitions are compared with those estimated from the coupling constant, which was separately determined. The result may be explained by assuming initial excitation of the resonator.

Yoshihiro Shimazu; Masaki Takahashi; Natsuki Okamura

2013-05-27T23:59:59.000Z

158

Wave frequency dependence of H{sup -} ion production and extraction in a transformer coupled plasma H{sup -} ion source at SNU  

Science Conference Proceedings (OSTI)

The effect of rf wave frequencies on the production of H{sup -} ion is investigated in a transformer coupled plasma H{sup -} ion source at Seoul National University. A Langmuir probe is installed to measure the plasma density and temperature, and these plasma parameters are correlated to the extracted H{sup -} beam currents at various frequencies. The Langmuir probe is also used to measure the density of H{sup -} ions at the ion source by generating photodetachment with an Nd:YAG laser. The extracted H{sup -} currents decrease to a minimum value until 13 MHz and then, increase as the driving frequency increases from 13 MHz while the relative H{sup -} population measured by photodetachment monotonically decreases as the driving rf frequency increases from 11 MHz to 15 MHz. A potential well formed at the extraction region at high frequencies of more than 13 MHz is considered responsible for the increased H{sup -} beam extraction even with a lower photodetachment signal. The variation in the driving rf frequency not only affects the density and temperature of the plasma but also modifies the plasma potential with the existence of a filtering magnetic field and consequently, influences the extracted H{sup -} current through the extraction as well as formation of H{sup -} ions.

An, Young Hwa; Cho, Won Hwi; Chung, Kyoung-Jae; Lee, Kern; Jang, Seung Bin; Lee, Seok-Geun; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

2012-02-15T23:59:59.000Z

159

Original article: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults  

Science Conference Proceedings (OSTI)

This paper proposes an original simplified model aimed to simulate, an easy way, inter turns short circuit fault, phase to phase fault and phase to ground fault. In this model, the stator is considered as six magnetically coupled windings and the rotor ... Keywords: Fault diagnosis, Inter turns short circuit fault, Phase to ground fault, Phase to phase fault, Symmetrical components

M. Bouzid, G. Champenois

2013-04-01T23:59:59.000Z

160

SiO2 and Si etching in fluorocarbon plasmas: A detailed surface model coupled with a complete plasma and profile simulator.  

Science Conference Proceedings (OSTI)

A surface model for SiO"2 and Si etching in fluorocarbon plasmas is presented, taking into account polymer deposition. The polymer, the CF"x, and the F surface coverage is calculated, as well as the etching yields and rates. Transition from deposition ...

E. Gogolides; P. Vauvert; Y. Courtin; G. Kokkoris; R. Pelle; A. Boudouvis; G. Turban

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Available Technologies: High Efficiency Spiral RF-Induction ...  

The spiral antennas efficient use of source geometry also ... Neutron and high energy gamma ... A typical RF-induction plasma generator with a ...

162

Effects of polarization force and effective dust temperature on dust-acoustic solitary and shock waves in a strongly coupled dusty plasma  

Science Conference Proceedings (OSTI)

A strongly coupled dusty plasma containing strongly correlated negatively charged dust grains and weakly correlated (Maxwellian) electrons and ions has been considered. The effects of polarization force (which arises due to the interaction between thermal ions and highly negatively charged dust grains) and effective dust temperature (which arises from the electrostatic interactions among highly negatively charged dust and from the dust thermal pressure) on the dust-acoustic (DA) solitary and shock waves propagating in such a strongly coupled dusty plasma are taken into account. The DA solitary and shock waves are found to exist with negative potential only. It has been shown that the strong correlation among the charged dust grains is a source of dissipation and is responsible for the formation of the DA shock waves. It has also been shown that the effects of polarization force and effective dust-temperature significantly modify the basic features (e.g., amplitude, width, and speed) of the DA solitary and shock waves. It has been suggested that a laboratory experiment be performed to test the theory presented in this work.

Mamun, A. A.; Ashrafi, K. S.; Shukla, P. K. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2010-08-15T23:59:59.000Z

163

Solenoid-free Plasma Start-up in NSTX using Transient CHI  

SciTech Connect

Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively-generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

Raman, R; Jarboe, T; Nelson, B; Mueller, D; Soukhanovskii, V A

2009-01-05T23:59:59.000Z

164

Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies  

Science Conference Proceedings (OSTI)

The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

2011-02-01T23:59:59.000Z

165

Standard test method for determination of impurities in plutonium: acid dissolution, ion exchange matrix separation, and inductively coupled plasma-atomic emission spectroscopic (ICP/AES) analysis  

E-Print Network (OSTI)

1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %. 1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source. 1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of th...

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

166

Initial report on the application of laser ablation - inductively coupled plasma mass spectrometry for the analysis of radioactive Hanford Tank Waste materials  

Science Conference Proceedings (OSTI)

Initial LA/MS analyses of Hanford tank waste samples were performed successfully using laboratory and hot cell LA/MS instrumentation systems. The experiments described in this report have demonstrated that the LA/MS data can be used to provide rapid analysis of solid, radioactive Hanford tank waste samples to identify major, minor, and trace constituents (elemental and isotopic) and fission products and radioactive isotopes. The ability to determine isotopic constituents using the LA/MS method yielded significant advantages over ICP/AES analysis by providing valuable information on fission products and radioactive constituents.

Smith, M.R.; Hartman, J.S.; Alexander, M.L.; Mendoza, A.; Hirt, E.H.; Stewart, T.L.; Hansen, M.A.; Park, W.R.; Peters, T.J.; Burghard, B.J.

1996-12-01T23:59:59.000Z

167

Fabrication of Two-Dimensional Photonic Crystals in AlGaInP/GaInP Membranes by Inductively Coupled Plasma Etching  

E-Print Network (OSTI)

The fabrication process of two-dimensional photonic crystals in an AlGaInP/GaInP multi-quantum-well membrane structure is developed. The process includes high resolution electron-beam lithography, pattern transfer into ...

Chen, A.

168

Inductive tuners for microwave driven discharge lamps  

DOE Patents (OSTI)

An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

Simpson, James E. (Gaithersburg, MD)

1999-01-01T23:59:59.000Z

169

Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams  

SciTech Connect

An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

Hershkowitz, Noah (Madison, WI); Longmier, Benjamin (Madison, WI); Baalrud, Scott (Madison, WI)

2009-03-03T23:59:59.000Z

170

Induction machine  

DOE Patents (OSTI)

A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

Owen, Whitney H. (Ogden, UT)

1980-01-01T23:59:59.000Z

171

Steady-state inductive spheromak operation  

DOE Patents (OSTI)

The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

Janos, Alan C. (E. Windsor, NJ); Jardin, Stephen C. (Princeton, NJ); Yamada, Masaaki (Lawrenceville, NJ)

1987-01-01T23:59:59.000Z

172

Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching - A response surface modeling approach  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Sentences/phrases were modified. Black-Right-Pointing-Pointer Necessary discussions for different figures were included. Black-Right-Pointing-Pointer More discussion have been included on the flue gas analysis. Black-Right-Pointing-Pointer Queries to both the reviewers have been given. - Abstract: The global crisis of the hazardous electronic waste (E-waste) is on the rise due to increasing usage and disposal of electronic devices. A process was developed to treat E-waste in an environmentally benign process. The process consisted of thermal plasma treatment followed by recovery of metal values through mineral acid leaching. In the thermal process, the E-waste was melted to recover the metal values as a metallic mixture. The metallic mixture was subjected to acid leaching in presence of depolarizer. The leached liquor mainly contained copper as the other elements like Al and Fe were mostly in alloy form as per the XRD and phase diagram studies. Response surface model was used to optimize the conditions for leaching. More than 90% leaching efficiency at room temperature was observed for Cu, Ni and Co with HCl as the solvent, whereas Fe and Al showed less than 40% efficiency.

Rath, Swagat S., E-mail: swagat.rath@gmail.com [Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751 013, Odisha (India); Nayak, Pradeep; Mukherjee, P.S.; Roy Chaudhury, G.; Mishra, B.K. [Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751 013, Odisha (India)

2012-03-15T23:59:59.000Z

173

Models of radiofrequency coupling for negative ion sources  

SciTech Connect

Radiofrequency heating for ICP (inductively coupled plasma) ion sources depends on the source operating pressure, the presence or absence of a Faraday shield, the driver coil geometry, the frequency used, and the magnetic field configuration: in negative ion source a magnetic filter seems necessary for H{sup -} survival. The result of single particle simulations showing the possibility of electron acceleration in the preglow regime and for reasonable driver chamber radius (15 cm) is reported, also as a function of the static external magnetic field. An effective plasma conductivity, depending not only from electron density, temperature, and rf field but also on static magnetic field is here presented and compared to previous models. Use of this conductivity and of multiphysics tools for a plasma transport and heating model is shown and discussed for a small source.

Cavenago, M.; Petrenko, S. [INFN-LNL, viale dell'Universita n.2, 35020 Legnaro (Italy)

2012-02-15T23:59:59.000Z

174

PLASMA DEVICE  

DOE Patents (OSTI)

A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

Baker, W.R.

1961-08-22T23:59:59.000Z

175

Spark Plasma Sintering  

Science Conference Proceedings (OSTI)

Oct 21, 2010 ... Coupled Electro-Thermo-Mechanical Analysis of Conventional (SPS) and Free Pressureless (FPSPS) Spark-Plasma Sintering: Eugene ...

176

Investigation on plasma parameters and step ionization from discharge characteristics of an atmospheric pressure Ar microplasma jet  

Science Conference Proceedings (OSTI)

In this communication, we report a technique to estimate the plasma parameters from the discharge characteristics of a microplasma device, operated in atmospheric pressure on the basis of homogeneous discharge model. By this technique, we investigate the plasma parameters of a microplasma jet produced by microplasma device consisting of coaxial capillary electrodes surrounded by dielectric tube. Our results suggest that the complex dependence of electrical discharge characteristics observed for microplasma device operated with Ar or it admixtures probably signify the existence of step ionization, which is well known in inductively coupled plasma.

Bora, B.; Bhuyan, H.; Favre, M.; Chuaqui, H.; Wyndham, E. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2012-06-15T23:59:59.000Z

177

Plasma sweeper. [Patents  

DOE Patents (OSTI)

A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, R.W.; Glanz, J.

1982-10-25T23:59:59.000Z

178

HEAVY ION FUSION SCIENCE VIRTUALNATIONAL LABORATORY 2nd QUARTER 2009 MILESTONE REPORT: Perform beam and target experiments with a new induction bunching module, extended FEPS plasma, and improved target diagnostic and positioning equipment on NDCX  

SciTech Connect

This effort contains two main components: The new induction-bunching module is expected to deliver higher fluence in the bunched beam, and the new target positioner will enable a significantly enhanced target physics repetition rate. The velocity ramp that bunches the K{sup +} beam in the neutralized drift compression section is established with a bipolar voltage ramp applied to an acceleration gap. An induction acceleration module creates this voltage waveform. The new bunching module (IBM) specially built for NDCX has approximately twice the capability (volt-seconds) as our original IBM. We reported on the beam line design for the best use of the bunching module in our FY08 Q2 report. Based on simulations and theoretical work, we chose to extend the drift compression section and use the additional volt-seconds to extend the pulse duration and keep the peak voltage swing (and velocity excursions) similar to the present module. Simulations showed that this approach, which extends the drift section, to be advantageous because it limits the chromatic aberrations in the beam spot on target. To this end, colleagues at PPPL have fabricated the meter-long extension to the ferroelectric plasma source and it was installed on the beam line with the new IBM in January 2009. Simulation results suggest a factor of two increase in energy deposition from the bunched beam. In the first WDM target run (August-November 2008) the target handling setup required opening the vacuum system to manually replace the target after each shot (which destroys the target). Because of the requirement for careful alignment of each individual target, the target shot repetition rate was no greater than 1 shot per day. Initial results of this run are reported in our FY08 4th Quarter Milestone Report. Based on the valuable experience gained in the initial run, we have designed and installed an improved target alignment and positioning system with the capability to reposition targets remotely. This capability allows us to significantly increase our shot repetition rate, and to take greater advantage of the pinhole/cone arrangement we have developed to localize the beam at final focus. In addition we have improved the capability of the optical diagnostic systems, and we have installed a new beam current transformer downstream of the target to monitor beam current transmitted through the target during an experiment. These improvements will allow us to better exploit the inherent capability of the NDCX facility for high repetition rate and thus to provide more detailed experimental data to assess WDM physics models of target behavior. This milestone has been met by demonstrating highly compressed beams with the new bunching module, which are neutralized in the longer drift compression section by the new ferro-electric plasma sources. The peak uncompressed beam intensity ({approx}600 kW/cm{sup 2}) is higher than in previous measurements, and the bunched beam current profiles are {approx}2ns. We have also demonstrated a large increase in the experimental data acquisition rate for target heating experiments. In the first test of the new remote-controlled target positioning system, we completed three successful target physics shots in less than two hours. Further improvements are expected.

Bieniosek, F.M.; Anders, A.; Barnard, J.J.; Dickinson, M.R.; Gilson, E.; Greenway, W.; Henestroza, E.; Jung, J.Y.; Katayanagi, T.; Logan, B.G.; Lee, C.W.; Leitner, M.; Lidia, S.; More, R. M.; Ni, P.; Pekedis, A.; Regis, M. J.; Roy, P.K.; Seidl, P. A.; Waldron, W.

2009-03-31T23:59:59.000Z

179

Steady-state inductive spheromak operation  

DOE Patents (OSTI)

The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.

Janos, A.C.; Jardin, S.C.; Yamada, M.

1985-02-20T23:59:59.000Z

180

Visualization and Diagnostics of Thermal Plasma Flows  

Science Conference Proceedings (OSTI)

Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques ... Keywords: d.c. plasma jet, enthalpy probe techniques, induction plasma, laser strobe, photographic techniques, schlieren, thermal plasma flows

M. I. Boulos

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plasma Response to Lithium-Coated Plasma-Facing Components in the National Spherical Torus Experiment  

Science Conference Proceedings (OSTI)

Experiments in the National Spherical Torus Experiment (NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbonfiber- composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor towards the lower divertor. In NBI-heated, deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of ELMs were observed, including complete ELM suppression for periods up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Zeff and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, lithium also inhibited parasitic losses through the scrape-off layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts.

M.G. Bell, H.W. Kugel, R. Kaita, L.E. Zakharov, H. Schneider, B.P. LeBlanc, D. Mansfield, R.E. Bell, R. Maingi, S. Ding, S.M. Kaye, S.F. Paul, S.P. Gerhardt, J.M. Canik, J.C. Hosea, G. Taylor and the NSTX Research Team

2009-08-20T23:59:59.000Z

182

Three dimensional complex plasma structures in a combined radio frequency and direct current discharge  

E-Print Network (OSTI)

We report on the first detailed analysis of large three dimensional (3D) complex plasma structures in experiments performed in pure rf and combined rf+dc discharge modes. Inductively coupled plasma (ICP) is generated by an rf coil wrapped around the vertically positioned cylindrical glass tube at a pressure of 0.3 mbar. In addition, dc plasma can be generated by applying voltage to the electrodes at the ends of the tube far from the rf coil. The injected monodisperse particles are levitated in the plasma below the coil. A scanning laser sheet and a high resolution camera are used to determine the 3D positions of about $10^5$ particles. The observed bowl-shaped particle clouds reveal coexistence of various structures, including well-distinguished solid-like, less ordered liquid-like, and pronounced string-like phases. New criteria to identify string-like structures are proposed.

S. Mitic; B. A. Klumov; S. A. Khrapak; G. E. Morfill

2013-04-03T23:59:59.000Z

183

Master Thesis: Fusion Plasma Thermal Transport  

E-Print Network (OSTI)

Master Thesis: Fusion Plasma Thermal Transport Radial and Poloidal Profile Modeling Martin Olesen-axis localised ion cyclotron resonance heating source. 2. Cold pulse shock induction at the plasma edge via laser wave propagation from heat modulation and the fast propagation of a cold pulse, at the same plasma

184

Plasma immersion ion implantation for reducing metal ion release  

Science Conference Proceedings (OSTI)

Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

2012-11-06T23:59:59.000Z

185

Hybrid-secondary uncluttered induction machine  

DOE Patents (OSTI)

An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

Hsu, John S. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

186

Engineering Engineering  

E-Print Network (OSTI)

-temperature plasma research. Low- pressure (as low as 1 millitorr) inductively coupled plasmas are used for plasma

187

Design and code validation of the Jupiter inductive voltage adder (IVA) PRS driver  

SciTech Connect

The proposed Jupiter accelerator is a {approximately} 10-MV, 500-TW system capable of delivering 15-MJ kinetic energy to an imploding plasma radiation source (PRS). The accelerator is based on Hermes-III technology and contains 30 identical inductive voltage adder modules connected in parallel. The modules drive a common circular convolute electrode system in the center of which is located an imploding foil. The relatively high voltage of 8--10 MV is required to compensate for the voltage differential generated across the load due primarily to the fast increase in current (L di/dt) and to lesser extent to the increasing inductance(I dL/dt) and resistive component of the imploding foil. Here we examine the power flow through the device and, in particular, through the voltage adder and long MITL. Analytical models, such as pressure balance and parapotential flow, as well as circuit and PIC codes, were utilized. A new version of the TWOQUICK PIC code, which includes an imploding, cylindrical foil as load, was utilized to compare the power flow calculations done with SCREAMER and TRIFL. The agreement is very satisfactory and adds confidence to the Jupiter design. In addition, an experimental validation of the design is under way this year (FY95) with Hermes III. Long extension MITLs are connected at the end of the voltage adder with inductive and diode loads to benchmark the above design codes. In this paper we outline the accelerator`s conceptual design with emphasis on the power flow and coupling to the inductive load and include preliminary results of Hermes-III experimental design validation.

Mazarakis, M.G.; Poukey, J.W.; Mendel, C.W. [and others

1995-07-01T23:59:59.000Z

188

RF-Plasma Source Commissioning in Indian Negative Ion Facility  

Science Conference Proceedings (OSTI)

The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10{sup 18}/m{sup 3}, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K. [ITER- India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujrat (India); Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J. [Institute for Plasma Research, Bhat Gandhinagar, Gujrat (India); Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

2011-09-26T23:59:59.000Z

189

Linear induction accelerator  

DOE Patents (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

190

Control of power to an inductively heated part  

DOE Patents (OSTI)

A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

Adkins, Douglas R. (1620 Adelita Dr. NE., Albuquerque, NM 87112); Frost, Charles A. (1039 Red Oaks Loop NE., Albuquerque, NM 87122); Kahle, Philip M. (528 Longwood Loop NE., Rio Rancho, NM 87124); Kelley, J. Bruce (13200 Blue Corn Maiden Trail NE., Albuquerque, NM 87112); Stanton, Suzanne L. (2805 Palo Alto NE., Albuquerque, NM 87112)

1997-01-01T23:59:59.000Z

191

Low inductance connector assembly  

DOE Patents (OSTI)

A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

Holbrook, Meghan Ann; Carlson, Douglas S

2013-07-09T23:59:59.000Z

192

Helix coupling  

DOE Patents (OSTI)

A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

Ginell, William S. (Encino, CA)

1989-04-25T23:59:59.000Z

193

Loop-to-loop coupling.  

Science Conference Proceedings (OSTI)

This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

2012-05-01T23:59:59.000Z

194

Low voltage operation of plasma focus  

SciTech Connect

Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 {mu}F capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

Shukla, Rohit; Sharma, S. K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B. K.; Adhikary, B.; Shyam, A. [Energetics and Electromagnetics Division, Facility for Electromagnetic Systems, Bhabha Atomic Research Center, Visakhapatanam, A.P. 530012 (India)

2010-08-15T23:59:59.000Z

195

Thunderstorm Electrification—Inductive or Non-Inductive?  

Science Conference Proceedings (OSTI)

Most of the precipitation related theories on charge generation in thunderstorms fall into one of two categories: the inductive or polarization mechanism initiated by the ambient fair-weather field, and the non-inductive mechanism connected with ...

Joachim P. Kuettner; J. Doyne Sartor; Zev Levin

1981-11-01T23:59:59.000Z

196

Low inductance busbar assembly  

DOE Patents (OSTI)

A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

Holbrook, Meghan Ann (Manhattan Beach, CA)

2010-09-21T23:59:59.000Z

197

Harmonic control of multiple-stator induction machines for voltage regulation  

E-Print Network (OSTI)

Small, one to a few horsepower, three-phase induction machines with three sets of electrically-isolated, magnetically-coupled stator winding circuits are described. A voltage inverter is developed and used to drive one set ...

Holloway, Jack Wade, 1980-

2004-01-01T23:59:59.000Z

198

Gravimagnetic shock waves in the anisotropic plasma  

E-Print Network (OSTI)

The relativistic magnetohydrodynamic equations for the anisotropic magnetoactive plasma are obtained and accurately integrated in the plane gravitational wave metrics. The dependence of the induction mechanism of the gravimagnetic shock waves on the degree of the magnetoactive plasma anisotropy is analyzed.

Yu. G. Ignatyev; D. N. Gorokhov

2011-01-01T23:59:59.000Z

199

Guided Exploration: an Inductive Minimalist Approach for Teaching Tool-related Concepts and Techniques  

Science Conference Proceedings (OSTI)

In this paper we introduce Guided Exploration as an inductive teaching approach. It is based on Minimalism and makes use of the pattern format. Guided Exploration addresses a couple of problems when teaching tool-related concepts and techniques, like ... Keywords: Educational Patterns, Inductive Teaching, Learning Styles

Christian Köppe, Rick Rodin

2013-04-01T23:59:59.000Z

200

Transient States of the Multiscalar Controlled Double Fed Induction Generator in the Wind Farm  

Science Conference Proceedings (OSTI)

This article presents a detailed model and analysis of wind turbine based on double fed induction generator (DFIG) including cable line to the point of common coupling (PCC). The vector control system is based on the multiscalar model of the machine. ... Keywords: Double Fed Induction Generator, Multiscalar Control, Reactive Power Compensation, Wind Farm Modelling

Piotr Kolodziejek

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Next Step Burning Plasma Experiment Dale M. Meade  

E-Print Network (OSTI)

A Next Step Burning Plasma Experiment Dale M. Meade Princeton Plasma Physics Laboratory Fusion). ARIES Group #12;Advanced Toroidal Physics Fusion Plasma Conditions Burning Plasma Physics 1.0 0.5 Alpha Energy #12;Magnetic Fusion Science Issues - Strongly Coupled in a Fusion (Burning) Plasma Improved

202

Radiation Transport in Takamak Edge Plasmas  

DOE Green Energy (OSTI)

Plasmas in edge regions of tokamaks can be very optically thick to hydrogen lines. Strong line radiation introduces a non-local coupling between different regions of the plasma and can significantly affect the ionization and energy balance. These effects can be very important, but they are not included in current edge plasma simulations. We report here on progress in self-consistently including the effects of a magnetic field, line radiation and plasma transport in modeling tokamak edge plasmas.

Scott, H; Adams, M

2002-09-30T23:59:59.000Z

203

Resonant-cavity antenna for plasma heating  

SciTech Connect

Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

Perkins, Jr., Francis W. (Princeton, NJ); Chiu, Shiu-Chu (San Diego, CA); Parks, Paul (San Diego, CA); Rawls, John M. (Del Mar, CA)

1987-01-01T23:59:59.000Z

204

Origin of electrical signals for plasma etching end point detection: Comparison of end point signals and electron density  

SciTech Connect

Electrical signals are used for end point detection in plasma etching, but the origin of the electrical changes observed at end point is not well understood. As an etch breaks through one layer and exposes an underlayer, the fluxes and densities of etch products and reactants in the gas phase will change. The resulting perturbation in gas composition may alter the plasma electron density, which in turn may affect the electrical signals. Alternatively, changes in substrate electrical properties or surface properties, such as work function or emitted electron yield, may be involved. To investigate these effects, experiments were performed in a radio-frequency (rf)-biased, inductively coupled reactor, during CF{sub 4}/Ar plasma etching of silicon dioxide films on silicon substrates. A complete set of electrical parameters, for the bias as well as the inductive source, was measured and compared. The most useful end point signal was found to be the fundamental rf bias impedance, which decreases when the oxide is removed. A simultaneous increase in plasma electron density was measured by a wave cutoff probe. Analytical sheath models indicate that the measured change in electron density accounts for nearly all of the impedance decrease. The change in electron density can in turn be explained by the effects of etch products or reactants on gas composition. In contrast, electrons emitted from the wafer surface play at most a minor role in the changes in electron density and impedance observed at end point.

Sobolewski, Mark A.; Lahr, David L. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8364 (United States)

2012-09-15T23:59:59.000Z

205

INDUCTIVE POWER COUPLING FOR AN ELECTRIC HIGHWAY SYSTEM  

E-Print Network (OSTI)

that ln conventlOnal power transformers .. However , se~eralpower per passenger car: 20 kW Source conductor current: 1000 A Core Material: Transformerpower. This is in contrast to situations in which a transformer

Bolger, J.G.

2010-01-01T23:59:59.000Z

206

Crystalline Order in Strongly Coupled Ion Plasmas*  

Science Conference Proceedings (OSTI)

... 41, 1105-1111 (1990); DHE Dubin, ibid. 42, 4972-4982 (1990). DH E., and Schneider, D., ed. AIP, New York: 1999, pp. 295-304. ...

2002-11-14T23:59:59.000Z

207

Crystalline Order in Strongly Coupled Plasmas  

Science Conference Proceedings (OSTI)

... 41, 1105–1111 (1990); DHE Dubin, ibid. 42, 4972–4982 (1990). 6. Schiffer, JP, Science 279, 675 (1998). 7. Diedrich, F., et al., Phys. Rev. Lett. ...

2001-09-13T23:59:59.000Z

208

Plasma source ion implantation research and applications at Los Alamos National Laboratory  

DOE Green Energy (OSTI)

Plasma Source Ion Implantation research at Los Alamos Laboratory includes direct investigation of the plasma and materials science involved in target surface modification, numerical simulations of the implantation process, and supporting hardware engineering. Target materials of Al, Cr, Cu-Zn, Mg, Ni, Si, Ti, W, and various Fe alloys have been processed using plasmas produced from Ar, NH{sub 3}, N{sub 2}, CH{sub 4}, and C{sub 2}H{sub 2} gases. Individual targets with surface areas as large as {approximately}4 m{sup 2}, or weighing up to 1200 kg, have been treated in the large LANL facility. In collaboration with General Motors and the University of Wisconsin, a process has been developed for application of hard, low friction, diamond-like-carbon layers on assemblies of automotive pistons. Numerical simulations have been performed using a 2{1/2}-D particle- in-cell code, which yields time-dependent implantation energy, dose, and angle of arrival for ions at the target surface for realistic geometries. Plasma source development activities include the investigation of pulsed, inductively coupled sources capable of generating highly dissociated N{sup +} with ion densities n{sub i} {approximately} 10{sup 11}/cm{sup 3}, at {approximately}100 W average input power. Cathodic arc sources have also been used to produce filtered metallic and C plasmas for implantation and deposition either in vacuum, or in conjunction with a background gas for production of highly adherent ceramic coatings.

Munson, C.P.; Faehl, R.J.; Henins, I. [and others

1996-12-31T23:59:59.000Z

209

Wireless charging of lighting gadgets using low Q resonant coupling  

Science Conference Proceedings (OSTI)

Wireless power transfer for lighting gadgets on a table top using low Q resonant coupling is realized. Using distributed capacitances across the transmitter and receiving coils and the inherent resistances of the wires, the coil acts as a tuned LC circuit. ... Keywords: WiTricity, resonant inductive coupling, wireless power transfer

Hema Ramachandran; G. R. Bindu

2012-08-01T23:59:59.000Z

210

PLASMA GENERATOR  

DOE Patents (OSTI)

This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

Foster, J.S. Jr.

1958-03-11T23:59:59.000Z

211

Induction Linac Pulsers  

DOE Green Energy (OSTI)

The pulsers used in most of the induction linacs evolved from the very large body of work that was done in the U.S. and Great Britain during the development of the pulsed magnetron for radar. The radar modulators started at {approx}100 kW and reached >10 MW by 1945. A typical pulse length was 1 {mu}s at a repetition rate of 1,000 pps. A very comprehensive account of the modulator development is Pulse Generators by Lebacqz and Glasoe, one of the Radiation Laboratory Series. There are many permutations of possible modulators, two of the choices being tube type and line type. In earlier notes I wrote that technically the vacuum tube pulser met all of our induction linac needs, in the sense that a number of tubes, in series and parallel if required, could produce our pulses, regulate their voltage, be useable in feed-forward correctors, and provide a low source impedance. At a lower speed, an FET array is similar, and we have obtained and tested a large array capable of >10 MW switching. A modulator with an electronically controlled output only needs a capacitor for energy storage and in a switched mode can transfer the energy from the capacitor to the load at high efficiency. Driving a full size Astron induction core and a simulated resistive 'beam load' we achieved >50% efficiency. These electronically controlled output pulses can produce the pulses we desire but are not used because of their high cost. The second choice, the line type pulser, visually comprises a closing switch and a distributed or a lumped element transmission line. The typical switch cannot open or stop conducting after the desired pulse has been produced, and consequently all of the initially stored energy is dissipated. This approximately halves the efficiency, and the original cost estimating program LIACEP used this factor of two, even though our circuits are usually worse, and even though our inveterate optimists often omit it. The 'missing' energy is that which is reflected back into the line from mismatches, the energy left in the accelerator module's capacitance, the energy lost in the switch during switching and during the pulse, and the energy lost in the pulse line charging circuit. For example, a simple resistor-limited power supply dissipates as much energy as it delivers to the pulse forming line, giving a factor if two by itself, therefore efficiency requires a more complicated charging system.

Faltens, Andris

2011-01-07T23:59:59.000Z

212

Vortex formation during rf heating of plasma  

SciTech Connect

Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

Motley, R.W.

1980-05-01T23:59:59.000Z

213

Borehole induction coil transmitter  

DOE Patents (OSTI)

A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

Holladay, Gale (Livermore, CA); Wilt, Michael J. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

214

Inductive.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

EV- EV- -INDUCTIVE Panasonic NiMH Battery ELECTRIC TRANSPORTATION DIVISION Ricardo Solares Juan Argueta October 1999 2 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS REPORT WAS PREPARED BY THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, A SUBSIDIARY OF EDISON INTERNATIONAL. NEITHER THE ELECTRIC TRANSPORTATION DIVISION OF SOUTHERN CALIFORNIA EDISON, SOUTHERN CALIFORNIA EDISON, EDISON INTERNATIONAL, NOR ANY PERSON WORKING FOR OR ON BEHALF OF ANY OF THEM MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, PRODUCT, PROCESS OR PROCEDURE DISCUSSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE UPON OR INTERFERE WITH RIGHTS OF

215

Plasma generating apparatus for large area plasma processing  

DOE Patents (OSTI)

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

1991-07-16T23:59:59.000Z

216

Plasma generating apparatus for large area plasma processing  

DOE Patents (OSTI)

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

Tsai, Chin-Chi (Oak Ridge, TN); Gorbatkin, Steven M. (Oak Ridge, TN); Berry, Lee A. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

217

Integrated Electro-Thermo-Mechanical Analysis of Spark Plasma ...  

Science Conference Proceedings (OSTI)

The modeling includes novel constitutive concepts of spark plasma sintering and the finite-element analysis with coupled electrical, thermal, and mechanical ...

218

Linear induction pump  

DOE Patents (OSTI)

Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

Meisner, John W. (Newbury Park, CA); Moore, Robert M. (Canoga Park, CA); Bienvenue, Louis L. (Chatsworth, CA)

1985-03-19T23:59:59.000Z

219

Plasma flow switch experiment on Procyon  

SciTech Connect

This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.

Benage, J.F. Jr.; Bowers, R.; Peterson, D. [and others

1995-09-01T23:59:59.000Z

220

Modeling Stem Cell Induction Processes  

E-Print Network (OSTI)

Technology for converting human cells to pluripotent stem cell using induction processes has the potential to revolutionize regenerative medicine. However, the production of these so called iPS cells is still quite inefficient ...

Grácio, Filipe

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Plasma-Assisted Co-evaporation of S and Se for Wide Band Gap Chalcopyrite Photovoltaics: Final Subcontract Report, December 2001 -- April 2005  

DOE Green Energy (OSTI)

In this work, ITN Energy Systems (ITN) and lower-tier subcontractor Colorado School of Mines (CSM) explore the replacement of the molecular chalcogen precursors during deposition (e.g., Se2 or H2Se) with more reactive chalcogen monomers or radicals (e.g., Se). Molecular species are converted to atomic species in a low-pressure inductively coupled plasma (ICP). This program explored the use of plasma-activated chalcogen sources in CIGS co-evaporation to lower CIGS deposition temperature, increase utilization, increase deposition rate, and improve S:Se stoichiometry control. Plasma activation sources were designed and built, then operated and characterized over a wide range of conditions. Optical emission and mass spectrometry data show that chalcogens are effectively dissociated in the plasma. The enhanced reactivity achieved by the plasma processing was demonstrated by conversion of pre-deposited metal films to respective chalcogen-containing phases at low temperature and low chalcogen flux. The plasma-assisted co-evaporation (PACE) sources were also implemented in CIGS co-evaporation. No benefit from PACE was observed in device results, and frequent deposition failures occurred.

Repins, I.; Wolden, C.

2005-08-01T23:59:59.000Z

222

On the toroidal plasma rotations induced by lower hybrid waves  

Science Conference Proceedings (OSTI)

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-difference method. Numerical results agree well with the experimental observations in terms of flow profile and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves.

Guan Xiaoyin; Fisch, Nathaniel J. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu Jian [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2013-02-15T23:59:59.000Z

223

On the Toroidal Plasma Rotations Induced by Lower Hybrid Waves  

SciTech Connect

A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric fi eld initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a fi nite- difference method. Numerical results agree well with the experimental observations in terms of flow pro file and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. __________________________________________________

Xiaoyin Guan, Hong Qin, Jian Liu and Nathaniel J. Fisch

2012-11-14T23:59:59.000Z

224

The Observational?Inductive Framework for Science  

Science Conference Proceedings (OSTI)

A new observational?inductive framework for science is emerging due to recent developments in sensors

Timothy E. Eastman

2006-01-01T23:59:59.000Z

225

Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching  

SciTech Connect

The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate bias reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.

Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

2012-09-15T23:59:59.000Z

226

Plasma impedance and electron density in a pulsed laser channel  

Science Conference Proceedings (OSTI)

The representation of plasma impedance of gas laserdischarge and spark gap channels by an inductance–capacitance (L p ?C p ) tank circuit has been useful in describing the frequency response of a pulsed superradiant laser charging circuit. The impedance matching of these plasma channels can lead to resonant narrowing of the laser pulsewidth in superradiant nitrogen lasers. Using fluid equations to model the electron and ion plasmas

K. H. Tsui; G. H. Cavalcanti; A. S. Farias; M. D. S. Marinha; L. M. Soares; C. A. Massone

1996-01-01T23:59:59.000Z

227

Holographic plasma and anyonic fluids  

E-Print Network (OSTI)

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-09T23:59:59.000Z

228

Waveguide and loop coupling to fast MHD toroidal eigenmodes  

SciTech Connect

Heating of plasmas by wave techniques requires an effective method of coupling rf energy to the plasma. In cavities the presence of weakly damped eigenmodes will enhance the loading of antennas when the wave frequency equals an eigenmode frequency. This report considers two methods of coupling to fast MHD eigenmodes in a toroidal cavity: one is by a waveguide mounted perpendicular to the vacuum vessel wall; and the other by a loop placed within the cavity. (auth)

Paoloni, F.J.

1975-12-01T23:59:59.000Z

229

Nonabelian plasma instabilities in Bjorken expansion  

E-Print Network (OSTI)

Plasma instabilities are parametrically the dominant nonequilibrium dynamics of a weakly coupled quark-gluon plasma. In recent years the time evolution of the corresponding collective colour fields has been studied in stationary anisotropic situations. Here I report on recent numerical results on the time evolution of the most unstable modes in a longitudinally expanding plasma as they grow from small rapidity fluctuations to amplitudes where non-Abelian self-interactions become important.

Anton Rebhan

2008-10-15T23:59:59.000Z

230

Simulation-assisted inductive learning  

Science Conference Proceedings (OSTI)

Learning by induction can require a large number of training examples. We show the power of using a simulator to generate training data and test data in learning rules for an expert system. The induction program is RL, a simplified version of Meta-DENDRAL. The expert system is ABLE, a rule-based system that identifies and located errors in particle beam lines used in high energy physics. A simulator of beam lines allowed forming and testing rules on sufficient numbers of cases that ABLE's performance is demonstrably accurate and precise. 13 refs., 2 figs.

Buchanan, B.G.; Sullivan, J.; Cheng, Tze-Pin; Clearwater, S.H.

1988-01-01T23:59:59.000Z

231

Integrating inductive definitions in SAT  

Science Conference Proceedings (OSTI)

We investigate techniques for supporting inductive definitions (IDs) in SAT, and report on an implementation, called MidL, of the resulting solver. This solver was first introduced in [11], as a part of a declarative problem solving framework. We go ...

Maarten Mariën; Johan Wittocx; Marc Denecker

2007-10-01T23:59:59.000Z

232

Induction Heat-Treating Equipment  

Science Conference Proceedings (OSTI)

Table 1   Characteristics of the four major power sources for induction heating...state 180 Hz to 50 kHz 1 kW to 2 MW 75â??95 No standby current; high efficiency; no moving parts;

233

THE INDUCTION PERIOD IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

When a plant is illuminated, its rate of photosynthesis is at first low and gradually increases until it becomes constant. This induction period was first observed by Osterhout and Haas (1918) for UIva and independently confirmed by Warburg (1920) with Chlorella. It has

L. Smith

1937-01-01T23:59:59.000Z

234

The time dependent resistance and inductance of the electric discharges in pulsed gas lasers  

SciTech Connect

A method of finding the time dependent resistances and inductances in the discharges in pulsed gas lasers is described in this work. According to this method the waveforms of the laser circuit voltages are digitized and their first and second derivatives are calculated. There are substituted into the differential equations governing the behavior of the system and relationships among the resistances and inductances are formed for every time. Using relationships from a sequence of four very closed adjacent time instants and considering that during this short time interval the resistances and inductances are varied linearly, their values can be found for this particular time interval. Repeating the same procedure for other time intervals and scanning the entire time region of the discharge, the time histories of the resistances and inductances of the discharges are revealed. These show strong variations in the formation phase of the discharge (first 50 nsec). Specifically the resistances drop rapidly (first 10 nsec) from very high values to low values, while the inductances increase to high values and subsequently decrease, forming an abrupt high peak. The steep drop of the resistances is due to the electron avalanche multiplication, while the peak of the inductances is due to the centripetal magnetic forces (Laplace forces), which cause a temporary constriction of the plasma. In the main phase of the discharge the resistances present a damping oscillation with the same frequency as the voltages, while the inductances present light fluctuations around constant values.

Persephonis, P.; Giannetas, V.; Ioannou, A.; Parthenios, J.; Georgiades, C. [Univ. of Patras, Patra (Greece). Dept. of Physics

1995-10-01T23:59:59.000Z

235

Interferometric measurements of plasma density in high-. beta. plasmas  

SciTech Connect

The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma.

Quinn, W.E.

1977-01-01T23:59:59.000Z

236

Plasma valve  

DOE Patents (OSTI)

A plasma valve includes a confinement channel and primary anode and cathode disposed therein. An ignition cathode is disposed adjacent the primary cathode. Power supplies are joined to the cathodes and anode for rapidly igniting and maintaining a plasma in the channel for preventing leakage of atmospheric pressure through the channel.

Hershcovitch, Ady (Mount Sinai, NY); Sharma, Sushil (Hinsdale, IL); Noonan, John (Naperville, IL); Rotela, Elbio (Clarendon Hills, IL); Khounsary, Ali (Hinsdale, IL)

2003-01-01T23:59:59.000Z

237

PLASMA ENERGIZATION  

DOE Patents (OSTI)

BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

Furth, H.P.; Chambers, E.S.

1962-03-01T23:59:59.000Z

238

Positive mood induction and well being  

Science Conference Proceedings (OSTI)

The aim of this study is to test the role of consecutive positive mood induction virtual procedures on satisfaction of life of people with subclinical levels of sadness and/or anxiety. This is a work in progress and positive effects of mood induction ... Keywords: mood induction procedures, positive emotions, positive psychology, virtual reality

R. Baños; G. García-Soriano; C. Botella; E. Oliver; E. Etchemendy; J. Bretón; M. Alcañiz

2009-05-01T23:59:59.000Z

239

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS  

E-Print Network (OSTI)

INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano M. da Silva, B.S. A Thesis;i Abstract Induction motors are used worldwide as the "workhorse" in industrial applications material. However, induction motor faults can be detected in an initial stage in order to prevent

Povinelli, Richard J.

240

Automatic Bias Learning: An Inquiry into the Inductive Basis of Induction  

E-Print Network (OSTI)

This thesis combines an epistemological concern about induction with a computational exploration of inductive mechanisms. It aims to investigate how inductive performance could be improved by using induction to select appropriate generalisation procedures. The thesis revolves around a meta-learning system, called designed to investigate how inductive performances could be improved by using induction to select appropriate generalisation procedures. The performance of is discussed against the background of epistemological issues concerning induction, such as the role of theoretical vocabularies and the value of simplicity.

Hilan Bensusan; Murali Ramach; Fab Retkowsky; Pablito Romero; Margarita Sordo; Chris Thornton; David Weir

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

242

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

243

High frequency inductive lamp and power oscillator  

DOE Patents (OSTI)

A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

MacLennan, Donald A. (Gaithersburg, MD); Dymond, Jr., Lauren E. (North Potomac, MD); Gitsevich, Aleksandr (Montgomery Village, MD); Grimm, William G. (Silver Spring, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Ola, Samuel A. (Silver Spring, MD); Simpson, James E. (Gaithersburg, MD); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

2001-01-01T23:59:59.000Z

244

High frequency inductive lamp and power oscillator  

DOE Patents (OSTI)

A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Dolan, James T. (Frederick, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD)

2000-01-01T23:59:59.000Z

245

Plasma Nitrocarburizing  

Science Conference Proceedings (OSTI)

...heat pollution Reduced processing times Reduced energy consumption Reduced treatment gas consumption Industrial plasma nitrocarburizing processing modules contain: Vacuum furnace Vacuum system Gas supply with gas mixing and pressure control system Electric power supply unit Microprocessor control unit...

246

Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave  

Science Conference Proceedings (OSTI)

Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R. [Austin Plasma Laboratory, Tokyo Electron America, Inc., Austin, Texas 78741 (United States); Nozawa, T. [Tokyo Electron Limited, TEL Technology Center Sendai, 2-1 Osawa 3-chome, Izumi-ku, Sendai 981-3137 (Japan); Samukawa, S. [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2013-07-15T23:59:59.000Z

247

Low inductance power electronics assembly  

DOE Patents (OSTI)

A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

2012-10-02T23:59:59.000Z

248

Integrated models for plasma/material interaction during loss of plasma confinement.  

SciTech Connect

A comprehensive computer package, High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS), has been developed to evaluate the damage incurred on plasma-facing materials during loss of plasma confinement. The HEIGHTS package consists of several integrated computer models that follow the start of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the energy deposited. The package includes new models to study turbulent plasma behavior in the SOL and predicts the plasma parameters and conditions at the divertor plate. Full two-dimensional comprehensive radiation magnetohydrodynamic models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. A brief description of the HEIGHTS package and its capabilities are given in this work with emphasis on turbulent plasma behavior in the SOL during disruptions.

Hassanein, A.

1998-07-29T23:59:59.000Z

249

Observables in Strongly Coupled Anisotropic Theories  

E-Print Network (OSTI)

We review certain anisotropic gauge/gravity dualities, focusing more on a theory with space dependent axion term. Then we discuss and also present some new results for several observables: the static potential and force, the imaginary part of the static potential, the quark dipole in the plasma wind, the drag force and diffusion time, the jet quenching of heavy and light quarks, the energy loss of rotating quarks, the photon production and finally the violation of the holographic viscosity over entropy bound. The corresponding weakly coupled results are also discussed. Finally we investigate the bounds of the parameters of the current strongly coupled anisotropic theories attempting to match them with the observed quark-gluon plasma and report the problems appear.

Dimitrios Giataganas

2013-06-06T23:59:59.000Z

250

VAPOR SHIELD FOR INDUCTION FURNACE  

DOE Patents (OSTI)

This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

Reese, S.L.; Samoriga, S.A.

1958-03-11T23:59:59.000Z

251

Polished Downhole Transducer Having Improved Signal Coupling  

DOE Patents (OSTI)

Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2006-03-28T23:59:59.000Z

252

PLASMA DEVICE  

DOE Patents (OSTI)

A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

Baker, W.R.; Brathenahl, A.; Furth, H.P.

1962-04-10T23:59:59.000Z

253

Monitoring transients in low inductance circuits  

DOE Patents (OSTI)

The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.

Guilford, R.P.; Rosborough, J.R.

1985-10-21T23:59:59.000Z

254

PPPL3252 Preprint: June 1997, UC420, 427 Role of Plasma Edge in the Direct Launch Ion  

E-Print Network (OSTI)

installed in Tokamak Fusion Test Reactor (TFTR) to test a concept of generating sheared flow 2 in order efficiency for the core deposition. In order to launch IBW, it is necessary to first couple to cold plasma that it is difficult to couple directly. There are two cold plasma waves which can couple directly to IBW, namely

255

PPPL-3252 -Preprint: June 1997, UC-420, 427 Role of Plasma Edge in the Direct Launch Ion  

E-Print Network (OSTI)

in Tokamak Fusion Test Reactor (TFTR) to test a concept of generating sheared flow2 in order to trigger efficiency for the core deposition. In order to launch IBW, it is necessary to first couple to cold plasma that it is difficult to couple directly. There are two cold plasma waves which can couple directly to IBW, namely

256

Style Guide for Word Users for the NIST Special Publication ...  

Science Conference Proceedings (OSTI)

... suppressant, performing a full battery of screening ... continuing market in a chemical with ... inductively-coupled plasma atomic emission spectroscopy ...

2011-12-27T23:59:59.000Z

257

Induction slag reduction process for making titanium  

DOE Patents (OSTI)

Continuous process for preparing titanium comprising fluorinating titanium ore, and reducing the formed alkaline earth fluotitanate with an alkaline earth metal in an induction slag reactor.

Traut, Davis E. (Corvallis, OR)

1991-01-01T23:59:59.000Z

258

Matching network for RF plasma source  

DOE Patents (OSTI)

A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

Pickard, Daniel S. (Palo Alto, CA); Leung, Ka-Ngo (Hercules, CA)

2007-11-20T23:59:59.000Z

259

Hydrodynamics of the cascading plasma  

E-Print Network (OSTI)

The cascading gauge theory of Klebanov et.al realizes a soluble example of gauge/string correspondence in a non-conformal setting. Such a gauge theory has a strong coupling scale Lambda, below which it confines with a chiral symmetry breaking. A holographic description of a strongly coupled cascading gauge theory plasma is represented by a black brane solution of type IIB supergravity on a conifold with fluxes. A characteristic parameter controlling the high temperature expansion of such plasma is 1/ln(T/Lambda). In this paper we study the speed of sound and the bulk viscosity of the cascading gauge theory plasma to order 1/ln(T/Lambda)^4. We find that the bulk viscosity satisfies the bound conjectured in arXiv:0708.3459. We comment on difficulties of computing the transport coefficients to all orders in T/Lambda. Previously, it was shown that a cascading gauge theory plasma undergoes a first-order deconfinement transition with unbroken chiral symmetry at T_c=0.6141111(3) Lambda. We show here that a deconfined chirally symmetric phase becomes perturbatively unstable at T_u=0.8749(0) T_c. Near the unstable point the specific heat diverges as c_V ~ |1-T_u/T|^(-1/2).

Alex Buchel

2009-03-20T23:59:59.000Z

260

Complex plasmas: An interdisciplinary research field  

SciTech Connect

Complex (dusty) plasmas are composed of a weakly ionized gas and charged microparticles and represent the plasma state of soft matter. Complex plasmas have several remarkable features: Dynamical time scales associated with microparticles are ''stretched'' to tens of milliseconds, yet the microparticles themselves can be easily visualized individually. Furthermore, since the background gas is dilute, the particle dynamics in strongly coupled complex plasmas is virtually undamped, which provides a direct analogy to regular liquids and solids in terms of the atomistic dynamics. Finally, complex plasmas can be easily manipulated in different ways--also at the level of individual particles. Altogether, this gives us a unique opportunity to go beyond the limits of continuous media and study--at the kinetic level--various generic processes occurring in liquids or solids, in regimes ranging from the onset of cooperative phenomena to large strongly coupled systems. In the first part of the review some of the basic and new physics are highlighted which complex plasmas enable us to study, and in the second (major) part strong coupling phenomena in an interdisciplinary context are examined. The connections with complex fluids are emphasized and a number of generic liquid and solid-state issues are addressed. In summary, application oriented research is discussed.

Morfill, Gregor E.; Ivlev, Alexei V. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

262

Black holes and the quark-gluon plasma  

E-Print Network (OSTI)

I discuss the possibility that the quark-gluon plasma at strong coupling admits a description in terms of a black hole in asymptotically anti-de Sitter space.

George Siopsis

2009-01-26T23:59:59.000Z

263

Ramp-up of CHI Initiated Plasmas on NSTX  

SciTech Connect

Experiments on the National Spherical Torus (NSTX) have now demonstrated flux savings using transient coaxial helicity injection (CHI). In these discharges, the discharges initiated by CHI are ramped up with an inductive transformer and exhibit higher plasma current than discharges without the benefit of CHI initiation.

Mueller, D; Bell, R E; LeBlanc, B; Roquemore, A L; Raman, R; Jarboe, T R; Nelson, B A

2009-10-29T23:59:59.000Z

264

Collisional diffusion in toroidal plasmas with elongation and triangularity  

Science Conference Proceedings (OSTI)

Collisional diffusion is analyzed for plasma tokamaks with different ellipticities and triangularities. Improved nonlinear equations for the families of magnetic surfaces are used here. Dimensionless average velocities are calculated as a function of the inductive electric field, elongation, triangularity, and Shafranov shift. Confinement has been found to depend significantly on triangularity.

Martin, P.; Castro, E.; Haines, M. G. [Departamento de Fisica, Universidad Simon Bolivar, Apartado. 89000, Caracas 1080A (Venezuela); Blackett Laboratory, Imperial College, London SW7 2BZ, England (United Kingdom)

2007-05-15T23:59:59.000Z

265

Electronic Structure of Dense Plasmas by X-Ray Scattering  

DOE Green Energy (OSTI)

We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

Gregori, G; Glenzer, S H; Rogers, F J; Pollaine, S M; Froula, D H; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R; Landen, O L

2003-10-07T23:59:59.000Z

266

Effective Interaction Potentials and Physical Properties of Complex Plasmas  

SciTech Connect

Microscopic, thermodynamic and transport properties of complex plasmas are investigated on the basis of effective potentials of interparticle interaction. These potentials take into account correlation effects and quantum-mechanical diffraction. Plasma composition, thermodynamic functions of hydrogen and helium plasmas are obtained for a wide region of coupling parameter. Collision processes in partially ionized plasma are considered; some kinetic characteristics such as phase shift, scattering cross section, bremsstrahlung cross section and absorption coefficient are investigated. Dynamic and transport properties of dusty plasma are studied by computer simulation method of the Langevin dynamics.

Ramazanov, T. S.; Dzhumagulova, K. N.; Gabdullin, M. T.; Omarbakiyeva, Y. A. [Institute of Experimental and Theoretical Physics, al-Farabi Kazakh National University, 96a Tole Bi, Almaty 050012 (Kazakhstan)

2009-11-10T23:59:59.000Z

267

Fast Heating of Cylindrically Imploded Plasmas by Petawatt Laser Light  

Science Conference Proceedings (OSTI)

We produced cylindrically imploded plasmas, which have the same density-radius product of the imploded plasma {rho}R with the compressed core in the fast ignition experiment and demonstrated efficient fast heating of cylindrically imploded plasmas with an ultraintense laser light. The coupling efficiency from the laser to the imploded column was 14%-21%, implying strong collimation of energetic electrons over a distance of 300 {mu}m of the plasma. Particle-in-cell simulation shows confinement of the energetic electrons by self-generated magnetic and electrostatic fields excited along the imploded plasmas, and the efficient fast heating in the compressed region.

Nakamura, H.; Nakatsutsumi, M.; Yabuuchi, T. [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka (Japan); Sentoku, Y. [Nevada Terawatt Facility, Department of Physics, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Matsuoka, T.; Norimatsu, T.; Shiraga, H. [Institute of Laser Engineering, Osaka University, Yamada-oka 2-6, Suita, Osaka (Japan); Kondo, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka (Japan); Institute of Laser Engineering, Osaka University, Yamada-oka 2-6, Suita, Osaka (Japan); Kodama, R. [Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka (Japan); Institute of Laser Engineering, Osaka University, Yamada-oka 2-6, Suita, Osaka (Japan); CREST, Japan Science and Technology Agency, 5-Sanbancho, Chiyoda-ku, Tokyo (Japan)

2008-04-25T23:59:59.000Z

268

Cooling a quantum circuit via coupling to a multiqubit system  

E-Print Network (OSTI)

The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits are investigated. The particles may decay independently or collectively through their interaction with the environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator's quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can be faster for collectively interacting particles.

Macovei, Mihai A

2010-01-01T23:59:59.000Z

269

Cooling a quantum circuit via coupling to a multiqubit system  

E-Print Network (OSTI)

The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits are investigated. The particles may decay independently or collectively through their interaction with the environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator's quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can be faster for collectively interacting particles.

Mihai A. Macovei

2010-04-19T23:59:59.000Z

270

Parallel algorithms for inductance extraction of VLSI circuits  

Science Conference Proceedings (OSTI)

Inductance extraction involves estimating the mutual inductance in a VLSI circuit. Due to increasing clock speed and diminishing feature sizes of modern VLSI circuits, the effects of inductance are increasingly felt during the testing and verification ...

Hemant Mahawar; Vivek Sarin

2006-04-01T23:59:59.000Z

271

Induction-based gate-level verification of multipliers  

Science Conference Proceedings (OSTI)

We propose a method based on unrolling the inductive definition of binary number multiplication to verify gate-level implementations of multipliers. The induction steps successively reduce the size of the multiplier under verification. Through induction, ...

Ying Tsai Chang; Kwang Ting Tim Cheng

2001-11-01T23:59:59.000Z

272

Observing geomagnetic induction in magnetic satellite measurements and associated  

E-Print Network (OSTI)

Observing geomagnetic induction in magnetic satellite measurements and associated implications in the midlatitude satellite passes lower than 50 degrees geomagnetic latitude. At higher latitudes, auroral: Satellite induction. Index Terms: 1515 Geomagnetism and Paleomagnetism: Geomagnetic induction; 3914 Mineral

Constable, Steve

273

Plasma-Neutrals Simulation of Linear Configurations for PSI  

SciTech Connect

Coupled fluid plasma and kinetic Monte Carlo neutrals simulations in a linear configuration are reported. The configuration mimics the tokamak divertor plasma channel contacting a target surface with nearby wall. We calculate the parameters of the source plasmas, 3-5m from the target, required to produce high recycling target plasmas recently simulated for ITER. It is shown that the source plasma needs to deliver heat fluxes of 10-20MW/m2, ion fluxes of 1023/m2/s, densities of 2-6x1019/m3, and electron and ion temperatures of 15-30eV over a plasma radius of 5-6cm. The neutral H and H2 fluxes to the vessel wall are calculated to be comparable to those measured in the divertor regions of today s tokamaks. These results identify some design features for a prospective plasma material test station and the research required for this plasma source.

Peng, Yueng Kay Martin [ORNL; Owen, Larry W [ORNL; Rapp, Juergen [ORNL; Bonnin, X. [CNRS-LIMHP, Universite, Paris; Canik, John [ORNL

2013-01-01T23:59:59.000Z

274

Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma  

DOE Patents (OSTI)

A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

Woolley, Robert D. (Hillsborough, NJ)

1998-01-01T23:59:59.000Z

275

Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma  

DOE Patents (OSTI)

A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

Woolley, R.D.

1996-12-31T23:59:59.000Z

276

Levitated Dipole Experiment MIT Plasma Science and Fusion Center  

E-Print Network (OSTI)

.2 Coupling to the Scrape-Off Layer: The Compressibility Constraint . . . . . . . . 11 5.3 Stability of Hot Electrons in the Field of a Levitated Dipole . . . . . . . . . . . . 13 5.4 Convective Cells and the Pumping, (2) the relation between edge plasma and a hot plasma core, (3) the possible elimination of drift

277

Inertial and inductive energy storage for fusion systems  

DOE Green Energy (OSTI)

Energy storage is necessary for all proposed fusion reactor systems. The plasma physics for confinement and primarily the energy transfer time determine the nature of the storage system. Discharge times vary from 0.7 ms for theta-pinch reactors to one to two seconds for tokamak reactors. Three classes of devices are available for energy storage--inductors, capacitors, and rotating machines. The transfer of the energy from the store imposes unusual switching requirements. The broad requirements for reactor energy stores and more specifically those for tokamak experimental power reactors (EPR) and for the Scyllac fusion test reactor (SFTR) will be presented. Assessments and comparisons of alternative energy storage and transfer systems for these devices are to be discussed. The state of the pulsed superconducting inductive energy storage coils and homopolar development programs will be emphasized. Plans for tokamak ohmic-heating systems will be discussed briefly.

Rogers, J.D.

1976-01-01T23:59:59.000Z

278

Translation-coupling systems  

SciTech Connect

Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

Pfleger, Brian; Mendez-Perez, Daniel

2013-11-05T23:59:59.000Z

279

Miniaturized cathodic arc plasma source  

DOE Patents (OSTI)

A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

2003-04-15T23:59:59.000Z

280

Interferometer for the measurement of plasma density  

SciTech Connect

An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

Jacobson, Abram R. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Farm scale biogas-fueled engine/induction generator system  

Science Conference Proceedings (OSTI)

A 3.6 liter spark ignition engine coupled to an induction generator produced 21 kW of electric power at 1260 rpm operating on biogas (55% methane, 45% carbon dioxide). Power output increased by 3.55 kW for a 10 rpm increase in shaft speed. Operating at over 16 kW output, power factor was greater than .8 and generator efficiency was greater than 85%. Engine operation is insensitive to small changes in spark advance. Recommended spark advance for a biogas engine is about 45/sup 0/. Minimum brake specific fuel consumption of 270 g CH/sub 4//kWh occurs at a manifold vacuum of 5 cmHg and an equivalence ratio in the range of .6 to .8.

Stahl, T.; Fischer, J.R.; Harris, F.D.

1982-12-01T23:59:59.000Z

282

Plasma generators, reactor systems and related methods  

SciTech Connect

A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

Kong, Peter C. (Idaho Falls, ID); Pink, Robert J. (Pocatello, ID); Lee, James E. (Idaho Falls, ID)

2007-06-19T23:59:59.000Z

283

INSPECTION MEANS FOR INDUCTION MOTORS  

DOE Patents (OSTI)

an appartus is descripbe for inspcting electric motors and more expecially an appartus for detecting falty end rings inn suqirrel cage inductio motors while the motor is running. In its broua aspects, the mer would around ce of reference tedtor means also itons in the phase ition of the An electronic circuit for conversion of excess-3 binary coded serial decimal numbers to straight binary coded serial decimal numbers is reported. The converter of the invention in its basic form generally coded pulse words of a type having an algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance preceding a y algebraic sign digit followed serially by a plurality of decimal digits in order of decreasing significance. A switching martix is coupled to said input circuit and is internally connected to produce serial straight binary coded pulse groups indicative of the excess-3 coded input. A stepping circuit is coupled to the switching matrix and to a synchronous counter having a plurality of x decimal digit and plurality of y decimal digit indicator terminals. The stepping circuit steps the counter in synchornism with the serial binary pulse group output from the switching matrix to successively produce pulses at corresponding ones of the x and y decimal digit indicator terminals. The combinations of straight binary coded pulse groups and corresponding decimal digit indicator signals so produced comprise a basic output suitable for application to a variety of output apparatus.

Williams, A.W.

1959-03-10T23:59:59.000Z

284

Finding counter examples in induction proofs  

Science Conference Proceedings (OSTI)

This paper addresses a problem arising in automated proof of invariants of transition systems, for example transition systems modelling distributed programs. Most of the time, the actual properties we want to prove are too weak to hold inductively, and ...

Koen Claessen; Hans Svensson

2008-04-01T23:59:59.000Z

285

Rigorous theory of nuclear fusion rates in a plasma  

E-Print Network (OSTI)

Real-time thermal field theory is used to reveal the structure of plasma corrections to nuclear reactions. Previous results are recovered in a fashion that clarifies their nature, and new extensions are made. Brown and Yaffe have introduced the methods of effective quantum field theory into plasma physics. They are used here to treat the interesting limiting case of dilute but very highly charged particles reacting in a dilute, one-component plasma. The highly charged particles are very strongly coupled to this background plasma. The effective field theory proves that this mean field solution plus the one-loop term dominate; higher loop corrections are negligible even though the problem involves strong coupling. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models.

Lowell S. Brown; David C. Dooling; Dean L. Preston

2005-09-22T23:59:59.000Z

286

Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction  

Science Conference Proceedings (OSTI)

A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

S.P. Gerhardt, E.V. Belova, M. Yamada, H. Ji, Y. Ren, B. McGeehan, and M. Inomoto

2008-06-12T23:59:59.000Z

287

Strongly coupled plasmas and the QCD critical point  

E-Print Network (OSTI)

In this thesis, we begin by studying selected fluctuation observables in order to locate the QCD critical point in heavy-ion collision experiments. In particular, we look at the non-monotonic behavior as a function of the ...

Athanasiou, Christiana

2011-01-01T23:59:59.000Z

288

Analysis and experiments of a whistler-wave plasma thruster  

DOE Green Energy (OSTI)

A plasma thruster operating at high specific impulse ({ge} 3500 s) has been proposed to be based on electron-cyclotron resonance heating of whistler waves propagating on a plasma column on a magnetic hill. Calculations using a particle-in-cell code demonstrate that the distortion of the electron velocity distribution by the heating significantly reduces the flow of plasma up the field, greatly improving efficiency and reducing material interactions relative to a thermal plasma. These and other calculations are presented together with initial experiments on the plasma generated in the proposed device. The experiments are conducted in a magnetic field (3.3 {times} 10{sup {minus}2} T at resonance) and a magnetic mirror ratio of 5. Microwaves (0.915 GHz, <20 kW) are coupled to the plasma with a helical antenna. Vacuum field measurements are in good agreement with prediction. The desired plasma spatial distribution has not yet been achieved.

Hooper, E.B.; Ferguson, S.W.; Makowski, M.A.; Stallard, B.W. [Lawrence Livermore National Lab., CA (United States); Power, J.L. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1993-08-06T23:59:59.000Z

289

Comprehensive physical models and simulation package for plasma/material interactions during plasma instabilities.  

SciTech Connect

Damage to plasma-facing components (PFCS) from plasma instabilities remains a major obstacle to a successful tokamak concept. The extent of the damage depends on the detailed physics of the disrupting plasma, as well as on the physics of plasma-material interactions. A comprehensive computer package called High Energy Interaction with General Heterogeneous Target Systems (HEIGHTS) has been developed and consists of several integrated computer models that follow the beginning of a plasma disruption at the scrape-off layer (SOL) through the transport of the eroded debris and splashed target materials to nearby locations as a result of the deposited energy. The package can study, for the first time, plasma-turbulent behavior in the SOL and predict the plasma parameters and conditions at the divertor plate. Full two-dimensional (2-D) comprehensive radiation magnetohydrodynamic (MHD) models are coupled with target thermodynamics and liquid hydrodynamics to evaluate the integrated response of plasma-facing materials. Factors that influence the lifetime of plasma-facing and nearby components, such as loss of vapor-cloud confinement and vapor removal due to MHD effects, damage to nearby components due to intense vapor radiation, melt splashing, and brittle destruction of target materials, are also modeled and discussed.

Hassanein, A.

1998-08-26T23:59:59.000Z

290

Power Line Fault Current Coupling to Nearby Natural Gas Pipelines, Volumes 1-3  

Science Conference Proceedings (OSTI)

The Electromagnetic and Conductive Coupling Analysis of Powerlines and Pipelines (ECCAPP) computer program provides an easy-to-use method for analyzing the effects of transmission lines on gas pipelines. The program models conductive and inductive interference, enabling electrical and gas engineers to identify these effects and design mitigation systems when necessary.

1987-11-24T23:59:59.000Z

291

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

SciTech Connect

Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

2010-06-01T23:59:59.000Z

292

Toroidal midplane neutral beam armor and plasma limiter  

DOE Patents (OSTI)

For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

Kugel, Henry W. (Somerset, NJ); Hand, Jr, Samuel W. (Hopewell Township, Mercer County, NJ); Ksayian, Haig (Titusville, NJ)

1986-01-01T23:59:59.000Z

293

Computational modeling study of the radial line slot antenna microwave plasma source with comparisons to experiments  

SciTech Connect

The radial line slot antenna plasma source is a high-density microwave plasma source comprising a high electron temperature source region within the plasma skin depth from a coupling window and low electron temperature diffusion region far from the window. The plasma is typically comprised of inert gases like argon and mixtures of halogen or fluorocarbon gases for etching. Following the experimental study of Tian et al.[J. Vac. Sci. Technol. A 24, 1421 (2006)], a two-dimensional computational model is used to describe the essential features of the source. A high density argon plasma is described using the quasi-neutral approximation and coupled to a frequency-domain electromagnetic wave solver to describe the plasma-microwave interactions in the source. The plasma is described using a multispecies plasma chemistry mechanism developed specifically for microwave excitation conditions. The plasma is nonlocal by nature with locations of peak power deposition and peak plasma density being very different. The spatial distribution of microwave power coupling depends on whether the plasma is under- or over-dense and is described well by the model. The model predicts the experimentally observed low-order diffusion mode radial plasma profiles. The trends of spatial profiles of electron density and electron temperature over a wide range of power and pressure conditions compare well with experimental results.

Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, Texas 78712 (United States); Mahadevan, Shankar [Esgee Technologies Inc., 1301 S. Capital of Texas Hwy. Suite B-122, Austin, Texas 78746 (United States); Ventzek, Peter L. G.; Yoshikawa, Jun [Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325 (Japan)

2013-05-15T23:59:59.000Z

294

Open Problems in Universal Induction & Intelligence  

E-Print Network (OSTI)

Specialized intelligent systems can be found everywhere: finger print, handwriting, speech, and face recognition, spam filtering, chess and other game programs, robots, et al. This decade the first presumably complete mathematical theory of artificial intelligence based on universal induction-prediction-decision-action has been proposed. This information-theoretic approach solidifies the foundations of inductive inference and artificial intelligence. Getting the foundations right usually marks a significant progress and maturing of a field. The theory provides a gold standard and guidance for researchers working on intelligent algorithms. The roots of universal induction have been laid exactly half-a-century ago and the roots of universal intelligence exactly one decade ago. So it is timely to take stock of what has been achieved and what remains to be done. Since there are already good recent surveys, I describe the state-of-the-art only in passing and refer the reader to the literature. This article concent...

Hutter, Marcus

2009-01-01T23:59:59.000Z

295

Plasma Kinetic Theory  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

296

Low pass filter for plasma discharge  

DOE Patents (OSTI)

An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.

Miller, Paul A. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

297

Local thermodynamics of a magnetized, anisotropic plasma  

SciTech Connect

An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.

Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States)

2013-02-15T23:59:59.000Z

298

Inductive gas line for pulsed lasers  

DOE Patents (OSTI)

A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

Benett, W.J.; Alger, T.W.

1982-09-29T23:59:59.000Z

299

Wake of a heavy quark in non-Abelian plasmas: Comparing kinetic theory and the anti-de Sitter space/conformal field theory correspondence  

E-Print Network (OSTI)

We compute the nonequilibrium stress tensor induced by a heavy quark moving through weakly coupled QCD plasma at the speed of light and compare the result to N=4 super-Yang-Mills theory at strong coupling. The QCD Boltzmann ...

Hong, Juhee

300

Inductance and near fields of a loop antenna in a cold magnetoplasma in the whistler frequency band  

SciTech Connect

The influence of a magnetoplasma on the inductance of a circular loop antenna oriented perpendicular to the ambient static magnetic field and operated in the whistler frequency band is studied. Based on a strict electrodynamic approach, the analytical treatment of the antenna reactance is performed for a uniform rf current distribution along the antenna wire. Calculations are made for plasma parameters and operating frequencies typical for active ionospheric experiments and laboratory rf (helicon) sources of dense magnetized plasmas. It is shown that the plasma influence on the inductance of the loop antenna remains relatively weak, even for antennas with dimensions close to half of the longitudinal whistler wavelength, when the rf field distribution in the antenna near zone is strongly different from that in vacuum. The theoretical predictions are confirmed by measurements performed on the large KROT plasma device. The results obtained are of crucial importance for the preparation of active ionospheric experiments and for the matching of loop antennas used in laboratory rf sources of dense magnetized plasmas.

Gushchin, M. E.; Korobkov, S. V.; Kostrov, A. V. [Institute of Applied Physics, 603950 Nizhny Novgorod (Russian Federation); Zaboronkova, T. M. [Department of Applied Physics, Technical University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Krafft, C. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex, Univ. Paris Sud, 91405 Orsay Cedex (France)

2012-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A predictive model for the temperature relaxation rate in dense plasmas  

DOE Green Energy (OSTI)

We present and validate a simple model for the electron-ion temperature relaxation rate in plasmas that applies over a wide range of plasma temperatures and densities, including weakly-coupled, non-degenerate as well as strongly-coupled, degenerate plasmas. Electron degeneracy and static correlation effects between electrons and ions are shown to play a cumulative role that, at low temperature, lead to relaxation rates a few times smaller than when these effects are neglected. We predict the evolution of the relaxation in dense hydrogen plasmas from the fully degenerate to the non-degenerate limit.

Daligault, Jerome [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

302

Emotion induction during human-robot interaction  

Science Conference Proceedings (OSTI)

The aim of the presented study was to measure physiological correlates of emotions that are of particular interest in the field of human-robot interaction (HRI). Therefore, we did not focus on self-induced basic emotions but rather evoked states that ... Keywords: emotion recognition, human-robot interaction, joint construction, stress induction

Cornelia Wendt; Michael Popp; Berthold Faerber

2009-03-01T23:59:59.000Z

303

Cylindrical Induction Melter Modicon Control System  

SciTech Connect

In the last several years an extensive R{ampersand}D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM).

Weeks, G.E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-04-01T23:59:59.000Z

304

Evolutionary induction of stochastic context free grammars  

Science Conference Proceedings (OSTI)

This paper describes an evolutionary approach to the problem of inferring stochastic context-free grammars from finite language samples. The approach employs a distributed, steady-state genetic algorithm, with a fitness function incorporating a prior ... Keywords: Genetic algorithm, Grammar induction, Grammatical inference, Language modeling, Stochastic context-free grammar

Bill Keller; Rudi Lutz

2005-09-01T23:59:59.000Z

305

Voltage regulation in linear induction accelerators  

DOE Patents (OSTI)

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor when it is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, W.M.

1991-03-19T23:59:59.000Z

306

Voltage regulation in linear induction accelerators  

DOE Patents (OSTI)

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

307

Voltage unbalance effects on induction motor performance  

Science Conference Proceedings (OSTI)

The reliability of electric drives and driven motors depends on the quality of the power supply voltage especially in the critical industrial process. In this work, a theoretical study of the effects of voltage unbalances, sags and swells on induction ... Keywords: efficiency, power losses and derating factor, sags, symmetrical components, voltage unbalance

L. Refoufi; H. Bentarzi; F. Z. Dekhandji

2006-09-01T23:59:59.000Z

308

The Absence of Plasma in "Spark Plasma Sintering"  

E-Print Network (OSTI)

investigations on the spark plasma sintering/synthesisinvestigations on the spark plasma sintering/synthesisLichtenberg, Principles of Plasma Discharges and Materials

Hulbert, Dustin M.

2008-01-01T23:59:59.000Z

309

TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS  

E-Print Network (OSTI)

of the pole was 18°C. 1/2 inch plywood 0.75 mm steel sheet \\the pickup resting in the plywood tray that was used forremoving the pickup from the plywood tray and resting it on

Bolger, J.G.

2010-01-01T23:59:59.000Z

310

Plasma diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

of superheated and electrically charged gases known as plasmas. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

311

Plasma processes in non-ideal plasmas  

Science Conference Proceedings (OSTI)

Non-ideal plasma equation of state, radiative cross-sections and energy exchange coefficients are described in a tutorial overview.

More, R.M.

1986-03-01T23:59:59.000Z

312

Plasma Astrophysics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

which gives rise to astrophysical events that include auroras, solar flares and geomagnetic storms. The process occurs when the magnetic field lines in plasmas break and...

313

Interdisciplinary plasma theory workshop | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary plasma theory workshop April 15, 2013 Tweet Widget Facebook Like Google Plus One (Photo by Elle Starkman PPPL Office of Communications) PPPL postdoctoral fellow...

314

Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions  

Science Conference Proceedings (OSTI)

We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)

2012-12-15T23:59:59.000Z

315

The time evolution of the resistances and inductances of the discharges in a pulsed gas laser through its current waveforms  

SciTech Connect

In the present work, the time-dependent resistances and inductances of the electric discharges in a pulsed gas laser are revealed through the current waveforms of the circuit. This can be achieved combining step-by-step the experimental current waveforms with the current differential equations of the system. Thus, digitizing the signal, the derivative is calculated through a computer. For a certain time instant, substituting the values of the current and its derivative into the integrodifferential equations describing the performance of the circuit loops, the authors form relationships which connect the values of the resistance and inductance for this particular time instant. Combining relationships originating from very close adjacent time instants, the values of the resistances and inductances of the discharges are revealed. Their behavior shows an abrupt drop for the resistances and a sharp peak for the inductances, both during the formation phase. After that, the above characteristic quantities fluctuate slowly around constant values. The sharp drop of the resistances was expected, bearing in mind that the number of the charges increases dramatically through the electron avalanche multiplication during the first few nanoseconds, causing the abrupt reduction of the resistances. On the other hand, the sharp peak of the inductances was unexpected. A plausible explanation for this phenomenon is that the plasma undergoes a temporary constriction which is due to the predominant attractive magnetic forces during the formation phase of the discharge.

Persephonis, P.; Giannetas, V.; Ioannou, A.; Parthenios, J.; Georgiades, C. [Univ. of Patras (Greece). Dept. of Physics

1996-08-01T23:59:59.000Z

316

Induction Lighting: An Old Lighting Technology Made New Again | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up to 100,000 hours. To put this in perspective, an induction lighting system lasting 100,000 hours will last more than 11 years in continuous 24/7 operation, and 25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,

317

Magnetic induction systems to harvest energy from mechanical vibrations  

E-Print Network (OSTI)

This thesis documents the design process for magnetic induction systems to harvest energy from mechanical vibrations. Two styles of magnetic induction systems - magnet-through-coil and magnet-across-coils - were analyzed. ...

Jonnalagadda, Aparna S

2007-01-01T23:59:59.000Z

318

Knowledge-directed induction in a DB environment  

Science Conference Proceedings (OSTI)

Integrated with Artificial Intelligence (AI) techniques such as conceptual inductive inference, databases can become important sources of knowledge for people and expert systems in various application domains. This paper describes an inductive model ...

Min Ke; Moonis Ali

1990-06-01T23:59:59.000Z

319

Excitation and control of a high-speed induction generator  

E-Print Network (OSTI)

This project investigates the use of a high speed, squirrel cage induction generator and power converter for producing DC electrical power onboard ships and submarines. Potential advantages of high speed induction generators ...

Englebretson, Steven Carl

2005-01-01T23:59:59.000Z

320

Effect of trapping in degenerate quantum plasmas  

SciTech Connect

In the present work we consider the effect of trapping as a microscopic process in a plasma consisting of quantum electrons and nondegenerate ions. The formation of solitary structures is investigated in two cases: first when the electrons are fully degenerate and second when small temperature effects are taken into account. It is seen that not only rarefactive but coupled rarefactive and compressive solitons are obtained under different temperature conditions.

Shah, H. A.; Qureshi, M. N. S. [Department of Physics, GC University, Lahore 54000 (Pakistan); Tsintsadze, N. [Department of Physics, GC University, Lahore 54000 (Pakistan); Salam Chair, GC University, Lahore 54000 (Pakistan)

2010-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design of traveling wave windows for the PEP-II RF coupling network  

SciTech Connect

The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed.

Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.

1995-05-01T23:59:59.000Z

322

A Survey of Methods for Scaling Up Inductive Algorithms  

Science Conference Proceedings (OSTI)

One of the defining challenges for the KDD research community is to enable inductive learning algorithms to mine very large databases. This paper summarizes, categorizes, and compares existing work on scaling up inductive algorithms. We concentrate ... Keywords: decision trees, inductive learning, rule learning, scaling up

Foster Provost; Venkateswarlu Kolluri

1999-06-01T23:59:59.000Z

323

Analysis of wound rotor self-excited induction generators  

Science Conference Proceedings (OSTI)

Self-excited induction generators are found to be to be most suitable machines for wind energy conversion in remote and windy areas due to several advantages over grid connected machines. Such machine exhibits poor performance in terms of voltage and ... Keywords: induction generator, renewable generation, self-excited induction generator, steady state analysis (SSA), wind energy generation

K. S. Sandhu; S. P. Jain

2008-01-01T23:59:59.000Z

324

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network (OSTI)

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

325

Low-n shear Alfven spectra in axisymmetric toroidal plasmas  

SciTech Connect

In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.

Cheng, C.Z.; Chance, M.S.

1985-11-01T23:59:59.000Z

326

Self-generated magnetic fields in q-distributed plasmas  

SciTech Connect

A quasi-steady magnetic field can be generated with high-frequency electromagnetic radiation through wave-wave and wave-particle interactions in astrophysical plasmas and laser-produced plasmas. Nonlinear coupling equations of self-generated magnetic fields are obtained in nonextensive distribution frame, as a generalization for the standard Maxwellian distribution frame. The numerical results show that self-generated magnetic fields may collapse and lead to various turbulent patterns with different index q.

Li Dingguo [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); School of Nuclear Engineering and Technology, East China Institute of Technology, Fuzhou 344000 (China); Liu Sanqiu [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); School of Science, Nanchang University, Nanchang 330047 (China); Li Xiaoqing [School of Science, Nanchang University, Nanchang 330047 (China)

2013-02-15T23:59:59.000Z

327

The ECPC Coupled Prediction Model  

Science Conference Proceedings (OSTI)

This paper presents a new Experimental Climate Prediction Center (ECPC) Coupled Prediction Model (ECPM). The ECPM includes the Jet Propulsion Laboratory (JPL) version of the Massachusetts Institute of Technology (MIT) ocean model coupled to the ...

E. Yulaeva; M. Kanamitsu; J. Roads

2008-01-01T23:59:59.000Z

328

A Space-Charge-Neutralizing Plasma for Beam Drift Compression  

SciTech Connect

Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a {approx} 10 cm long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter {approx} 5 mm along the solenoid axis when the FFS is powered with an 8T field. Measured plasma density of {ge} 1 x 10{sup 13} cm{sup -3} meets the challenge of n{sub p}/Zn{sub b} > 1, where n{sub p} and n{sub b} are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the plasma ions.

Roy, P.K.; Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Coleman, J.E.; Gilson, E.P.; Greenway, W.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Sefkow, A.B.; Waldron, W.L.; Welch, D.R.

2008-08-01T23:59:59.000Z

329

Relaxation time of non-conformal plasma  

E-Print Network (OSTI)

We study effective relaxation time of viscous hydrodynamics of strongly coupled non-conformal gauge theory plasma using gauge theory/string theory correspondence. We compute leading corrections to the conformal plasma relaxation time from the relevant deformations due to dim-2 and dim-3 operators. We discuss in details the relaxation time tau_eff of N=2^* plasma. For a certain choice of masses this theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). Although the bulk viscosity remains finite all the way to the critical temperature, we find that tau_eff diverges near the critical point as tau_eff ~ |1-T_c/T|^(-1/2).

Alex Buchel

2009-08-03T23:59:59.000Z

330

Theoretical studies of some nonlinear laser-plasma interactions  

SciTech Connect

The nonlinear coupling of intense, monochromatic, electromagnetic radiation with plasma is considered in a number of special cases. The first part of the thesis serves as an introduction to three-wave interactions. A general formulation of the stimulated scattering of transverse waves by longitudinal modes in a warm, unmagnetized, uniform plasma is constructed. A general dispersion relation is derived that describes Raman and Brillouin scattering, modulational instability, and induced Thomson scattering. Raman scattering (the scattering of a photon into another photon and an electron plasma wave) is investigated as a possible plasma heating scheme. Analytic theory complemented by computer simulation is presented describing the nonlinear mode coupling of laser light with small and large amplitude, resonantly excited electron plasma waves. The simulated scattering of a coherent electromagnetic wave by low frequency density perturbations in homogeneous plasma is discussed. A composite picture of the linear dispersion relations for filamentation and Brillouin scattering is constructed. The absolute instability of Brillouin weak and strong coupling by analytic and numerical means is described. (auth)

Cohen, B.I.

1975-08-15T23:59:59.000Z

331

Sealing coupling. [LMFBR  

DOE Patents (OSTI)

Disclosed is a remotely operable releasable sealing coupling which provides fluid-tight joinder of upper and a lower conduit sections. Each conduit section has a concave conical sealing surface adjacent its end portion. A tubular sleeve having convex spherical ends is inserted between the conduit ends to form line contact with the concave conical end portions. An inwardly projecting lip located at one end of the sleeve cooperates with a retaining collar formed on the upper pipe end to provide swivel capture for the sleeve. The upper conduit section also includes a tapered lower end portion which engages the inside surface of the sleeve to limit misalignment of the connected conduit sections.

Pardini, J.A.; Brubaker, R.C.; Rusnak, J.J.

1982-09-20T23:59:59.000Z

332

Plasma Kinetic Theory  

Science Conference Proceedings (OSTI)

Basic and Kinetic Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

333

Plasma-Thermal Synthesis  

INL’s Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

334

Adiabatic trapping in coupled kinetic Alfven-acoustic waves  

SciTech Connect

In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

2013-03-15T23:59:59.000Z

335

Acceleration Modules in Linear Induction Accelerators  

E-Print Network (OSTI)

Linear Induction Accelerator (LIA) is a unique type of accelerator, which is capable to accelerate kiloAmpere charged particle current to tens of MeV energy. The present development of LIA in MHz busting mode and successful application into synchrotron broaden LIAs usage scope. Although transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. Authors examined the transition of the magnetic cores functions during LIA acceleration modules evolution, distinguished transformer type and transmission line type LIA acceleration modules, and reconsidered several related issues based on transmission line type LIA acceleration module. The clarified understanding should be helpful in the further development and design of the LIA acceleration modules.

Wang, Shaoheng

2013-01-01T23:59:59.000Z

336

On electromagnetic induction in electric conductors  

E-Print Network (OSTI)

Experimental validation of the Faraday's law of electromagnetic induction (EMI) is performed when an electromotive force is generated in thin copper turns, located inside a large magnetic coil. It has been established that the electromotive force (emf) value should be dependent not only on changes of the magnetic induction flux through a turn and on symmetry of its crossing by magnetic power lines also. The law of EMI is applicable in sufficient approximation in case of the changes of the magnetic field near the turn are symmetrical. Experimental study of the induced emf in arcs and a direct section of the conductor placed into the variable field has been carried out. Linear dependence of the induced emf on the length of the arc has been ascertained in case of the magnetic field distribution symmetry about it. Influence of the magnetic field symmetry on the induced emf in the arc has been observed. The curve of the induced emf in the direct section over period of current pulse is similar to this one for the turns and arcs. The general law of EMI for a curvilinear conductor has been deduced. Calculation of the induced emf in the turns wrapped over it and comparison with the experimental data has been made. The proportionality factor has been ascertained for the law. Special conditions have been described, when the induced emf may not exist in the presence of inductive current. Theoretical estimation of the inductive current has been made at a induced low voltage in the turn. It has been noted the necessity to take into account the concentration of current carriers in calculation of the induced emf in semiconductors and ionized conductors.

Alexander I. Korolev

2013-02-22T23:59:59.000Z

337

Electronic Structure Measurement of Solid Density Plasmas using X-Ray Scattering  

DOE Green Energy (OSTI)

We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

Gregori, G; Glenzer, S H; Rogers, F J; Landen, O L; Blancard, C; Faussurier, G; Renaudin, P; Kuhlbrodt, S; Redmer, R

2003-08-23T23:59:59.000Z

338

Investigation of the Electronic Structure of Solid Density Plasmas by X-Ray Scattering  

DOE Green Energy (OSTI)

We present an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. We use our theory to interpret x-ray scattering experiments from solid density carbon plasma and to extract accurate measurements of electron temperature, electron density and charge state. We use our experimental results to validate various equation-of-state models for carbon plasmas.

Gregori, G; Glenzer, S H; Forest, F J; Kuhlbrodt, S; Redmer, R; Faussurier, G; Blancard, C; Renaudin, P; Landen, O L

2003-05-19T23:59:59.000Z

339

DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report  

Science Conference Proceedings (OSTI)

The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

2001-01-01T23:59:59.000Z

340

Model of detached plasmas  

SciTech Connect

Recently a tokamak plasma was observed in TFTR that was not limited by a limiter or a divertor. A model is proposed to explain this equilibrium, which is called a detached plasma. The model consists of (1) the core plasma where ohmic heating power is lost by anomalous heat conduction and (2) the shell plasma where the heat from the core plasma is radiated away by the atomic processes of impurity ions. A simple scaling law is proposed to test the validity of this model.

Yoshikawa, S.; Chance, M.

1986-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mirror plasma apparatus  

DOE Patents (OSTI)

A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

Moir, Ralph W. (Livermore, CA)

1981-01-01T23:59:59.000Z

342

Final Report - Plasma Transport at the Magnetospheric Flank Boundary  

SciTech Connect

Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary. 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF. 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes. 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning. 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF . 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport. 7. Examination of entropy and plasma transport in the magnetotail. 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma. 9. Entropy and plasma transport in the magnetotail - tail reconnection. 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.

Otto, Antonius

2012-04-23T23:59:59.000Z

343

coupling2.dvi  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Measurement of Input Coupler Matching of a Loaded Storage Ring Single-Cell Cavity Jin Wook Cho, Yoon Kang Advanced Photon Source Argonne National Laboratory 9700 S. Cass Ave., Argonne, IL 60439 August 14, 1995 1 Introduction In the APS storage ring cavities, magnetic loop type input couplers are used. The loaded Q fo a cavity varies as the beam loading changes 1 . The beam loading changes the cavity input impedance. Therefore, the input coupler must be adjusted to maintain a good impedance match. Measurements have been made to determine the coupler loop position depth of penetration with respect to various loading conditions in a storage ring single-cell cavity. An input coupler was inserted into the storage ring single-cell cavity at various loaded Q points, then matched. The relationship between the coupling coe cient, , and the gap width, where gap width is the separation

344

Plasma heating effects during laser welding  

SciTech Connect

Laser welding is a relatively low heat input process used in joining precisely machined components with minimum distortion and heat affects to surrounding material. The CO/sub 2/ (10.6 ..mu..m) and Nd-YAG (1.06 ..mu..m) lasers are the primary lasers used for welding in industry today. Average powers range up to 20 kW for CO/sub 2/ and 400 W for Nd-YAG with pulse lengths of milliseconds to continuous wave. Control of the process depends on an understanding of the laser-plasma-material interaction and characterization of the laser beam being used. Inherent plasma formation above the material surface and subsequent modulation of the incident laser radiation directly affect the energy transfer to the target material. The temporal and spatial characteristics of the laser beam affect the available power density incident on the target, which is important in achieving repeatability in the process. Other factors such as surface texture, surface contaminants, surface chemistry, and welding environment affect plasma formation which determines the weld penetration. This work involves studies of the laser-plasma-material interaction process and particularly the effect of the plasma on the coupling of laser energy to a material during welding. A pulsed Nd-YAG laser was used with maximum average power of 400 W.

Lewis, G.K.; Dixon, R.D.

1985-01-01T23:59:59.000Z

345

THE ANISOTROPIC TRANSPORT EFFECTS ON DILUTE PLASMAS  

Science Conference Proceedings (OSTI)

We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction.

Devlen, Ebru, E-mail: ebru.devlen@ege.edu.tr [Department of Astronomy and Space Sciences, Faculty of Science, University of Ege, Bornova 35100, Izmir (Turkey)

2011-04-20T23:59:59.000Z

346

The design evaluation of inductive power-transformer for personal rapid transit by measuring impedance  

SciTech Connect

The contact-less inductive power transformer (IPT) uses the principle of electromagnetic induction. The concept of the IPT for vehicles such as the personal rapid transit (PRT) system is proposed and some suggestions for power collector design of IPT to improve power transfer performance are presented in this paper. The aim of this paper is to recommend the concept of IPT for vehicles such as the PRT system and also to present some propositions for the power collector design of the IPT, which is to improve the power transfer performance. Generally, there are diverse methods to evaluate transfer performance of the traditional transformers. Although the principle of IPT is similar to that of the general transformer, it is impossible to apply the methods directly because of large air gap. The system must be compensated by resonant circuit due to the large air gap. Consequently, it is difficult to apply numerical formulas to the magnetic design of IPT systems. This paper investigates the magnetic design of a PRT system using three-dimensional magnetic modeling and measurements of the pick-up coupling coefficient and its impedances. In addition, how the use of Litz wire and leakage inductance is related will be observed through experiment and simulation.

Han, Kyung-Hee [Department of Electrical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of); Department of Electricity and Signaling, Korea Railroad Research Institute, Uiwang, Kyonggi 437-050 (Korea, Republic of); Lee, Byung-Song [Department of Electricity and Signaling, Korea Railroad Research Institute, Uiwang, Kyonggi 437-050 (Korea, Republic of); Baek, Soo-Hyun [Department of Electrical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of)

2008-04-01T23:59:59.000Z

347

Multidimensional hydrodynamic plasma-wall model for collisional plasma discharges with and without magnetic-field effects  

SciTech Connect

A numerical model for two-species plasma involving electrons and ions at pressure of 0.1 torr is presented here. The plasma-wall problem is modeled using one- and two-dimensional hydrodynamic equations coupled with Poisson equation. The model utilizes a finite-element algorithm to overcome the stiffness of the resulting plasma-wall equations. The one-dimensional result gives insight into the discharge characteristics including net charge density, electric field, and temporal space-charge sheath evolution. In two dimensions, the plasma formation over a flat plate is investigated for three different cases. The numerical algorithm is first benchmarked with published literature for plasma formed between symmetric electrodes in nitrogen gas. The characteristics of plasma are then analyzed for an infinitesimally thin electrode under dc and rf potentials in the presence of applied magnetic field using argon as a working gas. The magnetic field distorts the streamwise distribution because of a large y-momentum VxB coupling. Finally, the shape effects of the insulator-conductor edge for an electrode with finite thickness have been compared using a 90 degree sign shoulder and a 45 deg. chamfer. The 90 deg. chamfer displays a stronger body force created due to plasma in the downward and forward directions.

Kumar, Haribalan; Roy, Subrata [Computational Plasma Dynamics Laboratory, Kettering University, Flint, Michigan 48504 (United States)

2005-09-15T23:59:59.000Z

348

New Kinetic Equations and Bogolyubov Energy Spectrum in a Fermi Quantum Plasma  

SciTech Connect

New type of quantum kinetic equations of the Fermi particles are derived. The Bogolyubov's type of dispersion relation, which is valid for the Bose fluid, is disclosed. Model of neutral Bose atoms in dense strongly coupled plasmas with attractive interaction is discussed. A set of fluid equations describing the quantum plasmas is obtained. Furthermore, the equation of the internal energy of degenerate Fermi plasma particles is derived.

Tsintsadze, Nodar L. [Department of Plasma Physics, E. Andronikashvili Institute of Physics, Tbilisi (Georgia); Tsintsadze, Levan N. [Graduate School of Science, Hiroshima University, Higashi-Hiroshima (Japan)

2009-10-08T23:59:59.000Z

349

System and method for generating steady state confining current for a toroidal plasma fusion reactor  

SciTech Connect

A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

Fisch, Nathaniel J. (Cambridge, MA)

1981-01-01T23:59:59.000Z

350

System and method for generating steady state confining current for a toroidal plasma fusion reactor  

SciTech Connect

A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

Bers, Abraham (Arlington, MA)

1981-01-01T23:59:59.000Z

351

Holographic thermalization in N=4 Super Yang-Mills theory at finite coupling  

E-Print Network (OSTI)

We investigate the behavior of the energy momentum tensor correlators in holographic N=4 Super Yang-Mills plasma, taking finite coupling corrections into account. In the thermal limit we determine the flow of the quasinormal modes as a function of the 't Hooft coupling. Then we use a specific model of holographic thermalization to study the deviation of the spectral density from its thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the plasma constituents approach their thermal distribution as the coupling constant decreases from the infinite coupling limit. All obtained results point towards a weakening of the usual top-down thermalization pattern.

Stricker, Stefan A

2013-01-01T23:59:59.000Z

352

Physics of high performance deuterium-tritium plasmas in TFTR  

Science Conference Proceedings (OSTI)

During the past two years, deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR) have been used to study fusion power production, isotope effects associated with tritium fueling, and alpha-particle physics in several operational regimes. The peak fusion power has been increased to 10.7 MW in the supershot mode through the use of increased plasma current and toroidal magnetic field and extensive lithium wall conditioning. The high-internal-inductance (high-I{sub i}) regime in TFTR has been extended in plasma current and has achieved 8.7 MW of fusion power. Studies of the effects of tritium on confinement have now been carried out in ohmic, NBI- and ICRF- heated L-mode and reversed-shear plasmas. In general, there is an enhancement in confinement time in D-T plasmas which is most pronounced in supershot and high-I{sub i} discharges, weaker in L-mode plasmas with NBI and ICRF heating and smaller still in ohmic plasmas. In reversed-shear discharges with sufficient deuterium-NBI heating power, internal transport barriers have been observed to form, leading to enhanced confinement. Large decreases in the ion heat conductivity and particle transport are inferred within the transport barrier. It appears that higher heating power is required to trigger the formation of a transport barrier with D-T NBI and the isotope effect on energy confinement is nearly absent in these enhanced reverse-shear plasmas. Many alpha-particle physics issues have been studied in the various operating regimes including confinement of the alpha particles, their redistribution by sawteeth, and their loss due to MHD instabilities with low toroidal mode numbers. In weak-shear plasmas, alpha-particle destabilization of a toroidal Alfven eigenmode has been observed.

McGuire, K.M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States); Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

1996-11-01T23:59:59.000Z

353

VISUALS: Diffusion couple animation - TMS  

Science Conference Proceedings (OSTI)

Sep 25, 2007 ... This Quicktime animation of a diffusion couple shows side-by-side views of two different atomic species - red and green - diffusing across a flat ...

354

Coupling light to periodic nanostructures.  

E-Print Network (OSTI)

??This thesis describes coupling of light to periodic structures. A material is patterned with a regular pattern on a length scale comparable to the wavelength… (more)

Driessen, Eduard Frans Clemens

2009-01-01T23:59:59.000Z

355

Segmented ceramic liner for induction furnaces  

DOE Patents (OSTI)

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

356

Technology development for high power induction accelerators  

SciTech Connect

The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

Birx, D.L.; Reginato, L.L.

1985-06-11T23:59:59.000Z

357

What is a plasma?  

SciTech Connect

This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

Intrator, Thomas P. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

358

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas  

E-Print Network (OSTI)

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas Robert Rosner The University of Chicago Dec. 12, 2000 Austin, TX (http://flash.uchicago.edu) #12;Burning Plasma Science Workshop Austin ¥ Plasma conditions ¥ Overview of plasma physics issues for astrophysics ¥ Specific examples #12;Burning

359

Continuum modes in rotating plasmas: General equations and continuous spectra for large aspect ratio tokamaks  

SciTech Connect

A theory for localized low-frequency ideal magnetohydrodynamical (MHD) modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal equilibrium plasma flows. The general set of equations describing the coupling of shear Alfven and slow (sound) modes and defining the continuous spectrum of rotating plasmas in axisymmetric toroidal systems is derived. The equations are applied to study the continuous spectra in large aspect ratio tokamaks. The unstable continuous modes in the case of predominantly poloidal plasma rotation with the angular velocity exceeding the sound frequency are found. Their stabilization by the shear Alfven coupling effect is studied.

Lakhin, V. P. [NRC ''Kurchatov Institute'', 1 Kurchatov Sqr., Moscow 123182 (Russian Federation); Ilgisonis, V. I. [NRC ''Kurchatov Institute'', 1 Kurchatov Sqr., Moscow 123182 (Russian Federation); People's Friendship University of Russia, 3 Ordzhonikidze Str., Moscow 117198 (Russian Federation)

2011-09-15T23:59:59.000Z

360

An Exact Calculation of Electron-Ion Energy Splitting in a Hot Plasma  

SciTech Connect

In this brief report, I summarize the rather involved recent work of Brown, Preston, and Singleton (BPS). In Refs. [2] and [3], BPS calculate the energy partition into ions and electrons as a charged particle traverses a non-equilibrium two-temperature plasma. These results are exact to leading and next-to-leading order in the plasma coupling g, and are therefore extremely accurate in a weakly coupled plasma. The new BPS calculations are compared with the more standard work of Fraley et al. [12]. The results differ substantially at higher temperature when T{sub I} {ne} T{sub e}.

Singleton, Robert L [Los Alamos National Laboratory

2012-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electronic Radio-Frequency (Electrodeless) Induction Lamps: A Fluorescent Technology  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses an expanding energy efficient light source electronic radio-frequency (electrodeless) induction lamps. Business and technical market factors (Chapter 2) use the past and future growth of the CFL market to illustrate the potential for the induction lighting market while emphasizing future technical improvements. Discussion of the importance of utility involvement in helping their customers consider induction lamps for high-efficiency fluorescent applications with long-...

2007-12-20T23:59:59.000Z

362

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

Transport in tokamak plasma . . . . . . . . . . . . . . .of tokamak plasma . . . . . . . . . 1.4 Dissertationtransport model for edge plasma . . . . . . 6.1 Anomalous

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

363

Modeling of the coal gasification processes in a hybrid plasma torch  

Science Conference Proceedings (OSTI)

The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

2007-12-15T23:59:59.000Z

364

Plasma Processing Of Hydrocarbon  

SciTech Connect

The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

2007-05-01T23:59:59.000Z

365

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

366

Plasma-Quench  

INL has developed a thermal plasma quench to cool the heat generated from rapid chemical reactions, preventing adverse reactions or decompositions to ...

367

Physics of Complex Plasmas.  

E-Print Network (OSTI)

??Physics of complex plasmas is a wide and varied field. In the context of this PhD thesis I present the major results from my research… (more)

Sütterlin, Robert

2010-01-01T23:59:59.000Z

368

Plasma-Borohydride  

INL’s Plasma-Borohydride process produces borohydride from sodium borate which is capable of forming a chemical hydride for a storage medium of hydrogen.

369

Segmented rail linear induction motor - Energy Innovation Portal  

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The ...

370

Motor torque compensation of an induction electric motor by ...  

Motor torque compensation of an induction electric motor by adjusting a slip command during periods of supposed change in motor temperature United States Patent

371

Induction Furnace Quench & Temper of Oil Field Tubular Goods  

Science Conference Proceedings (OSTI)

Because of the unique operating features of an induction furnace, each pipe is individually heat treated, producing more uniform properties than possible with ...

372

In vitro tetraploid induction via colchicine treatment from diploid ...  

Science Conference Proceedings (OSTI)

Abstract A protocol for in vitro induction of tetraploids via colchicine-treated .... Following the protocol for immature zygotic embryos cultures .... V. rupestris callus.

373

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and...

374

Verification and validation for induction heating  

SciTech Connect

Truchas is a software package being developed at LANL within the Telluride project for predicting the complex physical processes in metal alloy casting. The software was designed to be massively parallel, multi-material, multi-physics, and to run on 3D, fully unstructured meshes. This work describes a Verification and Validation assessment of Truchas for simulating the induction heating phase of a casting process. We used existing data from a simple experiment involving the induction heating of a graphite cylinder, as graphite is a common material used for mold assemblies. Because we do not have complete knowledge of all the conditions and properties in this experiment (as is the case in many other experiments), we performed a parameter sensitivity study, modeled the uncertainties of the most sensitive parameters, and quantified how these uncertainties propagate to the Truchas output response. A verification analysis produced estimates of the numerical error of the Truchas solution to our computational model. The outputs from Truchas runs with randomly sampled parameter values were used for the validation study.

Lam, Kin [Los Alamos National Laboratory; Tippetts, Trevor B [Los Alamos National Laboratory; Allen, David W [NON LANL

2008-01-01T23:59:59.000Z

375

Radiation induction of cancer of the skin  

SciTech Connect

The induction of epidermal tumors was studied using exposures to 25 kV x-rays with or without subsequent exposures to 12-0-tetradeconyl phorbol-13 acetate (TPA) or ultraviolet radiation (uvr) 280-400 nm. Fractionation regimens and total exposure up to 4000R produced no squamous cell carcinomas. When these regimes were followed by TPA an incidence of about 80% was obtained, and incidence of 60% when uvr exposures followed the x-irradiation. A dose-dependent increase in fibrosarcomas was found when x-irradiation was followed by 24 weeks of topical treatment with TPA. These results support the contention that uvr can enhance the expression of cells initiated by x-rays. The experimental evidence is compared with the data from the tinea capitis patients treated with x-rays. In C3HF/He male mice exposed to 50, 100, 150 and 200 rads /sup 137/Cs gamma rays the induction rate for fibrosarcomas was 2.9 x 10/sup -4/ per cGy/per mouse. This result compares with 2.5 x 10/sup -6/ transformations per surviving cell per cGy with 10T1/2 cells that are fibroblasts derived from C3H mice. 16 refs., 1 fig., 1 tab.

Fry, R.J.M.; Storer, J.B.; Burns, F.J.

1985-01-01T23:59:59.000Z

376

Entanglement in massive coupled oscillators  

Science Conference Proceedings (OSTI)

This article investigates entanglement of the motional states of massive coupled oscillators.The specific realization of an idealized diatomic molecule in one-dimension isconsidered, but the techniques developed apply to any massive particles with two ... Keywords: closed-system entanglement dynamics, continuous-variable entanglement, coupled oscillators

Nathan L. Harshman; William F. Flynn

2011-03-01T23:59:59.000Z

377

Physics considerations for laser-plasma linear colliders  

SciTech Connect

Physics considerations for a next-generation linear collider based on laser-plasma accelerators are discussed. The ultra-high accelerating gradient of a laser-plasma accelerator and short laser coupling distance between accelerator stages allows for a compact linac. Two regimes of laser-plasma acceleration are discussed. The highly nonlinear regime has the advantages of higher accelerating fields and uniform focusing forces, whereas the quasi-linear regime has the advantage of symmetric accelerating properties for electrons and positrons. Scaling of various accelerator and collider parameters with respect to plasma density and laser wavelength are derived. Reduction of beamstrahlung effects implies the use of ultra-short bunches of moderate charge. The total linac length scales inversely with the square root of the plasma density, whereas the total power scales proportional to the square root of the density. A 1 TeV center-of-mass collider based on stages using a plasma density of 10{sup 17} cm{sup -3} requires tens of J of laser energy per stage (using 1 {micro}m wavelength lasers) with tens of kHz repetition rate. Coulomb scattering and synchrotron radiation are examined and found not to significantly degrade beam quality. A photon collider based on laser-plasma accelerated beams is also considered. The requirements for the scattering laser energy are comparable to those of a single laser-plasma accelerator stage.

Schroeder, Carl; Esarey, Eric; Geddes, Cameron; Benedetti, Carlo; Leemans, Wim

2010-06-11T23:59:59.000Z

378

Accessibillity of Electron Bernstein Modes in Over-Dense Plasma  

SciTech Connect

Mode-conversion between the ordinary, extraordinary and electron Bernstein modes near the plasma edge may allow signals generated by electrons in an over-dense plasma to be detected. Alternatively, high frequency power may gain accessibility to the core plasma through this mode conversion process. Many of the tools used for ion cyclotron antenna de-sign can also be applied near the electron cyclotron frequency. In this paper, we investigate the possibilities for an antenna that may couple to electron Bernstein modes inside an over-dense plasma. The optimum values for wavelengths that undergo mode-conversion are found by scanning the poloidal and toroidal response of the plasma using a warm plasma slab approximation with a sheared magnetic field. Only a very narrow region of the edge can be examined in this manner; however, ray tracing may be used to follow the mode converted power in a more general geometry. It is eventually hoped that the methods can be extended to a hot plasma representation. Using antenna design codes, some basic antenna shapes will be considered to see what types of antennas might be used to detect or launch modes that penetrate the cutoff layer in the edge plasma.

Batchelor, D.B.; Bigelow, T.S.; Carter, M.D.

1999-04-12T23:59:59.000Z

379

A three-phase multi-legged transformer model in ATP using the directly-formed inverse inductance matrix  

Science Conference Proceedings (OSTI)

A new transformer model based on core topology is developed. The model simulates the transformer as a set of coupled inductances. Winding flux linkages are chosen as state variables and currents are computed from the flux linkages using the directly-formed inverse inductance matrix, the {Gamma}-matrix. Due to the strong magnetic coupling among the windings, the inductance matrix of a transformer is ill-conditioned. Directly forming the {Gamma}-matrix will not only speed up the computation but also make it more stable. Transformer core saturation is represented by its anhysteretic magnetization curve. Eddy current and hysteresis losses of the core, and stray losses of the transformer are accounted for by a resistive load on the secondary. Winding capacitances are lumped to the terminals, the model is thus accurate up to 5 kHz. A supporting routine is written to generate {lambda}-i curve data for each segment of the core and the other input data for EMTP. The model has been incorporated into the Alternative Transients Program (ATP), the BPA EMTP, for evaluation, and has passed the benchmark test of the GPU line energization test of 1973.

Chen, X. [Seattle Univ., WA (United States). Dept. of Electrical Engineering

1996-07-01T23:59:59.000Z

380

Plasma technology directory  

SciTech Connect

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Triggered plasma opening switch  

DOE Patents (OSTI)

A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

Mendel, Clifford W. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

382

Triggered plasma opening switch  

DOE Patents (OSTI)

A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

Mendel, C.W.

1986-07-14T23:59:59.000Z

383

Plasma-based accelerator structures  

E-Print Network (OSTI)

Particle Beam Dynamics in. a Hollow Plasma Channel 3.1Structure of the Hollow Plasma Channel . . . . 2.2.1 ChannelLimit . . 5.2.6 Laser-Plasma Instabilities . . . 5.3

Schroeder, C.B.

2011-01-01T23:59:59.000Z

384

Critical phenomena in N=2* plasma  

E-Print Network (OSTI)

We use gauge theory/string theory correspondence to study finite temperature critical behaviour of mass deformed N=4 SU(N) supersymmetric Yang-Mills theory at strong coupling, also known as N=2* gauge theory. For certain range of the mass parameters, N=2* plasma undergoes a second-order phase transition. We compute all the static critical exponents of the model and demonstrate that the transition is of the mean-field theory type. We show that the dynamical critical exponent of the model is z=0, with multiple hydrodynamic relaxation rates at criticality. We point out that the dynamical critical phenomena in N=2* plasma is outside the dynamical universality classes established by Hohenberg and Halperin.

A. Buchel; C. Pagnutti

2010-10-16T23:59:59.000Z

385

SUPERFAST THERMALIZATION OF PLASMA  

DOE Patents (OSTI)

A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

Chang, C.C.

1962-06-12T23:59:59.000Z

386

Plasma opening switch  

DOE Patents (OSTI)

A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

Savage, Mark E. (Albuquerque, NM); Mendel, Jr., Clifford W. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

387

Direct observation of dynamics of single spinning dust grains in weakly magnetized complex plasma  

SciTech Connect

The rotational dynamics of single dust grains in a weak magnetic field is investigated on a kinetic level. Experiments reveal spin-up of spherical dust grains and alignment of their magnetic moments parallel to the magnetic induction vector. The angular velocity of spinning prolate grains varies as magnetic induction increases to 250 G. Spinning dust grains are found to flip over only when the magnetic field magnitude is changing. The results demonstrate that dusty plasma has paramagnetic properties. Qualitative interpretations are proposed to explain newly discovered phenomena.

Dzlieva, E. S.; Karasev, V. Yu., E-mail: plasmadust@yandex.ru [St. Petersburg State University, Institute of Physics (Russian Federation); Petrov, O. F. [Russian Academy of Sciences, Institute for High Energy Densities, Joint Institute for High Temperatures (Russian Federation)

2012-01-15T23:59:59.000Z

388

Plasma sheath criterion in thermal electronegative plasmas  

Science Conference Proceedings (OSTI)

The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Khoramabadi, Mansour; Ghorannevis, Mahmod [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Shukla, Padma Kant [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2010-09-15T23:59:59.000Z

389

Parallel resistivity and ohmic heating of laboratory dipole plasmas  

SciTech Connect

The parallel resistivity is calculated in the long-mean-free-path regime for the dipole plasma geometry; this is shown to be a neoclassical transport problem in the limit of a small number of circulating electrons. In this regime, the resistivity is substantially higher than the Spitzer resistivity due to the magnetic trapping of a majority of the electrons. This suggests that heating the outer flux surfaces of the plasma with low-frequency parallel electric fields can be substantially more efficient than might be naively estimated. Such a skin-current heating scheme is analyzed by deriving an equation for diffusion of skin currents into the plasma, from which quantities such as the resistive skin-depth, lumped-circuit impedance, and power deposited in the plasma can be estimated. Numerical estimates indicate that this may be a simple and efficient way to couple power into experiments in this geometry.

Fox, W. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, University of New Hampshire, Durham, New Hampshire 03824 (United States)

2012-08-15T23:59:59.000Z

390

Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring  

Science Conference Proceedings (OSTI)

Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

2011-07-15T23:59:59.000Z

391

Beam emission imaging system for 2D plasma turbulence measurements  

SciTech Connect

A two-dimensional analog to the beam emission spectroscopy (BES) diagnostic has been designed to acquire vorticity and plasma flow-field information by resolving the spatial and temporal intermittency of plasma turbulent structures. The beam emission imaging diagnostic measures collisionally induced neutral beam fluorescence to infer local plasma density variations. It consists of a high-throughput, interline-transfer CCD camera viewing, with narrow spectral bandwidth, a 10 cm high diagnostic neutral beam as it traverses the plasma. The camera is coupled to a gated image intensifier that provides for two images with exposure times up to a few ms to be separated by as little as 10 [mu]s. Sensitivity to density fluctuations of [ital [tilde n

Thorson, T.A.; Durst, R.D.; Fonck, R.J. (Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States))

1995-01-01T23:59:59.000Z

392

Steady State Analysis of an induction generator infinite bus system  

E-Print Network (OSTI)

analysis of grid connected wind energy conver- sion systems employing induction generators, one1 Steady State Analysis of an induction generator infinite bus system Rajesh G Kavasseri Department of Electrical and Computer Engineering North Dakota State University, Fargo, ND 58105 - 5285, USA (email: rajesh

Kavasseri, Rajesh

393

Doubly-fed induction generator torque in wind turbines  

Science Conference Proceedings (OSTI)

The field oriented doubly-fed induction generator (DFIG) is being increasingly used in variable speed wind turbines. It is therefore indispensable to become better acquainted with electrical and mechanical DFIG features in both stationary and dynamic ... Keywords: doubly-fed induction generator (DFIG), torque characteristic of DFIG

Jurica Smajo; Dinko Vukadinovic

2008-02-01T23:59:59.000Z

394

Doubly-fed induction generator used in wind energy  

Science Conference Proceedings (OSTI)

Wound-rotor induction generator has numerous advantages in wind power generation over other generators. One scheme for wound-rotor induction generator is realized when a converter cascade is used between the slip-ring terminals and the utility grid to ...

Hany M. Jabr Soloumah

2008-01-01T23:59:59.000Z

395

Control of Doubly-Fed Induction Generator System Using PIDNNs  

Science Conference Proceedings (OSTI)

An intelligent control stand-alone doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency ... Keywords: Doubly-fed induction generator, field-oriented control, proportional-integral-derivative neural network

Faa-Jeng Lin; Jonq-Chin Hwang; Kuang-Hsiung Tan; Zong-Han Lu; Yung-Ruei Chang

2010-12-01T23:59:59.000Z

396

Power and Voltage Smooth Control of Doubly Fed Induction Generator  

Science Conference Proceedings (OSTI)

Doubly-fed induction generator (DFIG) is the leading in wind power technology currently. In this paper, decoupling control of DFIG is studied and a new energy storage device is used in the smooth control of DFIG system's power and voltage. This new method ... Keywords: Doubly fed induction generator, Energy storage device, Decoupling control

An-Ren Ma, Cai-Xia Wang, Zhi-Wen Zhou, Tao Wu

2012-07-01T23:59:59.000Z

397

Inductive Reasoning and Programming Visualization, an Experiment Proposal  

Science Conference Proceedings (OSTI)

We lay down plans to study how Inductive Reasoning Ability (IRA) affects the analyzing and understanding of Program Visualization (PV) systems. Current PV systems do not take into account the abilities of the user but show always the same visualization ... Keywords: Adaptive systems, Inductive reasoning, Program visualization, User modelling

Andrés Moreno; Niko Myller; Erkki Sutinen; Taiyu Lin; Kinshuk

2007-07-01T23:59:59.000Z

398

Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL  

Science Conference Proceedings (OSTI)

This paper presents a case study of a machine-aided knowledge discovery process within the general area of drug design. Within drug design, the particular problem of pharmacophore discovery is isolated, and the Inductive Logic Programming (ILP) system ... Keywords: inductive logic programming, pharmacophore, structure-activity prediction

Paul Finn; Stephen Muggleton; David Page; Ashwin Srinivasan

1998-02-01T23:59:59.000Z

399

Critical phenomena in N=4 SYM plasma  

E-Print Network (OSTI)

Strongly coupled N=4 supersymmetric Yang-Mills plasma at finite temperature and chemical potential for an R-symmetry charge undergoes a second order phase transition. We demonstrate that this phase transition is of the mean field theory type. We explicitly show that the model is in the dynamical universality class of 'model B' according to the classification of Hohenberg and Halperine, with dynamical critical exponent z=4. We study bulk viscosity in the mass deformed version of this theory in the vicinity of the phase transition. We point out that all available models of bulk viscosity at continuous phase transition are in conflict with our explicit holographic computations.

Alex Buchel

2010-05-05T23:59:59.000Z

400

Bulk viscosity of N=2* plasma  

E-Print Network (OSTI)

We use gauge theory/string theory correspondence to study the bulk viscosity of strongly coupled, mass deformed SU(N_c) N=4 supersymmetric Yang-Mills plasma, also known as N=2^* gauge theory. For a wide range of masses we confirm the bulk viscosity bound proposed in arXiv:0708.3459. For a certain choice of masses, the theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). We show that, although bulk viscosity rapidly grows as T -> T_c, it remains finite in the vicinity of the critical point.

Alex Buchel; Chris Pagnutti

2008-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

thermodynamics of hydrogen, methane, and carbon dioxide Electron spin resonance and nuclear magnetic resonance X-ray diffraction Inductively coupled plasma analysis...

402

Magnetic filter apparatus and method for generating cold plasma in semicoductor processing  

DOE Patents (OSTI)

Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

Vella, Michael C. (San Leandro, CA)

1996-01-01T23:59:59.000Z

403

Ultra high-gradient energy loss by a pulsed electron beam in a plasma  

SciTech Connect

The plasma wake-field mechanism can be used to couple energy at a high rate from a bunched electron beam into a plasma wave. We will present results from the Fermilab A0 facility where a beam with an initial energy of 14 MeV passes through the plasma to emerge with a much broader energy spread, spanning from a low of 3 MeV to a high of over 20 MeV. Over the 8 cm length of the 10{sup 14} cm{sup -3} plasma, this implies a 140 MeV/m deceleration and 72 MeV/m acceleration gradient.

Nikolai Barov et al.

2001-12-19T23:59:59.000Z

404

Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure  

Science Conference Proceedings (OSTI)

A stable nonthermal laminar atmospheric-pressure plasma source equipped with dielectric-barrier discharge was developed to realize more efficient plasma generation, with the total energy consumption reduced to nearly 25% of the original. Temperature and emission spectra monitoring indicates that this plasma is uniform in the lateral direction of the jet core region. It is also found that this plasma contains not only abundant excited argon atoms but also sufficient excited N{sub 2} and OH. This is mainly resulted from the escape of abundant electrons from the exit, due to the sharp decrease of sustaining voltage and the coupling between ions and electrons.

Tang Jie; Li Shibo; Zhao Wei; Wang Yishan [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China); Duan Yixiang [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China); Research Center of Analytical Instrumentation, Sichuan University, Chengdu (China)

2012-06-18T23:59:59.000Z

405

Dipolar vortices and collisional instability in rotating electron-positron-ion plasmas  

SciTech Connect

Linear dispersion relation of electrostatic waves is derived for rotating electron-positron-ion (e-p-i) plasmas. The role of the rotational plasma frequency on drift wave through Coriolis force in the pulsar magnetosphere is discussed. This wave can couple with acoustic mode. In the nonlinear regime, stationary solution in the form of dipolar vortices is obtained. At the end we have also found the collisional instability in the presence of neutral-ion collisions for this rotating e-p-i plasma. The importance of the study with respect to astrophysical plasmas is also pointed out.

Haque, Q. [Theoretical Plasma Physics Division, PINSTECH P. O. Nilore, Islamabad, Pakistan and National Centre for Physics, Islamabad (Pakistan)

2011-11-15T23:59:59.000Z

406

Capacitor Bank 'CHANDI' for Plasma Target Production for Liner Plasma Interaction  

Science Conference Proceedings (OSTI)

A capacitor bank is fabricated to drive (JXB) Plasma gun to generate hot plasma (target) for liner plasma investigation. The bank will also be used for driving other pintch experiments. The bank consists of 8 capacitors connected in parallel, each having capacitance of 178 {mu}F giving a total of 1424uF. The bank is charged at 15 kV using a 28 kV power supply charging the capacitors in 65 seconds utilizing full wave charging technique. The total energy of the bank is 160kJ at 15kV. A modeling of power supply was done so that all the components involved are utilized to their operating limit safely. Moreover to give fault protection to the capacitor bank we have implemented the neutral control technique in the power supply. The capacitor bank is discharged to the inductive load through an ignitron switch of very high coulomb rating and capable of withstanding high voltages at its electrodes. The cables used for connecting capacitor bank with ignitron switch are used in parallel to give them collective capability of bearing capacitor discharge currents. These cables are capable of holding high DC voltages (40kV), which appear at the time of charging of the bank. The bank is tested and is operational.

Shukla, R.; Sharma, S.K.; Debnath, K.; Shyam, A. [Institute for Plasma Research, Near Indira Bridge, Bhat Village, Gandhinagar Gujarat 382428 (India)

2006-01-05T23:59:59.000Z

407

Simple Coupled Midlatitude Climate Models  

Science Conference Proceedings (OSTI)

A set of simple analytical models is presented and evaluated for interannual to decadal coupled ocean–atmosphere modes at midlatitudes. The atmosphere and ocean are each in Sverdrup balance at these long timescales. The atmosphere’s temperature ...

Lynne D. Talley

1999-08-01T23:59:59.000Z

408

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating  

E-Print Network (OSTI)

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat can be melted at a time. There are three main parts to the system: chiller, power unit and vacuum unit. The vacuum unit with rotary and diffusion pumps can attain a vacuum of 106 m bar. The power can deliver

Subramaniam, Anandh

409

Plasma control and utilization  

SciTech Connect

A plasma is confined and heated by a microwave field resonant in a cavity excited in a combination of the TE and TM modes while responding to the resonant frequency of the cavity as the plasma dimensions change to maintain operation at resonance. The microwave field is elliptically or circularly polarized as to prevent the electromagnetic confining field from going to zero. A high Q chamber having superconductive walls is employed to minimize wall losses while providing for extraction of thermonuclear energy produced by fusion of nuclei in the plasma.

Ensley, Donald L. (Danville, CA)

1976-12-28T23:59:59.000Z

410

Kinetic Theory of Plasma Waves - Part III: Inhomogeneous Plasma  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

P. U. Lamalle

411

Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas  

SciTech Connect

Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.

Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL

2011-01-01T23:59:59.000Z

412

The Plasma Puddle as a Perturbative Black Hole  

E-Print Network (OSTI)

We argue that the weak coupling regime of a large N gauge theory in the Higgs phase contains black hole-like objects. These so-called ``plasma puddles'' are meta-stable lumps of hot plasma lying in locally un-Higgsed regions of space. They decay via O(1/N) thermal radiation and, perhaps surprisingly, absorb all incident matter. We show that an incident particle of energy E striking the plasma puddle will shower into an enormous number of decay products whose multiplicity grows linearly with E, and whose average energy is independent of E. Once these ultra-soft particles reach the interior they are thermalized by the plasma within, and so the object appears ``black.'' We determine some gross properties like the size and temperature of the the plasma puddle in terms of fundamental parameters in the gauge theory. Interestingly, demanding that the plasma puddle emit thermal Hawking radiation implies that the object is black (i.e. absorbs all incident particles), which implies classical stability, which implies satisfaction of the Bekenstein entropy bound. Because of the AdS/CFT duality and the many similarities between plasma puddles and black holes, we conjecture that black objects are a robust feature of quantum gravity.

Clifford Cheung; Jared Kaplan

2007-04-09T23:59:59.000Z

413

Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma  

SciTech Connect

The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

A. Dunaevsky; N.J. Fisch

2003-10-02T23:59:59.000Z

414

Cathodic Arc Plasma Deposition  

Office of Scientific and Technical Information (OSTI)

Cathodic Arc Plasma Deposition Cathodic Arc Plasma Deposition André Anders Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Mailstop 53, Berkeley, California 94720 aanders@lbl.gov Abstract Cathodic arc plasma deposition is one of oldest coatings technologies. Over the last two decades it has become the technology of choice for hard, wear resistant coatings on cutting and forming tools, corrosion resistant and decorative coatings on door knobs, shower heads, jewelry, and many other substrates. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions are reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. The

415

Fizeau plasma interferometer  

SciTech Connect

This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful. (MOW)

Frank, A.M.

1980-01-01T23:59:59.000Z

416

Plasma Screen Floating Mount  

Engineers at the Savannah River National Laboratory (SRNL) have invented a new mounting system for flat panel video technology.  The plasma screen floating mount is a mounting system proven to eliminate vibration and dampen shock for mobile uses of ...

417

Dynamic average-value modeling of doubly-fed induction generator wind energy conversion systems.  

E-Print Network (OSTI)

??In a Doubly-fed Induction Generator (DFIG) wind energy conversion system, the rotor of a wound rotor induction generator is connected to the grid via a… (more)

Shahab, Azin

2013-01-01T23:59:59.000Z

418

A finite element analysis technique for predicting as-sprayed residual stresses generated by the plasma spray coating process  

Science Conference Proceedings (OSTI)

It is essential to analyze the residual stresses during the deposition of plasma sprayed coatings since they adversely affect the coatings' performance during their service. In this article, finite element coupled heat transfer and elastic-plastic thermal ... Keywords: Finite element analysis, Heat transfer, Plasma spraying, Residual stresses, Thermal barrier coatings

H. W. Ng; Z. Gan

2005-07-01T23:59:59.000Z

419

Plasma-based accelerator structures  

SciTech Connect

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

420

Plasma Formation, Measurement and Control  

E-Print Network (OSTI)

The beauty found in looking at plasmas in the world inspires future generations of engineers and scientists While factory walls hide them from sight industrial plasmas are no less ubiquitous Cover-photo: “Another day filled with plasma, ” 26 December 1996. Multiexposure photograph of the midnight sun in Antarctica. Courtesy of Dr. Darryn A. Schneider, PhD in plasma physics. 1

Albert R. Ellingboe; Miles M. Turner

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electrostatics of moving plasma  

SciTech Connect

The stability of charge distribution over the surface of a conducting body in moving plasma is analyzed. Using a finite-width plate streamlined by a cold neutralized electron flow as an example, it is shown that an electrically neutral body can be unstable against the development of spontaneous polarization. The plasma parameters at which such instability takes place, as well as the frequency and growth rate of the fundamental mode of instability, are determined.

Ignatov, A. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2013-07-15T23:59:59.000Z

422

Oscillations in quasineutral plasmas  

Science Conference Proceedings (OSTI)

The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called {open_quotes}quasineutral regime{close_quotes} of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs.

Grenier, E. [Ecole Normale Superieure, Paris (France)

1996-12-31T23:59:59.000Z

423

Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications.

424

Current-Drive Efficiency in a Degenerate Plasma  

DOE Green Energy (OSTI)

a degenerate plasma, the rates of electron processes are much smaller than the classical model would predict, affecting the efficiencies of current generation by external non-inductive means, such as by electromagnetic radiation or intense ion beams. For electron-based mechanisms, the current-drive efficiency is higher than the classical prediction by more than a factor of 6 in a degenerate hydrogen plasma, mainly because the electron-electron collisions do not quickly slow down fast electrons. Moreover, electrons much faster than thermal speeds are more readily excited without exciting thermal electrons. In ion-based mechanisms of current drive, the efficiency is likewise enhanced due to the degeneracy effects, since the electron stopping power on slow ion beams is significantly reduced.

S. Son and N.J. Fisch

2005-11-01T23:59:59.000Z

425

Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators  

E-Print Network (OSTI)

This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for mini...

Tang, Choon Yik; Jiang, John N

2010-01-01T23:59:59.000Z

426

Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications  

SciTech Connect

Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

Aquil Ahmad

2012-08-03T23:59:59.000Z

427

"Self Cooled Recirculating Liquid Metal Plasma Facing Wall System"  

NLE Websites -- All DOE Office Websites (Extended Search)

Self Cooled Recirculating Liquid Metal Plasma Facing Wall System" Self Cooled Recirculating Liquid Metal Plasma Facing Wall System" Inventor ..--.. Richard P. Majeski Disclosed is a design for a fully axisymmetric, fast flowing liquid lithium plasma facing "wall" or surface which, in its present form, is intended for implementation in a tokamak. The design employs JxB forces to form a free-surface flow along a guide wall at the outer boundary of the plasma. The implementation of the disclosure design includes a system for recirculating the liquid metal within the volume of the toroidal field coils using inductive pumping, an approach wich allows independent energizing of the wall-forming and recirculating pumping systems, cooling of the recirculating liquid using fluid heat exchange with a molten salt,

428

Two new proofs of the test particle superposition principle of plasma kinetic theory  

SciTech Connect

The test particle superposition principle of plasma kinetic theory is discussed in relation to the recent theory of two-time fluctuations in plasma given by Williams and Oberman. Both a new deductive and a new inductive proof of the principle are presented. The fundamental observation is that two-time expectations of one-body operators are determined completely in terms of the (x,v) phase space density autocorrelation, which to lowest order in the discreteness parameter obeys the linearized Vlasov equation with singular initial condition. For the deductive proof, this equation is solved formally using time- ordered operators, and the solution then rearranged into the superposition principle. The inductive proof is simpler than Rostoker's, although similar in some ways; it differs in that first order equations for pair correlation functions need not be invoked. It is pointed out that the superposition principle is also applicable to the short-time theory of neutral fluids. (auth)

Krommes, J.A.

1975-12-01T23:59:59.000Z

429

Planar slot coupled microwave hybrid  

DOE Patents (OSTI)

A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

Petter, Jeffrey K. (Williston, VT)

1991-01-01T23:59:59.000Z

430

Quantum solitons at strong coupling  

E-Print Network (OSTI)

We examine the effect of one loop quantum corrections on the formation of nontopological solitons in a strongly coupled scalar-fermionic Yukawa theory. The exact one fermion loop contribution is incorporated by using a nonlocal method to correct the local derivative expansion approximation (DE) of the effective action. As the Yukawa coupling is increased we find that the nonlocal corrections play an increasingly important role. The corrections cause the scalar field to increase in depth while maintaining its size. This increases the energy of the bag configuration, but this is compensated for by more tightly bound fermionic states with lower energy. In contrast to the semi-classical picture without quantum corrections, the binding energy is small, and the total energy scales directly with the Yukawa coupling. This confirms the qualitative behavior found in earlier work using the second order DE, although the quantitative solutions differ.

Stewart, I W; Stewart, Iain W.; Blunden, Peter G.

1997-01-01T23:59:59.000Z

431

THE RESULTS OF TESTING TO EVALUATE CRYSTAL FORMATION AND SETTLING IN THE COLD CRUCIBLE INDUCTION MELTER  

SciTech Connect

The Cold Crucible Induction Melter (CCIM) technology offers the potential to increase waste loading for High Level Waste (HLW) glasses leading to significant improvements in waste throughput rates compared to the reference Joule Heated Melter (JHM). Prior to implementation of a CCIM in a production facility it is necessary to better understand processing constraints associated with the CCIM. The glass liquidus temperature requirement for processing in the CCIM is an open issue. Testing was conducted to evaluate crystal formation and crystal settling during processing in the CCIM to gain insight into the effects on processing. A high aluminum/high iron content glass composition with known crystal formation tendencies was selected for testing. A continuous melter test was conducted for approximately 51 hours. To evaluate crystal formation, glass samples were obtained from pours and from glass receipt canisters where the glass melt had varying residence time in the melter. Additionally, upon conclusion of the testing, glass samples from the bottom of the melter were obtained to assess the degree of crystal settling. Glass samples were characterized in an attempt to determine quantitative fractions of crystals in the glass matrix. Crystal identity and relative composition were determined using a combination of x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). Select samples were also analyzed by digesting the glass and determining the composition using inductively coupled atomic emission spectroscopy (ICP-AES). There was evidence of crystal formation (primarily spinels) in the melt and during cooling of the collected glass. There was evidence of crystal settling in the melt over the duration of the melter campaign.

Marra, J.

2009-06-30T23:59:59.000Z

432

Method and system for determining induction motor speed ...  

A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without ...

433

Induction machine stray loss from inter-bar currents  

E-Print Network (OSTI)

Stray load loss refers generally to the sources of induction machine loss not accounted for by typical calculations of primary or secondary copper loss, no load core loss, or friction and windage loss. Harmonic rotor bar ...

Englebretson, Steven Carl

2009-01-01T23:59:59.000Z

434

Towards a More Efficient Evolutionary Induction of Bayesian Networks  

Science Conference Proceedings (OSTI)

Bayesian networks (BNs) constitute a useful tool to model the joint distribution of a set of random variables of interest. This paper is concerned with the network induction problem. We propose a number of hybrid recombination operators for extracting ...

Carlos Cotta; Jorge Muruzábal

2002-09-01T23:59:59.000Z

435

A microfabricated ElectroQuasiStatic induction turbine-generator  

E-Print Network (OSTI)

An ElectroQuasiStatic (EQS) induction machine has been fabricated and has generated net electric power. A maximum power output of 192 [mu]W at 235 krpm has been measured under driven excitation of the six phases. Self ...

Steyn, J. Lodewyk (Jasper Lodewyk), 1976-

2005-01-01T23:59:59.000Z

436

Development of magnetic induction machines for micro turbo machinery  

E-Print Network (OSTI)

This thesis presents the nonlinear analysis, design, fabrication, and testing of an axial-gap magnetic induction micro machine, which is a two-phase planar motor in which the rotor is suspended above the stator via mechanical ...

KöÅŸ er, Hür, 1976-

2002-01-01T23:59:59.000Z

437

Modelling of transformations during induction hardening and tempering  

E-Print Network (OSTI)

There are many circumstances in industry where steel components are locally heated into the austenite phase field, and then quenched rapidly to produce a hardened region. Induction hardening is one such process used widely in the manufacture...

Gaude-Fugarolas, Daniel

438

Applications of the VLF Induction Method For Studying Some Volcanic  

Open Energy Info (EERE)

the VLF Induction Method For Studying Some Volcanic the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Applications Of The Vlf Induction Method For Studying Some Volcanic Processes Of Kilauea Volcano, Hawaii Details Activities (1) Areas (1) Regions (0) Abstract: The very low-frequency (VLF) induction method has found exceptional utility in studying various volcanic processes of Kilauea volcano, Hawaii because: (1) significant anomalies result exclusively from ionically conductive magma or still-hot intrusions (> 800°C) and the attendant electrolytically conductive hot groundwater; (2) basalt flows forming the bulk of Kilauea have very high resistivities at shallow depths that result in low geologic noise levels and relatively deep depths of

439

RF plasma sources for neutral-beam-injection systems. Phase I: definition study. Final report  

DOE Green Energy (OSTI)

The key design issues driving the selection of a plasma generation method are discussed. The main programmatic issue in source selection was ease of implementation on existing and planned neutral beam systems. The two source concepts selected for detailed consideration, one employing electron cyclotron heating at microwave frequencies and one employing radio frequency induction heating, are described. Preliminary RFI hydrogen discharge experiments in a geometry suitable for neutral beam system application are described.

Not Available

1981-11-01T23:59:59.000Z

440

Inductively stabilized, long pulse duration transverse discharge apparatus  

DOE Patents (OSTI)

An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high-energy, high-efficiency, long pulsed laser outputs to be obtained. The apparatus has been demonstrated with rare gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

Sze, R.C.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Inductively stabilized, long pulse duration transverse discharge apparatus  

DOE Patents (OSTI)

An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

Sze, Robert C. (Santa Fe, NM)

1986-01-01T23:59:59.000Z

442

Linear induction accelerator and pulse forming networks therefor  

DOE Green Energy (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

443

High-current pulses from inductive energy stores  

SciTech Connect

Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ.

Wipf, S.L.

1981-01-01T23:59:59.000Z

444

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

445

Electron thermal effect on linear and nonlinear coupled Shukla-Varma and convective cell modes in dust-contaminated magnetoplasma  

SciTech Connect

Linear and nonlinear properties of coupled Shukla-Varma (SV) and convective cell modes in the presence of electron thermal effects are studied in a nonuniform magnetoplasma composed of electrons, ions, and extremely massive and negatively charged immobile dust grains. In the linear case, the modified dispersion relation is given and, in the nonlinear case, stationary solutions of the nonlinear equations that govern the dynamics of coupled SV and convective cell modes are obtained. It is found that electrostatic dipolar and vortex street type solutions can appear in such a plasma. The relevance of the present investigation with regard to the Earth's mesosphere as well as in ionospheric plasmas is also pointed out.

Masood, W. [TPPD, PINSTECH, P. O. Nilore, Islamabad 44000, Pakistan and National Center for Physics (NCP), Islamabad 45320 (Pakistan); Mirza, Arshad M. [Department of Physics, Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

2010-11-15T23:59:59.000Z

446

Plasma cleaning for waste minimization  

Science Conference Proceedings (OSTI)

Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

Ward, P.P.

1993-07-01T23:59:59.000Z

447

Plasma Colloquium Travel Grant Program  

SciTech Connect

OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

Hazeltine, R.D.

1998-09-14T23:59:59.000Z

448

Power reduction control for inductive lighting installation  

SciTech Connect

A control system for continuously, selectively reducing power consumption in an inductive lighting installation energized from an A.C. power source, the installation including at least one gas discharge lamp such as a fluorescent lamp energized through any of a plurality of different types of electromagnetic ballast having different harmonic distortion characteristics, the control system is described comprising: load energizing circuit means, including a signal-actuated normally-closed primary switch, for connecting an A.C. power source to the lighting installation; a signal-actuated, normally-open secondary switch connected in parallel with the lighting installation; actuation means for generating actuation signals and applying such actuation signals to the primary and secondary switches to actuate the primary switch open and to actuate the secondary switch closed in approximate time coincidence in each half-cycle of the A.C. power; zero-crossing detector means for generating zero-crossing signals at times TX indicative of zero-voltage transitions in the A.C. power; and program means, connected to the zero-crossing detector means and to the actuation means, programming the actuation means to generate (a) power reduction actuation signals at times T1 and T2 in each half-cycle of the A.C. power, (b) a first filter actuation signal at a time T3 prior to each zero-crossing time TX, and (c) a second filter actuation signal at a time T4 following each zero-crossing time TX; the program means including a plurality of programs each establishing a set of times T1, T2, T3 and T4 for several different power reduction levels for a particular type of ballast; and selection means for selecting a program to match the ballast type of the load.

Falk, K.R.

1993-06-22T23:59:59.000Z

449

Off-resonance frequency operation for power transfer in a loosely coupled air core transformer  

DOE Patents (OSTI)

A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

Scudiere, Matthew B

2012-11-13T23:59:59.000Z

450

Perovskite catalysts for oxidative coupling  

DOE Patents (OSTI)

Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

Campbell, K.D.

1991-06-25T23:59:59.000Z

451

Orientations of two coupled molecules  

E-Print Network (OSTI)

Orientation states of two coupled polar molecules controlled by laser pulses are studied theoretically. By varying the period of a series of periodically applied laser pulse, transition from regular to chaotic behavior may occur. Schmidt decomposition is used to measure the degree of entanglement. It is found that the entanglement can be enhanced by increasing the strength of laser pulse.

Ying-Yen Liao; Yueh-Nan Chen; Der-San Chuu

2004-09-23T23:59:59.000Z

452

Modeling resource-coupled computations  

Science Conference Proceedings (OSTI)

Increasingly massive datasets produced by simulations beg the question How will we connect this data to the computational and display resources that support visualization and analysis? This question is driving research into new approaches to allocating ... Keywords: coupled computations, data intensive computing, high-performance computing, simulation

Mark Hereld; Joseph A. Insley; Eric C. Olson; Michael E. Papka; Thomas D. Uram; Venkatram Vishwanath

2009-11-01T23:59:59.000Z

453

A linear helicon plasma device with controllable magnetic field gradient  

Science Conference Proceedings (OSTI)

Current free double layers (CFDLs) are localized potential structures having spatial dimensions - Debye lengths and potential drops of more than local electron temperature across them. CFDLs do not need a current for them to be sustained and hence they differ from the current driven double layers. Helicon antenna produced plasmas in an expanded chamber along with an expanding magnetic field have shown the existence of CFDL near the expansion region. A helicon plasma device has been designed, fabricated, and installed in the Institute for Plasma Research, India to study the role of maximum magnetic field gradient as well as its location with respect to the geometrical expansion region of the chamber in CFDL formation. The special feature of this machine consisting of two chambers of different radii is its capability of producing different magnetic field gradients near the physical boundary between the two chambers either by changing current in one particular coil in the direction opposite to that in other coils and/or by varying the position of this particular coil. Although, the machine is primarily designed for CFDL experiments, it is also capable of carrying out many basic plasma physics experiments such as wave propagation, wave coupling, and plasma instabilities in a varying magnetic field topology. In this paper, we will present the details of the machine construction, its specialties, and some preliminary results about the production and characterization of helicon plasma in this machine.

Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

2012-06-15T23:59:59.000Z

454

Computational study of flow dynamics from a dc arc plasma jet  

E-Print Network (OSTI)

Plasma jets produced by direct-current (DC) non-transferred arc plasma torches, at the core of technologies ranging from spray coating to pyrolysis, present intricate dynamics due to the coupled interaction of fluid flow, thermal, and electromagnetic phenomena. The flow dynamics from an arc discharge plasma jet are investigated using time-dependent three-dimensional simulations encompassing the dynamics of the arc inside the torch, the evolution of the jet through the discharge environment, and the subsequent impingement of the jet over a flat substrate. The plasma is described by a chemical equilibrium and thermodynamic nonequilibrium (two-temperature) model. The numerical formulation of the physical model is based on a monolithic and fully-coupled treatment of the fluid and electromagnetic equations using a Variational Multiscale Finite Element Method. Simulation results uncover distinct aspects of the flow dynamics, including the jet forcing due to the movement of the electric arc, the prevalence of deviat...

Trelles, Juan Pablo

2013-01-01T23:59:59.000Z

455

Theoretical Model and Interpretation of Dense Plasma X-Ray Thomson Scattering  

Science Conference Proceedings (OSTI)

The authors present analytical expressions for the dynamic structure factor, or form factor S(k,{omega}), which is the quantity describing the inelastic x-ray cross section from a dense plasma or a simple liquid. The results, based on the random phase approximation (RPA) for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. The form factor correctly reproduces the Compton energy downshift and the usual Fermi-Dirac electron velocity distribution for S(k,{omega}) in the case of a cold degenerate plasma. the usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or inside the interior of planets.

Gregori, G; Landen, O; Hicks, D; Pasley, J; Collins, G; Celliers, P; Bastea, M; Glenzer, S

2002-04-03T23:59:59.000Z

456

Incorporating Radiation Effects into Edge Plasma Transport Models with Extended Atomic Data Tables  

DOE Green Energy (OSTI)

Plasmas at the tokamak edge can be very optically thick to hydrogen resonance lines. The resulting strong line radiation can significantly affect the ionization and energy balance in these plasmas. One method of account for effects is to self-consistently couple a partially ionized plasma transport model with a nonlocal thermodynamic equilibrium (NLTE) model incorporating line radiation transfer. This approach has been implemented in one dimension, but would be computationally challenging and expensive to implement in multiple dimensions. Approximate treatments of radiation transfer can decrease the computational time, but would still require coupling to a multidimensional plasma transport model to address realistic geometries, e.g. the tokamak divertor. Here, we consider the development of atomic hydrogen data tables that include radiation interactions and can be easily applied to multidimensional geometries.

Scott, H A; Adams, M L

2004-06-14T23:59:59.000Z

457

Perturbations in a plasma  

E-Print Network (OSTI)

The perturbations of a homogeneous non-relativistic two-component plasma are studied in the Coulomb gauge. Starting from the solution found [2] of the equations of electromagnetic self consistency in a plasma [1], we add small perturbations to all quantities involved, and we enter the perturbed quantities in the equations, keeping only the first order terms in the perturbations. Because the unperturbed quantities are solutions of the equations, they cancel each other, and we are left with a set of 12 linear equations for the 12 perturbations (unknown quantities). Then we solve this set of linearized equations, in the approximation of small ratio of the masses of electrons over those of ions, and under the assumption that the plasma remains homogeneous.

Evangelos Chaliasos

2005-10-20T23:59:59.000Z

458

Furth Plasma Physics Libary  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Hours Online Access Directions Contacts Hours Online Access Directions QuickFind Main Catalog Databases PPPL Publications & Reports/PPLcat Plasma Physics E-Journals clear Click arrows to scroll for more clear Plasma Physics Colloquia The Global Carbon Cycle and Earth's Climate - January 15, 2014 Addressing Big Data Challenges in Simulation-based Science - January 22, 2014 "The Usefulness of Useless Knowledge?: The History of the Institute for Advanced Study - January 29, 2014 PM-S-1 PDF PM-S-2 PDF PM-S-3 PDF PM-S-4 PDF PM-S-5 PDF PM-S-6 PDF See All Library History Intro 950 1960-1970 1980 1990 2000 Quick Order Article Express Borrow Direct Interlibrary Loan PPL Book Request More Resources and Services Search & Find Articles & Databases - Plasma Physics, Physics, Engineering & Technology,

459

Backstepping controller for Doubly Fed Induction Motor with bi-directional  

E-Print Network (OSTI)

studies focused in the study of wind energy conversion systems using doubly fed induction generator (DFIG

Paris-Sud XI, Université de

460

Fixed and variable speed induction generators for real power loss minimization  

Science Conference Proceedings (OSTI)

The application of induction generators in the wind power industry is standard practice. An induction generator draws reactive power from the network depending on its real power output, such that the greater the real power exported to the network, the ... Keywords: doubly- fed induction generator, induction generator, line loss, reactive power

S. Durairaj; D. Flynn; B. Fox

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Rotating Plasma Finding is Key for ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Finding is Key for ITER Rotating Plasma Finding is Key for ITER PlasmaTurbulenceCSChang.png Tokamak turbulence showing inward-propagating streamers from normalized...