Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mobile inductively coupled plasma system  

DOE Patents [OSTI]

A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

D'Silva, Arthur P. (Ames, IA); Jaselskis, Edward J. (Ames, IA)

1999-03-30T23:59:59.000Z

2

Mobile inductively coupled plasma system  

DOE Patents [OSTI]

A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

D`Silva, A.P.; Jaselskis, E.J.

1999-03-30T23:59:59.000Z

3

Plasma abatement of perfluorocompounds in inductively coupled plasma reactors  

E-Print Network [OSTI]

Plasma abatement of perfluorocompounds in inductively coupled plasma reactors Xudong ``Peter'' Xu burn-boxes located downstream of the plasma chamber has been proposed as a method for abating PFC emissions with the goals of reducing the cost of PFC abatement and avoiding the NOx formation usually found

Kushner, Mark

4

Miniaturization of Inductively Coupled Plasma Sources Y. Yin, J. Messier, and J. Hopwood  

E-Print Network [OSTI]

Miniaturization of Inductively Coupled Plasma Sources Y. Yin, J. Messier, and J. Hopwood Department associated with the miniaturization of planar inductively coupled plasmas (ICPs) are investigated" unless the plasma dimensions are determined more precisely by subtracting the sheath width from

5

Method of processing materials using an inductively coupled plasma  

DOE Patents [OSTI]

A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

Hull, D.E.; Bieniewski, T.M.

1987-04-13T23:59:59.000Z

6

Inductively coupled plasma torch with laminar flow cooling  

DOE Patents [OSTI]

An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

Rayson, Gary D. (Las Cruces, NM); Shen, Yang (Las Cruces, NM)

1991-04-30T23:59:59.000Z

7

Electron energy distributions in a magnetized inductively coupled plasma  

SciTech Connect (OSTI)

Optimizing and controlling electron energy distributions (EEDs) is a continuing goal in plasma materials processing as EEDs determine the rate coefficients for electron impact processes. There are many strategies to customize EEDs in low pressure inductively coupled plasmas (ICPs), for example, pulsing and choice of frequency, to produce the desired plasma properties. Recent experiments have shown that EEDs in low pressure ICPs can be manipulated through the use of static magnetic fields of sufficient magnitudes to magnetize the electrons and confine them to the electromagnetic skin depth. The EED is then a function of the local magnetic field as opposed to having non-local properties in the absence of the magnetic field. In this paper, EEDs in a magnetized inductively coupled plasma (mICP) sustained in Ar are discussed with results from a two-dimensional plasma hydrodynamics model. Results are compared with experimental measurements. We found that the character of the EED transitions from non-local to local with application of the static magnetic field. The reduction in cross-field mobility increases local electron heating in the skin depth and decreases the transport of these hot electrons to larger radii. The tail of the EED is therefore enhanced in the skin depth and depressed at large radii. Plasmas densities are non-monotonic with increasing pressure with the external magnetic field due to transitions between local and non-local kinetics.

Song, Sang-Heon, E-mail: ssongs@umich.edu, E-mail: Sang-Heon.Song@us.tel.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2104 (United States); Yang, Yang, E-mail: yang-yang@amat.com [Applied Materials Inc., 974 E. Arques Avenue, M/S 81312, Sunnyvale, California 94085 (United States); Chabert, Pascal, E-mail: pascal.chabert@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

2014-09-15T23:59:59.000Z

8

Thin film coating process using an inductively coupled plasma  

DOE Patents [OSTI]

Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

Kniseley, Richard N. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Merkle, Brian D. (Ames, IA)

1990-01-30T23:59:59.000Z

9

A Microfabricated Inductively-Coupled Plasma Generator Department of Electrical and Computer Engineering,  

E-Print Network [OSTI]

of the supplied power. This mechanism of RF plasma generation is referred to as capacitive coupling. Electrodeless generation7 . The inductively-coupled plasma (ICP) is one type of electrodeless discharge that is now widelyA Microfabricated Inductively-Coupled Plasma Generator J. Hopwood Department of Electrical

10

Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry  

SciTech Connect (OSTI)

Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

2009-11-01T23:59:59.000Z

11

Matrix effects in inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

Chen, Xiaoshan

1995-07-07T23:59:59.000Z

12

Effect of capacitive coupling in a miniature inductively coupled plasma source  

SciTech Connect (OSTI)

Two-dimensional axisymmetric particle-in-cell simulations with a Monte Carlo collision algorithm (PIC-MCC) have been conducted to investigate the effect of capacitive coupling in a miniature inductively coupled plasma source (mICP) by using two models: an inductive model and a hybrid model. The mICP is 3 mm in radius and 6 mm in height with a three-turn planar coil, where argon plasma is sustained. In the inductive model, the coil is assumed to be electrostatically shielded, and thus the discharge is purely inductive coupling. In the hybrid model, we assume that the different turns of the coil act like electrodes in capacitive discharge to include the effect of capacitive coupling. The voltage applied to these electrodes decreases linearly from the powered end of the coil towards the grounded end. The numerical analysis has been performed for rf frequencies in the range of 100-1000 MHz, and the power absorbed by the plasma in the range of 5-50 mW at a fixed pressure of 500 mTorr. The PIC-MCC results show that potential oscillations at the plasma-dielectric interface are not negligible, and thus the major component of the absorbed power is caused by the axial motion of electrons in the hybrid model, although almost all of the power absorption is due to the azimuthal motion of electrons in the inductive model. The effect of capacitive coupling is more significant at lower rf frequencies and at higher absorbed powers under the calculation conditions examined. Moreover, much less coil currents are required in the hybrid model.

Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2012-11-01T23:59:59.000Z

13

Direct Simulation Monte Carlo of Inductively Coupled Plasma and Comparison with Experiments  

E-Print Network [OSTI]

Direct Simulation Monte Carlo of Inductively Coupled Plasma and Comparison with Experiments Justine of Chemical Engineering, University of Houston, Houston, Texas 77204-4 792, USA ABSTRACT Direct simulation-density inductively coupled reactor with chlorine (electronegative) chemistry. Electron density and temperature were

Economou, Demetre J.

14

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network [OSTI]

Plasma Diagnostics and Plasma-Surface Interactions inLieberman Spring 2010 Plasma Diagnostics and Plasma-SurfaceJoy Titus Abstract Plasma Diagnostics and Plasma-Surface

Titus, Monica Joy

2010-01-01T23:59:59.000Z

15

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network [OSTI]

intensities for pure Ar plasmas focus on the dominant 104.8emitted from pure A r plasmas focus on the intensities ofdissertation work focuses on plasma and wafer diagnostics as

Titus, Monica Joy

2010-01-01T23:59:59.000Z

16

Reduced electron temperature in a magnetized inductively-coupled plasma with internal coil  

SciTech Connect (OSTI)

The effect of magnetic filtering on the electron energy distribution function is studied in an inductive discharge with internal coil coupling. The coil is placed inside the plasma and driven by a low-frequency power supply (5.8 MHz) which leads to a very high power transfer efficiency. A permanent dipole magnet may be placed inside the internal coil to produce a static magnetic field around 100 Gauss. The coil and the matching system are designed to minimize the capacitive coupling to the plasma. Capacitive coupling is quantified by measuring the radiofrequency (rf) plasma potential with a capacitive probe. Without the permanent magnet, the rf plasma potential is significantly smaller than the electron temperature. When the magnet is present, the rf plasma potential increases. The electron energy distribution function is measured as a function of space with and without the permanent magnet. When the magnet is present, electrons are cooled down to low temperature in the downstream region. This region of low electron temperature may be useful for plasma processing applications, as well as for efficient negative ion production.

Arancibia Monreal, J.; Chabert, P. [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France)] [LPP, CNRS, Ecole Polytechnique, UPMC, Paris XI, 91128 Palaiseau (France); Godyak, V. [RF Plasma Consulting, Brookline, Massachusetts 02446 (United States) [RF Plasma Consulting, Brookline, Massachusetts 02446 (United States); Michigan Institute for Plasma Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2013-10-15T23:59:59.000Z

17

Optical emission spectroscopy and Langmuir probe diagnostics of CH3F/O2 inductively coupled plasmas  

E-Print Network [OSTI]

Optical emission spectroscopy and Langmuir probe diagnostics of CH3F/O2 inductively coupled plasmas Erdinc Karakas, Vincent M. Donnelly,a) and Demetre J. Economoub) Plasma Processing Laboratory, Department discharge, sustained in a compact plasma reactor, was investigated as a function of power (20­400 W

Economou, Demetre J.

18

Double layer formation in the expanding region of an inductively coupled electronegative plasma  

E-Print Network [OSTI]

Double-layers (DLs) were observed in the expanding region of an inductively coupled plasma with $\\text{Ar}/\\text{SF}\\_6$ gas mixtures. No DL was observed in pure argon or $\\text{SF}\\_6$ fractions below few percent. They exist over a wide range of power and pressure although they are only stable for a small window of electronegativity (typically between 8\\% and 13\\% of $\\text{SF}\\_6$ at 1mTorr), becoming unstable at higher electronegativity. They seem to be formed at the boundary between the source tube and the diffusion chamber and act as an internal boundary (the amplitude being roughly 1.5$\\frac{kT\\_e}{e}$)between a high electron density, high electron temperature, low electronegativity plasma upstream (in the source), and a low electron density, low electron temperature, high electronegativity plasma downstream.

Plihon, N; Chabert, P

2015-01-01T23:59:59.000Z

19

On anomalous temporal evolution of gas pressure in inductively coupled plasma  

SciTech Connect (OSTI)

The temporal measurement of gas pressure in inductive coupled plasma revealed that there is an interesting anomalous evolution of gas pressure in the early stage of plasma ignition and extinction: a sudden gas pressure change and its relaxation of which time scales are about a few seconds and a few tens of second, respectively, were observed after plasma ignition and extinction. This phenomenon can be understood as a combined result between the neutral heating effect induced by plasma and the pressure relaxation effect for new gas temperature. The temporal measurement of gas temperature by laser Rayleigh scattering and the time dependant calculations for the neutral heating and pressure relaxation are in good agreement with our experimental results. This result and physics behind are expected to provide a new operational perspective of the recent plasma processes of which time is very short, such as a plasma enhanced atomic layer deposition/etching, a soft etch for disposal of residual by-products on wafer, and light oxidation process in semiconductor manufacturing.

Seo, B. H.; Chang, H. Y. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J.; Kim, J. H.; Seong, D. J. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of)] [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of)

2013-04-01T23:59:59.000Z

20

Low-frequency, self-sustained oscillations in inductively coupled plasmas used for optical pumping  

SciTech Connect (OSTI)

We have investigated very low frequency, on the order of one hertz, self-pulsing in alkali-metal inductively-coupled plasmas (i.e., rf-discharge lamps). This self-pulsing has the potential to significantly vary signal-to-noise ratios and (via the ac-Stark shift) resonant frequencies in optically pumped atomic clocks and magnetometers (e.g., the atomic clocks now flying on GPS and Galileo global navigation system satellites). The phenomenon arises from a nonlinear interaction between the atomic physics of radiation trapping and the plasma's electrical nature. To explain the effect, we have developed an evaporation/condensation theory (EC theory) of the self-pulsing phenomenon.

Coffer, J.; Encalada, N.; Huang, M.; Camparo, J. [Physical Sciences Laboratories, The Aerospace Corporation 2310, E. El Segundo Blvd., El Segundo, California 90245 (United States)

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry  

DOE Patents [OSTI]

A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

Chan, George C. Y. (Bloomington, IN); Hieftje, Gary M. (Bloomington, IN)

2010-08-03T23:59:59.000Z

22

Standard test method for isotopic abundance analysis of uranium hexa?uoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry  

E-Print Network [OSTI]

Standard test method for isotopic abundance analysis of uranium hexa?uoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

23

Induction plasma tube  

DOE Patents [OSTI]

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, D.E.

1982-07-02T23:59:59.000Z

24

Induction plasma tube  

DOE Patents [OSTI]

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, Donald E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

25

Comparison of various interpretation methods of the electric probe measurements in inductively coupled Ar and O{sub 2} plasmas  

SciTech Connect (OSTI)

In low-pressure inductively coupled argon and oxygen discharges, the plasma density and electron temperature and the electron energy distribution function (EEDF) were obtained by using a cylindrical electric probe. The plasma densities were determined by various methods to interpret the probe current-voltage characteristic curve: the EEDF integration, the electron saturation current, the ion current at the floating potential, and the orbital-motion-limited (OML) ion current. Quite a good agreement exists between the plasma densities determined by various classical methods. Although the probe technique has some limitation in electronegative plasmas, the plasma densities determined from OML theory compare well with those measured by the ion saturation current at the floating potential in the oxygen discharges. In addition, the EEDFs of inductively coupled Ar and oxygen plasmas are observed to be nearly Maxwellian at the pressure range of 1-40 mTorr.

Woo Seo, Min; Keun Bae, Min; Chung, T. H., E-mail: thchung@dau.ac.kr [Department of Physics, Dong-A University, Busan 604-714 (Korea, Republic of)

2014-02-15T23:59:59.000Z

26

Measurement of lanthanum and technetium in uranium fuels by inductively coupled plasma atomic emission spectroscopy.  

SciTech Connect (OSTI)

An important parameter in characterizing an irradiated nuclear fuel is determining the amount of uranium fissioned. By determining the amount of uranium fissioned in the fuel a burnup performance parameter can be calculated, and the amount of fission products left in the fuel can be predicted. The quantity of uranium fissioned can be calculated from the amount of lanthanum and technetium present in the fuel. Lanthanum and technetium were measured in irradiated fuel samples using an Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) instrument and separation equipment located in a shielded glove-box. A discussion of the method, interferences, detection limits, quality control and a comparison to other work will be presented.

Carney, K.; Crane, P.; Cummings, D.; Krsul, J.; McKnight, R.

1999-06-10T23:59:59.000Z

27

Anisotropic Ta{sub 2}O{sub 5} waveguide etching using inductively coupled plasma etching  

SciTech Connect (OSTI)

Smooth and vertical sidewall profiles are required to create low loss rib and ridge waveguides for integrated optical device and solid state laser applications. In this work, inductively coupled plasma (ICP) etching processes are developed to produce high quality low loss tantalum pentoxide (Ta{sub 2}O{sub 5}) waveguides. A mixture of C{sub 4}F{sub 8} and O{sub 2} gas are used in combination with chromium (Cr) hard mask for this purpose. In this paper, the authors make a detailed investigation of the etch process parameter window. Effects of process parameters such as ICP power, platen power, gas flow, and chamber pressure on etch rate and sidewall slope angle are investigated. Chamber pressure is found to be a particularly important factor, which can be used to tune the sidewall slope angle and so prevent undercut.

Muttalib, Muhammad Firdaus A., E-mail: mfam1g08@ecs.soton.ac.uk; Chen, Ruiqi Y.; Pearce, Stuart J.; Charlton, Martin D. B. [Nano Research Group, Electronics and Computer Science, Faculty of Physical and Applied Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

2014-07-01T23:59:59.000Z

28

Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma  

SciTech Connect (OSTI)

Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

DeKalb, E.L. and Edelson, M. C.

1987-08-01T23:59:59.000Z

29

Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy  

SciTech Connect (OSTI)

Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

2009-03-29T23:59:59.000Z

30

Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System  

SciTech Connect (OSTI)

Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunction bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.

Abernathy, C.R.; Hobson, W.S.; Hong, J.; Lambers, E.S.; Pearton, S.J.; Shul, R.J.

1998-11-04T23:59:59.000Z

31

Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry  

SciTech Connect (OSTI)

This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

Ebert, Christopher Hysjulien [Ames Laboratory

2012-07-27T23:59:59.000Z

32

Radical kinetics in an inductively-coupled plasma in CF4  

SciTech Connect (OSTI)

Radiofrequency discharges in low pressure fluorocarbon gases are used for anisotropic and selective etching of dielectric materials (SiO2 and derivatives), a key step in the manufacture of integrated circuits. Plasmas in these gases are capable not only of etching, but also of depositing fluorocarbon films, depending on a number of factors including the ion bombardment energy, the gas composition and the surface temperature: this behavior is indeed responsible for etch selectivity between materials and plays a role in achieving the desired etched feature profiles. Free radical species, such as CFx and fluorine atoms, play important but complex roles in these processes. We have used laser-induced fluorescence (LIF), with time and space resolution in pulsed plasmas, to elucidate the kinetics of CF and CF2 radicals, elucidating their creation, destruction and transport mechanisms within the reactor. Whereas more complex gas mixtures are used in industrial processes, study of the relatively simple system of a pure CF4 plasma is more appropriate for the study of mechanisms. Previously the technique was applied to the study of single-frequency capacitively-coupled 'reactive ion etching' reactors, where the substrate (placed on the powered electrode) is always bombarded with high-energy CF{sub x}{sup +} ions. In this case it was found that the major source of CFx free radicals was neutralization, dissociation and backscattering of these incident ions, rather than direct dissociation of the feedstock gas. Subsequently, an inductively-coupled plasma (ICP) in pure CF4 was studied. This system has a higher plasma density, leading to higher gas dissociation, whereas the energy of ions striking the reactor surfaces is much lower (in the absence of additional RF biasing). The LIF technique also allows the gas temperature to be measured with good spatial and temporal resolution. This showed large gas temperature gradients within the ICP reactor, which must be taken into account in reactive species transport. In the ICP reactor we saw significant production of CF and CF2 radicals at the reactor top and bottom surfaces, at rates that cannot be explained by the neutralization of incident CF{sub x}{sup +} ions. These two species are also lost at very high rates in the gas phase. We postulate that these two phenomena are caused by electron-impact excitation of these radicals into low-lying metastable levels. The metastable molecules produced (that are invisible to LIF) diffuse to the reactor walls where they are quenched back to their ground state. In the afterglow the gas cools rapidly and contracts, causing gas convection. Whereas the density of the more reactive species decays monotonically in the afterglow, the density of CF2 initially increases. This is partly due to the gas contraction, bringing back CF2 (which is a relatively stable species) from the outer regions of the reactor, and partly due to chemical reactions producing CF2, as it is more thermodynamically stable than the other radical species such as CF and CF3.

Booth, J.P.; Abada, H.; Chabert, P. [Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, 91128 Palaiseau (France); Graves, D.B. [Dept. of Chemical Engineering, University of California, Berkeley, California 94720 (United States)

2004-12-01T23:59:59.000Z

33

Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

Niu, Hongsen

1995-02-10T23:59:59.000Z

34

Multi-Collector Inductively Coupled Plasma Mass Spectrometer – Operational Performance Report  

SciTech Connect (OSTI)

The INL made an assessment of the commercially available inductively coupled plasma mass spectrometers (ICPMS) for actinide analysis; emphasizing low detection limits for plutonium. INL scientists subsequently determined if plutonium was present on a swipe, at a 10 million atom decision level. This report describes the evaluation of ICPMS instruments and the operational testing of a new process for the dissolution, separation and analysis via ICPMS of swipes for plutonium and uranium. The swipe dissolution, plutonium and uranium isolation, separation and purification are wet chemistry methods following established procedures. The ICPMS is a commercially available multi-collector magnetic sector mass spectrometer that utilizes five ion counting detectors operating simultaneously. The instrument includes a sample introduction system allowing for sample volumes of < 1 mL to be reproducibly injected into the instrument with minimal waste of the sample solution, while maximizing the useable signal. The performance of the instrument was measured using SRM 996 (244Pu spike) at concentrations of 12 parts per quadrillion (ppq, fg/mL) and with SRM 4350B Columbia River Sediment samples spiked onto swipes at the 10 million atom level. The measured limit of detection (LOD, defined as 3s) for 239Pu is 310,000 atoms based upon the instrument blank data. The limit of quantification (LOQ defined as 10 s) for 239Pu is 105,000 atoms. The measured limit of detection for 239Pu from the SRM 4350B spiked onto a swipe was 2.7 million atoms with the limit of quantification being 9.0 million atoms.

Matthew Watrous; Anthony Appelhans; Robert Hague; John Olson; Tracy Houghton

2013-06-01T23:59:59.000Z

35

The PERC{trademark} process: Existing and potential applications for induction coupled plasma technology in hazardous and radioactive waste treatment  

SciTech Connect (OSTI)

Plasma Technology, Inc. (PTI), a Santa Fe, New Mexico corporation has developed the Plasma Energy Recycle and Conversion (PERC){trademark} treatment process as a safe and environmentally clean alternative to conventional thermal destruction technologies. The PERC{trademark} treatment process uses as its heat source an advanced Induction Coupled Plasma (ICP) torch connected to a reaction chamber system with an additional emission control system. For example, organic-based gas, liquid, slurry, and/or solid waste streams can be converted into usable or even salable products while residual emissions are reduced to an absolute minimum. In applications for treatment of hazardous and radioactive waste streams, the PERC system could be used for destruction of the hazardous organic constituents and/or significant waste volume reduction while capturing the radioactive fraction in a non-leachable form. Like Direct Current (DC) and Alternating Current (AC) arc plasma systems, ICP torches offer sufficient energy to decompose, melt and/or vitrify any waste stream. The decision for an arc plasma or an IC plasma system has to be made on a case by case evaluation and is highly dependent on the specific waste stream`s form and composition. Induction coupled plasma technology offers one simple, but significant difference compared to DC or AC arc plasma systems: the ICP torch is electrodeless. To date, enormous research effort has been spent to improve the lifetime of electrodes and the effectiveness of related cooling systems. Arc plasma systems are established in research laboratories worldwide and are approaching a broad use in commercial applications. ICP technology has been improved relatively recently, but nowadays offers complete new and beneficial approaches in the field of waste conversion and treatment.

Blutke, A.S.; Vavruska, J.S.; Serino, J.F. [Plasma Technology, Inc., Santa Fe, NM (United States)

1996-12-31T23:59:59.000Z

36

{sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)  

SciTech Connect (OSTI)

A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

Lewis, L.A.

1998-05-01T23:59:59.000Z

37

Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach  

SciTech Connect (OSTI)

Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (?100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29, GIDC, Sector-25, Gandhinagar, Gujarat 382 025 (India)] [ITER-India, Institute for Plasma Research, A-29, GIDC, Sector-25, Gandhinagar, Gujarat 382 025 (India); Kraus, W. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, 85740 Garching (Germany)] [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, 85740 Garching (Germany); Gahlaut, A.; Bansal, G. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382 428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382 428 (India)

2014-01-15T23:59:59.000Z

38

Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

Vacri, M. L. di; Nisi, S.; Balata, M. [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)] [Gran Sasso National Laboratory, Chemistry Service, SS 17bis km 18.910, 67100 Assergi (Aq) (Italy)

2013-08-08T23:59:59.000Z

39

Modeling of inductively coupled plasma SF{sub 6}/O{sub 2}/Ar plasma discharge: Effect of O{sub 2} on the plasma kinetic properties  

SciTech Connect (OSTI)

A global model has been developed for low-pressure, inductively coupled plasma (ICP) SF{sub 6}/O{sub 2}/Ar mixtures. This model is based on a set of mass balance equations for all the considered species, coupled with the discharge power balance equation and the charge neutrality condition. The present study is an extension of the kinetic global model previously developed for SF{sub 6}/Ar ICP plasma discharges [Lallement et al., Plasma Sources Sci. Technol. 18, 025001 (2009)]. It is focused on the study of the impact of the O{sub 2} addition to the SF{sub 6}/Ar gas mixture on the plasma kinetic properties. The simulation results show that the electron density increases with the %O{sub 2}, which is due to the decrease of the plasma electronegativity, while the electron temperature is almost constant in our pressure range. The density evolutions of atomic fluorine and oxygen versus %O{sub 2} have been analyzed. Those atomic radicals play an important role in the silicon etching process. The atomic fluorine density increases from 0 up to 40% O{sub 2} where it reaches a maximum. This is due to the enhancement of the SF{sub 6} dissociation processes and the production of fluorine through the reactions between SF{sub x} and O. This trend is experimentally confirmed. On the other hand, the simulation results show that O(3p) is the preponderant atomic oxygen. Its density increases with %O{sub 2} until reaching a maximum at almost 40% O{sub 2}. Over this value, its diminution with O{sub 2}% can be justified by the high increase in the loss frequency of O(3p) by electronic impact in comparison to its production frequency by electronic impact with O{sub 2}.

Pateau, Amand [Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssiniére 44322 Nantes, France and ST Microelectronics, 10 rue Thals de Milet, 37071 Tours (France); Rhallabi, Ahmed, E-mail: ahmed.rhallabi@univ-nantes.fr; Fernandez, Marie-Claude [Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssiniére 44322 Nantes (France); Boufnichel, Mohamed; Roqueta, Fabrice [ST Microelectronics, 10 rue Thales de Milet, 37071 Tours (France)

2014-03-15T23:59:59.000Z

40

Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk  

SciTech Connect (OSTI)

By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

Amad, Ma'an Hazem

1999-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application  

SciTech Connect (OSTI)

The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (T{sub e}) and ion flux (J{sub ion}) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring T{sub e} and J{sub ion} for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

Lee, J. H.; Kim, M. J. [Department of Materials Science and Engineering, University of Texas at Dallas, Texas 75080 (United States); Yoon, Y. S. [Department of Electrical Engineering, University of Texas at Dallas, Texas 75080 (United States)

2013-04-15T23:59:59.000Z

42

Etching characteristics of high-k dielectric HfO{sub 2} thin films in inductively coupled fluorocarbon plasmas  

SciTech Connect (OSTI)

Inductively coupled fluorocarbon (CF{sub 4}/Ar and C{sub 4}F{sub 8}/Ar) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} in CF{sub 4}/Ar plasmas exceeded those in C{sub 4}F{sub 8}/Ar plasmas. The tendency for etch rates to become higher in fluorine-rich (high F/C ratio) conditions indicates that HfO{sub 2} can be chemically etched by fluorine-containing species. In C{sub 4}F{sub 8}/Ar plasmas with a high Ar dilution ratio, the etch rate of HfO{sub 2} increased with increasing bias power. The etch rate of Si, however, decreased with bias power, suggesting that the deposition of carbon-containing species increased with increasing the power and inhibited the etching of Si. The HfO{sub 2}/Si selectivity monotonically increased with increasing power, then became more than 5 at the highest tested bias power. The carbon-containing species to inhibit etching of Si play an important role in enhancing the HfO{sub 2}/Si selectivity in C{sub 4}F{sub 8}/Ar plasmas.

Takahashi, Kazuo; Ono, Kouichi; Setsuhara, Yuichi [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2005-11-15T23:59:59.000Z

43

Determination of platinum and palladium in geologic samples by ion exchange chromatography with inductively coupled plasma atomic emission spectrometric detection  

SciTech Connect (OSTI)

An alternative procedure to the classical fire assay method for determining Pt and Pd in sulfide ores, concentrates, and furnace mattes is presented. A suitable amount of sample is digested with aqua regla and filtered and any remaining gangue is digested with a mixture of HF and HClO/sub 4/. The solution is filtered and the residue fused with sodium peroxide granules. The fused salts are dissolved in a dilute HCl acid solution and all three solutions combined. The resultant solution is passed through a Bio-Rad AG 50W-X8 cation exchange resin in the H/sup +/ form. The chlorocomplex anions of Pt and Pd are not retained by the cation exchange resin while the base metal cations are efficiently removed from the eluent. Pt and Pd concentrations are subsequently determined with an inductively coupled plasma (ICP). Preliminary experiments showing the method's potential expandability to Au are included.

Brown, R.J.; Biggs, W.R.

1984-04-01T23:59:59.000Z

44

Cl{sub 2}-based dry etching of the AlGaInN system in inductively coupled plasmas  

SciTech Connect (OSTI)

Cl{sub 2}-based Inductively Coupled Plasmas with low additional dc self- biases(-100V) produce convenient etch rates(500-1500 A /min) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas(Ar, N{sub 2}, H{sub 2}), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl{sub 2} in the discharge for all three mixtures, and to have an increase(decrease) in etch rate with source power(pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

Cho, Hyun; Vartuli, C.B.; Abernathy, C.R.; Donovan, S.M.; Pearton, S.J. [Florida Univ., Gainesville, FL (United States). Dept. of Materials Science and Engineering; Shul, R.J.; Han, J. [Sandia National Labs., NM (United States)

1997-12-01T23:59:59.000Z

45

Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment  

SciTech Connect (OSTI)

An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H{sub 2}O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

Huang, Hsin-Wei; Chang, Wen-Chih; Lin, Su-Jien; Chueh, Yu-Lun [Department of Materials Science Engineering and Center For Nanotechnology, Material Science, and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2012-12-15T23:59:59.000Z

46

Radio frequency-power and the ring-mode to red-mode transition in an inductively coupled plasma  

SciTech Connect (OSTI)

The optical output of an alkali-metal inductively coupled plasma (alkali-ICP) plays an important role in both atomic magnetometers and atomic clocks, producing these devices' atomic signals through optical pumping. Unfortunately, though the alkali-ICP's optical pumping efficiency grows exponentially with temperature, at relatively high temperatures ({approx}140 deg. C) the discharge transitions from ''ring mode'' to ''red mode'', which is a spectral change in the plasma's output that corresponds broadly to a transition from ''good emission'' for optical pumping to ''poor emission.'' Recently, evidence has accumulated pointing to radiation trapping as the mechanism driving the ring-mode to red-mode transition, suggesting that the phenomenon is primarily linked to the alkali vapor's temperature. However, observations of the transition made in the 1960 s, demonstrating that the ICP temperature associated with the transition depended on rf-power, would appear to cast doubt on this mechanism. Here, we carefully investigate the influence of rf-power on the ring-mode to red-mode transition, finding that rf-power only affects the transition through discharge heating. Thus, the present work shows that the primary effect of rf-power on the ring-mode to red-mode transition can be understood in terms of the radiation trapping mechanism.

Coffer, J. G.; Camparo, J. C. [Physical Sciences Laboratories, The Aerospace Corporation, P.O. Box 92957, Los Angeles, California 90009 (United States)

2012-04-15T23:59:59.000Z

47

Etching kinetics and surface roughening of polysilicon and dielectric materials in inductively coupled plasma beams  

E-Print Network [OSTI]

Plasma etching processes often roughen the feature sidewalls forming anisotropic striations. A clear understanding of the origin and control of sidewall roughening is extremely desirable, particularly at the gate level ...

Yin, Yunpeng, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

48

Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry  

E-Print Network [OSTI]

1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

49

DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY  

SciTech Connect (OSTI)

A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

Maxwell, S.

2010-07-26T23:59:59.000Z

50

RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY  

SciTech Connect (OSTI)

A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

2010-06-23T23:59:59.000Z

51

The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering Purdue University, West Lafayette, Indiana 47907 (United States); Kulkarni, P. [Centers for Disease Control and Prevention, National Institute of Occupational Safety and Health, Cincinnati, Ohio 45213 (United States)

2013-07-14T23:59:59.000Z

52

Characterization of a Sealed Americium-Beryllium (AmBe) Source by Inductively Coupled Plasma Mass Spectrometry  

SciTech Connect (OSTI)

Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as “age” since purification, actinide content, trace metal content and inter and intra source composition were determined. The “age” since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic errors in the “age” determination were ± 4 % 2s. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n=8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n=3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52 % (1s). Source 2 had an Am-Be ratio of 9.81 ± 3.5 % (1s). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Source 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W.

James Sommers; Marcos Jimenez; Mary Adamic; Jeffrey Giglio; Kevin Carney

2009-12-01T23:59:59.000Z

53

Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)  

SciTech Connect (OSTI)

99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samples and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.

Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.; Farmer, Orville T.

2006-05-09T23:59:59.000Z

54

RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH  

SciTech Connect (OSTI)

A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.

Maxwell, S.; Jones, V.

2009-05-27T23:59:59.000Z

55

A self-consistent global model of solenoidal-type inductively coupled plasma discharges including the effects of radio-frequency bias power  

SciTech Connect (OSTI)

We developed a self-consistent global simulator of solenoidal-type inductively coupled plasma discharges and observed the effect of the radio-frequency (rf) bias power on the plasma density and the electron temperature. We numerically solved a set of spatially averaged fluid equations for charged particles, neutrals, and radicals. Absorbed power by electrons is determined by using an analytic electron heating model including the anomalous skin effect. To analyze the effects of rf bias power on the plasma properties, our model also combines the electron heating and global transport modules with an rf sheath module in a self-consistent manner. The simulation results are compared with numerical results by using the commercial software package cfd-ace + (ESI group) and experimental measurements by using a wave cutoff probe and a single Langmuir probe.

Kwon, D. C.; Chang, W. S.; Song, M. Y.; Yoon, J.-S. [Convergence Plasma Research Center, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, M. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, D. H. [Kyoungwon Tech, Inc., Seongnam 462-806 (Korea, Republic of); You, S. J. [Center for Vacuum Technology, Korea Research Institute of Standard and Science, Daejeon 305-340 (Korea, Republic of); Im, Y. H. [Division of Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2011-04-01T23:59:59.000Z

56

Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry  

SciTech Connect (OSTI)

Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

Perdian, David C.

2009-08-19T23:59:59.000Z

57

Feedback control of HfO{sub 2} etch processing in inductively coupled Cl{sub 2}/N{sub 2}/Ar plasmas  

SciTech Connect (OSTI)

The etch rate of HfO{sub 2} etch processing has been feedback controlled in inductively coupled Cl{sub 2}/N{sub 2}/Ar plasmas. The ion current and the root mean square rf voltage on the wafer stage, which are measured using a commercial impedance meter connected to the wafer stage, are chosen as controlled variables because the positive-ion flux and ion energy incident upon the wafer surface are the key factors that determine the etch rate. Two 13.56 MHz rf generators are used to adjust the inductively coupled plasma power and bias power which control ion density and ion energy, respectively. The adopted HfO{sub 2} etch processing used rather low rf voltage. The ion-current value obtained by the power/voltage method is underestimated, so the neural-network model was developed to assist estimating the correct ion-current value. The experimental results show that the etch-rate variation of the closed-loop control is smaller than that of the open-loop control. However, the first wafer effect cannot be eliminated using closed-loop control and thus to achieve a constant etch rate, the chamber-conditioning procedure is required in this etch processing.

Lin Chaung; Leou, K.-C.; Li, T.-C.; Lee, L.-S.; Tzeng, P.-J. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Electronic Research and Service Organization, Industrial Technology Research Institute, Hsinchu, Taiwan 310 (China)

2008-09-15T23:59:59.000Z

58

Influence of the reactor wall composition on radicals' densities and total pressure in Cl{sub 2} inductively coupled plasmas: I. Without silicon etching  

SciTech Connect (OSTI)

Laser absorption at 355 nm is used to monitor the time variations of the Cl{sub 2} density in high-density industrial inductively coupled plasma. This technique is combined with the measurement of the gas temperature from the Doppler width of the 811.5 nm line of argon, added as a trace gas and with the measurement of the total gas pressure with a Baratron gauge. These measurements permit to estimate the mole fractions of Cl{sub 2} and Cl species in Cl{sub 2} inductively coupled plasmas in a waferless reactor. The impact of the chemical nature of the reactor wall coatings on the Cl and Cl{sub 2} mole fractions is studied systematically. We show that under otherwise identical plasma conditions, the Cl mole fraction is completely different when the plasma is operated in SiOCl, AlF, CCl, or TiOCl coated reactors, because the homogeneous recombination probability of Cl atoms is strongly surface dependant. The Cl atom mole fraction reached at 100 W radiofrequency power in SiOCl coated reactor (80%) is much higher than that obtained at 900 W in a ''clean'' AlF reactor (40%). A simple zero-dimensional model permits to provide the recombination coefficient of Cl atoms, {gamma}{sub rec}: 0.005 on SiOCl film and about 0.3 on the other three coatings. It is proposed to get benefit of this very high sensitivity of Cl{sub 2} dissociation rate to the wall coating for the control of the chamber wall status from the Cl{sub 2} density measurements in standard conditions.

Cunge, G.; Sadeghi, N.; Ramos, R. [Laboratoire des Technologies de la Microelectronique, CNRS, 17 rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France); Laboratoire de Spectrometrie Physique (UMR 5588), Universite Joseph Fourier-Grenoble, and CNRS, BP 87, 38402 St. Martin d'Heres (France); Laboratoire des Technologies de la Microelectronique, CNRS, 17 rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France)

2007-11-01T23:59:59.000Z

59

Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates  

SciTech Connect (OSTI)

This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

Witte, Travis

2011-11-30T23:59:59.000Z

60

Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography-inductively coupled plasma mass spectrometry  

SciTech Connect (OSTI)

Mixing coal fly ash with an organic waste increases macronutrient content and may make land application of fly ash a viable disposal alternative. However, trace element chemistry of these mixed waste products warrants investigation. Speciation of As and Se in soil solutions of fly ash-, poultry litter- and sewage sludge-amended soils was determined over a 10-day period by ion chromatography coupled to inductively coupled plasma mass spectrometry (IC-ICP-MS). Detection limits were 0.031, 0.028, 0.051, 0.161, 0.497, and 0.660 {micro}g L{sup {minus}1} for dimethylarsinate (DMA), As(III), monomethylarsonate (MMA), As(V), Se(IV), and Se(VI), respectively. Arsenic was highly water-soluble from poultry litter and appeared to be predominantly As(V). Arsenic(V) was the predominant species in soil amended with two fly ashes. Application of fly ash/poultry litter mixtures increased As solubility and led to the prevalence of DMA as the major As species. DMA concentrations of these soil solutions decreased rapidly over the sampling period relative to As(V), suggesting that DMA readily underwent mineralization in the soil solution. Se(VI) was the predominant soluble Se species in all treatments indicating rapid oxidation of Se(IV) initially solubilized from the fly ashes.

Jackson, B.P.; Miller, W.P. [Univ. of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences] [Univ. of Georgia, Athens, GA (United States). Dept. of Crop and Soil Sciences

1999-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MAC581 Inductively Coupled Plasma Mass Spectrometry (http://www.rsmas.miami.edu/grad-studies/fall2010.html)  

E-Print Network [OSTI]

nebulization, dissolvation, laser ablation, B. Tuning dry and wet plasma, sensitivity, stability, oxide, normal ICP torch and shield torch, cool plasma, RF generators, load coil and chiller, membrane cones, interface housing and cooling, slide valves, expansion chamber vacuum and pumps, ion kinetic

Miami, University of

62

Comparative study of GaN mesa etch characteristics in Cl{sub 2} based inductively coupled plasma with Ar and BCl{sub 3} as additive gases  

SciTech Connect (OSTI)

GaN thin film etching is investigated and compared for mesa formation in inductively coupled plasma (ICP) of Cl{sub 2} with Ar and BCl{sub 3} gas additives using photoresist mask. Etch characteristics are studied as a function of ICP process parameters, viz., ICP power, radio frequency (RF) power, and chamber pressure at fixed total flow rate. The etch rate at each ICP/RF power is 0.1–0.2??m/min higher for Cl{sub 2}/Ar mixture mainly due to higher Cl dissociation efficiency of Ar additive that readily provides Cl ion/radical for reaction in comparison to Cl{sub 2}/BCl{sub 3} mixture. Cl{sub 2}/Ar mixture also leads to better photoresist mask selectivity. The etch-induced roughness is investigated using atomic force microscopy. Cl{sub 2}/Ar etching has resulted in lower root-mean-square roughness of GaN etched surface in comparison to Cl{sub 2}/BCl{sub 3} etching due to increased Ar ion energy and flux with ICP/RF power that enhances the sputter removal of etch product. The GaN surface damage after etching is also evaluated using room temperature photoluminescence and found to be increasing with ICP/RF power for both the etch chemistries with higher degree of damage in Cl{sub 2}/BCl{sub 3} etching under same condition.

Rawal, Dipendra Singh, E-mail: dsrawal15@gmail.com; Arora, Henika; Sehgal, Bhupender Kumar; Muralidharan, Rangarajan [Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054 (India)

2014-05-15T23:59:59.000Z

63

Standard test method for analysis of urine for uranium-235 and uranium-238 isotopes by inductively coupled plasma-mass spectrometry  

E-Print Network [OSTI]

1.1 This test method covers the determination of the concentration of uranium-235 and uranium-238 in urine using Inductively Coupled Plasma-Mass Spectrometry. This test method can be used to support uranium facility bioassay programs. 1.2 This method detection limits for 235U and 238U are 6 ng/L. To meet the requirements of ANSI N13.30, the minimum detectable activity (MDA) of each radionuclide measured must be at least 0.1 pCi/L (0.0037 Bq/L). The MDA translates to 47 ng/L for 235U and 300 ng/L for 238U. Uranium– 234 cannot be determined at the MDA with this test method because of its low mass concentration level equivalent to 0.1 pCi/L. 1.3 The digestion and anion separation of urine may not be necessary when uranium concentrations of more than 100 ng/L are present. 1.4 Units—The values stated in picoCurie per liter units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1....

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

64

Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry  

E-Print Network [OSTI]

1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

65

Stirring Strongly Coupled Plasma  

E-Print Network [OSTI]

We determine the energy it takes to move a test quark along a circle of radius L with angular frequency ? through the strongly coupled plasma of $\\mathcal{N}=4$ supersymmetric Yang–Mills (SYM) theory. We find that for most ...

Fadafan, Kazem Bitaghsir

66

Influence of the reactor wall composition on radicals' densities and total pressure in Cl{sub 2} inductively coupled plasmas: II. During silicon etching  

SciTech Connect (OSTI)

In an industrial inductively coupled plasma reactor dedicated to silicon etching in chlorine-based chemistry, the density of Cl{sub 2} molecules and the gas temperature are measured by means of laser absorption techniques, the density of SiCl{sub x} (x{<=}2) radicals by broadband absorption spectroscopy, the density of SiCl{sub 4} and ions by mass spectrometry, and the total gas pressure with a capacitance gauge. These measurements permit us to estimate the mole fractions of Cl, SiCl{sub 4}, and etch product radicals when etching a 200 mm diameter silicon wafer. The pure Cl{sub 2} plasma is operated in well prepared chamber wall coating with a thin film of SiOCl, AlF, CCl, or TiOCl. The impact of the chemical nature of the reactor wall's coatings on these mole fractions is studied systematically. We show that the reactor wall coatings have a huge influence on the radicals densities, but this is not only from the difference on Cl-Cl recombination coefficient on different surfaces. During silicon etching, SiCl{sub x} radicals sticking on the reactor walls are etched by Cl atoms and recycled into the plasma by forming volatile SiCl{sub 4}. Hence, the loss of Cl atoms in etching the wall deposited silicon is at least as important as their wall recombination in controlling the Cl atoms density. Furthermore, because SiCl{sub 4} is produced at high rate by both the wafer and reactor walls, it is the predominant etching product in the gas phase. However, the percentage of redeposited silicon that can be recycled into the plasma depends on the amount of oxygen present in the plasma: O atoms produced by etching the quartz roof window fix Si on the reactor walls by forming a SiOCl deposit. Hence, the higher the O density is, the lower the SiCl{sub 4} density will be, because silicon is pumped by the reactor walls and the SiOCl layer formed is not isotropically etched by chlorine. As a result, in the same pure Cl{sub 2} plasma at 20 mTorr, the SiCl{sub x} mole fraction can vary from 18% in a SiOCl-coated reactor, where the O density is the highest, to 62% in a carbon-coated reactor, where there is no O. In the latter case, most of the Cl mass injected in the reactor is stored in SiCl{sub 4} molecules, which results in a low silicon etch rate. In this condition, the Cl mass balance is verified within 10%, and from the silicon mass balance we concluded that SiCl{sub x} radicals have a high surface loss probability. The impact of the reactor wall coating on the etching process is thus important, but the mechanisms by which the walls control the plasma chemistry is much more complicated than a simple control through recombination reaction of halogen atoms on these surfaces.

Cunge, G.; Sadeghi, N.; Ramos, R. [Laboratoire des Technologies de la Microelectronique, CNRS, 17 rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France); Laboratoire de Spectrometrie Physique (UMR 5588), Universite Joseph Fourier-Grenoble, and CNRS, BP 87, 38402 St. Martin d'Heres (France); Laboratoire des Technologies de la Microelectronique, CNRS, 17 rue des Martyrs (c/o CEA-LETI), 38054 Grenoble Cedex 9 (France)

2007-11-01T23:59:59.000Z

67

Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration Kurt A. Polzin  

E-Print Network [OSTI]

Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration Kurt A. Polzin and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL) Mechanical and Aerospace A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one

Choueiri, Edgar

68

Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes  

SciTech Connect (OSTI)

This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fitting the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.

Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun; Chen, Fu-Rong; Tsai, Chuen-Horng [Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300 Taiwan (China); Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan (China)

2010-07-15T23:59:59.000Z

69

Coupling effects in inductive discharges with radio frequency substrate biasing  

SciTech Connect (OSTI)

Low pressure inductively coupled plasmas (ICP) operated in neon at 27.12 MHz with capacitive substrate biasing (CCP) at 13.56 MHz are investigated by phase resolved optical emission spectroscopy, voltage, and current measurements. Three coupling mechanisms are found potentially limiting the separate control of ion energy and flux: (i) Sheath heating due to the substrate biasing affects the electron dynamics even at high ratios of ICP to CCP power. At fixed CCP power, (ii) the substrate sheath voltage and (iii) the amplitude as well as frequency of plasma series resonance oscillations of the RF current are affected by the ICP power.

Schulze, J.; Schuengel, E.; Czarnetzki, U.

2012-01-09T23:59:59.000Z

70

Radiation transport coupled particle-in-cell simulation of low-pressure inductive discharges  

E-Print Network [OSTI]

Radiation transport coupled particle-in-cell simulation of low-pressure inductive discharges Hae driven by an inductive radio frequency wave are simulated with a one-dimensional radiation transport is self-consistently coupled with plasma dynamics. The radiation efficiency is investigated

Lee, Hae June

71

Properties of C4F8 inductively coupled plasmas. I. Studies of Arc-C4F8 magnetically confined plasmas for etching of SiO2  

E-Print Network [OSTI]

and CF3 ion fluxes increase, and CF3 becomes the dominant fluorocarbon ion. The ion energy distributions of passively deposited fluorocarbon films on Si, as measured by x-ray photoemission spectroscopy, differ little: 10.1116/1.1697482 I. INTRODUCTION Fluorocarbon plasmas are extensively used for etching

Kushner, Mark

72

Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research  

SciTech Connect (OSTI)

This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle ensemble. This would cause the analysis to be skewed. The use of a gelatin substrate allows the ablation a particle ensemble without disturbing other particles or the gelatin surface. A method to trap and ablate particles on filter paper using collodion was also investigated. The laser was used to dig through the collodion layer and into the particle ensemble. Both of these methods fix particles to allow spatial resolution of the particle ensembles. The use of vanillic acid as a possible enhancement to ablation was also studied. A vanillic acid coating of the particles fixed on top of the gelatin substrate was not found to have any positive effect on either signal intensity or precision. The mixing of vanillic acid in the collodion solution used to coat the filter paper increased ablation signal intensity by a factor of 4 to 5. There was little effect on precision, though. The collodion on filter paper method and the gelatin method of resolving particles have shown themselves to be possible tools in fighting proliferation of nuclear weapons and material. Future applications of LA-ICP-MS are only limited by the imagination of the investigator. Any material that can be ablated and aerosolized is a potential material for analysis by LA-ICP-MS. Improvements in aerosol transport, ablation chamber design, and laser focusing can make possible the ablation and analysis of very small amounts of material. This may perhaps lead to more possible uses in forensics. A similar method to the one used in Chapter 3 could perhaps be used to match drug residue to the place of origin. Perhaps a link could be made based on the elements leached from the soil by plants used to make drugs. This may have a specific pattern based on where the plant was grown. Synthetic drugs are produced in clandestine laboratories that are often times very dirty. The dust, debris, and unique materials in the lab environment could create enough variance to perhaps match drugs produced there to samples obtained off the street. Even if the match was not strong enough to be evidence, the knowledge that many sa

Messerly, Joshua D.

2008-08-26T23:59:59.000Z

73

Thyristor stack for pulsed inductive plasma generation  

SciTech Connect (OSTI)

A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 {mu}s and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/{mu}s.

Teske, C.; Jacoby, J.; Schweizer, W.; Wiechula, J. [Plasmaphysics Group, Institute of Applied Physics, Johann-Wolfgang-Goethe University, 60438 Frankfurt am Main (Germany)

2009-03-15T23:59:59.000Z

74

Plasma conductivity at finite coupling  

E-Print Network [OSTI]

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

75

Z .Thin Solid Films 374 2000 311 325 SiO etching in inductively coupled C F plasmas:2 2 6  

E-Print Network [OSTI]

of silicon dioxide oxide over sili- con or silicon nitride using fluorocarbon plasmas is w xwidely known 1 6 . Fluorocarbon plasmas tend to pro- duce CF radicals that may polymerize on surfaces inx contact with the plasma either etching or polymer depo- sition are not well understood at present. Fluorocarbon chemistries have

Economou, Demetre J.

76

Transport of dust particles in inductively coupled discharges  

SciTech Connect (OSTI)

Contamination by particulates, or ``dust``, in plasma processing reactors decreases the yield of microelectronic components. In low temperature plasmas, such as those used in etching or deposition reactors to fabricate semiconductor devices, the particles can form to appreciable densities. These particles can be trapped or expelled from the reactor, depending on which forces dominate their transport. Quantities that affect dust motion in Inductively Coupled Plasma (ICP) discharges are the charge of the dust particles (electrostatic forces), momentum transfer with ions (viscous ion-drag forces), temperature gradients from heated electrodes (thermophoretic forces), and gas flow (fluid drag forces). The authors have developed a 2-D Monte Carlo simulation to investigate the trajectories of dust particles in ICP reactors. The model may have an arbitrary number and variety of dust species, and different gas mixtures may be used. The self-consistent electric fields, ion energy distributions, and species densities are imported from a companion Monte Carlo-fluid hybrid model. A semi-analytic model is used to determine the dust charge as well as the momentum transfer cross sections between dust and ions. The electrode topography can also affect the trapping locations of dust. Grooves on the electrodes perturb electrical forces and heated washers can change the thermophoretic forces; hence the spatial dust density varies from the case with a smooth, nonheated electrode. These effects on particle trapping will be presented. Other factors on trapping locations, such as dust particle size and varying power flow with time, will also be discussed.

Hwang, H.H.; Ventzek, P.L.G.; Hoekstra, R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

1994-12-31T23:59:59.000Z

77

Kinetic Modeling of Halogen-Based Plasma Etching of Complex Oxide Films and its Application to Predictive Feature Profile Simulation  

E-Print Network [OSTI]

model for Si etching by fluorocarbon plasmas." Journal Ofwith inductively coupled fluorocarbon plasmas." Journal ofwith inductively coupled fluorocarbon plasmas." Journal of

Marchack, Nathan

2012-01-01T23:59:59.000Z

78

Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report  

SciTech Connect (OSTI)

A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

NONE

1998-02-15T23:59:59.000Z

79

Effects of in situ N{sub 2} plasma treatment on etch of HfO{sub 2} in inductively coupled Cl{sub 2}/N{sub 2} plasmas  

SciTech Connect (OSTI)

The etch selectivity of HfO{sub 2} to Si reported to date is poor. To improve the selectivity, one needs to either increase the etch rate of HfO{sub 2} or decrease the etch rate of Si. In this work, the authors investigate the etch selectivity of HfO{sub 2} in Cl{sub 2}/N{sub 2} plasmas. In particular, the effects of in situ N{sub 2} plasma treatment of HfO{sub 2} and Si were investigated. The silicon substrate was exposed to nitrogen plasma and was nitrided, which was confirmed by x-ray photoelectron spectroscopy. The nitrided Si etching was suppressed in Cl{sub 2}/N{sub 2} plasmas. The effectiveness of nitridation was studied with varying the plasma power, bias power, pressure, and N{sub 2} plasma exposure time. The results show that the etch resistance increased with increased power and decreased pressure. A minimum exposure time was required to obtain etch resistant property. The applied bias power increased the etch rate of Si substrate, so it should not be used during N{sub 2} plasma treatment. Fortunately, the etch rate of HfO{sub 2} was increased by the nitridation process. Therefore, HfO{sub 2}/Si selectivity can be improved by nitridation and became higher than 5 under proper exposure condition.

Lin Chaung; Leou, K.-C.; Fan, Y.-C.; Li, T.-C.; Chang, K.-H.; Lee, L.-S.; Tzeng, P.-J. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30043, Taiwan (China); Electronic Research and Service Organization, Industrial Technology Research Institute, Hsinchu 30043, Taiwan (China)

2007-05-15T23:59:59.000Z

80

Properties of c-C4F8 inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Arc-C4F8 O2 discharges  

E-Print Network [OSTI]

to experiments for validation. The consequences of charge exchange of fluorocarbon species with Ar and CO on the ratio of light to heavy fluorocarbon ion densities in Ar/c-C4F8 /O2 /CO plasmas are discussed. We found but weakly depend on the addition of O2 . The ratio of light to heavy fluorocarbon ion densities increases

Kushner, Mark

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Diagnostics of plasma photoemission at strong coupling  

E-Print Network [OSTI]

We compute the spectrum of photons emitted by the finite-temperature large-N SU(N) ${\\cal {N}}=4$ supersymmetric Yang-Mills plasma coupled to electromagnetism, at strong yet finite 't Hooft coupling. We work in the holographic dual description, extended by the inclusion of the full set of ${\\cal{O}}(\\alpha'^3)$ type IIB string theory operators that correct the minimal supergravity action. We find that, as the t' Hooft coupling decreases, the peak of the spectrum increases, and the momentum of maximal emission shifts towards the infra-red, as expected from weak-coupling computations. The total number of emitted photons also increases as the 't Hooft coupling weakens.

Babiker Hassanain; Martin Schvellinger

2011-10-03T23:59:59.000Z

82

E-Print Network 3.0 - argon inductively coupled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

flow (Fig. 1a) an inductively coupled RF discharge can be stabilized inside a cooled tube (1... axial jet (right side). 1, quartz tube; 2, induction coil; 3, skin layer; 4, ......

83

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network [OSTI]

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Paul M. Chesler

2009-10-08T23:59:59.000Z

84

Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas  

E-Print Network [OSTI]

Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas Natalia Y of capacitively coupled plasma reactors with a wafer-focus ring gap. The penetration of plasma generated species i.e., ions and radicals into the wafer-focus ring gap is discussed. We found that the penetration of plasma

Kushner, Mark

85

Diagnostics for transport phenomena in strongly coupled dusty plasmas  

E-Print Network [OSTI]

Diagnostics for transport phenomena in strongly coupled dusty plasmas J Goree, Bin Liu and Yan Feng@gmail.com #12;Diagnostics for transport phenomena in strongly coupled dusty plasmas 2 1. Introduction Dusty]. This paper is based on a presentation at the EPS Satellite Conference on Plasma Diagnostics 2013. Our

Goree, John

86

Collective Dynamics of Strongly Coupled Dusty Plasmas  

SciTech Connect (OSTI)

Some selected highlights of theoretical and experimental research at IPR in the area of strongly coupled plasmas are presented. Theoretical analysis using the generalized hydrodynamics model have found interesting modifications in the linear propagation characteristics of dust acoustic waves (DAWs) including additional dispersive contributions and regions where {partial_derivative}{omega}/{partial_derivative}k<0. The analysis also predicted the existence of transverse shear waves in the liquid state of the dust component which were subsequently detected for the first time in laboratory experiments done at the Institute. Interesting experimental results in the strongly coupled regime were also obtained for DAWs including the first ever observations of solitary pulse propagation in such a medium.

Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2010-11-23T23:59:59.000Z

87

SELECTIVE SIGNAL TRANSMISSION TO INLAID MICROCOILS BY INDUCTIVE COUPLING  

E-Print Network [OSTI]

field, this problem has been approached by implanting and inductively powering a signal generator inside: (574) 631-4393, email: bernstein.1@nd.edu ABSTRACT Inductive links are widely used to power medical as a trans- cutaneous transformer, since its primary and secondary coils are physically separated

Wu, Jayne

88

Plasma and Fusion Research: Regular Articles Volume 2, 004 (2007) A Self-Organized Plasma with Induction, Reconnection, and  

E-Print Network [OSTI]

the energy confinement time. Counter-helicity merging of inductively formed spheromaks is utilized to form toroid plasmas would be generated by the merging of co- and counter-helicity spheromaks produced

Ji, Hantao

89

Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma  

SciTech Connect (OSTI)

Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago 22 (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2011-10-15T23:59:59.000Z

90

Effects of additive C{sub 4}F{sub 8} during inductively coupled BCl{sub 3}/C{sub 4}F{sub 8}/Ar plasma etching of TaN and HfO{sub 2} for gate stack patterning  

SciTech Connect (OSTI)

In this work, the authors investigated the etching characteristics of TaN and HfO{sub 2} layers for gate stack patterning in BCl{sub 3}/Ar and BCl{sub 3}/C{sub 4}F{sub 8}/Ar inductively coupled plasmas and the effects of C{sub 4}F{sub 8} addition on the etch selectivity of the TaN to the HfO{sub 2} layer. Addition of C{sub 4}F{sub 8} gas to the BCl{sub 3}/Ar chemistry improved the TaN/HfO{sub 2} etch selectivity because adding the C{sub 4}F{sub 8} gas enhances the formation of the CF{sub x}Cl{sub y} passivation layer on HfO{sub 2} surface and decreased the HfO{sub 2} etch rate more rapidly than the TaN etch rate in a disproportionate way. Reduction in the etch time for HfO{sub 2} layer also increases the TaN/HfO{sub 2} etch selectivity because the etch time gets closer to the initiation time for HfO{sub 2} etching.

Ko, J. H.; Kim, D. Y.; Park, M. S.; Lee, N.-E.; Lee, S. S.; Ahn, Jinho; Mok, Hyungsoo [School of Advanced Materials Science and Engineering, and Center for Advanced Plasma Surface Technology, Sungkyunkwan University, Suwon, Kyunggi-do 440-746 (Korea, Republic of); Division of Advanced Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Electrical Engineering, Konkuk University, 1 Hwayangdong, Gwangjingu, Seoul 143-701 (Korea, Republic of)

2007-07-15T23:59:59.000Z

91

Coupled Langmuir oscillations in 2-dimensional quantum plasmas  

SciTech Connect (OSTI)

In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits.

Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz, Iran and International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)] [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz, Iran and International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)

2014-03-15T23:59:59.000Z

92

Shock waves in strongly coupled plasmas  

SciTech Connect (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907 (United States)

2010-12-15T23:59:59.000Z

93

Strongly Coupled Plasmas via Rydberg-Blockade of Cold Atoms  

E-Print Network [OSTI]

We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.

Bannasch, G; Pohl, T

2013-01-01T23:59:59.000Z

94

Kinetics and radiative processes in Xe/I{sub 2} inductively coupled rf discharges at low pressure  

SciTech Connect (OSTI)

The environmental concern over the presence of mercury in conventional fluorescent lamps has motivated research into alternative electrically efficient near UV plasma lighting sources. One such candidate is multi-wavelength UV emission from Xe/I{sub 2} mixtures, including excimer radiation from XeI at 253 nm. Previous studies of the XeI system were performed at high pressures and were intended for laser applications. Practical Xe/I{sub 2} lamps will likely operate in the 0.5--10 torr regime and use electrodeless excitation to avoid issues related to electrode erosion by the halogen. In this paper, the authors report on an experimental investigation of low pressure, inductively coupled plasmas sustained in Xe/I{sub 2} mixtures. The goals of this work are to characterize the UV emission and determine excitation mechanisms in a parameter space of interest to lighting applications.

Barnes, P.N.; Verdeyen, J.T.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

1996-12-31T23:59:59.000Z

95

Controlled synthesis of nickel ferrite nanocrystals with tunable properties using a novel induction thermal plasma method  

SciTech Connect (OSTI)

Nickel ferrite spinel nanopowders were synthesised using a solution spray radio-frequency inductively coupled plasma reactor over a wide range of compositions (Ni{sub x}Fe{sub 3-x}O{sub 4}, x???1), with metastable powders produced for x?=?0, 0.25, and 0.5. X-ray fluorescence and X-ray diffraction coupled to Rietveld refinement show that this synthesis technique offers an excellent level of control over both the chemical and crystallographic composition of the nanopowder through the control of the input Fe/Ni ratio. The technique produces highly crystalline nanopowders without the need for post-synthesis annealing. A bulk Fe/Ni ratio ?2 yields a pure spinel Ni{sub x}Fe{sub 3-x}O{sub 4} phase, whereas Fe/Ni ratio <2 results in the excess Ni partitioning to a secondary bunsenite (Ni{sub x},Fe{sub 1-x})O phase. Morphological analysis using transmission electron microscopy shows that two types of particles are produced in different parts of the reactor: a highly faceted powder with the truncated octahedron morphology and a smaller-sized random agglomerate. The faceted particles have a log-normal particle size distribution, with an average size of about 30?nm while the agglomerates have a characteristic length of ?3–5?nm.

Bastien, Samuel; Braidy, Nadi [Department of Chemical Engineering and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 (Canada)

2013-12-07T23:59:59.000Z

96

Coupled electron and ion nonlinear oscillations in a collisionless plasma  

SciTech Connect (OSTI)

Dynamics of coupled electrostatic electron and ion nonlinear oscillations in a collisionless plasma is studied with reference to a kinetic description. Proceeding from the exact solution of Vlasov-Maxwell equations written as a function of linear functions in the electron and ion velocities, we arrive at the two coupled nonlinear equations which describe the evolution of the system.

Karimov, A. R. [Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412, Russia and Department of Electrophysical Facilities, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation)] [Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412, Russia and Department of Electrophysical Facilities, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation)

2013-05-15T23:59:59.000Z

97

Local fields in strongly coupled plasmas  

SciTech Connect (OSTI)

Computer simulation techniques and important static properties of plasma microfields are discussed. The relevant timescales are introduced for dynamical atomic problems, and some time-dependent properties of microfields are discussed. In the last two sections of the paper these results are applied to two problems relevant to the spectroscopy of dense plasmas: (1) broadening of spectral lines, and (2) screening in inelastic electron-ion collisions.

Pollock, E.L.; Weisheit, J.C.

1984-06-01T23:59:59.000Z

98

On nonlinear effects in inductively coupled plasmas A. Smolyakov  

E-Print Network [OSTI]

and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2 Canada V. Godyak OSRAM of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2 Canada Received 15 March 2000; accepted 28 July 2000 Nonlinear

Smolyakov, Andrei

99

Mass Spectrometer: Inductively Coupled Plasma (ICP-MS), Multi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was completed in February 2011. Although no research has been performed beyond an initial exploration of the Neptune's capabilities, potential users have been contacted in both the...

100

Improvements in Inductively Coupled Plasma - Mass Spectrometry | The Ames  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219 255RetrievalsVehiclesLaboratory in

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mass Spectrometer: Inductively Coupled Plasma (ICP-MS), High Resolution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selected asMaratMary Louise(Element XR) |

102

Improvements to Laser Ablation-Inductively Coupled Plasma-Mass...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for trace elemental analysis of solids. Trace element composition can be useful in forensic applications for matching or attribution studies, in which a material recovered from...

103

Effect of strongly coupled plasma on photoionization cross section  

SciTech Connect (OSTI)

The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

Das, Madhusmita, E-mail: msdas@barc.gov.in [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076, India and Theoretical Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India)] [Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076, India and Theoretical Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India)

2014-01-15T23:59:59.000Z

104

Viscoelastic modes in a strongly coupled, cold, magnetized dusty plasma  

SciTech Connect (OSTI)

A generalized hydrodynamical model has been used to study the low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to the strong correlations among dust particles and the tensile stresses imparted by the magnetic field. It has been shown that longitudinal compressional Alfven modes and elasticity modified transverse shear mode exist in such a medium. The features of these collective modes are established and discussed.

Banerjee, Debabrata; Mylavarapu, Janaki Sita; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, I/AF Bidhannagar, Calcutta 700 064 (India)

2010-11-15T23:59:59.000Z

105

Parton picture for the strongly coupled SYM plasma  

E-Print Network [OSTI]

Deep inelastic scattering off the strongly coupled N=4 supersymmetric Yang-Mills plasma at finite temperature can be computed within the AdS/CFT correspondence, with results which are suggestive of a parton picture for the plasma. Via successive branchings, essentially all partons cascade down to very small values of the longitudinal momentum fraction x and to transverse momenta smaller than the saturation momentum Q_s\\sim T/x. This scale Q_s controls the plasma interactions with a hard probe, in particular, the jet energy loss and its transverse momentum broadening.

E. Iancu

2008-05-27T23:59:59.000Z

106

Suppression of Rayleigh Taylor instability in strongly coupled plasmas  

SciTech Connect (OSTI)

The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-06-15T23:59:59.000Z

107

An experimental study and modeling of Transformer-Coupled Toroidal Plasma processing of materials  

E-Print Network [OSTI]

The Transformer Coupled Toroidal Plasma (TCTP) source uses a high power density plasma formed in a toroidal-shaped chamber by transformer coupling using a magnetic core. The objectives of the thesis are (1) to characterize ...

Bai, Bo, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

108

Component Framework for Coupled Integrated Fusion Plasma Simulation  

SciTech Connect (OSTI)

Fusion Successful simulation of the complex physics that affect magnetically confined fusion plasma remains an important target milestone towards the development of viable fusion energy. Major advances in the underlying physics formulations, mathematical modeling, and computational tools and techniques are needed to enable a complete fusion simulation on the emerging class of large scale capability parallel computers that are coming on-line in the next few years. Several pilot projects are currently being undertaken to explore different (partial) code integration and coupling problems, and possible solutions that may guide the larger integration endeavor. In this paper, we present the design and implementation details of one such project, a component based approach to couple existing codes to model the interaction between high power radio frequency (RF) electromagnetic waves, and magnetohydrodynamics (MHD) aspects of the burning plasma. The framework and component design utilize a light coupling approach based on high level view of constituent codes that facilitates rapid incorporation of new components into the integrated simulation framework. The work illustrates the viability of the light coupling approach to better understand physics and stand-alone computer code dependencies and interactions, as a precursor to a more tightly coupled integrated simulation environment.

Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL; Berry, Lee A [ORNL; Batchelor, Donald B [ORNL

2007-01-01T23:59:59.000Z

109

Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56?MHz planar coil inductively coupled argon discharge  

SciTech Connect (OSTI)

The axial and radial magnetic field profiles in a 13.56?MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

Jayapalan, Kanesh K., E-mail: kane-karnage@yahoo.com; Chin, Oi-Hoong, E-mail: ohchin@um.edu.my [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)] [Plasma Technology Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-04-15T23:59:59.000Z

110

Development of a plasma coating system for induction melting zirconium in a graphite crucible  

SciTech Connect (OSTI)

A plasma coating system has been developed for induction melting zirconium at 1900 C using a graphite crucible. This laminated coating system consists of plasma spraying the following materials onto the graphite: (1) molybdenum or tungsten, (2) a 50% blend by weight of the metal powder and calcia-stabilized zirconium oxide, and (3) calcia-stabilized zirconia followed by painting a final coating of nonstabilized zirconia on top of the plasma-sprayed coating system. Zirconium was melted in argon using both laminating systems without any degradation of the graphite crucible and with only a minimal amount of carbon absorption. This novel approach that is being proposed as an alternative method of melting zirconium alloys offers substantial cost savings over the standard practice of electric arc melting using a consumable electrode.

Bird, E.L.; Holcombe, C.E. Jr.

1993-05-26T23:59:59.000Z

111

Exact propagating nonlinear singular disturbances in strongly coupled dusty plasmas  

SciTech Connect (OSTI)

The dynamical response of the strongly coupled dusty plasma medium has recently been described by utilizing the Generalized Hydrodynamic (GHD) model equations. The GHD equations capture the visco-elastic properties of the medium and have been successful in predicting a host of phenomena (e.g., existence of novel transverse shear waves in the fluid medium, modification of longitudinal wave dispersion by elastic effects, etc.) which have found experimental confirmation. In this paper, the nonlinear longitudinal response of the medium governed by GHD equations in strong coupling limit is discussed analytically. The structure of the equations rules out the balance between dispersion and nonlinearity, thereby, forbidding soliton formation. However, a host of new varieties of nonlinear solutions are found to exist, which have singular spatial profiles and yet have conservative properties. For instance, existence of novel conservative shock structures with zero strength is demonstrated, waves whose breaking produces no dissipation in the medium are observed, propagating solutions which produce cusp like singularities can exist and so on. It is suggested that simulations and experiments should look for these novel nonlinear structures in the large amplitude strong coupling limit of longitudinal disturbances in dusty plasmas.

Das, Amita; Tiwari, Sanat Kumar; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

2014-08-15T23:59:59.000Z

112

The energetic coupling of scales in gyrokinetic plasma turbulence  

SciTech Connect (OSTI)

In magnetized plasma turbulence, the couplings of perpendicular spatial scales that arise due to the nonlinear interactions are analyzed from the perspective of the free-energy exchanges. The plasmas considered here, with appropriate ion or electron adiabatic electro-neutrality responses, are described by the gyrokinetic formalism in a toroidal magnetic geometry. Turbulence develops due to the electrostatic fluctuations driven by temperature gradient instabilities, either ion temperature gradient (ITG) or electron temperature gradient (ETG). The analysis consists in decomposing the system into a series of scale structures, while accounting separately for contributions made by modes possessing special symmetries (e.g., the zonal flow modes). The interaction of these scales is analyzed using the energy transfer functions, including a forward and backward decomposition, scale fluxes, and locality functions. The comparison between the ITG and ETG cases shows that ETG turbulence has a more pronounced classical turbulent behavior, exhibiting a stronger energy cascade, with implications for gyrokinetic turbulence modeling.

Teaca, Bogdan, E-mail: bogdan.teaca@coventry.ac.uk [Applied Mathematics Research Centre, Coventry University, Coventry CV1 5FB (United Kingdom); Max-Planck für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Max-Planck/Princeton Center for Plasma Physics (Germany); Navarro, Alejandro Bañón, E-mail: alejandro.banon.navarro@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Jenko, Frank, E-mail: frank.jenko@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Max-Planck/Princeton Center for Plasma Physics (Germany)

2014-07-15T23:59:59.000Z

113

Title of Document: PLASMA ETCHING OF DIELECTIRC MATERIALS USING INDUCTIVELY AND  

E-Print Network [OSTI]

AND CAPACITIVELY COUPLED FLUOROCARBON DISCHARGES: MECHANISTIC STUDIES OF THE SURFACE CHEMISTRY Li Ling, Doctor Fluorocarbon (FC) plasmas are commonly used for dielectric materials etching. Our initial work was performed-interaction with the photoresist material by fluorocarbon surface passivation, may be responsible for the introduction

Anlage, Steven

114

Charmonium in strongly coupled quark-gluon plasma  

E-Print Network [OSTI]

The growing consensus that a strongly-coupled quark-gluon plasma (sQGP) has been observed at the SPS and RHIC experiments suggests a different framework for examining heavy quark dynamics. We present both semi-analytical treatment of Fokker-Planck (FP) evolution in pedagogical examples and numerical Langevin simulations of evolving charm quark-antiquark pairs on top of a hydrodynamically expanding fireball. In this way, we may conclude that the survival probability of bound charmonia states is greater than previously estimated, as the spatial equilibration of pairs proceeds through a ``slowly dissolving lump'' stage related to the pair interaction.

Clint Young; Edward Shuryak

2008-09-22T23:59:59.000Z

115

The Weibel instability in a strongly coupled plasma  

SciTech Connect (OSTI)

In this paper, the growth rate of the Weibel instability is calculated for an energetic relativistic electron beam penetrated into a strongly coupled plasma, where the collision effects of background electron-ion scattering play an important role in equations. In order to calculate the growth rate of the Weibel instability, two different models of anisotropic distribution function are used. First, the distribution of the plasma and beam electrons considered as similar forms of bi-Maxwellian distribution. Second, the distribution functions of the plasma electrons and the beam electrons follows bi-Maxwellian and delta-like distributions, respectively. The obtained results show that the collision effect decreases the growth rate in two models. When the distribution function of electrons beam is in bi-Maxwellian form, the instability growth rate is greater than where the distribution function of beam electrons is in delta-like form, because, the anisotropic temperature for bi-Maxwellian distribution function in velocity space is greater than the delta-like distribution function.

Mahdavi, M., E-mail: m.mahdavi@umz.ac.ir; Khanzadeh, H. [Physics Department, University of Mazandaran, P. O. Box 47415-416, Babolsar (Iran, Islamic Republic of)

2014-06-15T23:59:59.000Z

116

Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace  

DOE Patents [OSTI]

The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

1989-01-01T23:59:59.000Z

117

Dense strongly coupled plasma in double laser pulse ablation of lithium: Experiment and simulation  

SciTech Connect (OSTI)

In a simple method of low power nano-second double pulsed laser ablation experiment in collinear geometry, formation of high density strongly coupled plasma is demonstrated. Using time-resolved measurements of the Stark broadened line width and line intensity ratio of the emission lines, the density and temperature of the plasma were estimated respectively. In this experiment, it is shown that ions are strongly coupled (ion-ion coupling parameter comes out to be >4). For comparison, both single and double pulsed laser ablations are presented. For the estimated experimental plasma parameters, first principle Langevin dynamics simulation corroborates the existence of a strongly coupled regime.

Kumar, Ajai; Sivakumaran, V.; Ganesh, R.; Joshi, H. C. [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Ashwin, J. [Weizmann Institute of Science, Rehovot - 76100 (Israel)] [Weizmann Institute of Science, Rehovot - 76100 (Israel)

2013-08-15T23:59:59.000Z

118

Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs  

SciTech Connect (OSTI)

This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 ?s pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

2006-04-28T23:59:59.000Z

119

Kolmogorov flow in two dimensional strongly coupled dusty plasma  

SciTech Connect (OSTI)

Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time ?{sub m} [0?

Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)

2014-07-15T23:59:59.000Z

120

Plasma-based localized defect for switchable coupling applications  

SciTech Connect (OSTI)

We report in this paper experimental measurements in order to validate the concept of switchable electromagnetic band gap filters based on plasma capillaries in the microwave regime. The plasma tube is embedded inside the structure to create a bistable (plasma on or off) punctual defect. We first investigate two kinds of discharge tubes: Ar-Hg and pure Ne, which we then use to experimentally achieve plasma-based reconfigurable applications, namely, a two-port coupler and a two-port demultiplexer.

Varault, Stefan [ONERA/DEMR, 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); LAboratoire PLAsma et Conversion d'Energie (LAPLACE), UPS, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Gabard, Benjamin [STAE, 4, rue Emile Monso, BP84234, 31030 Toulouse, Cedex 4 (France); Sokoloff, Jerome [LAboratoire PLAsma et Conversion d'Energie (LAPLACE), UPS, CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Bolioli, Sylvain [ONERA/DEMR, 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France)

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Abstract--A reliable lumped parameters model for an Inductive Coupling Device (ICD) is necessary for many reasons,  

E-Print Network [OSTI]

, Transcutaneous Energy Transmitters (TETs) [1], Induction Cookers, etc., are devices which use inductive link

Paris-Sud XI, Université de

122

Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals  

SciTech Connect (OSTI)

In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

Hamidi, S. M. [Laser and Plasma Research Institute, G. C., Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

2012-01-15T23:59:59.000Z

123

TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS  

E-Print Network [OSTI]

18. Electrical characteristics of the coupling vs pickup20. Electrical characteristics of the coupling vs frequency.various offsets vs pickup voltage. C. Electrical Tests The

Bolger, J.G.

2010-01-01T23:59:59.000Z

124

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents [OSTI]

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

Tsai, C.C.; Haselton, H.H.

1994-03-08T23:59:59.000Z

125

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents [OSTI]

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

Tsai, Chin-Chi (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

126

CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS  

SciTech Connect (OSTI)

The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

Ekechukwu, A

2009-04-20T23:59:59.000Z

127

A Coupled Approach for Plasma-Based Flow Control Simulations of Wing Sections  

E-Print Network [OSTI]

a role in momentum coupling, though as noted in Ref. 10 there is no significant heating of the airA Coupled Approach for Plasma-Based Flow Control Simulations of Wing Sections Datta V. Gaitonde Vehicles Directorate Kettering University Air Force Research Laboratory Flint, MI 48504 Wright

Roy, Subrata

128

Under consideration for publication in J. Plasma Phys. 1 Flow dynamics and magnetic induction in  

E-Print Network [OSTI]

.g. turbulence in thermonuclear fusion plasmas). Within the magnetohydrodynamic (MHD) frame of description

129

Prolactin-stimulated ornithine decarboxylase induction in rat hepatocytes: Coupling to diacylglycerol generation and protein kinase C  

SciTech Connect (OSTI)

The trophic effects of prolactin (PRL) in rat liver have been linked to activation of protein kinase C (PKC). Since alterations in PKC activity imply its activation by 1,2-diacylglycerol (DAG), we tested whether PRL treatment stimulated DAG generation coupled to induction of a growth response in primary hepatocytes. Addition of PRL to hepatocyte cultures significantly increased ({sup 3}H)-glycerol incorporation into DAG within 5 minutes which was followed by a loss of cytosolic PKC activity by 10 minutes. Prolactin also significantly enhanced radiolabel incorporation into triacylglycerol and phospholipids within 10 minutes and induced ODC activity at 6 hours. Therefore, prolactin-stimulated alterations in PKC activity are preceded by enhanced DAG generation. Moreover, these events appear to be coupled to PRL-stimulated entry of hepatocytes into cell cycle.

Buckley, A.R.; Buckley, D.J. (Kirksville College of Osteopathic Medicine, MO (USA))

1991-01-01T23:59:59.000Z

130

Extending plasma transport theory to strong coupling through the concept of an effective interaction potential  

SciTech Connect (OSTI)

A method for extending traditional plasma transport theories into the strong coupling regime is presented. Like traditional theories, this is based on a binary scattering approximation, but where physics associated with many body correlations is included through the use of an effective interaction potential. The latter is simply related to the pair-distribution function. Modeling many body effects in this manner can extend traditional plasma theory to orders of magnitude stronger coupling. Theoretical predictions are tested against molecular dynamics simulations for electron-ion temperature relaxation as well as diffusion in one component systems. Emphasis is placed on the connection with traditional plasma theory, where it is stressed that the effective potential concept has precedence through the manner in which screening is imposed. The extension to strong coupling requires accounting for correlations in addition to screening. Limitations of this approach in the presence of strong caging are also discussed.

Baalrud, Scott D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)] [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Daligault, Jérôme [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-05-15T23:59:59.000Z

131

Plasma effect in Silicon Charge Coupled Devices (CCDs)  

E-Print Network [OSTI]

Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

Juan Estrada; Jorge Molina; J. Blostein; G. Fernandez

2011-05-28T23:59:59.000Z

132

Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach  

SciTech Connect (OSTI)

The dynamic characteristics of strongly coupled one-component plasmas are studied within the moment approach. Our results on the dynamic structure factor and the dynamic local-field correction satisfy the sum rules and other exact relations automatically. A quantitative agreement is obtained with numerous simulation data on the plasma dynamic properties, including the dispersion and decay of collective modes. Our approach allows us to correct and complement the results previously found with other treatments.

Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E. [Department of Optics and Plasma Physics, Al-Farabi Kazakh National University, Tole Bi 96, Almaty 050012 (Kazakhstan); Ballester, D. [School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Tkachenko, I. M. [Instituto de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Zwicknagel, G. [Institut fuer Theoretische Physik II, Erlangen-Nuernberg Universitaet, Staudtstr. 7, D-91058 Erlangen (Germany)

2010-02-15T23:59:59.000Z

133

Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium  

SciTech Connect (OSTI)

A generalized hydrodynamic model depicting the behaviour of visco-elastic fluids has often been invoked to explore the behaviour of a strongly coupled dusty plasma medium below their crystallization limit. The model has been successful in describing the collective normal modes of the strongly coupled dusty plasma medium observed experimentally. The paper focuses on the study of nonlinear dynamical characteristic features of this model. Specifically, the evolution of coherent vorticity patches is being investigated here within the framework of this model. A comparison with Newtonian fluids and molecular dynamics simulations treating the dust species interacting through the Yukawa potential has also been presented.

Singh Dharodi, Vikram; Kumar Tiwari, Sanat; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-07-15T23:59:59.000Z

134

Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges  

SciTech Connect (OSTI)

We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V{sub dc}/V{sub pp} ratio becomes a minimum.

Kwon, Deuk-Chul; Yoon, Jung-Sik [Convergence Plasma Research Center, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2011-07-15T23:59:59.000Z

135

450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented electrodes  

E-Print Network [OSTI]

450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented fabrication will soon transition from 300 to 450 mm at a time when excitation frequencies for capacitively of processing. The increase in diameter to 450 mm is likely to exacerbate these effects, perhaps requiring

Kushner, Mark

136

Recent Advances in the SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques)  

E-Print Network [OSTI]

for favorable energetic balance. In response to the demands in all these four areas, a new concept called Self the plasma shape and kinetic parameter, by using passive stabilizers, and by injecting energetic ions; (3 been obtained in MRX. New numerical simulations showed that FRC plasmas can be globally stabilized

Ji, Hantao

137

MICROCAVITYMICROCAVITY PLASMA SCIENCE AND RECENTPLASMA SCIENCE AND RECENT APPLICATIONS: BOUNDAPPLICATIONS: BOUND--FREE COUPLING, TRANSISTORFREE COUPLING, TRANSISTOR  

E-Print Network [OSTI]

Plasma Surface Treatment High Intensity Plasma Arc Lamp Spark Gap Plasma Display (150 inch Panasonic Electrode Glass6 mm 250 m LED Backlight Microcavity Lamp #12;OPERATION OF MICROCAVITY PLASMA DEVICESMICROCAVITYMICROCAVITY PLASMA SCIENCE AND RECENTPLASMA SCIENCE AND RECENT APPLICATIONS

Shyy, Wei

138

Ab-initio calculations on two-electron ions in strongly coupled plasma environment  

E-Print Network [OSTI]

In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...

Bhattacharyya, S; Mukherjee, T K

2015-01-01T23:59:59.000Z

139

Longitudinal singular response of dusty plasma medium in weak and strong coupling limits  

SciTech Connect (OSTI)

The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.

Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar - 382428 (India)

2012-01-15T23:59:59.000Z

140

Noncollisional heating and electron energy distributions in magnetically enhanced inductively coupled and helicon plasma sources  

E-Print Network [OSTI]

region. This enhancement results from noncollisional heating by the axial electric field for electrons­11 The mecha- nisms through which more efficient heating of electrons oc- curs in these systems are not well- teraction mechanism is electron acceleration by the parallel component of the electric field. The heating

Kushner, Mark

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

REPORT OF THE INDUCTIVELY COUPLED PLASMA -MASS SPECTROMETRY (ICP-MS)  

E-Print Network [OSTI]

Three year Full Service Contract 1 CETAC Ultrasonic Nebulization Unit (Fig. 6) 1 Consumables Package 1

142

Improvements to Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219 255RetrievalsVehiclesLaboratoryfor

143

Mass Spectrometer: Inductively Coupled Plasma (ICP-MS), Multi-Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selected asMaratMary Louise(Element XR)

144

Mass Spectrometer: Inductively Coupled Plasma (ICP-MS), Ultra-High  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selected asMaratMary Louise(Element

145

Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction  

SciTech Connect (OSTI)

A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity {eta} and the wave-number-dependent viscosity {eta}(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity {eta}(k) is validated by comparing the results of {eta}(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity {eta} in the presence of a modest level of friction as in dusty plasma experiments.

Feng Yan; Goree, J.; Liu Bin [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2011-05-15T23:59:59.000Z

146

Coupling highly excited nuclei to the atomic shell in dense astrophysical plasmas  

E-Print Network [OSTI]

In dense astrophysical plasmas, neutron capture populates highly excited nuclear states close to the neutron threshold. The impact of additional low-energy nuclear excitations via coupling to the atomic shell on the ability of the so-formed compound nucleus to retain the captured neutron is investigated. We focus on the mechanism of nuclear excitation by electron capture in plasmas characterized by electron fluxes typical for the slow neutron capture process of stellar nucleosynthesis. The small effect of this further excitation on the neutron capture and gamma decay sequence relevant for nucleosynthesis is quantified and compared to the corresponding effect of an additional low-energy photoexcitation step.

Stephan Helmrich; Katja Spenneberg; Adriana Pálffy

2014-07-25T23:59:59.000Z

147

Sound waves in strongly coupled non-conformal gauge theory plasma  

E-Print Network [OSTI]

Using gauge theory/gravity duality we study sound wave propagation in strongly coupled non-conformal gauge theory plasma. We compute the speed of sound and the bulk viscosity of N=2^* supersymmetric SU(N_c) Yang-Mills plasma at a temperature much larger than the mass scale of the theory in the limit of large N_c and large 't Hooft coupling. The speed of sound is computed both from the equation of state and the hydrodynamic pole in the stress-energy tensor two-point correlation function. Both computations lead to the same result. Bulk viscosity is determined by computing the attenuation constant of the sound wave mode.

Paolo Benincasa; Alex Buchel; Andrei O. Starinets

2005-11-10T23:59:59.000Z

148

Large area radio frequency plasma for microelectronics processing Z. Yu and D. Shaw  

E-Print Network [OSTI]

focus on wide area plasma uniformity and undesired antenna window erosion caused by the plasma. OurLarge area radio frequency plasma for microelectronics processing Z. Yu and D. Shaw Colorado State November 1994 Radio-frequency rf inductively coupled planar plasma ICP provides a better way to generate

Collins, George J.

149

Simple thermodynamics of strongly coupled one-component-plasma in two and three dimensions  

SciTech Connect (OSTI)

Simple analytical approximations for the internal energy of the strongly coupled one-component-plasma in two and three dimensions are discussed. As a result, new practical expressions for the internal energy in the fluid phase are proposed. Their accuracy is checked by evaluating the location of the fluid-solid phase transition from the free energy consideration. Possible applications to other related systems are briefly discussed.

Khrapak, Sergey A., E-mail: Sergey.Khrapak@dlr.de [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Alexey G. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation)

2014-10-15T23:59:59.000Z

150

The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation  

SciTech Connect (OSTI)

High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

151

Positron impact excitations of hydrogen atom embedded in weakly coupled plasmas: Formation of Rydberg atoms  

SciTech Connect (OSTI)

Formation of Rydberg atoms due to 1s?nlm excitations of hydrogen, for arbitrary n, l, m, by positron impact in weakly coupled plasma has been investigated using a distorted-wave theory in the momentum space. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. Making use of a simple variationally determined wave function for the hydrogen atom, it has been possible to obtain the distorted-wave scattering amplitude in a closed analytical form. A detailed study has been made on the effects of plasma screening on the differential and total cross sections in the energy range 20–300?eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1s?nlm inelastic positron-hydrogen collisions for arbitrary n, l, m in weakly coupled plasmas is the first reported in the literature.

Rej, Pramit; Ghoshal, Arijit, E-mail: aghoshal@math.buruniv.ac.in [Department of Mathematics, Burdwan University, Golapbag, Burdwan 713 104, West Bengal (India)

2014-09-15T23:59:59.000Z

152

Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device  

SciTech Connect (OSTI)

This paper presents a theory of coupled whistler (W) and electron temperature gradient (ETG) mode using two-fluid model in high beta plasma. Non-adiabatic ion response, parallel magnetic field perturbation ({delta}B{sub z}), perpendicular magnetic flutter ({delta}B{sub perpendicular}), and electron collisions are included in the treatment of theory. A linear dispersion relation for whistler-electron temperature gradient (W-ETG) mode is derived. The numerical results obtained from this relation are compared with the experimental results observed in large volume plasma device (LVPD) [Awasthi et al., Phys. Plasma 17, 42109 (2010)]. The theory predicts that the instability grows only where the temperature gradient is finite and the density gradient flat. For the parameters of the experiment, theoretically estimated frequency and wave number of W-ETG mode match with the values corresponding to the peak in the power spectrum observed in LVPD. By using simple mixing length argument, estimated level of fluctuations of W-ETG mode is in the range of fluctuation level observed in LVPD.

Singh, S. K.; Awasthi, L. M.; Singh, R.; Kaw, P. K.; Jha, R.; Mattoo, S. K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2011-10-15T23:59:59.000Z

153

Dynamics of compressional Mach cones in a strongly coupled complex plasma  

SciTech Connect (OSTI)

Using a Generalised-Hydrodynamic (GH) fluid model, we study the influence of strong coupling induced modification of the fluid compressibility on the dynamics of compressional Mach cones in a dusty plasma medium. A significant structural change of lateral wakes for a given Mach number and Epstein drag force is found in the strongly coupled regime. With the increase of fluid compressibility, the peak amplitude of the normalised perturbed dust density first increases and then decreases monotonically after reaching its maximum value. It is also noticed that the opening angle of the cone structure decreases with the increase of the compressibility of the medium and the arm of the Mach cone breaks up into small structures in the velocity vector profile when the coupling between the dust particles increases.

Bandyopadhyay, P., E-mail: pintu@ipr.res.in; Dey, R.; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Kadyan, Sangeeta [Department of Physics, Maharshi Dayanand University, Rohtak 124001 (India)

2014-10-15T23:59:59.000Z

154

Theoretical study of head-on collision of dust acoustic solitary waves in a strongly coupled complex plasma  

SciTech Connect (OSTI)

We investigate the propagation characteristics of two counter propagating dust acoustic solitary waves (DASWs) undergoing a head-on collision, in the presence of strong coupling between micron sized charged dust particles in a complex plasma. A coupled set of nonlinear dynamical equations describing the evolution of the two DASWs using the extended Poincaré-Lighthill-Kuo perturbation technique is derived. The nature and extent of post collision phase-shifts of these solitary waves are studied over a wide range of dusty plasma parameters in a strongly and a weakly coupled medium. We find a significant change in the nature and amount of phase delay in the strongly coupled regime as compared to a weakly coupled regime. The phase shift is seen to change its sign beyond a threshold value of compressibility of the medium for a given set of dusty plasma parameters.

Jaiswal, S., E-mail: surabhi@ipr.res.in; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

2014-05-15T23:59:59.000Z

155

Coupled plasma waves in a system of two two-dimensional superlattices in the presence of a quantizing electric field  

SciTech Connect (OSTI)

The effect of a dc electric field on coupled plasma waves in a system of two two-dimensional super-lattices is studied. In the case of high temperatures, a dispersion relation is obtained and the fundamental and resonant modes of the plasma waves are numerically studied. The calculations are performed based on the quantum theory of plasma waves in the random phase approximation taking into account umklapp processes.

Glazov, S. Yu., E-mail: ser-glazov@yandex.ru; Kubrakova, E. S. [Volgograd State Social Pedagogical University (Russian Federation)] [Volgograd State Social Pedagogical University (Russian Federation); Mescheryakova, N. E. [Volgograd Institute of Business (Russian Federation)] [Volgograd Institute of Business (Russian Federation)

2013-10-15T23:59:59.000Z

156

450 mm dual frequency capacitively coupled plasma sources: Conventional, graded, and segmented electrodes  

SciTech Connect (OSTI)

Wafer diameters for microelectronics fabrication will soon transition from 300 to 450 mm at a time when excitation frequencies for capacitively coupled plasmas (CCPs) are increasing to 200 MHz or higher. Already for 300 mm tools, there is evidence that wave behavior (i.e., propagation, constructive, and destructive interference) affects the uniformity of processing. The increase in diameter to 450 mm is likely to exacerbate these effects, perhaps requiring nontraditional tool designs. This is particularly important in dual frequency (DF) CCP tools in which there are potential interactions between frequencies. In this paper, results from a two-dimensional computational investigation of Ar plasma properties in a 450 mm DF-CCP reactor, incorporating a full-wave solution of Maxwell's equations, are discussed. As in 300 mm DF-CCP reactors, the electron density collapses toward the center of the reactor with increasing high frequency (HF), however, with more pronounced finite wavelength effects. Graded conductivity electrodes with multilayer of dielectrics are computationally demonstrated as a possible means to suppress wave effects thereby increasing plasma uniformity. Segmentation of the HF electrode also improves the plasma uniformity by making the electrical distance between the feeds and the sheath edges as uniform as possible.

Yang Yang [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

2010-12-01T23:59:59.000Z

157

Three-dimensional antenna coupling to core plasma in fusion devices  

SciTech Connect (OSTI)

A complete understanding of the RF physics from the launcher to the plasma core is required to fully analyze RF experiments and to evaluate the performance of RF antenna designs in ITER. This understanding requires a consistent model for the RF power launching system, propagation and absorption through the edge region, and the response of the core plasma to the RF power. As a first step toward such a model, the three-dimensional (3D) antenna modeling code, RANT3D, has been coupled with the reduced order full wave code, PICES. Preliminary results from this model are presented in this paper for parameters similar to those found in the DIII-D experiment.

Carter, M.D.; Jaeger, E.F.; Stallings, D.C.; Galambos, J.D.; Batchelor, D.B.; Wang, C.Y.

1995-09-01T23:59:59.000Z

158

Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges  

SciTech Connect (OSTI)

At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies.

Donko, Z. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D. [Institute for Plasma and Atomic Physics, Ruhr-University Bochum, Bochum 44780 (Germany)

2009-03-30T23:59:59.000Z

159

Drag force in strongly coupled, anisotropic plasma at finite chemical potential  

E-Print Network [OSTI]

We employ methods of gauge/string duality to analyze the drag force on a heavy quark moving through a strongly coupled, anisotropic \\mathcal{N}=4, SU(N) super Yang- Mills plasma in the presence of a finite U(1) chemical potential. We present numerical results valid for any value of the anisotropy parameter and the U(1) charge density and arbitrary direction of the quark velocity with respect to the direction of anisotropy. In the small anisotropy limit we are also able to furnish analytical results.

Somdeb Chakraborty; Najmul Haque

2014-10-26T23:59:59.000Z

160

Kelvin-Helmholtz instability in a strongly coupled dusty plasma medium  

SciTech Connect (OSTI)

The Kelvin-Helmholtz (KH) instability in the context of strongly coupled dusty plasma medium has been investigated. In particular, the role of transverse shear and the compressional acoustic modes in both the linear and nonlinear regimes of the KH instability has been studied. It is observed that in addition to the conventional nonlocal KH instability, there exists a local instability in the strong coupling case. The interplay of the KH mode with this local instability shows up in the simulations as an interesting phenomenon of recurrence in the nonlinear regime. Thus, a cyclic KH instability process is observed to occur. These cyclic events are associated with bursts of activity in terms of transverse and compressional wave generation in the medium.

Tiwari, Sanat Kumar; Das, Amita; Patel, Bhavesh G. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Angom, Dilip [Physical Research Laboratory, Ahmedabad 380 009 (India); Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Physical Research Laboratory, Ahmedabad 380 009 (India)

2012-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

VOLUME 78, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 FEBRUARY 1997 Debye Shielding and Particle Correlations in Strongly Coupled Dusty Plasmas  

E-Print Network [OSTI]

in dusty plasma research, while fully aware that the dust particles are strongly coupled, have continued

Otani, Niels F.

162

Thermal plasma process for recovering monomers and high value carbons from polymeric materials  

DOE Patents [OSTI]

The present invention relates to a method of recycling polymeric waste products into monomers and high value forms of carbon by pyrolytic conversion using an induction coupled RF plasma heated reactor.

Knight, Richard (Philadelphia, PA); Grossmann, Elihu D. (Narberth, PA); Guddeti, Ravikishan R. (Philadelphia, PA)

2002-01-01T23:59:59.000Z

163

Head-on collision of dust-acoustic shock waves in strongly coupled dusty plasmas  

SciTech Connect (OSTI)

A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dust temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.

EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com [Department of physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha (Saudi Arabia); Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha, P.O. 960 (Saudi Arabia)

2014-09-15T23:59:59.000Z

164

Controller design issues in the feedback control of radio frequency plasma processing reactors  

E-Print Network [OSTI]

Controller design issues in the feedback control of radio frequency plasma processing reactors feedback control of inductively coupled plasma processing reactors for polysilicon etching and be successfully used for feedback control of plasma processing reactors.4 There are many control strate- gies

Kushner, Mark

165

Dynamics of the longitudinal and transverse modes in presence of equilibrium shear flow in a strongly coupled dusty plasma  

SciTech Connect (OSTI)

In strongly coupled limit the general hydrodynamic (GH) model shows that the dusty plasma, acquiring significant rigidity, is able to support the 'shear' like mode [P. K. Kaw and A. Sen, Phys. Plasmas 5, 3552 (1998)]. In presence of velocity shear, this shear like mode is coupled with the dust acoustic mode which is generated by the compressibility effect of the dust fluid due to the finite temperature of the dust, electron and ion fluids. Local dispersion shows the velocity shear is also responsible for the instabilities of the shear mode, acoustic mode, as well as the shear-acoustic coupled mode. The present work, carried out in GH visco-elastic formalism, also gives the clear insight of the instabilities of the coupled mode in non local regime with a hyperbolic tangent velocity shear profile over a finite width.

Garai, S.; Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata - 700 064 (India)

2014-02-11T23:59:59.000Z

166

Head-on-collision of modulated dust acoustic waves in strongly coupled dusty plasma  

SciTech Connect (OSTI)

The derivative expansion perturbation method is applied to a strongly coupled dusty plasma system consisting of negatively charged dust grains, electrons, and ions. The basic equations are reduced to a nonlinear Schroedinger type equation appropriate for describing the modulated dust acoustic (DA) waves. We have examined the modulation (in) stability and the dependence of the system physical parameters (angular frequency and group velocity) on the polarization force variation. Finally, the extended Poincare-Lighthill-Kuo technique is employed to investigate the head-on collision (HoC) between two DA dark solitons. The analytical phase shifts and the trajectories of these dark solitons after the collision are derived. The numerical illustrations show that the polarization effect has strong influence on the nature of the phase shifts and the trajectories of the two DA dark solitons after collision.

El-Labany, S. K.; El-Depsy, A.; Zedan, N. A. [Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta (Egypt); El-Taibany, W. F. [Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960, Abha (Saudi Arabia); El-Shamy, E. F. [Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta (Egypt); Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha (Saudi Arabia)

2012-10-15T23:59:59.000Z

167

Sound waves in strongly coupled non-conformal gauge theory plasma  

E-Print Network [OSTI]

Gauge/string correspondence provides an efficient method to investigate gauge theories. In this talk we discuss the results of the paper (to appear) by P. Benincasa, A. Buchel and A. O. Starinets, where the propagation of sound waves is studied in a strongly coupled non-conformal gauge theory plasma. In particular, a prediction for the speed of sound as well as for the bulk viscosity is made for the N=2* gauge theory in the high temperature limit. As expected, the results achieved show a deviation from the speed of sound and the bulk viscosity for a conformal theory. It is pointed out that such results depend on the particular gauge theory considered.

Paolo Benincasa

2005-07-04T23:59:59.000Z

168

Doubly fed induction machine  

DOE Patents [OSTI]

An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

Skeist, S. Merrill; Baker, Richard H.

2005-10-11T23:59:59.000Z

169

2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel  

E-Print Network [OSTI]

-assisted diesel fuel reformer developed for two different applications: (i) onboard H2 production for fuel cell been also developed for different reforming reactors: solid oxide fuel cell (SOFC)7 , membrane reformer1 2D Axisymmetric Coupled CFD-kinetics Modeling of a Nonthermal Arc Plasma Torch for Diesel Fuel

Boyer, Edmond

170

Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source  

SciTech Connect (OSTI)

A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup ?3} to 1 × 10{sup 19} m{sup ?3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup ?3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)] [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Firman, Taylor; Prager, James R.; Ziemba, Timothy [Eagle Harbor Technologies, Inc., 119 W. Denny Way, Suite 210, Seattle, Washington 98119 (United States)] [Eagle Harbor Technologies, Inc., 119 W. Denny Way, Suite 210, Seattle, Washington 98119 (United States); Wrobel, Jonathan S. [979B West Moorhead Circle, Boulder, Colorado 80305 (United States)] [979B West Moorhead Circle, Boulder, Colorado 80305 (United States)

2013-10-15T23:59:59.000Z

171

High energy electron fluxes in dc-augmented capacitively coupled plasmas I. Fundamental characteristics  

SciTech Connect (OSTI)

Power deposition from electrons in capacitively coupled plasmas (CCPs) has components from stochastic heating, Joule heating, and from the acceleration of secondary electrons through sheaths produced by ion, electron, or photon bombardment of electrodes. The sheath accelerated electrons can produce high energy beams which, in addition to producing excitation and ionization in the gas can penetrate through the plasma and be incident on the opposite electrode. In the use of CCPs for microelectronics fabrication, there may be an advantage to having these high energy electrons interact with the wafer. To control the energy and increase the flux of the high energy electrons, a dc bias can be externally imposed on the electrode opposite the wafer, thereby producing a dc-augmented CCP (dc-CCP). In this paper, the characteristics of dc-CCPs will be discussed using results from a computational study. We found that for a given rf bias power, beams of high energy electrons having a narrow angular spread (<1 deg. ) can be produced incident on the wafer. The maximum energy in the high energy electron flux scales as {epsilon}{sub max}=-V{sub dc}+V{sub rf}+V{sub rf0}, for a voltage on the dc electrode of V{sub dc}, rf voltage of V{sub rf}, and dc bias on the rf electrode of V{sub rf0}. The dc current from the biased electrode must return to ground through surfaces other than the rf electrode and so seeks out a ground plane, typically the side walls. If the side wall is coated with a poorly conducting polymer, the surface will charge to drive the dc current through.

Wang Mingmei [Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50010 (United States); Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

2010-01-15T23:59:59.000Z

172

3D Jet Tomography of Twisted Strongly Coupled Quark Gluon Plasmas  

E-Print Network [OSTI]

The triangular enhancement of the rapidity distribution of hadrons produced in p+A reactions relative to p+p is a leading order in A^{1/3}/log(s) violation of longitudinal boost invariance at high energies. In A+A reactions this leads to a trapezoidal enhancement of the local rapidity density of produced gluons. The local rapidity gradient is proportional to the local participant number asymmetry, and leads to an effective rotation in the reaction plane. We propose that three dimensional jet tomography, correlating the long range rapidity and azimuthal dependences of the nuclear modification factor, R_{AA}(\\eta,\\phi,p_\\perp; b>0), can be used to look for this intrinsic longitudinal boost violating structure of $A+A$ collisions to image the produced twisted strongly coupled quark gluon plasma (sQGP). In addition to dipole and elliptic azimuthal moments of R_{AA}, a significant high p_\\perp octupole moment is predicted away from midrapidity. The azimuthal angles of maximal opacity and hence minima of R_{AA} are rotated away from the normal to the reaction plane by an `Octupole Twist' angle, \\theta_3(\\eta), at forward rapidities.

A. Adil; M. Gyulassy

2005-05-01T23:59:59.000Z

173

Fluctuating Heavy Quark Energy Loss in Strongly-Coupled Quark-Gluon Plasma  

E-Print Network [OSTI]

Results from an energy loss model that includes thermal fluctuations in the energy loss for heavy quarks in a strongly-coupled plasma are shown to be qualitatively consistent with single particle data from both RHIC and LHC. The model used is the first to properly include the fluctuations in heavy quark energy loss as derived in string theory and that do not obey the usual fluctuation-dissipation relations. These fluctuations are crucial for simultaneously describing both RHIC and LHC data; leading order drag results without fluctuations are falsified by current data. Including the fluctuations is non-trivial and relies on the Wong-Zakai theorem to fix the numerical Langevin implementation. The fluctuations lead to surprising results: B meson anisotropy is similar to that for D mesons at LHC, and the double ratio of D to B meson nuclear modification factors approaches unity more rapidly than even predictions from perturbative energy loss models. It is clear that future work in improving heavy quark energy los...

Horowitz, W A

2015-01-01T23:59:59.000Z

174

The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects  

SciTech Connect (OSTI)

In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices.

Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)] [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

2014-01-15T23:59:59.000Z

175

Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor  

SciTech Connect (OSTI)

A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

Megía-Macías, A.; Vizcaíno-de-Julián, A. [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain)] [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain); Cortázar, O. D., E-mail: dcortazar@essbilbao.org [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain); Universidad de Castilla-La Mancha, ETSII, C.J. Cela s/n, 13170 Ciudad Real (Spain)

2014-03-15T23:59:59.000Z

176

Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)  

SciTech Connect (OSTI)

The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

Gallimore, David L. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

177

Size exclusion chromatography-inductively coupled plasma atomic emission spectrographic study of Fe in bitumens derived from tar sands  

SciTech Connect (OSTI)

This paper reports on bitumens extracted from tar sands from various locations (Utah, California, Kentucky, and Alberta) that were examined by size exclusion chromatography with on-line element-specific detection to study the Fe concentration as a function of size. In most cases, the resulting profiles exhibit unimodal distributions at relatively large molecular size with very similar times for maximum elution. specifically, Sunnyside (Utah) and McKittrick (California) tar-sand bitumens exhibited very intense maxima consistent with extremely high bulk Fe contents. Arroyo Grande (California) exhibited an additional maximum at very large molecular size. This size behavior of the Fe appears to correlate with the large molecular size Ni and V components eluted under the same conditions.

Reynolds, J.G. (Lawrence Livermore National Lab., Livermore, CA (US)); Biggs, W.R. (Chevron Research Co., Richmond, CA (US))

1992-01-01T23:59:59.000Z

178

COMPARISON OF LEAD CONCENTRATION IN SURFACE SOIL BY INDUCTED COUPLED PLASMA/OPTICAL EMISSION SPECTROMETRY AND X-RAY FLUORESCENCE  

E-Print Network [OSTI]

, where a secondary lead smelter had been operating for a long time, was investigated. The objective, since a secondary lead smelter had been operating for a long time in the village and some contaminated

Boyer, Edmond

179

The determination of sulfur-containing surfactants with a high pressure liquid chromatography-inductively coupled plasma emission spectrometry system  

E-Print Network [OSTI]

of the blank millivolt intensities 78 17 Average millivolt intensities for the nickel standard solution 79 Table Page 18 Standard deviations of the nickel standard millivolt intensities 80 19 Slopes of the calibration lines calculated from the blank... widely used sulfur-containing surfactants. The alkylbenzenesulfonates 1 strongly absorb in the UV region and, therefore are easily monitored by UV detectors. Other surfactants, such as alkyl sulfates 2 [13-17], alpha olefin sulfonates 3 [16...

Hobill, Jonathan Edward

1987-01-01T23:59:59.000Z

180

High-Sensitivity Analysis of Human Plasma Proteome by Immobilized Isoelectric Focusing Fractionation Coupled to Mass  

E-Print Network [OSTI]

High-Sensitivity Analysis of Human Plasma Proteome by Immobilized Isoelectric Focusing of complex biological samples. Keywords: plasma · immobilized pH gradients · isoelectric focusing of Sciences, Shanghai, 200031, China Received December 24, 2004 Immobilized pH gradients isoelectric focusing

Tian, Weidong

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas  

SciTech Connect (OSTI)

The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)] [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)] [Department of Physics, University of California, Los Angeles, California 90095 (United States)

2013-11-15T23:59:59.000Z

182

Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge  

SciTech Connect (OSTI)

We show experimental observations of collisionless electron heating by the combinations of the capacitive radio frequency (RF) bias power and the inductive power in low argon gas pressure RF biased inductively coupled plasma (ICP). With small RF bias powers in the ICP, the electron energy distribution (EED) evolved from bi-Maxwellian distribution to Maxwellian distribution by enhanced plasma bulk heating and the collisionless sheath heating was weak. In the capacitive RF bias dominant regime, however, high energy electrons by the RF bias were heated on the EEDs in the presence of the ICP. The collisionless heating mechanism of the high energy electrons transited from collisionless inductive heating to capacitive coupled collisionless heating by the electron bounce resonance in the RF biased ICP.

Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2012-12-10T23:59:59.000Z

183

Pressure and arc voltage coupling in dc plasma torches: Identification and extraction of oscillation modes  

SciTech Connect (OSTI)

This work is devoted to the instabilities occurring in a plasma torch, such as those found in plasma spraying. These instabilities are responsible for a lack of reproducibility of coatings properties, especially in the case of suspension plasma spraying that is an innovative way to obtain thin coatings of submicron-sized particles. Strong Helmholtz oscillations are highlighted in the plasma flow and it is demonstrated that they overlap with different acoustic modes in addition with the more commonly admitted ''restrike'' mode, the later being due to rearcing events in the arc region. The instabilities occur in the arc voltage but it is experimentally shown in this paper that the pressure within the torch body presents the same kind of instabilities. Besides, a numerical filtering technique has been adapted to isolate the different instability components. The operating parameters of the plasma torch were varied in order to highlight their influence on the amplitude of the different modes, both for the arc voltage and the pressure.

Rat, V.; Coudert, J. F. [SPCTS UMR 6638, CNRS-University of Limoges, 123 Av. A. Thomas, 87060 Limoges Cedex (France)

2010-08-15T23:59:59.000Z

184

Coupled modes in magnetized dense plasma with relativistic-degenerate electrons  

SciTech Connect (OSTI)

Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

Khan, S. A. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan)

2012-01-15T23:59:59.000Z

185

Chapter 6.25 Cambridge Fiji F200 Plasma ALD  

E-Print Network [OSTI]

system supports metal ALD primarily and has a remote inductively coupled plasma source to allow for low to keep electromagnetically sensitive devices such as cell phones away from the ICP coil. 4.2 Heating 4.2.1 Heater : The PEALD system includes several heating elements to bring various components to temperature

Healy, Kevin Edward

186

Contrib. Plasma Phys. vol (year) num, p-p Coupling of Parallelized DEGAS 2 and UEDGE  

E-Print Network [OSTI]

of the Monte Carlo neutral transport code DEGAS 2[1] and the UEDGE[2] fluid plasma transport code builds upon of the neutral densities, ion particle source, and electron energy source to within 5%. Each run consists of 80 statistical errors ( 50%) that result from the rapid momentum and energy exchanges between neutrals and ions

Karney, Charles

187

Secular behavior of electrostatic KelvinHelmholtz ,,diocotron... modes coupled with plasma oscillations  

E-Print Network [OSTI]

oscillations M. Hirota, T. Tatsuno, S. Kondoh, and Z. Yoshida Graduate School of Frontier Sciences of a non-neutral plasma produces a flow that brings about non-Hermitian property into the generating electric field, self-generates an intense flow that may have strong shear.1­3 It provides paradigms

Tatsuno, Tomoya

188

Recent Results on Coupling Fast Waves to High Performance Plasmas on DIII-D  

E-Print Network [OSTI]

Fast Waves (FWs) at 60 MHz and 90 MHz are used in DIII?D for central electron heating and current drive. Coupling of FWs to high?performance discharges is limited by low antenna loading in these regimes. To extend the ...

Porkolab, Miklos

189

VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE  

SciTech Connect (OSTI)

We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

Hollweg, Joseph V.; Chandran, Benjamin D. G. [Space Science Center, Morse Hall, University of New Hampshire, Durham, NH 03824 (United States); Kaghashvili, Edisher Kh., E-mail: joe.hollweg@unh.edu, E-mail: ekaghash@aer.com, E-mail: benjamin.chandran@unh.edu [Atmospheric and Environmental Research, A Verisk Analytics Company, 131 Hartwell Avenue, Lexington, MA 02421 (United States)

2013-06-01T23:59:59.000Z

190

Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas  

SciTech Connect (OSTI)

The coupling of ion temperature gradient (ITG or ?{sub i}) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ?{sub i} (?{sub i}?1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient L{sub ez}=L{sub ne}/L{sub nz}>1 (L{sub ez}<1) destabilize (stabilize) the TEMs in large ?{sub i} (?{sub i}?1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

Du, Huarong; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Liu, S. F. [School of Physics, Nankai University, Tianjin 300071 (China)] [School of Physics, Nankai University, Tianjin 300071 (China)

2014-05-15T23:59:59.000Z

191

Quark spectral density and a strongly-coupled quark-gluon plasma.  

SciTech Connect (OSTI)

The maximum entropy method is used to compute the dressed-quark spectral density from the self-consistent numerical solution of a rainbow truncation of QCD's gap equation at temperatures above that for which chiral symmetry is restored. In addition to the normal and plasmino modes, the spectral function also exhibits an essentially nonperturbative zero mode for temperatures extending to 1.4-1.8 times the critical temperature, T{sub c}. In the neighborhood of T{sub c}, this long-wavelength mode contains the bulk of the spectral strength and as long as this mode persists, the system may fairly be described as a strongly-coupled state of matter.

Qin, S.; Chang, L.; Liu, Y.; Roberts, C. D. (Physics); (Peking Univ.); (Inst. of Applied Physics and Computational Mathematics); (National Lab. of Heavy Ion Accelerator)

2011-07-13T23:59:59.000Z

192

Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas  

SciTech Connect (OSTI)

The combined effects of the variation of hydrogen pressure (40-400 mTorr) and exciting frequency (13.56-50 MHz) on the electron energy probability function (EEPF) and other plasma parameters in capacitively coupled hydrogen H{sub 2} discharge at fixed discharge voltage were investigated using rf-compensated Langmuir probe. At a fixed exciting frequency of 13.56 MHz, the EEPF evolved from Maxwellian-like distribution to a bi-Maxwellian distribution when the H{sub 2} pressure increased, possibly due to efficient vibrational excitation. The electron density largely increased to a peak value and then decreased with the increase of H{sub 2} pressure. Meanwhile, the electron temperature and plasma potential significantly decrease and reaching a minimum at 120 mTorr beyond, which saturated or slightly increases. On the other hand, the dissipated power and electron density markedly increased with increasing the exciting frequency at fixed H{sub 2} pressure and voltage. The electron temperatures negligibly dependent on the driving frequency. The EEPFs at low pressure 60 mTorr resemble Maxwellian-like distribution and evolve into a bi-Maxwellian type as frequency increased, due to a collisonless (stochastic) sheath-heating in the very high frequency regime, while the EEPF at hydrogen pressure {>=}120 mTorr retained a bi-Maxwellian-type distribution irrespective of the driving frequency. Such evolution of the EEPFs shape with the driving frequency and hydrogen pressure has been discussed on the basis of electron diffusion processes and low threshold-energy inelastic collision processes taking place in the discharge. The ratio of stochastic power to bulk power heating ratio is dependent on the hydrogen pressure while it is independent on the driving frequency.

Abdel-Fattah, E. [Physics Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt); Sugai, H. [Department of Electronics and Information Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501 (Japan)

2013-02-15T23:59:59.000Z

193

Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment  

SciTech Connect (OSTI)

We have shown that the sensitivity of carbon nanotube (CNT) based sensors can be enhanced as high as 74 times through surface modification by using the inductively coupled plasma chemical vapor deposition method with oxygen. The plasma treatment power was maintained as low as 10 W within 20 s, and the oxygen plasma was generated far away from the sensors to minimize the plasma damage. From X-ray photoelectron spectroscopy analysis, we found that the concentration of oxygen increased with the plasma treatment time, which implies that oxygen functional groups or defect sites were generated on the CNT surface.

Yeo, Sanghak; Woong Jang, Chi; Lee, Seok; Min Jhon, Young [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)] [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Changrok [Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science, Daejeon 305-340, North Korea (Korea, Republic of)] [Center for Nano-Bio Convergence, Korea Research Institute of Standards and Science, Daejeon 305-340, North Korea (Korea, Republic of)

2013-02-18T23:59:59.000Z

194

Coupling of laser energy into plasma channels D. A. Dimitrov, R. E. Giacone, D. L. Bruhwiler, and R. Busby  

E-Print Network [OSTI]

ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot

Geddes, Cameron Guy Robinson

195

Plasma ignition and steady state simulations of the Linac4 H$^{-}$ ion source  

E-Print Network [OSTI]

The RF heating of the plasma in the Linac4 H- ion source has been simulated using an Particle-in-Cell Monte Carlo Collision method (PIC-MCC). This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

Mattei, S; Yasumoto, M; Hatayama, A; Lettry, J; Grudiev, A

2013-01-01T23:59:59.000Z

196

Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure  

SciTech Connect (OSTI)

By adding a transverse heater pulse into the axicon ignitor-heater scheme for producing a plasma waveguide, a variable three-dimensionally structured plasma waveguide can be fabricated. With this technique, electron injection in a plasma-waveguide-based laser wakefield accelerator was achieved and resulted in production of a quasi-monoenergetic electron beam. The injection was correlated with a section of expanding cross-section in the plasma waveguide. Moreover, the intensity of the X-ray beam produced by the electron bunch in betatron oscillation was greatly enhanced with a transversely shifted section in the plasma waveguide. The technique opens a route to a compact hard-X-ray pulse source.

Ho, Y.-C.; Hung, T.-S.; Chen, W.-H. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China) [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Jhou, J.-G. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Qayyum, H.; Chen, S.-Y. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China) [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Chu, H.-H. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China)] [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Lin, J.-Y. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)] [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Wang, J. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China) [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

2013-08-15T23:59:59.000Z

197

An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source  

E-Print Network [OSTI]

Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H^- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

Komppula, J; Koivisto, H; Laulainen, J; Tarvainen, O

2015-01-01T23:59:59.000Z

198

Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining  

SciTech Connect (OSTI)

Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin [School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049 (China)] [School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049 (China)

2014-03-15T23:59:59.000Z

199

Plasma atomic layer etching using conventional plasma equipment  

SciTech Connect (OSTI)

The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps.

Agarwal, Ankur; Kushner, Mark J. [Department of Chemical and Biomolecular Engineering, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

2009-01-15T23:59:59.000Z

200

Steady-state inductive spheromak operation  

DOE Patents [OSTI]

The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

Janos, Alan C. (E. Windsor, NJ); Jardin, Stephen C. (Princeton, NJ); Yamada, Masaaki (Lawrenceville, NJ)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Inductive tuners for microwave driven discharge lamps  

DOE Patents [OSTI]

An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

Simpson, James E. (Gaithersburg, MD)

1999-01-01T23:59:59.000Z

202

Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams  

DOE Patents [OSTI]

An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

Hershkowitz, Noah (Madison, WI); Longmier, Benjamin (Madison, WI); Baalrud, Scott (Madison, WI)

2009-03-03T23:59:59.000Z

203

Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma  

SciTech Connect (OSTI)

Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

Shahmansouri, M. [Department of Physics, Faculty of Science, Arak University, Arak 38156- 8 8349 (Iran, Islamic Republic of)] [Department of Physics, Faculty of Science, Arak University, Arak 38156- 8 8349 (Iran, Islamic Republic of); Mamun, A. A. [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)] [Department of Physics, Jahangirnagar University, Savar, Dhaka-1342 (Bangladesh)

2014-03-15T23:59:59.000Z

204

Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in 248Cm samples for transmutation studies  

SciTech Connect (OSTI)

The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in {sup 248}Cm ({approx}97 %) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides formations ranged from 0.3% to 1.3%. This uncertainties range is quite acceptable for the nuclear data to be used in transmutation studies.

Gourgiotis, A.; Isnard, H.; Aubert, M.; Dupont, E.; AlMahamid, I.; Cassette, P.; Panebianco, S.; Letourneau, A.; Chartier, F.; Tian, G.; Rao, L.; Lukens, W.

2011-02-01T23:59:59.000Z

205

Simulation results of an inductively-coupled rf plasma torch in two and three dimensions for producing a metal matrix composite for nuclear fuel cladding  

E-Print Network [OSTI]

. In this work, a magnetohydrodynamic (MHD) model is used along with a computational fluid dynamic (CFD) software package called FLUENT© to simulate an ICPT. To solve the electromagnetic equations and incorporate forces and resistive heating, several userdefined...

Holik III, Eddie Frank (Trey)

2009-05-15T23:59:59.000Z

206

Measurement of elemental speciation by liquid chromatography -- inductively coupled plasma mass spectrometry (LC-ICP-MS) with the direct injection nebulizer (DIN)  

SciTech Connect (OSTI)

This thesis is divided into 4 parts: elemental speciation, speciation of mercury and lead compounds by microbore column LC-ICP-MS with direct injection nebulization, spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer, and elemental speciation by anion exchange and size exclusion chromatography with detection by ICP-MS with direct injection nebulization. Tabs, figs, refs.

Shum, S.

1993-05-01T23:59:59.000Z

207

A method for direct, semi-quantitative analysis of gas phase samples using gas chromatography-inductively coupled plasma-mass spectrometry  

SciTech Connect (OSTI)

A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GC sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions. To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 ?g · m{sup ? 3}. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.

Carter, Kimberly E.; Gerdes, Kirk

2013-07-01T23:59:59.000Z

208

Fabrication of Two-Dimensional Photonic Crystals in AlGaInP/GaInP Membranes by Inductively Coupled Plasma Etching  

E-Print Network [OSTI]

The fabrication process of two-dimensional photonic crystals in an AlGaInP/GaInP multi-quantum-well membrane structure is developed. The process includes high resolution electron-beam lithography, pattern transfer into ...

Chen, A.

209

Contrib. Plasma Phys. 40 (2000) 3-4, 221-226 Coupling of Parallelized DEGAS 2 and UEDGE  

E-Print Network [OSTI]

of the Monte Carlo neutral transport code DEGAS 2 [1] and the UEDGE [2] fluid plasma transport code builds upon of the neutral densities, ion particle source, and electron energy source to within 5%. Each run consists of 80 statistical errors ( 50%) that result from the rapid momentum and energy exchanges between neutrals and ions

Karney, Charles

210

High energy electron fluxes in dc-augmented capacitively coupled plasmas. II. Effects on twisting in high aspect ratio etching of dielectrics  

SciTech Connect (OSTI)

In high aspect ratio (HAR) plasma etching of holes and trenches in dielectrics, sporadic twisting is often observed. Twisting is the randomly occurring divergence of a hole or trench from the vertical. Many causes have been proposed for twisting, one of which is stochastic charging. As feature sizes shrink, the fluxes of plasma particles, and ions in particular, into the feature become statistical. Randomly deposited charge by ions on the inside of a feature may be sufficient to produce lateral electric fields which divert incoming ions and initiate nonvertical etching or twisting. This is particularly problematic when etching with fluorocarbon gas mixtures where deposition of polymer in the feature may trap charge. dc-augmented capacitively coupled plasmas (dc-CCPs) have been investigated as a remedy for twisting. In these devices, high energy electron (HEE) beams having narrow angular spreads can be generated. HEEs incident onto the wafer which penetrate into HAR features can neutralize the positive charge and so reduce the incidence of twisting. In this paper, we report on results from a computational investigation of plasma etching of SiO{sub 2} in a dc-CCP using Ar/C{sub 4}F{sub 8}/O{sub 2} gas mixtures. We found that HEE beams incident onto the wafer are capable of penetrating into features and partially neutralizing positive charge buildup due to sporadic ion charging, thereby reducing the incidence of twisting. Increasing the rf bias power increases the HEE beam energy and flux with some indication of improvement of twisting, but there are also changes in the ion energy and fluxes, so this is not an unambiguous improvement. Increasing the dc bias voltage while keeping the rf bias voltage constant increases the maximum energy of the HEE and its flux while the ion characteristics remain nearly constant. For these conditions, the occurrence of twisting decreases with increasing HEE energy and flux.

Wang Mingmei [Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50010 (United States); Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

2010-01-15T23:59:59.000Z

211

HEAVY ION FUSION SCIENCE VIRTUALNATIONAL LABORATORY 2nd QUARTER 2009 MILESTONE REPORT: Perform beam and target experiments with a new induction bunching module, extended FEPS plasma, and improved target diagnostic and positioning equipment on NDCX  

E-Print Network [OSTI]

FEPS plasma, and improved target diagnostic and positioningFEPS plasma, and improved target diagnostic and positioningoptical target diagnostic system, and FCAPS plasma injection

Bieniosek, F.M.

2010-01-01T23:59:59.000Z

212

Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field  

E-Print Network [OSTI]

Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled N=4 supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibratio...

Fuini, John F

2015-01-01T23:59:59.000Z

213

Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field  

E-Print Network [OSTI]

Using holography, we study the evolution of a spatially homogeneous, far from equilibrium, strongly coupled N=4 supersymmetric Yang-Mills plasma with a non-zero charge density or a background magnetic field. This gauge theory problem corresponds, in the dual gravity description, to an initial value problem in Einstein-Maxwell theory with homogeneous but anisotropic initial conditions. We explore the dependence of the equilibration process on different aspects of the initial departure from equilibrium and, while controlling for these dependencies, examine how the equilibration dynamics are affected by the presence of a non-vanishing charge density or an external magnetic field. The equilibration dynamics are remarkably insensitive to the addition of even large chemical potentials or magnetic fields; the equilibration time is set primarily by the form of the initial departure from equilibrium. For initial deviations from equilibrium which are well localized in scale, we formulate a simple model for equilibration times which agrees quite well with our results.

John F. Fuini III; Laurence G. Yaffe

2015-03-24T23:59:59.000Z

214

Investigation on plasma parameters and step ionization from discharge characteristics of an atmospheric pressure Ar microplasma jet  

SciTech Connect (OSTI)

In this communication, we report a technique to estimate the plasma parameters from the discharge characteristics of a microplasma device, operated in atmospheric pressure on the basis of homogeneous discharge model. By this technique, we investigate the plasma parameters of a microplasma jet produced by microplasma device consisting of coaxial capillary electrodes surrounded by dielectric tube. Our results suggest that the complex dependence of electrical discharge characteristics observed for microplasma device operated with Ar or it admixtures probably signify the existence of step ionization, which is well known in inductively coupled plasma.

Bora, B.; Bhuyan, H.; Favre, M.; Chuaqui, H.; Wyndham, E. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Ave. Vicuna Mackenna 4860, Santiago (Chile); Kakati, M. [Thermal Plasma Processed Materials Laboratory, Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402, Assam (India)

2012-06-15T23:59:59.000Z

215

Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF{sub 4}/O{sub 2}  

SciTech Connect (OSTI)

In plasma etching for microelectronics fabrication, the quality of the process is in large part determined by the ability to control the ion energy distribution (IED) onto the wafer. To achieve this control, dual frequency capacitively coupled plasmas (DF-CCPs) have been developed with the goal of separately controlling the magnitude of the fluxes of ions and radicals with the high frequency (HF) and the shape of the IED with the low frequency (LF). In steady state operation, plasma properties are determined by a real time balance between electron sources and losses. As such, for a given geometry, pressure, and frequency of operation, the latitude for controlling the IED may be limited. Pulsed power is one technique being investigated to provide additional degrees of freedom to control the IED. In one configuration of a DF-CCP, the HF power is applied to the upper electrode and LF power is applied to the lower electrode which is serially connected to a blocking capacitor (BC) which generates a self dc-bias. In the steady state, the value of the dc-bias is, in fact, constant. During pulsed operation, however, there may be time modulation of the dc-bias which provides an additional means to control the IED. In this paper, IEDs to the wafer in pulsed DF-CCPs sustained in Ar/CF{sub 4}/O{sub 2} are discussed with results from a two-dimensional plasma hydrodynamics model. The IED can be manipulated depending on whether the LF or HF power is pulsed. The dynamic range of the control can be tuned by the dc-bias generated on the substrate, whose time variation depends on the size of the BC during pulsed operation. It was found that high energy ions can be preferentially produced when pulsing the HF power and low energy ions are preferentially produced when pulsing the LF power. A smaller BC value which allows the bias to follow the change in charged particle fluxes produces a larger dynamic range with which to control IEDs.

Song, Sang-Heon, E-mail: ssongs@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2104 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

2014-03-15T23:59:59.000Z

216

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

217

Parametric coupling of lower hybrid wave with gyrating ion beam driven ion cyclotron instability in a plasma  

SciTech Connect (OSTI)

A lower hybrid wave, launched into a tokamak for supplementary heating in the presence of neutral beam turned gyrating ion beam, is seen to excite some prominent channels of parametric decay. The beam driven deuterium cyclotron mode is further destabilized by the lower hybrid pump through the nonlinear 4-wave coupling, involving higher and lower frequency lower hybrid sidebands, when ?{sub 0}/k{sub 0z}v{sub 0z}=(1??{sub LH}{sup 2}/?{sub 0}{sup 2}) , where ?{sub LH} is the lower hybrid frequency, ?{sub 0} and k{sub 0z} are the frequency and parallel wave number of the pump wave, and v{sub 0z} is the velocity of ion beam parallel to the magnetic field. The growth rate increases with parallel wave number of the ion-cyclotron mode. The pump is also susceptible to parametric upconversion into an upper sideband shifted by the frequency of the negative energy deuterium cyclotron mode. For typical parameters, the growth rate of this channel is around one fiftieth of deuterium cyclotron frequency and falls off with the transverse wave number of the mode.

Singh, Rohtash; Tripathi, V. K. [Physics Department, Indian Institute of Technology Delhi, New Delhi 110016 (India)] [Physics Department, Indian Institute of Technology Delhi, New Delhi 110016 (India)

2013-07-15T23:59:59.000Z

218

Steady-state inductive spheromak operation  

DOE Patents [OSTI]

The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.

Janos, A.C.; Jardin, S.C.; Yamada, M.

1985-02-20T23:59:59.000Z

219

Plasma sweeper. [Patents  

DOE Patents [OSTI]

A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, R.W.; Glanz, J.

1982-10-25T23:59:59.000Z

220

Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas  

SciTech Connect (OSTI)

Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system and B{sup 2}??X{sup 2}? system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100?K higher than those of ground state CF{sub 2}, and about 200?K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); Liu, Yong-Xin; Wang, You-Nian [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Computer Science Induction to  

E-Print Network [OSTI]

Computer Science Induction to Postgraduate Research Studies Ulrich Berger Head of Postgraduate Research Supervision Regulations Progression Regulations Computer Science Induction to Postgraduate Research Studies Ulrich Berger Head of Postgraduate Research Department of Computer Science Swansea

Berger, Ulrich

222

Plasma Response to Lithium-Coated Plasma-Facing Components in the National Spherical Torus Experiment  

SciTech Connect (OSTI)

Experiments in the National Spherical Torus Experiment (NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbonfiber- composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor towards the lower divertor. In NBI-heated, deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of ELMs were observed, including complete ELM suppression for periods up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Zeff and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts.

M.G. Bell, H.W. Kugel, R. Kaita, L.E. Zakharov, H. Schneider, B.P. LeBlanc, D. Mansfield, R.E. Bell, R. Maingi, S. Ding, S.M. Kaye, S.F. Paul, S.P. Gerhardt, J.M. Canik, J.C. Hosea, G. Taylor and the NSTX Research Team

2009-08-20T23:59:59.000Z

223

Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks  

E-Print Network [OSTI]

We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" which appears in the frame of an asteroid immersed in a fully-ionized, magnetized solar wind and drives currents through its interior. However we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by: (1) correcting the conceptual error by self consistently calculating the electric field in and around the boundary layer at the asteroid-plasma i...

Menzel, Raymond L

2013-01-01T23:59:59.000Z

224

Hybrid-secondary uncluttered induction machine  

DOE Patents [OSTI]

An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

Hsu, John S. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

225

Beam Dynamics for Induction Accelerators  

E-Print Network [OSTI]

Dynamics for Induction Accelerators Edward P. Lee Lawrencea natural candidate accelerator for a heavy ion fusion (HIF)words: Fusion, Induction, Accelerators, Dynamics This work

Lee, E.P.

2014-01-01T23:59:59.000Z

226

REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS  

SciTech Connect (OSTI)

We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu [New York Center for Astrobiology and Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

2013-10-20T23:59:59.000Z

227

Induction melter apparatus  

SciTech Connect (OSTI)

Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

2008-06-17T23:59:59.000Z

228

Linear induction accelerator  

DOE Patents [OSTI]

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

229

Induction Phenomena in Laser-Sustained Scramjets  

SciTech Connect (OSTI)

A preliminary study on induction phenomena in a laser-sustained scramjet was conducted. The induction processes include absorption process of a laser pulse by a reactive mixture, plasma formation, diffusion of active species, shock formation, thermalization process of ambient mixture, induction of local turbulence, etc. For observation of the initial phenomena, an experimental study on effects of a focused laser pulse (Nd:YAG, 335mJ/pulse, pulse width 5nsec) into a hydrogen-air mixture was conducted. Temporal evolutions of typical line spectrum of a laser-induced plasma of the mixture were measured with the photodiode or the photo-multiplier-tube through specific band-pass filters for each spectrum for OH, O+, N+, H, and O. It was shown that the emission from O abruptly increased at 2 nsec, peaked at about 5 nsec, followed by an abrupt drop at 6 nsec. The emission from H atoms secondly increased. Other emissions of N+, O+, and OH peaked at about 17 nsec and continued for about 1 msec.

Ohkawa, Yoko; Tamada, Kazunobu; Horisawa, Hideyuki [Department of Aeronautics and Astronautics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292 (Japan); Kimura, Itsuro [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8856 (Japan)

2005-04-27T23:59:59.000Z

230

RF-Plasma Source Commissioning in Indian Negative Ion Facility  

SciTech Connect (OSTI)

The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10{sup 18}/m{sup 3}, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K. [ITER- India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujrat (India); Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J. [Institute for Plasma Research, Bhat Gandhinagar, Gujrat (India); Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

2011-09-26T23:59:59.000Z

231

Control of power to an inductively heated part  

DOE Patents [OSTI]

A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

1997-05-20T23:59:59.000Z

232

Control of power to an inductively heated part  

DOE Patents [OSTI]

A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

Adkins, Douglas R. (1620 Adelita Dr. NE., Albuquerque, NM 87112); Frost, Charles A. (1039 Red Oaks Loop NE., Albuquerque, NM 87122); Kahle, Philip M. (528 Longwood Loop NE., Rio Rancho, NM 87124); Kelley, J. Bruce (13200 Blue Corn Maiden Trail NE., Albuquerque, NM 87112); Stanton, Suzanne L. (2805 Palo Alto NE., Albuquerque, NM 87112)

1997-01-01T23:59:59.000Z

233

Low inductance connector assembly  

DOE Patents [OSTI]

A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

Holbrook, Meghan Ann; Carlson, Douglas S

2013-07-09T23:59:59.000Z

234

On Automating Inductive and Non-Inductive Termination Methods  

E-Print Network [OSTI]

On Automating Inductive and Non-Inductive Termination Methods Fairouz Kamareddine and Francois of the function which satis es a notion of terminal prop- erty and then verifying that this construction processPre can only deal with the termination proofs that are inductive. There are however many functions

Kamareddine, Fairouz

235

Gravimagnetic shock waves in the anisotropic plasma  

E-Print Network [OSTI]

The relativistic magnetohydrodynamic equations for the anisotropic magnetoactive plasma are obtained and accurately integrated in the plane gravitational wave metrics. The dependence of the induction mechanism of the gravimagnetic shock waves on the degree of the magnetoactive plasma anisotropy is analyzed.

Yu. G. Ignatyev; D. N. Gorokhov

2011-01-01T23:59:59.000Z

236

E-Print Network 3.0 - absorption spectrometry etaas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

With Confirmation of Accuracy by Inductively Coupled Plasma Mass Spectrometry and Atomic Absorption Spectrometry... -LEAFS uses absorption; graphite furnace; inductively...

237

Improving interface through surface modification by plasma polymerization, in carbon/graphite fiber reinforced polymeric composites  

SciTech Connect (OSTI)

Carbon/graphite fiber surfaces were modified by plasma polymerization. An inductively coupled electrodeless glow-discharge system was utilized to treat the surfaces with acrylonitrile or styrene at the established operating conditions. Critical surface erosion for wetting measured by the sessile drop method, of plasma treated pyrolytic graphite blocks, used as a model surface for carbon/graphite fibers, were lower than of untreated block. Contact angles on plasma polymers deposited on different substrates had similar values. Contact angle, measured by Wilhelmy balance method of water, on untreated Fortafil 3 carbon/graphite fiber was 55.1/sup 0/, whereas the commercially treated one was 43.7/sup 0/. Plasma treatments reduced the contact angle to 44.3/sup 0/ in An and 47.3/sup 0/ in styrene monomer cases. Thicknesses of plasma polymers deposited under the established optimum conditions, measured by ellipsometer, were 840 A for PPAN and 2192 A for PPST after one hour treatment. In conclusion, plasma treatments of carbon/graphite fibers are an effective alternative to existing methods for improving interfacial shear strengths and maintaining or improving the tensile strengths of the fibers.

Dagli, N.G.

1986-01-01T23:59:59.000Z

238

Low inductance busbar assembly  

DOE Patents [OSTI]

A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

Holbrook, Meghan Ann (Manhattan Beach, CA)

2010-09-21T23:59:59.000Z

239

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, A.; Swift, G.W.

1984-06-13T23:59:59.000Z

240

Feedback regulated induction heater for a flowing fluid  

DOE Patents [OSTI]

A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Harmonic control of multiple-stator induction machines for voltage regulation  

E-Print Network [OSTI]

Small, one to a few horsepower, three-phase induction machines with three sets of electrically-isolated, magnetically-coupled stator winding circuits are described. A voltage inverter is developed and used to drive one set ...

Holloway, Jack Wade, 1980-

2004-01-01T23:59:59.000Z

242

Resonant-cavity antenna for plasma heating  

DOE Patents [OSTI]

Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

Perkins, Jr., Francis W. (Princeton, NJ); Chiu, Shiu-Chu (San Diego, CA); Parks, Paul (San Diego, CA); Rawls, John M. (Del Mar, CA)

1987-01-01T23:59:59.000Z

243

Comparison of analytical methods for percent phosphorous determination in electroless nickel plate. [UCC-ND alkalimetric method; UCC-ND Inductively Coupled Plasma (ICP) method; ASTM-E39 gravimetric method; development colorimetric method; independent colorimetric method  

SciTech Connect (OSTI)

Electroless nicke-plate characteristics are substantially influenced by percent phosphorous concentrations. Available ASTM analytical methods are designed for phosphorous concentrations of less than one percent compared to the 4.0 to 20.0% concentrations common in electroless nickel plate. A variety of analytical adaptations are applied through the industry resulting in poor data continuity. This paper presents a statistical comparison of five analytical methods and recommends accurate and precise procedures for use in percent phosphorous determinations in electroless nickel plate. 2 figures, 1 table.

Owens, W.W.; Sullivan, H.H.

1982-01-01T23:59:59.000Z

244

Standard practice for the determination of 237Np, 232Th, 235U and 238U in urine by inductively coupled plasma-Mass spectrometry (ICP-MS) and gamma ray spectrometry.  

E-Print Network [OSTI]

1.1 This practice covers the separation and preconcentration of neptunium-237 (237Np), thorium-232 (232Th), uranium-235 (235U) and uranium-238 (238U) from urine followed by quantitation using ICP-MS. 1.2 This practice can be used to support routine bioassay programs. The minimum detectable concentrations (MDC) for this method, taking the preconcentration factor into account, are approximately 1E-2Bq for 237Np (0.38ng), 2E-6Bq for 232Th (0.50ng), 4E-5Bq for 235U (0.50ng) and 6E-6Bq for 238U (0.48ng). 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

245

Effet de la temprature et du temps de frittage sur les proprits du ferrite NiCuZn :Co fritt avec le procd Spark Plasma Sintering ( SPS ) et ralisation d'une inductance intgrs.  

E-Print Network [OSTI]

Effet de la température et du temps de frittage sur les propriétés du ferrite NiCuZn :Co fritté.zehani@satie.ens-cachan.fr _______________________________________________________________________________________________ Résumé : Le frittage du ferrite spinelle NiCuZn par le procédé Spark Plasma Sintering a été étudié pour structurales, diélectrique et magnétique pour ce ferrite ont été étudiées pour différentes valeurs de la

Boyer, Edmond

246

Progress on a New RF Plasma Generator a  

E-Print Network [OSTI]

source goal: produce high-recycling, strongly coupled PMI regime, guided by ITER divertor plasma Divertor Plasma Heat & Particle Fluxes ITER divertor channel What source plasma parameters are required? High-recycling plasmas led to new understanding · SOLPS (B2-Eirene) (Jülich; Garching; U. Paris) ­ Models for plasma

247

Superconducting inductive displacement detection of a microcantilever  

SciTech Connect (OSTI)

We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100??T, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2?K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

Vinante, A., E-mail: anvinante@fbk.eu [Istituto di Fotonica e Nanotecnologie, CNR - Fondazione Bruno Kessler, I-38123 Povo, Trento (Italy)

2014-07-21T23:59:59.000Z

248

Superconducting inductive displacement detection of a microcantilever  

E-Print Network [OSTI]

We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 $\\mu$T, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at $4.2$ K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

Andrea Vinante

2014-05-14T23:59:59.000Z

249

Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX  

SciTech Connect (OSTI)

Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

Kaita, R; Kugel, H; Bell, M G; Bell, R; Boedo, J; Bush, C; Ellis, R; Gates, D; Gerhardt, S; Gray, T; Kallman, J; Kaye, S; LeBlanc, B; Majeski, R; Maingi, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, S H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Zakharov, L; Ahn, J; Allain, J P; Wampler, W R

2009-01-08T23:59:59.000Z

250

Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX  

SciTech Connect (OSTI)

Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

Kaita, R., et. al.

2008-09-29T23:59:59.000Z

251

Coulomb scattering in plasma revised  

E-Print Network [OSTI]

A closed expression for the momentum evolution of a test particle in weakly-coupled plasma is derived, starting from quantum many particle theory. The particle scatters from charge fluctuations in the plasma rather than in a sequence of independent binary collisions. Contrary to general belief, Bohr's (rather than Bethe's) Coulomb logarithm is the relevant one in most plasma applications. A power-law tail in the distribution function is confirmed by molecular dynamics simulation.

S. Gordienko; D. V. Fisher; J. Meyer-ter-Vehn

2003-05-13T23:59:59.000Z

252

1 Managed by UT-Battelle for the Department of Energy Presentation_name  

E-Print Network [OSTI]

fluorescence spectroscopy, liquid scintillation counting, inductive-coupled plasma mass spectrometry (ICP

253

Electron Bernstein wave current drive modeling in toroidal plasma confinement  

E-Print Network [OSTI]

The steady-state confinement of tokamak plasmas in a fusion reactor requires non-inductively driven toroidal currents. Radio frequency waves in the electron cyclotron (EC) range of frequencies can drive localized currents ...

Decker, Joan, 1977-

2005-01-01T23:59:59.000Z

254

Beam hosing instability in overdense plasma  

SciTech Connect (OSTI)

Transverse stability of the drive beam is critical to plasma wakefield accelerators. A long, relativistic particle beam propagating in an overdense plasma is subject to beam envelope modulation and hosing (centroid displacement) instabilities. Coupled equations for the beam centroid and envelope are derived. The growth rate for beam hosing is examined including return current effects (where the beam radius is of order the plasma skin depth) in the long-beam, strongly-coupled, overdense regime.

Schroeder, C. B.; Benedetti, C.; Esarey, E.; Gruener, F. J.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2012-12-21T23:59:59.000Z

255

Induction Linac Pulsers  

SciTech Connect (OSTI)

The pulsers used in most of the induction linacs evolved from the very large body of work that was done in the U.S. and Great Britain during the development of the pulsed magnetron for radar. The radar modulators started at {approx}100 kW and reached >10 MW by 1945. A typical pulse length was 1 {mu}s at a repetition rate of 1,000 pps. A very comprehensive account of the modulator development is Pulse Generators by Lebacqz and Glasoe, one of the Radiation Laboratory Series. There are many permutations of possible modulators, two of the choices being tube type and line type. In earlier notes I wrote that technically the vacuum tube pulser met all of our induction linac needs, in the sense that a number of tubes, in series and parallel if required, could produce our pulses, regulate their voltage, be useable in feed-forward correctors, and provide a low source impedance. At a lower speed, an FET array is similar, and we have obtained and tested a large array capable of >10 MW switching. A modulator with an electronically controlled output only needs a capacitor for energy storage and in a switched mode can transfer the energy from the capacitor to the load at high efficiency. Driving a full size Astron induction core and a simulated resistive 'beam load' we achieved >50% efficiency. These electronically controlled output pulses can produce the pulses we desire but are not used because of their high cost. The second choice, the line type pulser, visually comprises a closing switch and a distributed or a lumped element transmission line. The typical switch cannot open or stop conducting after the desired pulse has been produced, and consequently all of the initially stored energy is dissipated. This approximately halves the efficiency, and the original cost estimating program LIACEP used this factor of two, even though our circuits are usually worse, and even though our inveterate optimists often omit it. The 'missing' energy is that which is reflected back into the line from mismatches, the energy left in the accelerator module's capacitance, the energy lost in the switch during switching and during the pulse, and the energy lost in the pulse line charging circuit. For example, a simple resistor-limited power supply dissipates as much energy as it delivers to the pulse forming line, giving a factor if two by itself, therefore efficiency requires a more complicated charging system.

Faltens, Andris

2011-01-07T23:59:59.000Z

256

Accounting & Finance (BAcc) Induction 2014  

E-Print Network [OSTI]

Accounting & Finance (BAcc) Induction 2014 Monday 15 September 2014 Induction Programme: 0945] Welcome from the Business School and Accounting & Finance 1000 The Accountancy Degrees 1015 Programme & 3 on Level 4 Accounting & Finance Bldg Tuesday 16 September 2014 Advising Session Lunch (provided

Glasgow, University of

257

Borehole induction coil transmitter  

DOE Patents [OSTI]

A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

Holladay, Gale (Livermore, CA); Wilt, Michael J. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

258

Nonlinear effects in inductively coupled plasmasa... A. I. Smolyakovb)  

E-Print Network [OSTI]

and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada V. A. Godyak OSRAM and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada Received 18 November

Smolyakov, Andrei

259

Apparatus and method for reducing inductive coupling between levitation and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mailRadioimmunotherapy of Cancers. |Contract No.:drive

260

Magnetic field distribution in the plasma flow generated by a plasma focus discharge  

SciTech Connect (OSTI)

The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovaiton and Fusion Research (Russian Federation); Krauz, V. I., E-mail: krauz_vi@nrcki.ru; Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation)

2014-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plasma instrumentation for fusion power reactor control  

SciTech Connect (OSTI)

Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

1985-07-01T23:59:59.000Z

262

Helix coupling  

DOE Patents [OSTI]

A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

Ginell, W.S.

1989-04-25T23:59:59.000Z

263

Helix coupling  

DOE Patents [OSTI]

A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

Ginell, W.S.

1982-03-17T23:59:59.000Z

264

Plasma generating apparatus for large area plasma processing  

DOE Patents [OSTI]

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

1991-07-16T23:59:59.000Z

265

Plasma generating apparatus for large area plasma processing  

DOE Patents [OSTI]

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

Tsai, Chin-Chi (Oak Ridge, TN); Gorbatkin, Steven M. (Oak Ridge, TN); Berry, Lee A. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

266

Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas  

E-Print Network [OSTI]

Surface kinetics and plasma equipment model for Si etching by fluorocarbon plasmas Da Zhanga of fluorocarbon radicals on the reactor walls, polymer erosion rates and F atom diffusion through the polymer during Si etching using fluorocarbon gases in an induc- tively coupled plasma ICP reactor.4 They observed

Kushner, Mark

267

Plasma flow switch experiment on Procyon  

SciTech Connect (OSTI)

This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.

Benage, J.F. Jr.; Bowers, R.; Peterson, D. [and others

1995-09-01T23:59:59.000Z

268

Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection  

SciTech Connect (OSTI)

The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX.

Roger Raman; Thomas R. Jarboe; Michael G. Bell; Dennis Mueller; Brian A. Nelson; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

2005-01-03T23:59:59.000Z

269

Two-dimensional-spatial distribution measurement of electron temperature and plasma density in low temperature plasmas  

SciTech Connect (OSTI)

A real-time measurement method for two-dimensional (2D) spatial distribution of the electron temperature and plasma density was developed. The method is based on the floating harmonic method and the real time measurement is achieved with little plasma perturbation. 2D arrays of the sensors on a 300 mm diameter wafer-shaped printed circuit board with a high speed multiplexer circuit were used. Experiments were performed in an inductive discharge under various external conditions, such as powers, gas pressures, and different gas mixing ratios. The results are consistent with theoretical prediction. Our method can measure the 2D spatial distribution of plasma parameters on a wafer-level in real-time. This method can be applied to plasma diagnostics to improve the plasma uniformity of plasma reactors for plasma processing.

Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Jang, Sung-Ho; Oh, Se-Jin; Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

2013-05-15T23:59:59.000Z

270

Radiofrequency plasma antenna generated by femtosecond laser filaments in air  

SciTech Connect (OSTI)

We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A. [Laboratoire d'Optique Appliquee, ENSTA ParisTech, Ecole Polytechnique, CNRS, 91761 Palaiseau (France); Arantchouk, L. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, CNRS, Palaiseau (France); Pellet, M. [Etat-major de la Marine Nationale, Paris (France)

2012-12-24T23:59:59.000Z

271

2354 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Laser Diagnostic Imaging of Energetically Enhanced  

E-Print Network [OSTI]

2354 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Laser Diagnostic Imaging of Energetically Enhanced Flames Using Direct Microwave Plasma Coupling Xing Rao, Stephen Hammack, Campbell Carter in plasma-enhanced flames, where a nonthermal microwave plasma discharge is coupled di- rectly

Lee, Tonghun

272

Physics Safety Induction OCTOBER 2012  

E-Print Network [OSTI]

Physics Safety Induction OCTOBER 2012 FACULTY OF SCIENCES #12;The University of Western Australia · Be safe · Report anything unsafe #12;The University of Western Australia Physics Occupational Safety Sharma ­ ICRAR · Nikita Kostylev ­ Student Representative #12;The University of Western Australia School

Tobar, Michael

273

Parallel algorithms for inductance extraction  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . 30 3. Pin Connect . . . . . . . . . . . . . . . . . . . . . . . . . 31 C. The Inductance Extraction Algorithm . . . . . . . . . . . . . . 33 ix CHAPTER Page V COMPARISON WITH EXISTING WORK . . . . . . . . . . . . . 35 A. Ground Plane... . . . . . . . . . . . . . . . . . . . . . . . 52 1. Shared Memory Parallelization . . . . . . . . . . . . . . . 53 2. Mixed Mode Parallelization . . . . . . . . . . . . . . . . . 55 3. Distributed Memory Parallelization . . . . . . . . . . . . . 56 VII CONCLUSIONS...

Mahawar, Hemant

2007-09-17T23:59:59.000Z

274

Nonabelian plasma instabilities in Bjorken expansion  

E-Print Network [OSTI]

Plasma instabilities are parametrically the dominant nonequilibrium dynamics of a weakly coupled quark-gluon plasma. In recent years the time evolution of the corresponding collective colour fields has been studied in stationary anisotropic situations. Here I report on recent numerical results on the time evolution of the most unstable modes in a longitudinally expanding plasma as they grow from small rapidity fluctuations to amplitudes where non-Abelian self-interactions become important.

Anton Rebhan

2008-10-17T23:59:59.000Z

275

The Automation Of Proof By Mathematical Induction   

E-Print Network [OSTI]

This paper is a chapter of the Handbook of Automated Reasoning edited by Voronkov and Robinson. It describes techniques for automated reasoning in theories containing rules of mathematical induction. Firstly, inductive reasoning is defined and its...

Bundy, Alan

276

Deposition of TiN and HfO{sub 2} in a commercial 200 mm remote plasma atomic layer deposition reactor  

SciTech Connect (OSTI)

The authors describe a remote plasma atomic layer deposition reactor (Oxford Instruments FlexAL trade mark sign ) that includes an inductively coupled plasma source and a load lock capable of handling substrates up to 200 mm in diameter. The deposition of titanium nitride (TiN) and hafnium oxide (HfO{sub 2}) is described for the combination of the metal-halide precursor TiCl{sub 4} and H{sub 2}-N{sub 2} plasma and the combination of the metallorganic precursor Hf[N(CH{sub 3})(C{sub 2}H{sub 5})]{sub 4} and O{sub 2} plasma, respectively. The influence of the plasma exposure time and substrate temperature has been studied and compositional, structural, and electrical properties are reported. TiN films with a low Cl impurity content were obtained at 350 deg. C at a growth rate of 0.35 A /cycle with an electrical resistivity as low as 150 {mu}{omega} cm. Carbon-free (detection limit <2 at. %) HfO{sub 2} films were obtained at a growth rate of 1.0 A /cycle at 290 deg. C. The thickness and resisitivity nonuniformity was <5% for the TiN and the thickness uniformality was <2% for the HfO{sub 2} films as determined over 200 mm wafers.

Heil, S. B. S.; Hemmen, J. L. van; Hodson, C. J.; Singh, N.; Klootwijk, J. H.; Roozeboom, F.; Sanden, M. C. M. van de; Kessels, W. M. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Oxford Instruments Plasma Technology, North End, Yatton BS49 4AP (United Kingdom); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); NXP Semiconductors Research, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2007-09-15T23:59:59.000Z

277

Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas  

SciTech Connect (OSTI)

Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7?nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p?3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

2014-03-15T23:59:59.000Z

278

Formation of microchannels from low-temperature plasma-deposited silicon oxynitride  

DOE Patents [OSTI]

A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

Matzke, Carolyn M. (Los Lunas, NM); Ashby, Carol I. H. (Edgewood, NM); Bridges, Monica M. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

279

Holographic plasma and anyonic fluids  

E-Print Network [OSTI]

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-20T23:59:59.000Z

280

Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic  

SciTech Connect (OSTI)

Chronic arsenic (As) exposure affects the endothelial system causing several diseases. Big endothelin-1 (Big ET-1), the biological precursor of endothelin-1 (ET-1) is a more accurate indicator of the degree of activation of the endothelial system. Effect of As exposure on the plasma Big ET-1 levels and its physiological implications have not yet been documented. We evaluated plasma Big ET-1 levels and their relation to hypertension and skin lesions in As exposed individuals in Bangladesh. A total of 304 study subjects from the As-endemic and non-endemic areas in Bangladesh were recruited for this study. As concentrations in water, hair and nails were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The plasma Big ET-1 levels were measured using a one-step sandwich enzyme immunoassay kit. Significant increase in Big ET-1 levels were observed with the increasing concentrations of As in drinking water, hair and nails. Further, before and after adjusting with different covariates, plasma Big ET-1 levels were found to be significantly associated with the water, hair and nail As concentrations of the study subjects. Big ET-1 levels were also higher in the higher exposure groups compared to the lowest (reference) group. Interestingly, we observed that Big ET-1 levels were significantly higher in the hypertensive and skin lesion groups compared to the normotensive and without skin lesion counterpart, respectively of the study subjects in As-endemic areas. Thus, this study demonstrated a novel dose–response relationship between As exposure and plasma Big ET-1 levels indicating the possible involvement of plasma Big ET-1 levels in As-induced hypertension and skin lesions. -- Highlights: ? Plasma Big ET-1 is an indicator of endothelial damage. ? Plasma Big ET-1 level increases dose-dependently in arsenic exposed individuals. ? Study subjects in arsenic-endemic areas with hypertension have elevated Big ET-1 levels. ? Study subjects with arsenic-induced skin lesions show elevated plasma Big ET-1 levels. ? Arsenic-induced hypertension and skin lesions may be linked to plasma Big ET-1 levels.

Hossain, Ekhtear; Islam, Khairul; Yeasmin, Fouzia [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh); Karim, Md. Rezaul [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003 (Bangladesh)] [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia-7003 (Bangladesh); Rahman, Mashiur; Agarwal, Smita; Hossain, Shakhawoat; Aziz, Abdul; Al Mamun, Abdullah; Sheikh, Afzal; Haque, Abedul; Hossain, M. Tofazzal [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh); Hossain, Mostaque [Department of Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka (Bangladesh)] [Department of Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka (Bangladesh); Haris, Parvez I. [Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH (United Kingdom)] [Faculty of Health and Life Sciences, De Montfort University, Leicester, LE1 9BH (United Kingdom); Ikemura, Noriaki; Inoue, Kiyoshi; Miyataka, Hideki; Himeno, Seiichiro [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770–8514 (Japan)] [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770–8514 (Japan); Hossain, Khaled, E-mail: khossain69@yahoo.com [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)] [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi-6205 (Bangladesh)

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method of Evaluating the Zero-Sequence Inductance Ratio for Electrical Luis De Sousa, IEEE member  

E-Print Network [OSTI]

concerning the electrical machine design. Keywords Zero-sequence machine, mutual inductance, permanent magnet-phase machine with electrically independent phases. From a magnetic point of view, some couplings between phases shaft cannot move during the battery charge. In traction mode, the grid is not connected to the EM

Paris-Sud XI, Université de

282

Segmented rail linear induction motor  

DOE Patents [OSTI]

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

283

Segmented rail linear induction motor  

DOE Patents [OSTI]

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

284

A linear induction motor conveyer  

E-Print Network [OSTI]

A LINEAR INCUCTION MOTOR CONVEYER A Thesis Kenneth Sheldon. Solinsky Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement for the degree of MASTER 07 SCIENCE May 1973 Major Subject: Industrial.... Howie, USAMC-ITC-P/P, Red River Army Depot, Texarkana, Texas 75501. Approved owxe, xe , ro uc o uction Engineering For the Commander ne , grec or, I A LINEAR INDUCTION MOTOR CONVEYER A Thesis by Kenneth Sheldon Solinsky App ved as to style...

Solinsky, Kenneth Sheldon

1973-01-01T23:59:59.000Z

285

High frequency inductive lamp and power oscillator  

DOE Patents [OSTI]

A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

MacLennan, Donald A. (Gaithersburg, MD); Dymond, Jr., Lauren E. (North Potomac, MD); Gitsevich, Aleksandr (Montgomery Village, MD); Grimm, William G. (Silver Spring, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Ola, Samuel A. (Silver Spring, MD); Simpson, James E. (Gaithersburg, MD); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD); Turner, Brian P. (Damascus, MD)

2001-01-01T23:59:59.000Z

286

High frequency inductive lamp and power oscillator  

DOE Patents [OSTI]

A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Dolan, James T. (Frederick, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD)

2000-01-01T23:59:59.000Z

287

Meter scale plasma source for plasma wakefield experiments  

SciTech Connect (OSTI)

High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J. [Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

2012-12-21T23:59:59.000Z

288

Ultrastrong coupling in two-resonator circuit QED  

E-Print Network [OSTI]

We report on ultrastrong coupling between a superconducting flux qubit and a resonant mode of a system comprised of two superconducting coplanar stripline resonators coupled galvanically to the qubit. With a coupling strength as high as 17% of the mode frequency, exceeding that of previous circuit quantum electrodynamics experiments, we observe a pronounced Bloch-Siegert shift. The spectroscopic response of our multimode system reveals a clear breakdown of the Jaynes-Cummings model. In contrast to earlier experiments, the high coupling strength is achieved without making use of an additional inductance provided by a Josephson junction.

A. Baust; E. Hoffmann; M. Haeberlein; M. J. Schwarz; P. Eder; J. Goetz; F. Wulschner; E. Xie; L. Zhong; F. Quijandria; D. Zueco; J. -J. Garcia Ripoll; L. Garcia-Alvarez; G. Romero; E. Solano; K. G. Fedorov; E. P. Menzel; F. Deppe; A. Marx; R. Gross

2014-12-23T23:59:59.000Z

289

Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave  

SciTech Connect (OSTI)

Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R. [Austin Plasma Laboratory, Tokyo Electron America, Inc., Austin, Texas 78741 (United States); Nozawa, T. [Tokyo Electron Limited, TEL Technology Center Sendai, 2-1 Osawa 3-chome, Izumi-ku, Sendai 981-3137 (Japan); Samukawa, S. [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2013-07-15T23:59:59.000Z

290

Runaway electrons in a fully and partially ionized nonideal plasma  

SciTech Connect (OSTI)

This paper reports on a study of electron runaway for a nonideal plasma in an external electric field. Based on pseudopotential models of nonideal fully and partially ionized plasmas, the friction force was derived as a function of electron velocities. Dependences of the electron free path on plasma density and nonideality parameters were obtained. The impact of the relative number of runaway electrons on their velocity and temperature was considered for classical and semiclassical models of a nonideal plasma. It has been shown that for the defined intervals of the coupled plasma parameter, the difference between the relative numbers of runaway electron values is essential for various plasma models.

Ramazanov, T.S.; Turekhanova, K.M. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty 050012 (Kazakhstan)

2005-10-01T23:59:59.000Z

291

Low inductance power electronics assembly  

DOE Patents [OSTI]

A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

2012-10-02T23:59:59.000Z

292

Monitoring transients in low inductance circuits  

DOE Patents [OSTI]

The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.

Guilford, R.P.; Rosborough, J.R.

1985-10-21T23:59:59.000Z

293

Induction slag reduction process for making titanium  

DOE Patents [OSTI]

Continuous process for preparing titanium comprising fluorinating titanium ore, and reducing the formed alkaline earth fluotitanate with an alkaline earth metal in an induction slag reactor.

Traut, Davis E. (Corvallis, OR)

1991-01-01T23:59:59.000Z

294

Comparative Analysis of Carbon Plasma in Arc and RF Reactors  

SciTech Connect (OSTI)

Results on studies of molecular spectra emitted in the initial stages of fullerene formation during the processing of graphite powder in induction RF reactor and evaporation of graphite electrodes in arc reactor are presented in this paper. It was found that C2 radicals were dominant molecular species in both plasmas. C2 radicals have an important role in the process of fullerene synthesis. The rotational-vibrational temperatures of C2 and CN species were calculated by fitting the experimental spectra to the simulated ones. The results of optical emission study of C2 radicals generated in carbon arc plasma have shown that rotational temperature of C2 species depends on carbon concentration and current intensity significantly. The optical emission study of induction RF plasma and SEM analysis of graphite powder before and after plasma treatment have shown that evaporation of the processed graphite powder depends on feed rate and composition of gas phase significantly. Based on the obtained results, it was concluded that in the plasma region CN radicals could be formed by the reaction of C2 species with atomic nitrogen at smaller loads. At larger feed rate of graphite powder, CN species were produced by surface reaction of the hot carbon particles with nitrogen atoms. The presence of nitrogen in induction RF plasma reduces the fullerene yield significantly. The fullerene yield obtained in two different reactors was: 13% in arc reactor and 4.1% in induction RF reactor. However, the fullerene production rate was higher in induction RF reactor-6.4 g/h versus 1.7 g/h in arc reactor.

Todorovic-Markovic, B.; Markovic, Z. ['Vinca' Institute of Nuclear Sciences, P.O.B. 522, 11001 Belgrade (Serbia and Montenegro); Mohai, I.; Szepvolgyi, J. [Research Laboratory of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences H-1525 Budapest, POB 17 (Hungary)

2004-12-01T23:59:59.000Z

295

A segmented multi-loop antenna for selective excitation of azimuthal mode number in a helicon plasma source  

SciTech Connect (OSTI)

A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density n{sub e} were investigated with a radio frequency (rf) power less than 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n{sub e} up to ?5 × 10{sup 12} cm{sup ?3} was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.

Shinohara, S., E-mail: sshinoha@cc.tuat.ac.jp [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, T. [Research Institute of Science and Technology, Tokai University, 4-1-1, Kita-kaname, Hiratsuka, Kanagawa 259-1292 (Japan); Motomura, T. [National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga 841-0052 Japan (Japan)

2014-09-15T23:59:59.000Z

296

Plasma gun notes Here are some notes based on an idea of Paul Bellan's (see his Spheromak  

E-Print Network [OSTI]

Plasma gun notes Here are some notes based on an idea of Paul Bellan's (see his Spheromak book end C. L is an inductance per unit length and L0 is the inductance of the system before the spheromak starts to move. The spheromak is a sliding short of mass m impaled on the center electrode. The potential

Brown, Michael R.

297

Method and apparatus for the formation of a spheromak plasma  

DOE Patents [OSTI]

A method and apparatus for forming a detached, compact toroidally shaped spheromak plasma by an inductive mechanism. A generally spheroidal vacuum vessel (1) houses a toroidally shaped flux ring or core (2) which contains poloidal and toroidal field generating coils. A plasma discharge occurs with the pulsing of the toroidal field coil, and the plasma is caused to expand away from the core (2) and toward the center of the vacuum vessel (1). When the plasma is in an expanded state, a portion of it is pinched off in order to form a separate, detached spheromak plasma configuration. The detached plasma is supported by a magnetic field generated by externally arranged equilibrium field coils (5).

Yamada, Masaaki (Lawrenceville, NJ); Furth, Harold P. (Princeton, NJ); Stix, Thomas H. (Princeton, NJ); Todd, Alan M. M. (Princeton Junction, NJ)

1982-01-01T23:59:59.000Z

298

Cold atmospheric plasma in cancer therapy  

SciTech Connect (OSTI)

Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup ?3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

Keidar, Michael; Shashurin, Alex; Volotskova, Olga [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States)] [Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052 (United States); Ann Stepp, Mary [Medical School, George Washington University, Washington DC 20052 (United States)] [Medical School, George Washington University, Washington DC 20052 (United States); Srinivasan, Priya; Sandler, Anthony [Childrens National Medical Center, Washington DC 20010 (United States)] [Childrens National Medical Center, Washington DC 20010 (United States); Trink, Barry [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)] [Head and Neck Cancer Research Division, Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

2013-05-15T23:59:59.000Z

299

Quantum corrections to screening at strong coupling  

E-Print Network [OSTI]

We compute a certain class of corrections to (specific) screening lengths in strongly coupled nonabelian plasmas using the AdS/CFT correspondence. In this holographic framework, these corrections arise from various higher curvature interactions modifying the leading Einstein gravity action. The changes in the screening lengths are perturbative in inverse powers of the 't Hooft coupling or of the number of colours, as can be made precise in the context where the dual gauge theory is superconformal. We also compare the results of these holographic calculations to lattice results for the analogous screening lengths in QCD. In particular, we apply these results within the program of making quantitative comparisons between the strongly coupled quark-gluon plasma and holographic descriptions of conformal field theory.

Ajay Singh; Aninda Sinha

2012-04-23T23:59:59.000Z

300

Element of an inductive coupler  

DOE Patents [OSTI]

An element for an inductive coupler in a downhole component comprises magnetically conductive material, which is disposed in a recess in annular housing. The magnetically conductive material forms a generally circular trough. The circular trough comprises an outer generally U-shaped surface, an inner generally U-shaped surface, and two generally planar surfaces joining the inner and outer surfaces. The element further comprises pressure relief grooves in at least one of the surfaces of the circular trough. The pressure relief grooves may be scored lines. Preferably the pressure relief grooves are parallel to the magnetic field generated by the magnetically conductive material. The magnetically conductive material is selected from the group consisting of soft iron, ferrite, a nickel iron alloy, a silicon iron alloy, a cobalt iron alloy, and a mu-metal. Preferably, the annular housing is a metal ring.

Hall, David R.; Fox, Joe

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electrochemical characteristics of plasma-etched black silicon as anodes for Li-ion batteries  

SciTech Connect (OSTI)

Nanostructured silicon as an anode material for Li-ion batteries is produced for the first time by inductively coupled plasma–plasma etching of Si wafers in the black silicon regime. The microscopic structure strongly resembles other types of nanostructured silicon, with a well-arranged nanostructure possessing a sufficient porosity for accommodating large volume expansion. Despite these features, however, a high first-cycle irreversible capacity loss and a poor cycle life are observed. The main reason for these poor features is the formation of a thick solid-electrolyte interphase (SEI) layer related to the surface condition of the pristine nanostructured black silicon (b-Si) electrode. Therefore, the cycle life of the b-Si electrode is heavily influenced by the constant reformation of the SEI layer depending upon the surface composition in spite of the presence of nanostructured Si. In the fast lithiation experiments, the nanostructure region of the b-Si electrode is detached from the Si substrate owing to the kinetics difference between the lithium ion diffusion and the electron injection and phase transformation in the nanostructured Si region. This means that more Si substrate is involved in lithiation at high current rates. It is therefore important to maintain balance in the chemical kinetics during the lithiation of nanostructured Si electrodes with a Si substrate.

Lee, Gibaek; Wehrspohn, Ralf B., E-mail: ralf.b.wehrspohn@iwmh.fraunhofer.de [Fraunhofer Institute for Mechanics of Materials IWM, Halle (Saale) 06120, Germany and Department of Physics, Martin-Luther University, Halle (Saale) 06099 (Germany); Schweizer, Stefan L. [Department of Physics, Martin-Luther University, Halle (Saale) 06099 (Germany)

2014-11-01T23:59:59.000Z

302

Hydrodynamics of the cascading plasma  

E-Print Network [OSTI]

The cascading gauge theory of Klebanov et.al realizes a soluble example of gauge/string correspondence in a non-conformal setting. Such a gauge theory has a strong coupling scale Lambda, below which it confines with a chiral symmetry breaking. A holographic description of a strongly coupled cascading gauge theory plasma is represented by a black brane solution of type IIB supergravity on a conifold with fluxes. A characteristic parameter controlling the high temperature expansion of such plasma is 1/ln(T/Lambda). In this paper we study the speed of sound and the bulk viscosity of the cascading gauge theory plasma to order 1/ln(T/Lambda)^4. We find that the bulk viscosity satisfies the bound conjectured in arXiv:0708.3459. We comment on difficulties of computing the transport coefficients to all orders in T/Lambda. Previously, it was shown that a cascading gauge theory plasma undergoes a first-order deconfinement transition with unbroken chiral symmetry at T_c=0.6141111(3) Lambda. We show here that a deconfined chirally symmetric phase becomes perturbatively unstable at T_u=0.8749(0) T_c. Near the unstable point the specific heat diverges as c_V ~ |1-T_u/T|^(-1/2).

Alex Buchel

2009-06-03T23:59:59.000Z

303

Matching network for RF plasma source  

DOE Patents [OSTI]

A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.

Pickard, Daniel S. (Palo Alto, CA); Leung, Ka-Ngo (Hercules, CA)

2007-11-20T23:59:59.000Z

304

Effective Interaction Potentials and Physical Properties of Complex Plasmas  

SciTech Connect (OSTI)

Microscopic, thermodynamic and transport properties of complex plasmas are investigated on the basis of effective potentials of interparticle interaction. These potentials take into account correlation effects and quantum-mechanical diffraction. Plasma composition, thermodynamic functions of hydrogen and helium plasmas are obtained for a wide region of coupling parameter. Collision processes in partially ionized plasma are considered; some kinetic characteristics such as phase shift, scattering cross section, bremsstrahlung cross section and absorption coefficient are investigated. Dynamic and transport properties of dusty plasma are studied by computer simulation method of the Langevin dynamics.

Ramazanov, T. S.; Dzhumagulova, K. N.; Gabdullin, M. T.; Omarbakiyeva, Y. A. [Institute of Experimental and Theoretical Physics, al-Farabi Kazakh National University, 96a Tole Bi, Almaty 050012 (Kazakhstan)

2009-11-10T23:59:59.000Z

305

Black holes and the quark-gluon plasma  

E-Print Network [OSTI]

I discuss the possibility that the quark-gluon plasma at strong coupling admits a description in terms of a black hole in asymptotically anti-de Sitter space.

George Siopsis

2009-01-26T23:59:59.000Z

306

Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma  

SciTech Connect (OSTI)

A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

Woolley, R.D.

1996-12-31T23:59:59.000Z

307

Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma  

SciTech Connect (OSTI)

A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

Woolley, Robert D. (Hillsborough, NJ)

1998-01-01T23:59:59.000Z

308

Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma  

DOE Patents [OSTI]

A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.

Woolley, R.D.

1998-09-08T23:59:59.000Z

309

Ionization Equilibrium Timescales in Collisional Plasmas  

E-Print Network [OSTI]

Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai (1984) and Hughes & Helfand (1985). In general the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z+1 first order differential equations. However, they can be recast as Z uncoupled first order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the r...

Smith, Randall K

2010-01-01T23:59:59.000Z

310

Multi-scale investigation of sheared flows in magnetized plasmas  

SciTech Connect (OSTI)

Flows parallel and perpendicular to magnetic fields in a plasma are important phenomena in many areas of plasma science research. The presence of these spatially inhomogeneous flows is often associated with the stability of the plasma. In fusion plasmas, these sheared flows can be stabilizing while in space plasmas, these sheared flows can be destabilizing. Because of this, there is broad interest in understanding the coupling between plasma stability and plasma flows. This research project has engaged in a study of the plasma response to spatially inhomogeneous plasma flows using three different experimental devices: the Auburn Linear Experiment for Instability Studies (ALEXIS) and the Compact Toroidal Hybrid (CTH) stellarator devices at Auburn University, and the Space Plasma Simulation Chamber (SPSC) at the Naval Research Laboratory. This work has shown that there is a commonality of the plasma response to sheared flows across a wide range of plasma parameters and magnetic field geometries. The goal of this multi-device, multi-scale project is to understand how sheared flows established by the same underlying physical mechanisms lead to different plasma responses in fusion, laboratory, and space plasmas.

Thomas, Jr., Dr. Edward

2014-09-19T23:59:59.000Z

311

SENSORLESS INDUCTION MOTOR CONTROL USING STATISTICAL  

E-Print Network [OSTI]

is replaced by npM so that the dynamic model of the induction motor is then uSa = RSiSa + LS d dtiSa + M d dti

312

Parameter estimation of vector controlled induction machine  

E-Print Network [OSTI]

that this method can be employed for sensorless speed estimation and can be applied to motors like synchronous reluctance machine. CHAPTER II DYNAMIC MODELING OF INDUCTION MACHINE The well-known steady state equivalent circuit of induction motor sometimes... response without updating. . . . . , Rotor time constant converging with the actual value. . . . . . 78 79 CHAPTER I INTRODUCTION The growth of industrial motor drives over the past 10 years has exceeded 25% which is an unprecedented leap if one...

Rahman, Tahmid Ur

2002-01-01T23:59:59.000Z

313

U.S. Department of Energy Categorical Exclusion ...  

Broader source: Energy.gov (indexed) [DOE]

AikenSouth Carolina The Analytical Development VG PlasmaQuad II Inductively Coupled Plasma Mass Spectrometers (ICPMS) perform elemental and isotopic analysis on liquid samples....

314

Miniaturized cathodic arc plasma source  

DOE Patents [OSTI]

A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

2003-04-15T23:59:59.000Z

315

Photo-assisted etching of silicon in chlorine- and bromine-containing plasmas  

SciTech Connect (OSTI)

Cl{sub 2}, Br{sub 2}, HBr, Br{sub 2}/Cl{sub 2}, and HBr/Cl{sub 2} feed gases diluted in Ar (50%–50% by volume) were used to study etching of p-type Si(100) in a rf inductively coupled, Faraday-shielded plasma, with a focus on the photo-assisted etching component. Etching rates were measured as a function of ion energy. Etching at ion energies below the threshold for ion-assisted etching was observed in all cases, with Br{sub 2}/Ar and HBr/Cl{sub 2}/Ar plasmas having the lowest and highest sub-threshold etching rates, respectively. Sub-threshold etching rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) and Ar emission intensity (7504?Å). Etching rates measured under MgF{sub 2}, quartz, and opaque windows showed that sub-threshold etching is due to photon-stimulated processes on the surface, with vacuum ultraviolet photons being much more effective than longer wavelengths. Scanning electron and atomic force microscopy revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. Photo-assisted etching in Cl{sub 2}/Ar plasmas resulted in the formation of 4-sided pyramidal features with bases that formed an angle of 45° with respect to ?110? cleavage planes, suggesting that photo-assisted etching can be sensitive to crystal orientation.

Zhu, Weiye; Sridhar, Shyam; Liu, Lei; Hernandez, Eduardo; Donnelly, Vincent M., E-mail: vmdonnelly@uh.edu; Economou, Demetre J., E-mail: economou@uh.edu [Plasma Processing Laboratory, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004 (United States)

2014-05-28T23:59:59.000Z

316

Plasma Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog »Physics PhysicsWeekPlasma

317

Design and analysis of multiphase DC-DC converters with coupled inductors  

E-Print Network [OSTI]

(1 4)( 2-3 ) ( || )short k m kL with shorted L L L- = + (5) If Lm>>Lk, then (1 4) 2short kL L- = (6) This is measurement is often used to measure the leakage... inductance in transformer applications because it is assumed that Lm>>Lk. However, for the coupled inductor, this is not the case, and as such Lshort does not lead to a clear or direct measurement of the leakage inductance. A better measurement...

Shi, Meng

2007-09-17T23:59:59.000Z

318

Measurements of plasma bremsstrahlung and plasma energy density produced by electron cyclotron resonance ion source plasmas  

E-Print Network [OSTI]

high temperature plasma diagnostics used to study high en-high temperature plasma diagnostic. Plasma bremsstrahlungand J Ärje. Plasma breakdown diagnostics with the biased

Noland, Jonathan David

2011-01-01T23:59:59.000Z

319

Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits  

E-Print Network [OSTI]

08544, USA b US Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson AFB, OH 45433 plasma assisted combustion resulted in fast chemical heat release and extended the extinction limits processes in plasma­flame interactions [1­17]. However, plasma assisted combustion involves strong coupling

Ju, Yiguang

320

Plasma generators, reactor systems and related methods  

DOE Patents [OSTI]

A plasma generator, reactor and associated systems and methods are provided in accordance with the present invention. A plasma reactor may include multiple sections or modules which are removably coupled together to form a chamber. Associated with each section is an electrode set including three electrodes with each electrode being coupled to a single phase of a three-phase alternating current (AC) power supply. The electrodes are disposed about a longitudinal centerline of the chamber and are arranged to provide and extended arc and generate an extended body of plasma. The electrodes are displaceable relative to the longitudinal centerline of the chamber. A control system may be utilized so as to automatically displace the electrodes and define an electrode gap responsive to measure voltage or current levels of the associated power supply.

Kong, Peter C. (Idaho Falls, ID); Pink, Robert J. (Pocatello, ID); Lee, James E. (Idaho Falls, ID)

2007-06-19T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electron Bernstein waves in spherical torus plasmas  

SciTech Connect (OSTI)

Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasma interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.

Saveliev, A. N. [A.F.Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

2006-11-30T23:59:59.000Z

322

Principle of Mathematical Induction (PMI) Statement of the Principle of Mathematical Induction  

E-Print Network [OSTI]

Principle of Mathematical Induction (PMI) Statement of the Principle of Mathematical Induction Let you have a subset S of N which you wish to prove is all of N. If you use PMI, the proof can be written as follows. Outline of a proof by PMI Proof. We prove this result using PMI. Let S = . . . (describe the set

Singman, David

323

Polished Downhole Transducer Having Improved Signal Coupling  

DOE Patents [OSTI]

Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

2006-03-28T23:59:59.000Z

324

Rigorous theory of nuclear fusion rates in a plasma  

E-Print Network [OSTI]

Real-time thermal field theory is used to reveal the structure of plasma corrections to nuclear reactions. Previous results are recovered in a fashion that clarifies their nature, and new extensions are made. Brown and Yaffe have introduced the methods of effective quantum field theory into plasma physics. They are used here to treat the interesting limiting case of dilute but very highly charged particles reacting in a dilute, one-component plasma. The highly charged particles are very strongly coupled to this background plasma. The effective field theory proves that this mean field solution plus the one-loop term dominate; higher loop corrections are negligible even though the problem involves strong coupling. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models.

Lowell S. Brown; David C. Dooling; Dean L. Preston

2005-09-22T23:59:59.000Z

325

How to model quantum plasmas  

E-Print Network [OSTI]

Traditional plasma physics has mainly focused on regimes characterized by high temperatures and low densities, for which quantum-mechanical effects have virtually no impact. However, recent technological advances (particularly on miniaturized semiconductor devices and nanoscale objects) have made it possible to envisage practical applications of plasma physics where the quantum nature of the particles plays a crucial role. Here, I shall review different approaches to the modeling of quantum effects in electrostatic collisionless plasmas. The full kinetic model is provided by the Wigner equation, which is the quantum analog of the Vlasov equation. The Wigner formalism is particularly attractive, as it recasts quantum mechanics in the familiar classical phase space, although this comes at the cost of dealing with negative distribution functions. Equivalently, the Wigner model can be expressed in terms of $N$ one-particle Schr{\\"o}dinger equations, coupled by Poisson's equation: this is the Hartree formalism, which is related to the `multi-stream' approach of classical plasma physics. In order to reduce the complexity of the above approaches, it is possible to develop a quantum fluid model by taking velocity-space moments of the Wigner equation. Finally, certain regimes at large excitation energies can be described by semiclassical kinetic models (Vlasov-Poisson), provided that the initial ground-state equilibrium is treated quantum-mechanically. The above models are validated and compared both in the linear and nonlinear regimes.

G. Manfredi

2005-05-01T23:59:59.000Z

326

Boundary Plasma Issues in Burning Plasma Science  

E-Print Network [OSTI]

of operation ) ···· we know a lot more now than during the BPX design! #12;(1) Wide Dispersal of Power plasma/neutral densities · criterion for high recycling and cold divertor, Tt ~ 5 eV (a prerequisite high energy threshold) · interaction at walls of tenuous plasma: 1. how does plasma reach wall? (rapid

Pitcher, C. S.

327

Boundary Plasma Issues in Burning Plasma Science  

E-Print Network [OSTI]

of operation ) · we know a lot more now than during the BPX design! #12;(1) Wide Dispersal of Power plasma/neutral densities · criterion for high recycling and cold divertor, Tt ~ 5 eV (a prerequisite) · interaction at walls of tenuous plasma: 1.how does plasma reach wall? (rapid transport?) 2.can dominate core

328

Plasma momentum meter for momentum flux measurements  

DOE Patents [OSTI]

An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

1993-08-24T23:59:59.000Z

329

Inductive gas line for pulsed lasers  

DOE Patents [OSTI]

A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

Benett, William J. (Livermore, CA); Alger, Terry W. (Tracy, CA)

1985-01-01T23:59:59.000Z

330

Inductive gas line for pulsed lasers  

DOE Patents [OSTI]

A gas laser having a metal inlet gas feed line assembly shaped as a coil, to function as an electrical inductance and therefore high impedance to pulses of electric current applied to electrodes at opposite ends of a discharge tube of a laser, for example. This eliminates a discharge path for the laser through the inlet gas feed line. A ferrite core extends through the coil to increase the inductance of the coil and provide better electric isolation. By elimination of any discharge breakdown through the gas supply, efficiency is increased and a significantly longer operating lifetime of the laser is provided.

Benett, W.J.; Alger, T.W.

1982-09-29T23:59:59.000Z

331

A plasma process monitor/control system  

SciTech Connect (OSTI)

Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

Stevenson, J.O.; Ward, P.P.; Smith, M.L. [Sandia National Labs., Albuquerque, NM (United States); Markle, R.J. [Advanced Micro Devices, Inc., Austin, TX (United States)

1997-08-01T23:59:59.000Z

332

Ising interaction between capacitively-coupled superconducting flux qubits  

E-Print Network [OSTI]

Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by an applied magnetic field On the other hand, we have found a way to generate an interaction between the flux qubits via capacitive couplings. This has an advantage in individual addressability, because we can control the interaction strength by changing an applied voltage that can be easily localized. This is a crucial step toward the realizing superconducting flux qubit quantum computation.

Takahiko Satoh; Yuichiro Matsuzaki; Kosuke Kakuyanagi; Koichi Semba; Hiroshi Yamaguchi; Shiro Saito

2015-01-30T23:59:59.000Z

333

Communication through plasma sheaths  

SciTech Connect (OSTI)

We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

Korotkevich, A. O.; Newell, A. C.; Zakharov, V. E. [Landau Institute for Theoretical Physics RAS, 2, Kosygin Str., Moscow, 119334 (Russian Federation); Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721 (United States); Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave., Tucson, Arizona 85721 (United States); Lebedev Physical Institute RAS, 53, Leninsky Prosp., GSP-1 Moscow, 119991 (Russian Federation); Landau Institute for Theoretical Physics RAS, 2, Kosygin Str., Moscow, 119334 (Russian Federation) and Waves and Solitons LLC, 918 W. Windsong Dr., Phoenix, Arizona 85045 (United States)

2007-10-15T23:59:59.000Z

334

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

335

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

336

ACTIONS AND PARTIAL ACTIONS OF INDUCTIVE CONSTELLATIONS  

E-Print Network [OSTI]

ACTIONS AND PARTIAL ACTIONS OF INDUCTIVE CONSTELLATIONS VICTORIA GOULD AND CHRISTOPHER HOLLINGS structure of a semigroup can be recovered from a partial order it possesses. Date: August 13, 2009. 2000 and FEDER, and also FCT post-doctoral grant SFRH/BPD/34698/2007. 1 #12;2 VICTORIA GOULD AND CHRISTOPHER

Gould, Victoria

337

Sensorless performance evaluation of induction motors  

E-Print Network [OSTI]

inertia, are seen to be crucial factors in the torque calculation process. Then, a study of saliency induced harmonics and their generation in a three phase induction motor follows. Presently, well established theory will be touched upon in order to aid...

Ahmed, Shehab

2000-01-01T23:59:59.000Z

338

Nonplanar solitons collision in ultracold neutral plasmas  

SciTech Connect (OSTI)

Collisions between two nonplanar ion-acoustic solitons in strongly coupled ultracold neutral plasmas composed of ion fluid and non-Maxwellian (nonthermal or superthermal) electron distributions are investigated. The extended Poincare-Lighthill-Kuo method is used to obtain coupled nonplanar Kortweg-de Vries equations for describing the system. The nonplanar phase shifts after the interaction of the two solitons are calculated. It is found that the properties of the nonplanar colliding solitons and its corresponding phase shifts are different from those in the planar case. The polarity of the colliding solitons strongly depends on the type of the non-Maxwellian electron distributions. A critical nonthermality parameter ?{sub c} is identified. For values of ? ? ?{sub c} solitons with double polarity exist, while this behavior cannot occur for superthermal plasmas. The phase shift for nonthermal plasmas increases below ?{sub c} for a positive soliton, but it decreases for ? > ?{sub c} for a negative soliton. For superthermal plasmas, the phase shift enhances rapidly for low values of spectral index ? and higher values of ions effective temperature ratio ?{sub *}. For 2 ? ?<10, the phase shift decreases but does not change for ? > 10. The nonlinear structure, as reported here, is useful for controlling the solitons created in forthcoming ultracold neutral plasma experiments.

El-Tantawy, S. A.; Moslem, W. M.; El-Metwally, M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt)] [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Sabry, R. [Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt) [Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Department of Physics, College of Science and Humanitarian Studies, Salman Bin Abdulaziz University, Alkharj (Saudi Arabia); El-Labany, S. K. [Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt)] [Theoretical Physics Group, Department of Physics, Faculty of Science, Damietta University, New Damietta 34517 (Egypt); Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)] [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

2013-09-15T23:59:59.000Z

339

Inductive Effect of Alkyl Chains on Alcohol Dehydration at Bridge...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inductive Effect of Alkyl Chains on Alcohol Dehydration at Bridge-Bonded Oxygen Vacancies of TiO2(110). Inductive Effect of Alkyl Chains on Alcohol Dehydration at Bridge-Bonded...

340

Excitation and control of a high-speed induction generator  

E-Print Network [OSTI]

This project investigates the use of a high speed, squirrel cage induction generator and power converter for producing DC electrical power onboard ships and submarines. Potential advantages of high speed induction generators ...

Englebretson, Steven Carl

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cold-Crucible Induction Melter Design and Development  

SciTech Connect (OSTI)

The international process for immobilization of high-activity waste from aqueous fuel reprocessing is vitrification. In the United States joule-heated melter technology has been implemented at West Valley and the Savannah River Site, but improved melter concepts are sought to bring down the costs of processing. The cold-crucible induction melter (CCIM) design is being evaluated for many applications, including radioactive wastes because it eliminates many materials and operating constraints inherent in the baseline technology. The cold-crucible design is also smaller, less expensive, and generates much less waste for ultimate disposal. In addition, it should allow a much more flexible operating envelope, which will be crucial if the heterogeneous wastes at the U.S. Department of Energy (DOE) reprocessing sites are to be vitrified.A joule-heated melter operates by passing current between water-cooled electrodes through a molten pool in a refractory-lined chamber. This design is inherently limited by susceptibility of materials to corrosion and melting. In addition, redox conditions and free metal content have exacerbated materials problems or lead to electrical short-circuiting causing failures in developmental DOE melters. In contrast, the CCIM design is based on inductive coupling of a water-cooled high-frequency electrical coil with the glass, causing eddy currents that produce heat and mixing.While significant marketing claims have been made by technology suppliers and developers, little data is available for engineering and economic evaluation of the technology, and no facilities are available in the United States to support testing. In addition to verifying the capabilities of the technology, further development can exploit opportunities for optimization through better understanding of the electromagnetic thermal phenomena intrinsic to the cold-crucible melter. Induction frequency, applied power, and coil and crucible configuration are all related but independent variables that can be explored to optimize throughput while designing a system for maximum reliability in a remote environment. This paper is an introduction to the technology as it applies to vitrification of materials not electrically conductive at ambient temperatures, the potential for research improvements, and the new system being built at the Idaho National Engineering and Environmental Laboratory.

Gombert, Dirk; Richardson, John R. [Bechtel BWXT Idaho, LLC (United States)

2003-03-15T23:59:59.000Z

342

Coupled modes analysis of SRS backscattering, with Langmuir decay and possible cascadings  

E-Print Network [OSTI]

Recent experiments aimed at understanding stimulated Raman scattering (SRS) in ICF laser-plasma interactions, suggest that SRS is coupled to the Langmuir decay interaction (LDI). The effects of LDI on the saturation of the ...

Salcedo, Ante, 1969-

2002-01-01T23:59:59.000Z

343

Recirculating induction accelerator as a low-cost driver for heavy ion fusion  

SciTech Connect (OSTI)

As a fusion driver, a heavy ion accelerator offers the advantages of efficient target coupling, high reliability, and long stand-off focusing. While the projected cost of conventional heavy ion fusion (HIF) drivers based on multiple beam induction linacs are quite competitive with other inertial driver options, a driver solution which reduces the cost by a factor of two or more will make the case for HIF truly compelling. The recirculating induction accelerator has the potential of large cost reductions. For this reason, an intensive study of the recirculator concept was performed by a team from LLNL and LBL over the past year. We have constructed a concrete point design example of a 4 MJ driver with a projected efficiency of 35% and projected cost of less than 500 million dollars. A detailed report of our findings during this year of intensive studies has been recently completed. 3 refs., 2 figs., 2 tabs.

Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Shay, H.D.; Yu, S.S.

1991-09-01T23:59:59.000Z

344

Low pass filter for plasma discharge  

DOE Patents [OSTI]

An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.

Miller, Paul A. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

345

Pulsed inductive thruster performance data base for megawatt-class engine applications  

SciTech Connect (OSTI)

The pulsed inductive thruster (PIT) is an electrodeless plasma accelerator employing a large (1m diameter) spiral coil energized by a capacitor bank discharge. The bank can be repetitively recharged by a nuclear electric generator for continuous MW level operation. The coil can be designed as a transformer that permits thruster operation at the generator voltage, which results in a low thruster specific mass. Specific impulse ([ital I][sub sp]) can be readily altered by changing the propellant valve plenum pressure. Performance curves generated from mesausred impulse, injected mass and capacitor bank energy are presented for argon, ammonia, hydrazine, carbon dioxide and helium. The highest performance measured to date is 48% efficiency at 4000 seconds [ital I][sub sp] with ammonia. The development of a theoretical model of the thruster, which assumes a fully ionized plasma, is presented in an appendix.

Dailey, C.L. (TRW Space and Technology Group, One Pace Park, Redondo Beach, CA 90278 (United States)); Lovberg, R.H. (University of California at San Diego, 4744 Panorama Drive, San Diego, CA 92116 (United States))

1993-01-20T23:59:59.000Z

346

Characterization of Nickel and Vanadium compounds in tar sand bitumen by petroporphyrin quantitation and size exclusion chromatography coupled with element specific detection  

SciTech Connect (OSTI)

Tar sands represent a tremendous untapped resource for transportation fuels. In the United States alone, over 60 billion barrels of bitumen are estimated to be in place. In order to use this bitumen, it must be somehow separated from the sand. The resulting bitumen is of low quality, and generally will require at least some refining. Typical refinery upgrading methods include fluid catalytic cracking, thermal visbreaking, and residuum hydroconversion. Most of these methods utilize metals-sensitive catalyst. The metals bound in the bitumen are deleterious to catalytic processing, causing rapid deactivation through poisoning and pore mouth plugging. Like heavy crude oil residua, tar sand bitumens have high concentrations of Ni and V. The types of complexes of Ni and V have been studied for heavy crude oils, and can be placed in two broad categories: the metallopetroporphyrins and the metallononporphyrins. The metallopetroporphyrins have been studied extensively. For understanding the behavior of the metals in processing, size exclusion chromatography coupled with element specific detection by inductively coupled plasma atomic emission spectroscopy (SEC-HPLC-ICP) has been applied to several heavy crude oils, residua, and processed products along with separated fractions of feeds and products. These results have shown general important size-behavior features of the metallopetroporphyrins and metallo-nonporphyrins associated with individual feed characteristics. Because of the importance of the metals in a downstream process methods, the authors have applied several of the metallopetroporphyrin and metallo-nonporphyrin examination technique to extracted bitumen from selected tar sands.

Reynolds, J.G.; Jones, E.L.; Bennett, J.A.; Biggs, W.R.

1988-06-01T23:59:59.000Z

347

Theoretical & Computational Plasma Physicist | Princeton Plasma...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Requisition Number: 1400777 PPPLTheory Department has an opening at the rank of Research Physicist in theoretical and computational plasma physics in the area of...

348

Three tooth kinematic coupling  

DOE Patents [OSTI]

A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

Hale, Layton C. (Livermore, CA)

2000-01-01T23:59:59.000Z

349

Charge exchange and ionization cross sections of H{sup +}+H collision in dense quantum plasmas  

SciTech Connect (OSTI)

The plasma screening effects of dense quantum plasmas on H{sup +}+H charge exchange and ionization cross sections are calculated by the classical trajectory Monte Carlo method. For charge exchange cross sections, it is found that the screening effects reduce cross sections slightly in weak screening conditions. However, cross sections are reduced substantially in strong screening conditions. For ionization cross sections, with the increase of screening effects, cross sections for low energies increase more rapidly than those for high energies. When the screening effects are strong enough, it is found that ionization cross sections decrease with the increase of incident H{sup +} energy. In addition, the cross sections have been compared with those in weakly coupled plasmas. It is found that in weak screening conditions, plasma screening effects in the two plasmas are approximately the same, while in strong screening conditions, screening effects of dense quantum plasmas are stronger than those of weakly coupled plasmas.

Zhang, Ling-yu; Qi, Xin; Zhao, Xiao-ying; Meng, Dong-yuan; Xiao, Guo-qing [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China); Duan, Wen-shan [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, Gansu 730070 (China)] [Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, Gansu 730070 (China); Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China) [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China and University of Chinese Academy of Sciences, Beijing 100049 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

2013-11-15T23:59:59.000Z

350

Ion chemistry in H{sub 2}-Ar low temperature plasmas  

SciTech Connect (OSTI)

A rate equation model is devised to study the ion composition of inductively coupled H{sub 2}-Ar plasmas with different H{sub 2}-Ar mixing ratios. The model is applied to calculate the ion densities n{sub i}, the wall loss probability of atomic hydrogen ?{sub H}, and the electron temperature T{sub e}. The calculated n{sub i}'s of Ar{sup +}, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and ArH{sup +} are compared with experimental results. Calculations were made for a total gas pressure of 1.0 Pa. The production and loss channels of all ions are presented and discussed in detail. With the production and loss rates, the density dependence of each ion on the plasma parameters is explained. It is shown that the primary ions H{sub 2}{sup +} and Ar{sup +} which are produced by ionization of the background gas by electron collisions are effectively converted into H{sub 3}{sup +} and ArH{sup +}. The high density of ArH{sup +} and Ar{sup +} is attributed to the low loss to the walls compared to hydrogen ions. It is shown that the H{sup +}/H{sub 2}{sup +} density ratio is strongly correlated to the H/H{sub 2} density ratio. The dissociation degree is around 1.7%. From matching the calculated to the measured atomic hydrogen density n{sub H}, the wall loss probability of atomic hydrogen on stainless steel ?{sub H} was determined to be ?{sub H}=0.24. The model results were compared with recently published experimental results. The calculated and experimentally obtained data are in fair agreement.

Sode, M.; Schwarz-Selinger, T.; Jacob, W. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, D-85748 Garching (Germany)] [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, D-85748 Garching (Germany)

2013-08-14T23:59:59.000Z

351

92 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 1, FEBRUARY 2002 Formation of Coulomb Crystals in a  

E-Print Network [OSTI]

sheaths. DUST PARTICLE transport in partially ionized plasmas has been the focus of many recent92 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 30, NO. 1, FEBRUARY 2002 Formation of Coulomb Crystals in a Capacitively Coupled Plasma Vivek Vyas and Mark J. Kushner, Fellow, IEEE Abstract--Dust particle transport

Kushner, Mark

352

Ionization rate coefficients and induction times in nitrogen at high values of E/N  

SciTech Connect (OSTI)

Electron-impact ionization rate coefficients in nitrogen at values of E/N, the ratio of the electric field to the neutral density, up to 12 000 Td (1 Td = 10/sup -17/ V cmS), are reported. In addition, we report experimental measurements of the ionization induction time, the time during the early portion of an applied electric field when the electron energy distribution function is transient and the plasma is characterized by nonexponential growth of the electron density. For nitrogen, we show that the induction period is approximately equal to the inverse of the ionization frequency for a large E/N range. Time-dependent Boltzmann calculations of the electron energy distribution function yield instantaneous ionization rates that are in good agreement with both the measured ionization rates and the induction period. The measurements were made in an electrodeless cell contained in an S-band waveguide immersed in a dc magnetic field and subjected to a pulsed rf electric field at cyclotron resonance. We show that our measurements are equivalent to experiments in dc electric fields; the equivalent dc electric field strength being uniquely related to the rf electric field strength. The use of an rf field for these high-E/N measurements circumvents complications that would be introduced by electrode effects. This is the first direct measurement of ionization rates at these extreme values of E/N.

Hays, G.N.; Pitchford, L.C.; Gerardo, J.B.; Verdeyen, J.T.; Li, Y.M.

1987-09-01T23:59:59.000Z

353

Plasma Surface Presented as Array of Virtual Ports  

SciTech Connect (OSTI)

Calculations aimed at representing the plasma-vacuum boundary condition in real space are presented. Some ideas about how this representation can be used for power coupling analysis and antenna modeling are put forward. The relation between tangential electric and magnetic fields on the plasma surface is linear and customary expressed in the spectral domain for every partial wave via 2x2 plasma impedance matrix - Z{sup p}(k{sub y},K{sub z}). In this work, the tangential fields E-vector{sub t} and B-vector{sub t} on the plasma surface are projected on a suitably chosen set of basis functions. Then the linear operator relating the components E-vector{sub t} and B-vector{sub t} expressed in such a way is derived from the known matrix Z{sup p}(k{sub y},K{sub z}). It is shown that in this representation the plasma surface has properties similar to the array of ports of a microwave system and can be formally described by a corresponding impedance matrix in the way it is done in microwave analysis. The obtained representation can be exploited for deeper understanding of the RF power coupling to the plasmas, antenna modeling, measurements of plasma electromagnetic properties and for plasma modeling with suitably designed structures or metamaterials.

Kyrytsya, V.; Koch, R. [Laboratory for Plasma Physics, ERM/KMS Avenue de la Renaissance 30, 1000 Brussels (Belgium)

2009-11-26T23:59:59.000Z

354

Global parameter optimization of Mather type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model  

E-Print Network [OSTI]

Dense Plasma Focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding of short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool which can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited [S K H Auluck, Physics of Plasmas 20, 112501 (2013)] Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather type plasma focus fitted to thousands of automated computations, which enables construction of such design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a 4-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy ...

Auluck, S K H

2014-01-01T23:59:59.000Z

355

Nonlinear lower hybrid modeling in tokamak plasmas  

SciTech Connect (OSTI)

We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)

2014-02-12T23:59:59.000Z

356

Design of Double Salient Interior Permanent Magnet Machine Based on Mutually Coupled  

E-Print Network [OSTI]

Design of Double Salient Interior Permanent Magnet Machine Based on Mutually Coupled Reluctance--This paper presents a novel structure of double salient interior permanent magnet machine (DSIPM machine-- double salient, d-axis and q-axis inductances, cogging torque, permanent magnets, flux

Paris-Sud XI, Université de

357

A new low-frequency backward mode in inhomogeneous plasmas  

SciTech Connect (OSTI)

When an electromagnetic transverse wave propagates through an inhomogeneous plasma so that its electric field has a component in the direction of the background density gradient, there appears a disbalance of charge in every plasma layer, caused by the density gradient. Due to this, some additional longitudinal electric field component appears in the direction of the wave vector. This longitudinal field may couple with the usual electrostatic longitudinal perturbations like the ion acoustic, electron Langmuir, and ion plasma waves. As a result, these standard electrostatic waves are modified and in addition to this a completely new low-frequency mode appears. Some basic features of the coupling and modification of the ion acoustic wave, and properties of the new mode are discussed here, in ordinary electron-ion and in pair plasmas.

Vranjes, J., E-mail: jvranjes@yahoo.com [Institute of Physics, Pregrevica 118, 11080 Zemun, Belgrade (Serbia)

2014-07-15T23:59:59.000Z

358

Boundary Plasma Issues in Burning Plasma Science  

E-Print Network [OSTI]

during the BPX design! #12;(1) Wide Dispersal of Power/(cont) ···· high recycling or detached regimes for high recycling and cold divertor, Tt ~ 5 eV (a prerequisite for detachment), L = connection length, nu high energy threshold) · interaction at walls of tenuous plasma: 1. how does plasma reach wall? (rapid

Pitcher, C. S.

359

A Position Sensitive X-ray Spectrophotometer using Microwave Kinetic Inductance Detectors  

E-Print Network [OSTI]

The surface impedance of a superconductor changes when energy is absorbed and Cooper pairs are broken to produce single electron (quasiparticle) excitations. This change may be sensitively measured using a thin-film resonant circuit called a microwave kinetic inductance detector (MKID). The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. We present results on position sensitive X-ray detectors made by using two aluminum MKIDs on either side of a tantalum photon absorber strip. Diffusion constants, recombination times, and energy resolution are reported. MKIDs can easily be scaled into large arrays.

Benjamin A. Mazin; Megan E. Eckart; Bruce Bumble; Sunil Golwala; Peter K. Day; Jonas Zmuidzinas; Fiona A. Harrison

2006-10-04T23:59:59.000Z

360

Basic concept in plasma diagnostics  

E-Print Network [OSTI]

This paper presents the basic concept of various plasma diagnostics used for the study of plasma characteristics in different plasma experiments ranging from low temperature to high energy density plasma.

Rai, V N

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Translation-coupling systems  

DOE Patents [OSTI]

Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

Pfleger, Brian; Mendez-Perez, Daniel

2013-11-05T23:59:59.000Z

362

Relaxation time of non-conformal plasma  

E-Print Network [OSTI]

We study effective relaxation time of viscous hydrodynamics of strongly coupled non-conformal gauge theory plasma using gauge theory/string theory correspondence. We compute leading corrections to the conformal plasma relaxation time from the relevant deformations due to dim-2 and dim-3 operators. We discuss in details the relaxation time tau_eff of N=2^* plasma. For a certain choice of masses this theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). Although the bulk viscosity remains finite all the way to the critical temperature, we find that tau_eff diverges near the critical point as tau_eff ~ |1-T_c/T|^(-1/2).

Alex Buchel

2009-11-27T23:59:59.000Z

363

Tape-Drive Based Plasma Mirror  

SciTech Connect (OSTI)

We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser interaction with solid matter, such as ion acceleration [5,6] and high harmonic generation on surfaces [7]. Therefore, the laser pulse is weekly focused onto a substrate. The main pulse generates a plasma and is reflected at the critical surface, whereas the low intensity pre-pulse (mainly the Amplified Spontaneous Emission pedestal) will be transmitted through the substrate before the mirror has been triggered. Several publications [3,4] demonstrate a conservation of the spatial beam quality and a reflectivity of about 70 %. The drawback of this technique is the limited repetition rate since for every shot a fresh surface has to be provided. In the past years several novel approaches for high repetition rate plasma mirrors have been developed [2, 8]. Nevertheless, for the staged accelerator scheme a second important requirement has to be considered. Since the electron beam has to propagate through the mirror, the thickness of the substrate has to be as thin as possible to reduce the distortion of the electron beam. A tape of only several micrometer thickness can overcome these disadvantages. It can be used with a sufficient repetition rate while it allows the electron beam to propagate through with a minimum of scattering.

Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

2011-07-22T23:59:59.000Z

364

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 16 (2007) 9096 doi:10.1088/0963-0252/16/1/012  

E-Print Network [OSTI]

-dimensional simulation of the plasma reactor was coupled with a two-dimensional simulation of the sheath region overIEDisdeterminedbythedifferenceinpotentialbetweenthe plasma and the substrate, as well as ion collisions with the background neutral gas. For radio frequency were then neutralized to become fast neutrals in neutral beam applications [12,13]. In all

Economou, Demetre J.

2007-01-01T23:59:59.000Z

365

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network [OSTI]

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

366

Exponentially modified QCD coupling  

SciTech Connect (OSTI)

We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large spacelike energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the Institute for Theoretical and Experimental Physics operator product expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.

Cvetic, Gorazd [Department of Physics, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Center of Subatomic Studies, UTFSM, Valparaiso (Chile); Valenzuela, Cristian [Department of Physics, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile)

2008-04-01T23:59:59.000Z

367

The model coupling toolkit.  

SciTech Connect (OSTI)

The advent of coupled earth system models has raised an important question in parallel computing: What is the most effective method for coupling many parallel models to form a high-performance coupled modeling system? We present our solution to this problem--The Model Coupling Toolkit (MCT). We explain how our effort to construct the Next-Generation Coupler for NCAR Community Climate System Model motivated us to create this toolkit. We describe in detail the conceptual design of the MCT and explain its usage in constructing parallel coupled models. We present preliminary performance results for the toolkit's parallel data transfer facilities. Finally, we outline an agenda for future development of the MCT.

Larson, J. W.; Jacob, R. L.; Foster, I.; Guo, J.

2001-04-13T23:59:59.000Z

368

Thermionic energy conversion plasmas  

SciTech Connect (OSTI)

In this paper the history, application options, and ideal basic performance of the thermionic energy converter are outlined. The basic plasma types associated with various modes of converter operation are described, with emphasis on identification and semi-quantitative characterization of the dominant physical processes and utility of each plasma type. The frontier plasma science issues in thermionic converter applications are briefly summarized.

Rasor, N.S. (Rasor Associates, Inc., Sunnyvale, CA (United States))

1991-12-01T23:59:59.000Z

369

A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION  

SciTech Connect (OSTI)

In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.

Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

2011-07-22T23:59:59.000Z

370

Universal holographic hydrodynamics at finite coupling  

E-Print Network [OSTI]

We consider thermal plasmas in a large class of superconformal gauge theories described by a holographic dual geometry of the form $AdS_5\\times M_5$. In particular, we demonstrate that all of the thermodynamic properties and hydrodynamic transport parameters for a large class of superconformal gauge theories exhibit a certain universality to leading order in the inverse 't Hooft coupling and $1/N_c$. In particular, we show that independent of the compactification geometry, the leading corrections are derived from the same five-dimensional effective supergravity action supplemented by a term quartic in the five-dimensional Weyl tensor.

Alex Buchel; Robert C. Myers; Miguel F. Paulos; Aninda Sinha

2008-09-12T23:59:59.000Z

371

Lithium Surface Coatings for Improved Plasma Performance in NSTX  

SciTech Connect (OSTI)

NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

2008-02-19T23:59:59.000Z

372

Study of surface kinetics in PECVD chamber cleaning using remote plasma source  

E-Print Network [OSTI]

The scope of this research work is to characterize the Transformer Coupled Toroidal Plasma (TCTP); to understand gas phase reactions and surface reactions of neutrals in the cleaning chamber by analyzing the concentration ...

An, Ju Jin

2008-01-01T23:59:59.000Z

373

E-Print Network 3.0 - argon-helium microwave plasma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine 63 Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator Summary: to efficiently couple the microwave energy into the plasma,...

374

Acoustic stabilization of electric arc instabilities in nontransferred plasma torches  

SciTech Connect (OSTI)

Electric arc instabilities in dc plasma torches lead to nonhomogeneous treatments of nanosized solid particles or liquids injected within thermal plasma jets. This paper shows that an additional acoustic resonator mounted on the cathode cavity allows reaching a significant damping of these instabilities, particularly the Helmholtz mode of arc oscillations. The acoustic resonator is coupled with the Helmholtz resonator of the plasma torch limiting the amplitude of arc voltage variations. It is also highlighted that this damping is dependent on friction effects in the acoustic resonator.

Rat, V.; Coudert, J. F. [CNRS, University of Limoges, SPTCS UMR6638, 123 Avenue A. Thomas, 87060 Limoges Cedex (France)

2010-03-08T23:59:59.000Z

375

TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS  

E-Print Network [OSTI]

power Pi - input power Ps - loop conductor power loss Pc -loop capacitor power loss Pf - pickupand source core power loss Pr - pickup capacitor power loss

Bolger, J.G.

2010-01-01T23:59:59.000Z

376

TEST OF THE PERFORMANCE AND CHARACTERISTICS OF A PROTOTYPE INDUCTIVE POWER COUPLING FOR ELECTRIC HIGHWAY SYSTEMS  

E-Print Network [OSTI]

V min. Trojan J 217 lead acid batteries, 14 84 max. Bridgeexclusively on energy from batteries are well known, i.e. ,pack consisting of 12, 6-V batteries in series, i.e. , a 72-

Bolger, J.G.

2010-01-01T23:59:59.000Z

377

Fast two-bit operations in inductively coupled flux qubits J. Q. You,1,2,  

E-Print Network [OSTI]

.25.Cp, 03.67.Lx I. INTRODUCTION Josephson-junction circuits can exhibit quantum behav- iors. Among qubits based on Josephson-junction circuits, the charge qubit realized in a Cooper-pair box can with one3 or three Josephson junctions4 have been studied and some of these have shown quantum dynamics.5

Nori, Franco

378

Modal S-matrix method for the optimum design of inductively direct-coupled  

E-Print Network [OSTI]

. Arndt, Dr.-Ing., Sen.Mem.I.E.E.E., J. Bornemann, Dr.-Ing., D. Heckmann, Dipl.-lng., C. Piontek, Dipl.-lng., H. Semmerow, Dipl.-lng., and H. Schueler, Dipl.-lng. Indexing terms: Computer-aided design

Bornemann, Jens

379

Aryl hydrocarbon hydroxylase: induction and inhibition  

E-Print Network [OSTI]

, and toxic potency of halogenated biphenyls. The usefulness of zerovalent nickel catalysis of aryl-aryl coupling in the synthesis of trifluoromethyl-substituted biphenyls was investigated. Although yields were low, this method proved to be effective... as probes for structure-activity studies. However, these compounds are difficult to synthesize by traditional methods. Their synthesis by zerovalent nickel catalytic coupling, as first described by Semmelhack et al. (1971) and modified by Kende et al...

Andres, Janet Lee

1982-01-01T23:59:59.000Z

380

Segmented ceramic liner for induction furnaces  

DOE Patents [OSTI]

A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

Gorin, A.H.; Holcombe, C.E.

1994-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The influence of surface properties on the plasma dynamics in radio-frequency driven oxygen plasmas: Measurements and simulations  

SciTech Connect (OSTI)

Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration, electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.

Greb, Arthur; Niemi, Kari; O'Connell, Deborah; Gans, Timo [York Plasma Institute, Department of Physics, University of York, York, YO10 5DD (United Kingdom)] [York Plasma Institute, Department of Physics, University of York, York, YO10 5DD (United Kingdom)

2013-12-09T23:59:59.000Z

382

Coupling in the Tevatron  

SciTech Connect (OSTI)

The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

Gelfand, N.M.

1994-12-01T23:59:59.000Z

383

Stability of Coupling Algorithms  

E-Print Network [OSTI]

INTRODUCTION AND MOTIVATION : : : : : : : : : : : : : 1 A. Approaches to solving a coupled system . . . . . . . . . . . 3 B. Common terminology . . . . . . . . . . . . . . . . . . . . . 5 C. Classi cation of coupling algorithms . . . . . . . . . . . . . 7 1... equal, cA = cB = mA = mB = 1 and with dissipation, = 0:5 : : : : : : : : : : : : : : : : 26 10 Conditional stability observed with cA > cB. The material prop- erties: cA = 100; cB = 1; mA = mB = 1; = 1 : : : : : : : : : : : : : 27 11 An unstable...

Akkasale, Abhineeth

2012-07-16T23:59:59.000Z

384

Modeling of the coal gasification processes in a hybrid plasma torch  

SciTech Connect (OSTI)

The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

2007-12-15T23:59:59.000Z

385

Novel Manufacturing Technologies for High Power Induction and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Power Induction and Permanent Magnet Electric Motors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

386

Inductive Inference for Solving Divergence in Knuth-Bendix Completion  

E-Print Network [OSTI]

Thomas,M. Jantke,K. Proceedings of Analogical and Inductive Inference '89, Lecture Notes in Computer Science, Volume 397 pp 288-303 Springer

Thomas, M.; Jantke, K.; Proceedings of Analogical and Inductive Inference '89, Lecture Notes in Computer Science, Volume 397 pp 288-303 Springer [More Details

387

Supersonic drift-tearing magnetic islands in tokamak plasmas R. Fitzpatrick, and F.L. Waelbroeck  

E-Print Network [OSTI]

by the plasma. Since the waves carry momentum, the inner region exerts a net force on the outer region, and vice the radial direc- tion) helical magnetic islands.3 Such islands degrade plasma confinement because heat weak coupling to drift-acoustic waves.13­16 On the other hand, supersonic island solutions

Fitzpatrick, Richard

388

Hypersonic drift-tearing magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck  

E-Print Network [OSTI]

by the plasma. Since the waves carry momentum, the inner region exerts a net force on the intermediate region Such islands degrade plasma confinement because heat and particles are able to travel radially from one side to that of the unperturbed local ion fluid, and a relatively weak coupling to drift- acoustic waves.13­16 On the other hand

Fitzpatrick, Richard

389

An analysis of induction motor testing techniques  

SciTech Connect (OSTI)

There are two main failure mechanisms in induction motors: bearing related and stator related. The Electric Power Research Institute (EPRI) conducted a study which was completed in 1985, and found that near 37% of all failures were attributed to stator problems. Another data source for motor failures is the Nuclear Plant Reliability Data System (NPRDS). This database reveals that approximately 55% of all motors were identified as being degraded before failure occurred. Of these, approximately 35% were due to electrical faults. These are the faults which this paper will attempt to identify through testing techniques. This paper is a discussion of the current techniques used to predict incipient failure of induction motors. In the past, the main tests were those to assess the integrity of the ground insulation. However, most insulation failures are believed to involve turn or strand insulation, which makes traditional tests alone inadequate for condition assessment. Furthermore, these tests have several limitations which need consideration when interpreting the results. This paper will concentrate on predictive maintenance techniques which detect electrical problems. It will present appropriate methods and tests, and discuss the strengths and weaknesses of each.

Soergel, S. [Entergy Operations Inc., Killona, LA (United States)

1996-12-31T23:59:59.000Z

390

System and method for generating steady state confining current for a toroidal plasma fusion reactor  

DOE Patents [OSTI]

A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

Fisch, Nathaniel J. (Cambridge, MA)

1981-01-01T23:59:59.000Z

391

System and method for generating steady state confining current for a toroidal plasma fusion reactor  

DOE Patents [OSTI]

A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

Bers, Abraham (Arlington, MA)

1981-01-01T23:59:59.000Z

392

Plasma Physics PART Al: INTRODUCTION TO PLASMA SCIENCE  

E-Print Network [OSTI]

PART A7: PLASMA DIAGNOSTICS X. Introduction 75 XI. Remote diagnostics 75 1. Optical spectroscopy 2 and rotational excitation IV. Heavy particle collisions 142 V. Gas phase kinetics 143 PART B5: PLASMA DIAGNOSTICSPlasma Physics PART Al: INTRODUCTION TO PLASMA SCIENCE I. What is a plasma? 1 II. Plasma

Chen, Francis F.

393

Plasma-Therm Workshop: Fundamentals of Plasma Processing (Etching & Deposition)  

E-Print Network [OSTI]

The workshop will focus on the fundamentals of plasma etching and deposition. Lectures will includePlasma-Therm Workshop: Fundamentals of Plasma Processing (Etching & Deposition) Nanofabrication an introduction to vacuum technology, the basics of plasma and plasma reactors and an overview of mechanisms

Martin, Jan M.L.

394

Plasma Physics and Controlled Fusion, Vol. 26. No. 4, pp. 589 to 602, 1984 0741-3335r84$3.00 + .OF Printed in Great Britain. @ 1984institute o?Wysics and Pergamon Press Ltd.  

E-Print Network [OSTI]

. INTRODUCTION WAVEheating of magnetically confined plasma has become a major focus of numerous plasma physicsPlasma Physics and Controlled Fusion, Vol. 26. No. 4, pp. 589 to 602, 1984 0741-3335r84$3.00 + .OF is produced (300 and 50 eV) with 500 kW of r.f. power coupled into a 5 x 10" cm-3 plasma. Power is coupled

Sprott, Julien Clinton

395

Coupled Monte Carlo neutral uid plasma simulation of Alcator C-Mod divertor plasma near detachment  

E-Print Network [OSTI]

. � 1999 Elsevier Science B.V. All rights reserved. Keywords: B2/EIRENE; Alcator C-Mod; Pressure-balance as it exhibits at Journal of Nuclear Materials 266±269 (1999) 947±952 * Corresponding author. Tel.: +1 609 243, Albuquerque, NM, USA. 0022-3115/99/$ ± see front matter � 1999 Elsevier Science B.V. All rights reserved. PII

Karney, Charles

396

Selective etching of high-k HfO{sub 2} films over Si in hydrogen-added fluorocarbon (CF{sub 4}/Ar/H{sub 2} and C{sub 4}F{sub 8}/Ar/H{sub 2}) plasmas  

SciTech Connect (OSTI)

Inductively coupled hydrogen-added fluorocarbon (CF{sub 4}/Ar/H{sub 2} and C{sub 4}F{sub 8}/Ar/H{sub 2}) plasmas were used to etch HfO{sub 2}, which is a promising high-dielectric-constant material for the gate of complementary metal-oxide-semiconductor devices. The etch rates of HfO{sub 2} and Si were drastically changed depending on the additive-H{sub 2} flow rate in C{sub 4}F{sub 8}/Ar/H{sub 2} plasmas. The highly selective etching of HfO{sub 2} over Si was done in the condition with an additive-H{sub 2} flow rate, where the Si surface was covered with the fluorocarbon polymer. The results of x-ray photoelectron spectroscopy indicated that the carbon content of the selectively etched HfO{sub 2} surface was extremely low compared with the preetched surface contaminated by adventitious hydrocarbon in atmosphere. In the gas phase of the C{sub 4}F{sub 8}/Ar/H{sub 2} plasmas, Hf hydrocarbide molecules such as metal-organic compounds and Hf hydrofluoride were detected by a quadrupole mass analyzer. These findings indicate that the fluorine species, carbon, and hydrogen can work to etch HfO{sub 2} and that the carbon species also plays an important role in selective etching of HfO{sub 2} over Si.

Takahashi, Kazuo; Ono, Kouichi [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

2006-05-15T23:59:59.000Z

397

Princeton Plasma Physics Laboratory  

SciTech Connect (OSTI)

This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

Not Available

1990-01-01T23:59:59.000Z

398

Michigan Institute Plasma Science  

E-Print Network [OSTI]

Michigan Institute Plasma Science and Engineering Seminar Neutral Atom Imaging of the Terrestrial re- search includes ion heating in the solar corona, electric double layers, magne- tosphere neutral

Shyy, Wei

399

Michigan Institute for Plasma Sci-  

E-Print Network [OSTI]

This talk will focus on the achievements of the Drexel Plasma Institute in direct application of plasmasMichigan Institute for Plasma Sci- ence and Engi- neering Seminar Plasma Medicine: Mechanisms of Direct Non-Thermal Plasma Interaction with Living Tissue Prof. Alexander Fridman Drexel University

Shyy, Wei

400

Induction accelerators for the phase rotator system  

SciTech Connect (OSTI)

The principle of magnetic induction has been applied to the acceleration of high current beams in betatrons and a variety of induction accelerators. The linear induction accelerator (LIA) consists of a simple nonresonant structure where the drive voltage is applied to an axially symmetric gap that encloses a toroidal ferromagnetic material. The change in flux in the magnetic core induces an axial electric field that provides particle acceleration. This simple nonresonant (low Q) structure acts as a single turn transformer that can accelerate from hundreds of amperes to tens of kiloamperes, basically only limited by the drive impedance. The LIA is typically a low gradient structure that can provide acceleration fields of varying shapes and time durations from tens of nanoseconds to several microseconds. The efficiency of the LIA depends on the beam current and can exceed 50% if the beam current exceeds the magnetization current required by the ferromagnetic material. The acceleration voltage available is simply given by the expression V=A dB/dt. Hence, for a given cross section of material, the beam pulse duration influences the energy gain. Furthermore, a premium is put on minimizing the diameter, which impacts the total weight or cost of the magnetic material. The diameter doubly impacts the cost of the LIA since the power (cost) to drive the cores is proportional to the volume as well. The waveform requirements during the beam pulse makes it necessary to make provisions in the pulsing system to maintain the desired dB/dt during the useful part of the acceleration cycle. This is typically done two ways, by using the final stage of the pulse forming network (PFN) and by the pulse compensation network usually in close proximity of the acceleration cell. The choice of magnetic materials will be made by testing various materials both ferromagnetic and ferrimagnetic. These materials will include the nickel-iron, silicon steel amorphous and various types of ferrites not only to determine the properties that are essential in this application but the energy losses in the magnetization process which directly impact the cost.

Reginato, Lou; Yu, Simon; Vanecek, Dave

2001-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition  

SciTech Connect (OSTI)

In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup ?4} gm{sup ?2}day{sup ?1} and 1.2 × 10{sup ?3} gm{sup ?2}day{sup ?1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of) [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Hagyoung; Lee, Sanghun [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)] [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)] [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of) [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2013-11-07T23:59:59.000Z

402

Induction, Domains, Calculi: Strachey's Contributions to ProgrammingLanguage  

E-Print Network [OSTI]

Induction, Domains, Calculi: Strachey's Contributions to Programming­Language Engineering David A's contributions---inductive defini­ tion of semantics, semantic­domain definitions, and calculi for semantic description---are presented, and their consequences on languages research are described. Strachey's impact

Schmidt, David A.

403

Brazdil, P. and Gama, J., 1998 Constructive Induction  

E-Print Network [OSTI]

1 Brazdil, P. and Gama, J., 1998 Constructive Induction on Continuous Spaces In Liu, H./Motada, H.: Feature Extraction Construction and Selection, A Data Mining Perspective. Chapter 18, pages S.289. ,,oblique") Probleme. + at2 at1 - H #12;11 Constructive Induction: "the application of a set of constructive

Morik, Katharina

404

Improved Unsupervised POS Induction through Prototype Discovery Omri Abend1  

E-Print Network [OSTI]

Rappoport1 1 Institute of Computer Science, 2 ICNC Hebrew University of Jerusalem {omria01|roiri|arir}@cs.huji.ac.il Abstract We present a novel fully unsupervised al- gorithm for POS induction from plain text, motivated and for multi-lingual systems (Jiang et al., 2009). Automatic induction of POS tags from plain text can greatly

Rappoport, Ari

405

A Material Theory of Induction* John D. Nortonyz  

E-Print Network [OSTI]

assess and control the inductive risk taken in an induction by investigating the warrant for its; revised May 2003. yTo contact the author write to Department of History and Philosophy of Science to Jim Bogen for significant help. 647 Philosophy of Science, 70 (October 2003) pp. 647 ­ 670. 0031

406

Modelling Inhibition in Metabolic Pathways Through Abduction and Induction  

E-Print Network [OSTI]

Modelling Inhibition in Metabolic Pathways Through Abduction and Induction Alireza Tamaddoni abduction and induction can be used to understand the functional class of unknown enzymes or inhibitors. We show how we can model, within Abductive Logic Programming (ALP), inhibition in metabolic pathways

Pazos, Florencio

407

Measuring the plasma density of a ferroelectric plasma source in an expanding plasma  

E-Print Network [OSTI]

Measuring the plasma density of a ferroelectric plasma source in an expanding plasma A. Dunaevsky and N. J. Fisch Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements

408

Induction slag reduction process for purifying metals  

DOE Patents [OSTI]

A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

Traut, Davis E. (Corvallis, OR); Fisher, II, George T. (Albany, OR); Hansen, Dennis A. (Corvallis, OR)

1991-01-01T23:59:59.000Z

409

High-Energy Plasma Fusion  

E-Print Network [OSTI]

Simulations of Dense Plasma Focus Z-Pinch Devices.pdfSimulations of Dense-Plasma Focus Z-Pinch Device. Physicalplasmas and dense-plasma focus (DPF) Z-Pinch devices. DPF

Guruangan, Karthik

2014-01-01T23:59:59.000Z

410

Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications  

SciTech Connect (OSTI)

The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the 'reverse energy bypass' scheme. MHD power generation on board reentry vehicles is also discussed.

Macheret, Sergey [Department of Mechanical and Aerospace Engineering, Princeton University, D-418 Engineering Quadrangle, Princeton, NJ 08544 (United States)

2005-05-16T23:59:59.000Z

411

Vacuum degeneracy of a circuit-QED system in the ultrastrong coupling regime  

E-Print Network [OSTI]

We investigate theoretically the quantum vacuum properties of a chain of $N$ superconducting Josephson atoms inductively coupled to a transmission line resonator. We derive the quantum field Hamiltonian for such circuit-QED system, showing that, due to the type and strength of the interaction, a quantum phase transition can occur with a twice degenerate quantum vacuum above a critical coupling. In the finite-size case, the degeneracy is lifted, with an energy splitting decreasing exponentially with increasing values of $g^2 N^2$, where $g$ is the dimensionless vacuum Rabi coupling per artificial atom. We determine analytically the ultrastrong coupling asymptotic expression of the two degenerate vacua for an arbitrary number of artificial atoms and of resonator modes. In the ultrastrong coupling regime the degeneracy is protected with respect to random fluctuations of the transition energies of the Josephson elements.

Pierre Nataf; Cristiano Ciuti

2010-01-15T23:59:59.000Z

412

Plasma technology directory  

SciTech Connect (OSTI)

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

413

Fundamentals of Plasma Physics  

E-Print Network [OSTI]

of students (from physics, engineering physics, elec- trical engineering, nuclear engineering and other un;PREFACE Plasma physics is a relatively new branch of physics that became a mature science over the last). Thus, plasma physics has developed in large part as a branch of applied or engineering physics

Callen, James D.

414

Diamond and Related Materials, 2 (1993) 661 666 661 Degenerate four-wave mixing diagnostics of atmospheric pressure  

E-Print Network [OSTI]

-3]. An r.f. inductively coupled plasma offers the benefits of an "electrodeless" discharge for minimum film application of this new spectroscopic technique to an atmospheric pressure plasma synthesis reactor. DFWM measurements of the CH radicals in the boundary layer of an r.f. inductively coupled plasma deposition reactor

Zare, Richard N.

415

Interaction of nonthermal muon beam with electron-positron-photon plasma: A thermal field theory approach  

SciTech Connect (OSTI)

Interaction of a muon beam with hot dense QED plasma is investigated. Plasma system contains electrons and positrons with Fermi-Dirac distribution and Bose-Einstein distributed photons while the beam particles have nonthermal distribution. The energy loss of the beam particles during the interaction with plasma is calculated to complete leading order of interaction in terms of the QED coupling constant using thermal field theory approach. The screening effects of the plasma are computed consistently using resummation of perturbation theory with hard thermal loop approximation according to the Braaten-Pisarski method. Time evolution of the plasma characteristics and also plasma identifications during the interaction are investigated. Effects of the nonthermal parameter of the beam distribution on the energy exchange and the evolution of plasma-beam system are also explained.

Noorian, Zainab; Eslami, Parvin; Javidan, Kurosh [Physics Department, School of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)] [Physics Department, School of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

2013-11-15T23:59:59.000Z

416

Method and apparatus for the formation of a spheromak plasma  

DOE Patents [OSTI]

An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.

Jardin, Stephen C. (Princeton, NJ); Yamada, Masaaki (Lawrenceville, NJ); Furth, Harold P. (Princeton, NJ); Okabayashi, Mitcheo (Princeton, NJ)

1984-01-01T23:59:59.000Z

417

Coupled superconductors and beyond  

E-Print Network [OSTI]

This paper describes the events leading to the discovery of coupled superconductors, the author's move in the 1970s to a perspective where mind plays a role comparable to matter, and the remarkable hostility sometimes encountered by those who venture into unconventional areas.

Brian D. Josephson

2014-09-24T23:59:59.000Z

418

Coupling Gammasphere and ORRUBA  

SciTech Connect (OSTI)

The coincident detection of particles and gamma rays allows the study of the structure of exotic nuclei via inverse kinematics reactions using radioactive ion beams and thick targets. We report on the status of the project to couple the highresolution charged-particle detector ORRUBA to Gammasphere, a high-efficiency, high-resolution gamma ray detector.

Ratkiewicz, A.; Cizewski, J. A.; Manning, B. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Pain, S. D.; Bardayan, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blackmon, J. C.; Matos, M. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Chipps, K. A. [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Hardy, S.; Shand, C. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 and Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Jones, K. L. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Kozub, R. L. [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Lister, C. J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 and Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Peters, W. A. [Oak Ridge Associated Universities, Oak Ridge, TN 37830 (United States); Seweryniak, D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

2013-04-19T23:59:59.000Z

419

Graphene Coating Coupled Emission  

E-Print Network [OSTI]

Graphene Coating Coupled Emission A COMSET, A single sheet of sp2-hybridized carbon atoms, called of graphene and its unique properties, I will present amplification of surface graphene-Ag hybrid films which when graphene is used as the spacer layer in a conventional Ag- harnessed the nonlinear properties

Shyamasundar, R.K.

420

Eigenstate Localization in an Asymmetric Coupled Quantum Well Pair  

SciTech Connect (OSTI)

Optical pumping of a type-I/type-II coupled asymmetric quantum well pair induces a spatially separated two dimensional charge carriers plasma in the well's wide and narrow parts. Treating the two coupled wells as a single system we find that the eigenstate probability distribution localizes exclusively either in the wide or the narrow parts of the well pair. The energy of the narrow-well localized state determines the minimal excitation energy for optically pumped charge carriers separation. In a previously used design [Guliamov et al., PRB 64 035314 (2001)] this narrow well transition energy was measured to correspond to a wavelength of 646 nm. We propose modifications to the design suggested earlier with the purpose of pushing up the energy required for the optical pumping of the two-dimensional plasma into the green and blue regions of the visible spectrum.

Mialitsin, A.; Schmult, S.; Solov'yov, I. A.; Fluegel, B.; Mascarenhas, A.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Holography and unquenched quark-gluon plasmas  

SciTech Connect (OSTI)

We employ the string/gauge theory correspondence to study properties of strongly coupled quark-gluon plasmas in thermal gauge theories with a large number of colors and flavors. In particular, we analyze noncritical string duals of conformal (S)QCD, as well as ten-dimensional wrapped fivebrane duals of SQCD-like theories. We study general properties of the dual plasmas, including the drag force exerted on a probe quark and the jet quenching parameter. We find that these plasma observables depend on the number of colors and flavors in the 'QCD dual'; in particular, we find that the jet quenching parameter increases linearly with N{sub f}/N{sub c} at leading order in the probe limit. In the ten-dimensional case we find a nontrivial drag coefficient but a vanishing jet quenching parameter. We comment on the relation of this result with total screening and argue that the same features are shared by all known plasmas dual to fivebranes in ten dimensions. We also construct new D5 black hole solutions with spherical horizon and show that they exhibit the same features.

Bertoldi, G. [Department of Physics, Swansea University, Swansea, SA28PP (United Kingdom); Bigazzi, F. [Physique Theorique et Mathematique and International Solvay Institutes, Universit e Libre de Bruxelles, C.P. 231, B-1050 Bruxelles (Belgium); Cotrone, A. L. [Departament ECM, Facultat de Fisica, Universitat de Barcelona and Institut de Fisica d'Altes Energies, Diagonal 647, E-08028 Barcelona (Spain); Edelstein, J. D. [Departamento de Fisica de Particulas and IGFAE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

2007-09-15T23:59:59.000Z

422

Plasma sheath criterion in thermal electronegative plasmas  

SciTech Connect (OSTI)

The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Khoramabadi, Mansour; Ghorannevis, Mahmod [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Shukla, Padma Kant [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2010-09-15T23:59:59.000Z

423

Dynamics of an Ion Coupled to a Parametric Superconducting Circuit  

E-Print Network [OSTI]

Superconducting circuits and trapped ions are promising architectures for quantum information processing. However, the natural frequencies for controlling these systems -- radio frequency ion control and microwave domain superconducting qubit control -- make direct Hamiltonian interactions between them weak. In this paper we describe a technique for coupling a trapped ion's motion to the fundamental mode of a superconducting circuit. We do this by applying a carefully modulated external magnetic flux to the circuit. In conjunction with a non-linear element (Josephson junction), this gives the circuit an effective time-dependent inductance. We then show how to tune the external flux to generate a resonant coupling between circuit and ion's motional mode, and discuss the limitations of this approach compared to using a time-dependent capacitance.

Dvir Kafri; Prabin Adhikari; Jacob M. Taylor

2015-04-15T23:59:59.000Z

424

Adiabatic trapping in coupled kinetic Alfven-acoustic waves  

SciTech Connect (OSTI)

In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

2013-03-15T23:59:59.000Z

425

CX-010651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End-of-Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

426

CX-011505: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Operation, Maintenance, and End of Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied:...

427

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs...  

Open Energy Info (EERE)

the trends of concealed geologic structures. Ion chromatography, gas chromatography, atomic absorption spectrometry, and inductively coupled plasma-mass spectrometry have been...

428

E-Print Network 3.0 - azimuthally dependent transport Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

comparison Summary: A three-dimensional model for inductively coupled plasma etching reactors: Azimuthal symmetry, coil... rates across the wafer. However, side to side and...

429

Environmental Monitoring Plan for Unbound Engineered Nanoparticles  

E-Print Network [OSTI]

High-Efficiency Particulate Air ICP Inductively Coupled Plasma IHG Industrial Hygiene Group ISM ............................................................................................ 21 #12;v Acronyms BEA Baseline Exposure Assessment CPC Condensation Particle Counter CNT Carbon

Eisen, Michael

430

U.S. Department of Energy Categorical Exclusion ...  

Broader source: Energy.gov (indexed) [DOE]

Analytical Development Leeman Prodigy and Perkin Elmer Optima 3000 Inductively Coupled Plasma Emission Spectrometers (ICPES) perform elemental analysis on liquid samples. B3.6 -...

431

U.S. Department of Energy Categorical Exclusion ...  

Broader source: Energy.gov (indexed) [DOE]

Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometry Method in 773, B142 Savannah River Site AikenAikenSouth Carolina The Analytical Development Section will...

432

E-Print Network 3.0 - advanced induction machine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost compared to other generators, the induction machine offers advantages for rotating power... plants rely mostly on induction machines, because ... Source: Simes, Marcelo...

433

Low-Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria. Low-Oxygen Induction of Normally Cryptic psbA Genes in Cyanobacteria. Abstract: Microarray analysis indicated...

434

Critical phenomena in N=2* plasma  

E-Print Network [OSTI]

We use gauge theory/string theory correspondence to study finite temperature critical behaviour of mass deformed N=4 SU(N) supersymmetric Yang-Mills theory at strong coupling, also known as N=2* gauge theory. For certain range of the mass parameters, N=2* plasma undergoes a second-order phase transition. We compute all the static critical exponents of the model and demonstrate that the transition is of the mean-field theory type. We show that the dynamical critical exponent of the model is z=0, with multiple hydrodynamic relaxation rates at criticality. We point out that the dynamical critical phenomena in N=2* plasma is outside the dynamical universality classes established by Hohenberg and Halperin.

A. Buchel; C. Pagnutti

2010-10-16T23:59:59.000Z

435

Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring  

SciTech Connect (OSTI)

Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

2011-07-15T23:59:59.000Z

436

Circle diagram approach for self excited induction generators  

SciTech Connect (OSTI)

When an induction generator is connected to a utility line supply, the voltage and frequency at the terminal output are the same as the voltage and frequency of the utility line supply to which the generator is connected. The reactive power needed by the induction generator is supplied by the utility and the real power is returned to the utility. With a fixed frequency dictated by the utility, the induction machine starts generating above the synchronous speed. The range of speed is also limited by the slip. At a very high slip, the copper losses increases as the current increases. On the other hand, in an isolated operation, the induction generator operates in self-excitation mode. It determines its own voltage and frequency. These two quantities depend on the size of the AC capacitor, the induction machine parameters, the electrical load, and the speed of the generator. The operating speed of the induction generator is extended without generating excessive loss. This paper presents an analytical study by utilizing a circle diagram to illustrate the operation of the induction generator in isolated operation. The steady-state calculations are presented to support the analysis. Possible applications for the system in variable-speed generation are currently under investigation. The output can be directly connected to equipment that is non-sensitive to the frequency (a heater, battery charger, etc.) or can be connected to a converter to get a fixed-frequency AC output.

Muljadi, E.; Carlin, P.W.; Osgood, R.M.

1993-05-01T23:59:59.000Z

437

ICRF coupling on TFTR using the PPL antenna  

SciTech Connect (OSTI)

Coupling of the PPL ICRF antenna to the TFTR plasma is experimentally measured as R{sub c}=P/I{sup 2}, where P is the net power dissipate and I is the RF current at a point in the resonant loop. The relation of R{sub c} to the equivalent antenna loading resistance is investigated using a transmission line model that includes the antenna structure and the feedthroughs. Coupling has been experimentally characterized for a variety of discharge conditions including H and {sup 3}He minority, D and {sup 4}He majority plasmas. Effects of antenna phasing, D neutral beam injection, RF power level, plasma density aned position are discussed. Distinct and reproducible eigenmodes in the loading are observed in H-minority, D-majority plasma during the density rise accompanying neutral beam injection. A 1-D wave propagation model has reproduced the general structure of the modes. For 0-{pi} toroidal phasing, the modes arise from radial reflections from both the reonance-absorption layer and the inner wall of the tokamak; for 0--0 phasing, the modes result from toroidal interference.

Greene, G.J.; Colestock, P.L.; Hosea, J.C.; Phillips, C.K.; Smithe, D.N.; Stevens, J.E.; Wilson, J.R. (Princeton Plasma Physics Laboratory Princeton, NJ (USA)); Gardner, W.; Hoffman, D. (Oak Ridge National Laboratory, Oak Ridge, TN (USA))

1989-07-01T23:59:59.000Z

438

CHAPTER 1. COLLECTIVE PLASMA PHENOMENA 1 Collective Plasma  

E-Print Network [OSTI]

CHAPTER 1. COLLECTIVE PLASMA PHENOMENA 1 Chapter 1 Collective Plasma Phenomena The properties of a medium are determined by the microscopic processes in it. In a plasma the microscopic processes is actually limited to a distance of order the Debye length in a plasma. On length scales longer than

Callen, James D.

439

Proposal for PLASMA LENS EXPERIMENT AT  

E-Print Network [OSTI]

Proposal for PLASMA LENS EXPERIMENT AT THE FINAL FOCUS TEST BEAM April 1, 1997 THE PLASMA LENS.....................................................................................3 1.1 Plasma Focusing ......................................................................3 1.2 Previous Plasma Lens Experiments.................................................4 1.3 Plasma Lens

440

Self-shielding of a plasma-exposed surface during extreme transient heat loads  

SciTech Connect (OSTI)

The power deposition on a tungsten surface exposed to combined pulsed/continuous high power plasma is studied. A study of the correlation between the plasma parameters and the power deposition on the surface demonstrates the effect of particle recycling in the strongly coupled regime. Upon increasing the input power to the plasma source, the energy density to the target first increases then decreases. We suggest that the sudden outgassing of hydrogen particles from the target and their subsequent ionization causes this. This back-flow of neutrals impedes the power transfer to the target, providing a shielding of the metal surface from the intense plasma flux.

Zielinski, J. J.; Meiden, H. J. van der; Morgan, T. W.; Hoen, M. H. J. 't; De Temmerman, G., E-mail: g.c.detemmerman@differ.nl [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Schram, D. C. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2014-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "inductively coupled plasma" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Magnetic filter apparatus and method for generating cold plasma in semiconductor processing  

DOE Patents [OSTI]

Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

Vella, M.C.

1996-08-13T23:59:59.000Z

442

Magnetic filter apparatus and method for generating cold plasma in semicoductor processing  

DOE Patents [OSTI]

Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

Vella, Michael C. (San Leandro, CA)

1996-01-01T23:59:59.000Z

443

Bulk viscosity of N=2* plasma  

E-Print Network [OSTI]

We use gauge theory/string theory correspondence to study the bulk viscosity of strongly coupled, mass deformed SU(N_c) N=4 supersymmetric Yang-Mills plasma, also known as N=2^* gauge theory. For a wide range of masses we confirm the bulk viscosity bound proposed in arXiv:0708.3459. For a certain choice of masses, the theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). We show that, although bulk viscosity rapidly grows as T -> T_c, it remains finite in the vicinity of the critical point.

Alex Buchel; Chris Pagnutti

2009-03-02T23:59:59.000Z

444

Critical phenomena in N=4 SYM plasma  

E-Print Network [OSTI]

Strongly coupled N=4 supersymmetric Yang-Mills plasma at finite temperature and chemical potential for an R-symmetry charge undergoes a second order phase transition. We demonstrate that this phase transition is of the mean field theory type. We explicitly show that the model is in the dynamical universality class of 'model B' according to the classification of Hohenberg and Halperine, with dynamical critical exponent z=4. We study bulk viscosity in the mass deformed version of this theory in the vicinity of the phase transition. We point out that all available models of bulk viscosity at continuous phase transition are in conflict with our explicit holographic computations.

Alex Buchel

2010-05-05T23:59:59.000Z

445

Use of Slip Ring Induction Generator for Wind Power Generation  

E-Print Network [OSTI]

Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

K Y Patil; D S Chavan

446

Magnetic coupling device  

DOE Patents [OSTI]

A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

Nance, Thomas A. (Aiken, SC)

2009-08-18T23:59:59.000Z

447

The Plasma Puddle as a Perturbative Black Hole  

E-Print Network [OSTI]

We argue that the weak coupling regime of a large N gauge theory in the Higgs phase contains black hole-like objects. These so-called ``plasma puddles'' are meta-stable lumps of hot plasma lying in locally un-Higgsed regions of space. They decay via O(1/N) thermal radiation and, perhaps surprisingly, absorb all incident matter. We show that an incident particle of energy E striking the plasma puddle will shower into an enormous number of decay products whose multiplicity grows linearly with E, and whose average energy is independent of E. Once these ultra-soft particles reach the interior they are thermalized by the plasma within, and so the object appears ``black.'' We determine some gross properties like the size and temperature of the the plasma puddle in terms of fundamental parameters in the gauge theory. Interestingly, demanding that the plasma puddle emit thermal Hawking radiation implies that the object is black (i.e. absorbs all incident particles), which implies classical stability, which implies satisfaction of the Bekenstein entropy bound. Because of the AdS/CFT duality and the many similarities between plasma puddles and black holes, we conjecture that black objects are a robust feature of quantum gravity.

Clifford Cheung; Jared Kaplan

2007-06-07T23:59:59.000Z

448

PLASMA PHYSICS PPPL UC Davis  

E-Print Network [OSTI]

PRINCETON PLASMA PHYSICS LABORATORY PPPL UC Davis PRINCETON PLASMA PHYSICS LABORATORY PPPL UC Davis Scattering System for ETG physics on NSTX H. Park, E. Mazzucato, and D. Smith PPPL, Princeton University C, 2006 Hyatt Regency, Dallas, TX #12;PRINCETON PLASMA PHYSICS LABORATORY PPPL UC Davis PRINCETON PLASMA

449

Plasma-based accelerator structures  

SciTech Connect (OSTI)

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

450

Simulation of Fusion Plasmas  

ScienceCinema (OSTI)

The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

Chris Holland

2010-01-08T23:59:59.000Z

451

Laser Plasma Interactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

processes. A typical configuration uses a low intensity laser beam (2nd, 3rd, or 4th harmonic of 1054-nm) to probe a plasma volume. The Thomson scattered light is collected by a...

452

Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D  

SciTech Connect (OSTI)

Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ?2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Diem, S. J.; Kaufman, M. C.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Doyle, E. J.; Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maggiora, R.; Milanesio, D. [Politecnico di Torino, Dipartimento di Elettronica, Torino (Italy); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Turco, F. [Columbia University, New York, New York 10027 (United States)

2014-02-12T23:59:59.000Z

453

Electrostatics of moving plasma  

SciTech Connect (OSTI)

The stability of charge distribution over the surface of a conducting body in moving plasma is analyzed. Using a finite-width plate streamlined by a cold neutralized electron flow as an example, it is shown that an electrically neutral body can be unstable against the development of spontaneous polarization. The plasma parameters at which such instability takes place, as well as the frequency and growth rate of the fundamental mode of instability, are determined.

Ignatov, A. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2013-07-15T23:59:59.000Z

454

Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet  

SciTech Connect (OSTI)

Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10?cm wide active electrode and a frequency of applied voltage down to 0.5?Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2014-03-14T23:59:59.000Z

455

A microfabricated ElectroQuasiStatic induction turbine-generator  

E-Print Network [OSTI]

An ElectroQuasiStatic (EQS) induction machine has been fabricated and has generated net electric power. A maximum power output of 192 [mu]W at 235 krpm has been measured under driven excitation of the six phases. Self ...

Steyn, J. Lodewyk (Jasper Lodewyk), 1976-

2005-01-01T23:59:59.000Z

456

Development of magnetic induction machines for micro turbo machinery  

E-Print Network [OSTI]

This thesis presents the nonlinear analysis, design, fabrication, and testing of an axial-gap magnetic induction micro machine, which is a two-phase planar motor in which the rotor is suspended above the stator via mechanical ...

KöÅŸ er, Hür, 1976-

2002-01-01T23:59:59.000Z

457

Case-Analysis for Rippling and Inductive Proof   

E-Print Network [OSTI]

Rippling is a heuristic used to guide rewriting and is typically used for inductive theorem proving. We introduce a method to support case-analysis within rippling. Like earlier work, this allows goals containing if-statements to be proved...

Bundy, Alan; Dixon, Lucas; Johansson, Moa

2010-01-01T23:59:59.000Z

458

Inductive inference based on probability and Matthew Weber  

E-Print Network [OSTI]

Inductive inference based on probability and similarity Matthew Weber Princeton University Daniel in the Bayesian sense (Tentori et al., 2007), or as Weber acknowledges support from an NSF graduate research

Osherson, Daniel