National Library of Energy BETA

Sample records for inductively coupled plasma-atomic

  1. Determination of trace amounts of cerium in paint by inductively coupled plasma atomic emission spectrometry

    SciTech Connect (OSTI)

    Wong, K.L.

    1981-11-01

    The determination of Ce in paint by inductively coupled plasma atomic emission spectrometry (ICP-OES) is described, and the detection limit of ICP-OES of 0.0004 ppM is compared with that of other methods. The effects of the major elemental components of paint, Si, Pb, Cr, and Na on the ICP-OES determination of Ce were studied. The interference of 400 ppM of the other ions on the determination of 10 ppM Ce was small (0 to 3% error). The method is applicable to the range of 0.2 to 700 ppM Ce. (BLM)

  2. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    DOE Patents [OSTI]

    Chan, George C. Y. (Bloomington, IN); Hieftje, Gary M. (Bloomington, IN)

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  3. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect (OSTI)

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  4. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect (OSTI)

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  5. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect (OSTI)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  6. Inductively coupled helium plasma torch

    DOE Patents [OSTI]

    Montaser, Akbar (Potomac, MD); Chan, Shi-Kit (Washington, DC); Van Hoven, Raymond L. (Alexandria, VA)

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  7. Closed inductively coupled plasma cell

    DOE Patents [OSTI]

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  8. Mobile inductively coupled plasma system

    DOE Patents [OSTI]

    D'Silva, Arthur P. (Ames, IA); Jaselskis, Edward J. (Ames, IA)

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  9. Mobile inductively coupled plasma system

    DOE Patents [OSTI]

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  10. Starter for inductively coupled plasma tube

    DOE Patents [OSTI]

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  11. Starter for inductively coupled plasma tube

    DOE Patents [OSTI]

    Hull, Donald E. (969 Nambe Loop, Los Alamos, NM 87544); Bieniewski, Thomas M. (285 Donna Ave., Los Alamos, NM 87544)

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  12. Method of processing materials using an inductively coupled plasma

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  13. Method of processing materials using an inductively coupled plasma

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  14. Coupling effects in inductive discharges with radio frequency substrate biasing

    SciTech Connect (OSTI)

    Schulze, J.; Schuengel, E.; Czarnetzki, U.

    2012-01-09

    Low pressure inductively coupled plasmas (ICP) operated in neon at 27.12 MHz with capacitive substrate biasing (CCP) at 13.56 MHz are investigated by phase resolved optical emission spectroscopy, voltage, and current measurements. Three coupling mechanisms are found potentially limiting the separate control of ion energy and flux: (i) Sheath heating due to the substrate biasing affects the electron dynamics even at high ratios of ICP to CCP power. At fixed CCP power, (ii) the substrate sheath voltage and (iii) the amplitude as well as frequency of plasma series resonance oscillations of the RF current are affected by the ICP power.

  15. Inductively coupled plasma torch with laminar flow cooling

    DOE Patents [OSTI]

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  16. Thin film coating process using an inductively coupled plasma

    DOE Patents [OSTI]

    Kniseley, Richard N. (Ames, IA); Schmidt, Frederick A. (Ames, IA); Merkle, Brian D. (Ames, IA)

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  17. Method of processing materials using an inductively coupled plasma

    DOE Patents [OSTI]

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  18. Low-pressure water-cooled inductively coupled plasma torch

    DOE Patents [OSTI]

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  19. Low-pressure water-cooled inductively coupled plasma torch

    DOE Patents [OSTI]

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  20. Rotational and translational temperature equilibrium in an inductively coupled plasma

    SciTech Connect (OSTI)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2006-09-15

    Rotational temperature has been used widely as neutral gas temperature measurement in different types of plasmas (electron cyclotron resonance, inductively coupled plasma, helicon, hollow cathode, etc.), and has been assumed to be in equilibrium with translational temperature. The direct experimental comparison of rotational and translational temperature in low-temperature plasmas has not been reported. In this research, optical emission spectroscopy is used to measure the neutral gas rotational temperature, T{sub rot}, from the second-positive band of a nitrogen molecule (380 nm). The results are compared with the Doppler-broadened translational temperature, T{sub trans}, of Ar (750 nm) and He (587 nm), determined with a high-resolution spectrometer at various partial pressures of N{sub 2} in Ar/N{sub 2} and He/N{sub 2} plasmas. The results demonstrated that T{sub rot} and T{sub trans} are in equilibrium in the conditions [10{sup 10}

  1. Improvements to Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Quantitative Analysis using Short Pulse UV Laser | The Ames Laboratory Improvements to Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Quantitative Analysis using Short Pulse UV Laser FWP/Project Description: Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a non-destructive method for trace elemental analysis of solids. Trace element composition can be useful in forensic applications for matching or attribution studies, in which a material

  2. Independent control of electron energy and density using a rotating magnetic field in inductively coupled plasmas

    SciTech Connect (OSTI)

    Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi

    2013-09-21

    Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.

  3. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect (OSTI)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  4. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOE Patents [OSTI]

    Mathur, Mahendra P. (Pittsburgh, PA); Ekmann, James M. (Bethel Park, PA)

    1989-01-01

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  5. Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths

    SciTech Connect (OSTI)

    McCarrick, H. Flanigan, D.; Jones, G.; Johnson, B. R.; Araujo, D.; Limon, M.; Luu, V.; Miller, A.; Ade, P.; Doyle, S.; Tucker, C.; Bradford, K.; Che, G.; Cantor, R.; Day, P.; Leduc, H.; Mauskopf, P.; Mroczkowski, T.; Zmuidzinas, J.

    2014-12-15

    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated 20-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the measured noise-equivalent temperatures for a 4 K optical load are in the range 26±6 ?K?(s)

  6. Tin removal from extreme ultraviolet collector optics by inductively coupled plasma reactive ion etching

    SciTech Connect (OSTI)

    Shin, H.; Srivastava, S. N.; Ruzic, D. N. [Center for Plasma Material Interactions, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2008-05-15

    Tin (Sn) has the advantage of delivering higher conversion efficiency compared to other fuel materials (e.g., Xe or Li) in an extreme ultraviolet (EUV) source, a necessary component for the leading next generation lithography. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the collector optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror that comes from the use of Sn in either gas discharge produced plasma (GDPP) or laser produced plasma (LPP). This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Inductively coupled plasma reactive ion etching with halide ions is one potential solution to this problem. This article presents results for etch rate and selectivity of Sn over SiO{sub 2} and Ru. The Sn etch rate in a chlorine plasma is found to be much higher (of the order of hundreds of nm/min) than the etch rate of other materials. A thermally evaporated Sn on Ru sample was prepared and cleaned using an inductively coupled plasma etching method. Cleaning was confirmed using several material characterization techniques. Furthermore, a collector mock-up shell was then constructed and etching was performed on Sn samples prepared in a Sn EUV source using an optimized etching recipe. The sample surface before and after cleaning was analyzed by atomic force microscopy, x-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show the dependence of etch rate on the location of Sn samples placed on the collector mock-up shell.

  7. Atlas of Atomic Spectral Lines of Neptunium Emitted by Inductively Coupled Plasma

    SciTech Connect (OSTI)

    DeKalb, E.L. and Edelson, M. C.

    1987-08-01

    Optical emission spectra from high-purity Np-237 were generated with a glovebox-enclosed inductively coupled plasma (ICP) source. Spectra covering the 230-700 nm wavelength range are presented along with general commentary on the methodology used in collecting the data. The Ames Laboratory Nuclear Safeguards and Security Program has been charged with the task of developing optical spectroscopic methods to analyze the composition of spent nuclear fuels. Such materials are highly radioactive even after prolonged 'cooling' and are chemically complex. Neptunium (Np) is a highly toxic by-product of nuclear power generation and is found, in low abundance, in spent nuclear fuels. This atlas of the optical emission spectrum of Np, as produced by an inductively coupled plasma (ICP) spectroscopic source, is part of a general survey of the ICP emission spectra of the actinide elements. The ICP emission spectrum of the actinides originates almost exclusively from the electronic relaxation of excited, singly ionized species. Spectral data on the Np ion emission spectrum (i.e., the Np II spectrum) have been reported by Tomkins and Fred [1] and Haaland [2]. Tomkins and Fred excited the Np II spectrum with a Cu spark discharge and identified 114 Np lines in the 265.5 - 436.3 nm spectral range. Haaland, who corrected some spectral line misidentifications in the work of Tomkins and Fred, utilized an enclosed Au spark discharge to excite the Np II spectrum and reported 203 Np lines within the 265.4 - 461.0 nm wavelength range.

  8. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect (OSTI)

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  9. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect (OSTI)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  10. Mode transition in CF{sub 4} + Ar inductively coupled plasma

    SciTech Connect (OSTI)

    Liu, Wei; Gao, Fei; Zhao, Shu-Xia; Li, Xue-Chun; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-12-15

    The E to H mode transitions are studied by a hairpin probe and optical emission spectroscopy in inductively coupled CF{sub 4} + Ar plasmas. Electron density, optical emission intensity of Ar, and the voltage and current are measured during the E to H mode transitions. It is found that the electron density and plasma emission intensity increase continuously at low pressure during the E to H mode transition, while they jump up discontinuously at high pressure. Meanwhile, the transition threshold power and ?P (the power interval between E and H mode) increase by increasing the pressure. When the ratio of CF{sub 4} increases, the E to H mode transition happens at higher applied power, and meanwhile, the ?P also significantly increases. Besides, the effects of CF{sub 4} gas ratio on the plasma properties and the circuit electrical properties in both pure E and H modes were also investigated. The electron density and plasma emission intensity both decrease upon increasing the ratio of CF{sub 4} at the two modes, due to the stronger electrons loss scheme. The applied voltages at E and H modes both increase as increasing the CF{sub 4} gas ratio, however the applied current at two modes behave just oppositely with the gas ratio.

  11. Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma

    SciTech Connect (OSTI)

    Si Xuejiao; Xu Xiang; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao Shuxia [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium); Bogaerts, A. [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2011-03-15

    A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.

  12. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    SciTech Connect (OSTI)

    Ebert, Christopher Hysjulien

    2012-07-27

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  13. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect (OSTI)

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20?×?20?×?7?cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50?Pa, power in 300–700?W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  14. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect (OSTI)

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  15. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    SciTech Connect (OSTI)

    McIntyre, Sally M.

    2010-05-16

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding papers in this area were addressed. Errors in the measured T{sub gas} values were found for given errors in the experimental and spectroscopic values. The ionization energy of the neutral polyatomic ion was included in calculations to prove the validity of ignoring more complicated equilibria. Work was begun on the question of agreement between kinetics of the plasma and interface and the increase and depletion seen in certain polyatomic ions. This dissertation was also the first to report day to day ranges for T{sub gas} values and to use a statistical test to compare different operating conditions. This will help guide comparisons of previous and future work. Chapter 4 was the first attempt to include the excited electronic state 2 in the partition function of ArO{sup +} as well as the first to address the different dissociation products of the ground and first electronic levels of ArO{sup +}. Chapter 5 reports an interesting source of memory in ICP-MS that could affect mathematical corrections for polyatomic ions. For future work on these topics I suggest the following experiments and investigations. Clearly not an extensive list, they are instead the first topics curiosity brings to mind. (1) Measurement of T{sub gas} values when using the flow injection technique of Appendix B. It was believed that there was a fundamental difference in the plasma when the auto-sampler was used versus a continuous injection. Is this reflected in T{sub gas} values? (2) The work of Chapter 3 can be expanded and supplemented with more trials, new cone materials (i.e. copper, stainless steel) and more cone geometries. Some of this equipment is already present in the laboratory, others could be purchased or made. (3) T{sub gas} values from Chapter 3 could be correlated with instrument pressures during the experiment. Pressures after the skimmer cone were recorded for many days but have yet to be collated with the measured T{sub gas} values. (4) The work in Chapter 5 could be expanded to include more metals. Does the curious correlation between measured T{sub gas} and element boili

  16. Halftoning band gap of InAs/InP quantum dots using inductively coupled argon plasma-enhanced intermixing

    SciTech Connect (OSTI)

    Nie, D.; Mei, T.; Xu, C. D.; Dong, J. R.

    2006-09-25

    Inductively coupled argon plasma-enhanced intermixing of InAs/InP quantum dots grown on InP substrate is investigated. Intermixing is promoted by the near-surface defects generated by plasma exposure in annealing at a temperature of 600 deg. C for 30 s. The annealing results in a maximum differential band-gap blueshift of 106 nm but a thermal shift of only 10 nm. Band-gap halftones are obtained by controlling the amount of near-surface defects via wet chemical etching on the plasma-exposed InP cap layer. No degradation of quantum-dot crystal quality due to the process has been observed as evidenced by photoluminescence intensity.

  17. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    SciTech Connect (OSTI)

    Lee, Jin-Won; Lee, Yun-Seong Chang, Hong-Young; An, Sang-Hyuk

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  18. Apparatus and method for reducing inductive coupling between levitation and drive coils within a magnetic propulsion system

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2001-01-01

    An apparatus and method is disclosed for reducing inductive coupling between levitation and drive coils within a magnetic levitation system. A pole array has a magnetic field. A levitation coil is positioned so that in response to motion of the magnetic field of the pole array a current is induced in the levitation coil. A first drive coil having a magnetic field coupled to drive the pole array also has a magnetic flux which induces a parasitic current in the levitation coil. A second drive coil having a magnetic field is positioned to attenuate the parasitic current in the levitation coil by canceling the magnetic flux of the first drive coil which induces the parasitic current. Steps in the method include generating a magnetic field with a pole array for levitating an object; inducing current in a levitation coil in response to motion of the magnetic field of the pole array; generating a magnetic field with a first drive coil for propelling the object; and generating a magnetic field with a second drive coil for attenuating effects of the magnetic field of the first drive coil on the current in the levitation coil.

  19. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    SciTech Connect (OSTI)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne~ > 5x1019 m–3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated in order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.

  20. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect (OSTI)

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (?100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  1. Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry

    SciTech Connect (OSTI)

    Osterlund, Helene Rodushkin, Ilia; Ylinenjaervi, Karin; Baxter, Douglas C.

    2009-04-15

    A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

  2. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  3. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.

  4. Effects of Ar plasma treatment for deposition of ruthenium film by remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Park, Taeyong; Lee, Jaesang; Park, Jingyu; Jeon, Heeyoung; Jeon, Hyeongtag; Lee, Ki-Hoon; Cho, Byung-Chul; Kim, Moo-Sung; Ahn, Heui-Bok

    2012-01-15

    Ruthenium thin films were deposited on argon plasma-treated SiO{sub 2} and untreated SiO{sub 2} substrates by remote plasma atomic layer deposition using bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp){sub 2}] as a Ru precursor and ammonia plasma as a reactant. The results of in situ Auger electron spectroscopy (AES) analysis indicate that the initial transient region of Ru deposition was decreased by Ar plasma treatment at 400 deg. C, but did not change significantly at 300 deg. C The deposition rate exhibited linearity after continuous film formation and the deposition rates were about 1.7 A/cycle and 0.4 A/cycle at 400 deg. C and 300 deg. C, respectively. Changes of surface energy and polar and dispersive components were measured by the sessile drop test. The quantity of surface amine groups was measured from the surface nitrogen concentration with AES. Furthermore, the Ar plasma-treated SiO{sub 2} contained more amine groups and less hydroxyl groups on the surface than on untreated SiO{sub 2}. Auger spectra exhibited chemical shifts by Ru-O bonding, and larger shifts were observed on untreated substrates due to the strong adhesion of Ru films.

  5. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect (OSTI)

    Perdian, David C.

    2009-08-19

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  6. Doubly fed induction machine

    DOE Patents [OSTI]

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  7. Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3??MHz frequency at atmospheric pressure

    SciTech Connect (OSTI)

    Punjabi, Sangeeta B.; Sahasrabudhe, S. N.; Das, A. K.; Joshi, N. K.; Mangalvedekar, H. A.; Kothari, D. C.

    2014-01-15

    This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50?kW DC power and 3?MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variation in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.

  8. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect (OSTI)

    Witte, Travis

    2011-11-30

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  9. Structural Study of SiC Nanoparticles Grown by Inductively Coupled Plasma and Laser Pyrolysis for Nano-structured Ceramics Elaboration

    SciTech Connect (OSTI)

    Leconte, Yann; Portier, Xavier; Herlin-Boime, Nathalie; Reynaud, Cecile

    2008-07-01

    Refractory carbide nano-structured ceramics as SiC constitute interesting materials for high temperature applications and particularly for fourth generation nuclear plants. To elaborate such nano-materials, weighable amounts of SiC nano-powders have to be synthesized first with an accurate control of the grain size and stoichiometry. The inductively coupled plasma and the laser pyrolysis techniques, respectively developed at EMPA Thun and CEA Saclay, allow meeting these requirements. Both techniques are able to produce dozens of grams per hour of silicon carbide nano-powders. The particle size can be adjusted down to around 20 nm for the plasma synthesis and even down to 5-10 nm for the laser pyrolysis. The stoichiometry Si/C can be tuned by the addition of methane into the plasma and acetylene for the laser process. (authors)

  10. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application

    SciTech Connect (OSTI)

    Lee, J. H.; Kim, M. J.; Yoon, Y. S.

    2013-04-15

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (T{sub e}) and ion flux (J{sub ion}) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring T{sub e} and J{sub ion} for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  11. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect (OSTI)

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  12. Modeling of inductively coupled plasma SF{sub 6}/O{sub 2}/Ar plasma discharge: Effect of O{sub 2} on the plasma kinetic properties

    SciTech Connect (OSTI)

    Pateau, Amand; Rhallabi, Ahmed Fernandez, Marie-Claude; Boufnichel, Mohamed; Roqueta, Fabrice

    2014-03-15

    A global model has been developed for low-pressure, inductively coupled plasma (ICP) SF{sub 6}/O{sub 2}/Ar mixtures. This model is based on a set of mass balance equations for all the considered species, coupled with the discharge power balance equation and the charge neutrality condition. The present study is an extension of the kinetic global model previously developed for SF{sub 6}/Ar ICP plasma discharges [Lallement et al., Plasma Sources Sci. Technol. 18, 025001 (2009)]. It is focused on the study of the impact of the O{sub 2} addition to the SF{sub 6}/Ar gas mixture on the plasma kinetic properties. The simulation results show that the electron density increases with the %O{sub 2}, which is due to the decrease of the plasma electronegativity, while the electron temperature is almost constant in our pressure range. The density evolutions of atomic fluorine and oxygen versus %O{sub 2} have been analyzed. Those atomic radicals play an important role in the silicon etching process. The atomic fluorine density increases from 0 up to 40% O{sub 2} where it reaches a maximum. This is due to the enhancement of the SF{sub 6} dissociation processes and the production of fluorine through the reactions between SF{sub x} and O. This trend is experimentally confirmed. On the other hand, the simulation results show that O(3p) is the preponderant atomic oxygen. Its density increases with %O{sub 2} until reaching a maximum at almost 40% O{sub 2}. Over this value, its diminution with O{sub 2}% can be justified by the high increase in the loss frequency of O(3p) by electronic impact in comparison to its production frequency by electronic impact with O{sub 2}.

  13. Investigation of InP etching mechanisms in a Cl{sub 2}/H{sub 2} inductively coupled plasma by optical emission spectroscopy

    SciTech Connect (OSTI)

    Gatilova, L.; Bouchoule, S.; Guilet, S.; Chabert, P.

    2009-03-15

    Optical emission spectroscopy (OES) has been used in order to investigate the InP etching mechanisms in a Cl{sub 2}-H{sub 2} inductively coupled plasma. The authors have previously shown that anisotropic etching of InP could be achieved for a H{sub 2} percentage in the 35%-45% range where the InP etch rate also presents a local maximum [J. Vac. Sci. Technol. B 24, 2381 (2006)], and that anisotropic etching was due to an enhanced passivation of the etched sidewalls by a silicon oxide layer [J. Vac. Sci. Technol. B 26, 666 (2008)]. In this work, it is shown that this etching behavior is related to a maximum in the H atom concentration in the plasma. The possible enhancement of the sidewall passivation process in the presence of H is investigated by comparing OES measurements and etching results obtained for Cl{sub 2}-H{sub 2} and Cl{sub 2}-Ar gas mixtures.

  14. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    SciTech Connect (OSTI)

    Messerly, Joshua D.

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle ensemble. This would cause the analysis to be skewed. The use of a gelatin substrate allows the ablation a particle ensemble without disturbing other particles or the gelatin surface. A method to trap and ablate particles on filter paper using collodion was also investigated. The laser was used to dig through the collodion layer and into the particle ensemble. Both of these methods fix particles to allow spatial resolution of the particle ensembles. The use of vanillic acid as a possible enhancement to ablation was also studied. A vanillic acid coating of the particles fixed on top of the gelatin substrate was not found to have any positive effect on either signal intensity or precision. The mixing of vanillic acid in the collodion solution used to coat the filter paper increased ablation signal intensity by a factor of 4 to 5. There was little effect on precision, though. The collodion on filter paper method and the gelatin method of resolving particles have shown themselves to be possible tools in fighting proliferation of nuclear weapons and material. Future applications of LA-ICP-MS are only limited by the imagination of the investigator. Any material that can be ablated and aerosolized is a potential material for analysis by LA-ICP-MS. Improvements in aerosol transport, ablation chamber design, and laser focusing can make possible the ablation and analysis of very small amounts of material. This may perhaps lead to more possible uses in forensics. A similar method to the one used in Chapter 3 could perhaps be used to match drug residue to the place of origin. Perhaps a link could be made based on the elements leached from the soil by plants used to make drugs. This may have a specific pattern based on where the plant was grown. Synthetic drugs are produced in clandestine laboratories that are often times very dirty. The dust, debris, and unique materials in the lab environment could create enough variance to perhaps match drugs produced there to samples obtained off the street. Even if the match was not strong enough to be evidence, the knowledge that many samples of a drug are being produced from a similar location could help law enforcement find and shut down the lab. Future nuclear nonproliferation research would also be helped by the ability to get more analyte signal from smaller and smaller amounts of material. One possible future line of research would be to find a way to make the collodion layer as thin as possible so less laser shots are needed to get to the particle of interest. Collodion and gelatin analysis could also be used for environmental applications where spatial resolution of particles is needed. Individual particles could give information about the contaminants present in a given location. The wide versatility of LA-ICP-MS makes it a useful tool for nearly nondestructive analysis of a variety of samples and matrices.

  15. Induction voidmeter

    DOE Patents [OSTI]

    Anderson, Thomas T. (Downers Grove, IL); Roop, Conard J. (Lockport, IL); Schmidt, Kenneth J. (Midlothian, IL); Brewer, John (Oak Lawn, IL)

    1986-01-01

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge circuit, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; applying an AC excitation signal to said input branch; and detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  16. Induction voidmeter

    DOE Patents [OSTI]

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Brewer, J.

    1983-12-21

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; means for applying an AC excitation signal to said input branch; and means for detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  17. Induction plasma tube

    DOE Patents [OSTI]

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  18. Induction plasma tube

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM)

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  19. Induction machine

    DOE Patents [OSTI]

    Owen, Whitney H. (Ogden, UT)

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  20. Inductive tuners for microwave driven discharge lamps

    DOE Patents [OSTI]

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  1. Inductive energy stores

    SciTech Connect (OSTI)

    Poberezhskiy, L.P.

    1982-07-01

    Inductive energy stores research is reviewed. Discharge of the store is considered mathematically. Inductance coils are also discussed.

  2. Effect of Cl{sub 2}- and HBr-based inductively coupled plasma etching on InP surface composition analyzed using in situ x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Bouchoule, S.; Vallier, L.; Patriarche, G.; Chevolleau, T.; Cardinaud, C.

    2012-05-15

    A Cl{sub 2}-HBr-O{sub 2}/Ar inductively coupled plasma (ICP) etching process has been adapted for the processing of InP-based heterostructures in a 300-mm diameter CMOS etching tool. Smooth and anisotropic InP etching is obtained at moderate etch rate ({approx}600 nm/min). Ex situ x-ray energy dispersive analysis of the etched sidewalls shows that the etching anisotropy is obtained through a SiO{sub x} passivation mechanism. The stoichiometry of the etched surface is analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. It is observed that Cl{sub 2}-based ICP etching results in a significantly P-rich surface. The phosphorous layer identified on the top surface is estimated to be {approx}1-1.3-nm thick. On the other hand InP etching in HBr/Ar plasma results in a more stoichiometric surface. In contrast to the etched sidewalls, the etched surface is free from oxides with negligible traces of silicon. Exposure to ambient air of the samples submitted to Cl{sub 2}-based chemistry results in the complete oxidation of the P-rich top layer. It is concluded that a post-etch treatment or a pure HBr plasma step may be necessary after Cl{sub 2}-based ICP etching for the recovery of the InP material.

  3. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup ?5} gm{sup ?2} day{sup ?1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

  4. Inductively coupled plasma–reactive ion etching of c- and a-plane AlGaN over the entire Al composition range: Effect of BCl{sub 3} pretreatment in Cl{sub 2}/Ar plasma chemistry

    SciTech Connect (OSTI)

    Shah, Amit P.; Laskar, Masihhur R.; Azizur Rahman, A.; Gokhale, Maheshwar R.; Bhattacharya, Arnab

    2013-11-15

    Inductively coupled plasma (ICP)–reactive ion etching (RIE) patterning is a standard processing step for UV and optical photonic devices based on III-nitride materials. There is little research on ICP-RIE of high Al-content AlGaN alloys and for nonpolar nitride orientations. The authors present a comprehensive study of the ICP-RIE of c- and a-plane AlGaN in Cl{sub 2}/Ar plasma over the entire Al composition range. The authors find that the etch rate decreases in general with increasing Al content, with different behavior for c- and a-plane AlGaN. They also study the effect of BCl{sub 3} deoxidizing plasma pretreatment. An ICP deoxidizing BCl{sub 3} plasma with the addition of argon is more efficient in removal of surface oxides from Al{sub x}Ga{sub 1?x}N than RIE alone. These experiments show that Al{sub x}Ga{sub 1?x}N etching is affected by the higher binding energy of AlN and the higher affinity of oxygen to aluminum compared to gallium, with oxides on a-plane AlGaN more difficult to etch as compared to oxides on c-plane AlGaN, specifically for high Al composition materials. The authors achieve reasonably high etch rate (?350 nm/min) for high Al-content materials with a smooth surface morphology at a low DC bias of ??45 VDC.

  5. Deuterium fusion through nonequilibrium induction

    SciTech Connect (OSTI)

    Fang, P.H. )

    1991-03-01

    This paper presents a deuterium fusion system that is based on the induction of fusion through a nonequilibrium thermodynamical configuration. Mechanical excitation using ultrasound is applied to a palladium electrode with deuterium-containing liquid, a mixture of palladium powder and deuterium-containing liquid, and a system of palladium and a highly compressed deuterium gas that approximates a deuterium solid. The ultrasound, when coupled with the medium of these systems, instantaneously creates a high temperature and pressure that would induce fusion between deuterons.

  6. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect (OSTI)

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  7. Hybrid-secondary uncluttered induction machine

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  8. Induction melter apparatus

    DOE Patents [OSTI]

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  9. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  10. Control of power to an inductively heated part

    DOE Patents [OSTI]

    Adkins, Douglas R. (1620 Adelita Dr. NE., Albuquerque, NM 87112); Frost, Charles A. (1039 Red Oaks Loop NE., Albuquerque, NM 87122); Kahle, Philip M. (528 Longwood Loop NE., Rio Rancho, NM 87124); Kelley, J. Bruce (13200 Blue Corn Maiden Trail NE., Albuquerque, NM 87112); Stanton, Suzanne L. (2805 Palo Alto NE., Albuquerque, NM 87112)

    1997-01-01

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part.

  11. Control of power to an inductively heated part

    DOE Patents [OSTI]

    Adkins, D.R.; Frost, C.A.; Kahle, P.M.; Kelley, J.B.; Stanton, S.L.

    1997-05-20

    A process for induction hardening a part to a desired depth with an AC signal applied to the part from a closely coupled induction coil includes measuring the voltage of the AC signal at the coil and the current passing through the coil; and controlling the depth of hardening of the part from the measured voltage and current. The control system determines parameters of the part that are functions of applied voltage and current to the induction coil, and uses a neural network to control the application of the AC signal based on the detected functions for each part. 6 figs.

  12. Low inductance connector assembly

    DOE Patents [OSTI]

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  13. Wrapper Induction Software

    Energy Science and Technology Software Center (OSTI)

    2011-08-18

    Wrapper Induction is a software package that allows for unsupervised, semi-supervised, and manual extraction of social media data independent of language or site architecture. A large range of blog formats is available to individuals as means of publishing data to the internet. Blogs are a source of rich information for analysts. With a growing volume of information and blog engines, there is an increased need for automatic or semi-automatic extraction of that data for processingmore » to help deliver results to analysts. Wrapper Induction is designed to automatically or semi-automatically create a template that can be used to harvest blog data from websites. Blogs are in a variety of formats and languages. Wrapper Induction creates a template and extracts blog data in a way that is independent of a specified blog format or language.« less

  14. Wrapper Induction Software

    SciTech Connect (OSTI)

    2011-08-18

    Wrapper Induction is a software package that allows for unsupervised, semi-supervised, and manual extraction of social media data independent of language or site architecture. A large range of blog formats is available to individuals as means of publishing data to the internet. Blogs are a source of rich information for analysts. With a growing volume of information and blog engines, there is an increased need for automatic or semi-automatic extraction of that data for processing to help deliver results to analysts. Wrapper Induction is designed to automatically or semi-automatically create a template that can be used to harvest blog data from websites. Blogs are in a variety of formats and languages. Wrapper Induction creates a template and extracts blog data in a way that is independent of a specified blog format or language.

  15. Low inductance busbar assembly

    DOE Patents [OSTI]

    Holbrook, Meghan Ann (Manhattan Beach, CA)

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  16. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  17. Feedback regulated induction heater for a flowing fluid

    DOE Patents [OSTI]

    Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)

    1985-01-01

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  18. Feedback regulated induction heater for a flowing fluid

    DOE Patents [OSTI]

    Migliori, A.; Swift, G.W.

    1984-06-13

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  19. Helix coupling

    DOE Patents [OSTI]

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  20. Helix coupling

    DOE Patents [OSTI]

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  1. Iterative reconstruction of magnetic induction using Lorentz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography Title Iterative reconstruction of magnetic induction using Lorentz transmission...

  2. Improvements to Laser Ablation-Inductively Coupled Plasma-Mass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Such a laser is believed to provide particulates from the sample that are closer to its real elemental composition and that are much better atomized and ionized when they're...

  3. Coupling Schemes in Terahertz Planar Metamaterials (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Coupling Schemes in Terahertz Planar Metamaterials Citation Details In-Document Search Title: Coupling Schemes in Terahertz Planar Metamaterials We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive ( LC ) resonance, depending on the position of

  4. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    DOE Patents [OSTI]

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  5. Borehole induction coil transmitter

    DOE Patents [OSTI]

    Holladay, Gale (Livermore, CA); Wilt, Michael J. (Walnut Creek, CA)

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  6. Inductance due to spin current

    SciTech Connect (OSTI)

    Chen, Wei

    2014-03-21

    The inductance of spintronic devices that transport charge neutral spin currents is discussed. It is known that in a media that contains charge neutral spins, a time-varying electric field induces a spin current. We show that since the spin current itself produces an electric field, this implies existence of inductance and electromotive force when the spin current changes with time. The relations between the electromotive force and the corresponding flux, which is a vector calculated by the cross product of electric field and the trajectory of the device, are clarified. The relativistic origin generally renders an extremely small inductance, which indicates the advantage of spin current in building low inductance devices. The same argument also explains the inductance due to electric dipole current and applies to physical dipoles consist of polarized bound charges.

  7. Linear induction pump

    DOE Patents [OSTI]

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  8. Operating an induction melter apparatus

    DOE Patents [OSTI]

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  9. Noise performance of magneto-inductive cables

    SciTech Connect (OSTI)

    Wiltshire, M. C. K. Syms, R. R. A.

    2014-07-21

    Magneto-inductive (MI) waveguides are metamaterial structures based on periodic arrangements of inductively coupled resonant magnetic elements. They are of interest for power transfer, communications and sensing, and can be realised in a flexible cable format. Signal-to-noise ratio is extremely important in applications involving signals. Here, we present the first experimental measurements of the noise performance of metamaterial cables. We focus on an application involving radiofrequency signal transmission in internal magnetic resonance imaging (MRI), where the subdivision of the metamaterial cable provides intrinsic patient safety. We consider MI cables suitable for use at 300 MHz during {sup 1}H MRI at 7 T, and find noise figures of 2.3–2.8?dB/m, together with losses of 3.0–3.9?dB/m, in good agreement with model calculations. These values are high compared to conventional cables, but become acceptable when (as here) the environment precludes the use of continuous conductors. To understand this behaviour, we present arguments for the fundamental performance limitations of these cables.

  10. Sealing coupling

    DOE Patents [OSTI]

    Pardini, John A. (Brookfield, IL); Brubaker, Robert C. (Naperville, IL); Rusnak, John J. (Orland Park, IL)

    1985-01-01

    Disclosed is a remotely operable releasable sealing coupling which provides fluid-tight joinder of upper and a lower conduit sections. Each conduit section has a concave conical sealing surface adjacent its end portion. A tubular sleeve having convex spherical ends is inserted between the conduit ends to form line contact with the concave conical end portions. An inwardly projecting lip located at one end of the sleeve cooperates with a retaining collar formed on the upper pipe end to provide swivel capture for the sleeve. The upper conduit section also includes a tapered lower end portion which engages the inside surface of the sleeve to limit misalignment of the connected conduit sections.

  11. Coupling Schemes in Terahertz Planar Metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roy Chowdhury, Dibakar; Singh, Ranjan; Taylor, Antoinette J.; Chen, Hou-Tong; Zhang, Weili; Azad, Abul K.

    2012-01-01

    We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive ( LC ) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of the LC resonance. We observe the LC resonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-ordermore » resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes.« less

  12. Thermoacoustic couple

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  13. Inductive storage pulse circuit device

    DOE Patents [OSTI]

    Parsons, William M. (Los Alamos, NM); Honig, Emanuel M. (Los Alamos, NM)

    1984-01-01

    Inductive storage pulse circuit device which is capable of delivering a series of electrical pulses to a load in a sequential manner. Silicon controlled rectifiers as well as spark gap switches can be utilized in accordance with the present invention. A commutation switching array is utilized to produce a reverse current to turn-off the main opening switch. A commutation capacitor produces the reverse current and is initially charged to a predetermined voltage and subsequently charged in alternating directions by the inductive storage current.

  14. Induction accelerators and free-electron lasers at LLNL: Beam Research Program

    SciTech Connect (OSTI)

    Briggs, R.J.

    1989-02-15

    Linear induction accelerators have been developed to produce pulses of charged particles at voltages exceeding the capabilities of single-stage, diode-type accelerators and at currents too high rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multistage induction machine. The advent of magnetic pulse power systems makes sustained operation at high repetition rates practical, and high-average-power capability is very likely to open up many new applications of induction machines. In Part A of this paper, we survey the US induction linac technology, emphasizing electron machines. We also give a simplified description of how induction machines couple energy to the electron beam to illustrate many general issues that designers of high-brightness and high-average-power induction linacs must consider. We give an example of the application of induction accelerator technology to the relativistic klystron, a power source for high-gradient accelerators. In Part B we address the application of LIAs to free-electron lasers. The multikiloampere peak currents available from linear induction accelerators make high-gain, free-electron laser amplifier configurations feasible. High extraction efficiencies in a single mass of the electron beam are possible if the wiggler parameters are appropriately ''tapered'', as recently demonstrated at millimeter wavelengths on the 4-MeV ELF facility. Key issues involved in extending the technology to shorter wavelengths and higher average powers are described. Current FEL experiments at LLNL are discussed. 5 refs., 16 figs.

  15. Online Monitoring of Induction Motors

    SciTech Connect (OSTI)

    McJunkin, Timothy R.; Agarwal, Vivek; Lybeck, Nancy Jean

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  16. Carbon-free induction furnace

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN); Pfeiler, William A. (Norris, TN)

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  17. Non-carbon induction furnace

    DOE Patents [OSTI]

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  18. Segmented rail linear induction motor

    DOE Patents [OSTI]

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  19. Segmented rail linear induction motor

    DOE Patents [OSTI]

    Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  20. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  1. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  2. Low inductance power electronics assembly

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  3. Alternative RF coupling configurations for H{sup ?} ion sources

    SciTech Connect (OSTI)

    Briefi, S.; Fantz, U.; Gutmann, P.

    2015-04-08

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H{sup ?} current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.

  4. Monitoring transients in low inductance circuits

    DOE Patents [OSTI]

    Guilford, R.P.; Rosborough, J.R.

    1985-10-21

    The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.

  5. Iterative reconstruction of magnetic induction using Lorentz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    induction of a nanostructure. This allows for implementing the reconstruction as a linear algebra problem such that various iterative algebraic reconstruction methods can be...

  6. Induction slag reduction process for making titanium

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR)

    1991-01-01

    Continuous process for preparing titanium comprising fluorinating titanium ore, and reducing the formed alkaline earth fluotitanate with an alkaline earth metal in an induction slag reactor.

  7. Element of an inductive coupler

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-08-15

    An element for an inductive coupler in a downhole component comprises magnetically conductive material, which is disposed in a recess in annular housing. The magnetically conductive material forms a generally circular trough. The circular trough comprises an outer generally U-shaped surface, an inner generally U-shaped surface, and two generally planar surfaces joining the inner and outer surfaces. The element further comprises pressure relief grooves in at least one of the surfaces of the circular trough. The pressure relief grooves may be scored lines. Preferably the pressure relief grooves are parallel to the magnetic field generated by the magnetically conductive material. The magnetically conductive material is selected from the group consisting of soft iron, ferrite, a nickel iron alloy, a silicon iron alloy, a cobalt iron alloy, and a mu-metal. Preferably, the annular housing is a metal ring.

  8. Linear induction accelerator parameter options

    SciTech Connect (OSTI)

    Birx, D.L.; Caporaso, G.J.; Reginato, L.L.

    1986-04-21

    The principal undertaking of the Beam Research Program over the past decade has been the investigation of propagating intense self-focused beams. Recently, the major activity of the program has shifted toward the investigation of converting high quality electron beams directly to laser radiation. During the early years of the program, accelerator development was directed toward the generation of very high current (>10 kA), high energy beams (>50 MeV). In its new mission, the program has shifted the emphasis toward the production of lower current beams (>3 kA) with high brightness (>10/sup 6/ A/(rad-cm)/sup 2/) at very high average power levels. In efforts to produce these intense beams, the state of the art of linear induction accelerators (LIA) has been advanced to the point of satisfying not only the current requirements but also future national needs.

  9. Polished Downhole Transducer Having Improved Signal Coupling

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28

    Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

  10. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric...

  11. DOE - Office of Legacy Management -- Tocco Induction Heating...

    Office of Legacy Management (LM)

    Tocco Induction Heating Div of Ohio Crankshaft Co - OH 42 FUSRAP Considered Sites Site: TOCCO INDUCTION HEATING, DIV. OF OHIO CRANKSHAFT CO. (OH.42 ) Eliminated from consideration...

  12. Three tooth kinematic coupling

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA)

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  13. Induction Lighting: An Old Lighting Technology Made New Again | Department

    Office of Environmental Management (EM)

    of Energy Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up

  14. Translation-coupling systems

    DOE Patents [OSTI]

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  15. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  16. Translation-coupling systems

    DOE Patents [OSTI]

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  17. The model coupling toolkit.

    SciTech Connect (OSTI)

    Larson, J. W.; Jacob, R. L.; Foster, I.; Guo, J.

    2001-04-13

    The advent of coupled earth system models has raised an important question in parallel computing: What is the most effective method for coupling many parallel models to form a high-performance coupled modeling system? We present our solution to this problem--The Model Coupling Toolkit (MCT). We explain how our effort to construct the Next-Generation Coupler for NCAR Community Climate System Model motivated us to create this toolkit. We describe in detail the conceptual design of the MCT and explain its usage in constructing parallel coupled models. We present preliminary performance results for the toolkit's parallel data transfer facilities. Finally, we outline an agenda for future development of the MCT.

  18. DATE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 SECTION A. Project Title: Nuclear Materials Science and Instrumentation Research Infrastructure Upgrade at Pennsylvania State University SECTION B. Project Description Pennsylvania State University proposes to purchase and install an inductively coupled plasma - atomic emission spectrometer (ICP- AES), glass melting furnace and crucible, and data acquisition system for use in research and education. SECTION C. Environmental Aspects / Potential Sources of Impact Chemical Use/Storage / Chemical

  19. Coupling in the Tevatron

    SciTech Connect (OSTI)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  20. Steady-state inductive spheromak operation

    DOE Patents [OSTI]

    Janos, A.C.; Jardin, S.C.; Yamada, M.

    1985-02-20

    The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.

  1. Steady-state inductive spheromak operation

    DOE Patents [OSTI]

    Janos, Alan C. (E. Windsor, NJ); Jardin, Stephen C. (Princeton, NJ); Yamada, Masaaki (Lawrenceville, NJ)

    1987-01-01

    The inductively formed spheromak plasma can be maintained in a highly stable and controlled fashion. Steady-state operation is obtained by forming the plasma in the linked mode, then oscillating the poloidal and toroidal fields such that they have different phases. Preferably, the poloidal and magnetic fields are 90.degree. out of phase.

  2. Inductively generated streaming plasma ion source

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  3. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M. (Santa Fe, NM)

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  4. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  5. Model Repair Specifications for Low Voltage Induction Motors | Department

    Office of Environmental Management (EM)

    of Energy Model Repair Specifications for Low Voltage Induction Motors Model Repair Specifications for Low Voltage Induction Motors These Model Repair Specifications are intended to cover routine repair and rewind of low-voltage random-wound three-phase AC squirrel cage induction motors. PDF icon Model Repair Specifications for Low Voltage Induction Motors (November 1999) More Documents & Publications DOE Navigant Master Presentation Improving Motor and Drive System Performance - A

  6. Demountable direct injection high efficiency nebulizer for inductively coupled plasma mass spectrometry

    DOE Patents [OSTI]

    Montaser, Akbar; Westphal, Craig S.; Kahen, Kaveh; Rutkowski, William F.; Acon, Billy W.

    2006-12-05

    A nebulizer adapted for adjusting a position of a capillary tube contained within the nebulizer is provided. The nebulizer includes an elongated tubular shell having a gas input port and a gas output port, a capillary adjustment adapter for displacing the capillary tube in a lateral direction via a rotational force, and a connector for connecting the elongated tubular shell, the capillary adjustment adapter and the capillary tube.

  7. Induction soldering of photovoltaic system components

    DOE Patents [OSTI]

    Kumaria, Shashwat; de Leon, Briccio

    2015-11-17

    A method comprises positioning a pair of photovoltaic wafers in a side-by-side arrangement. An interconnect is placed on the pair of wafers such that the interconnect overlaps both wafers of the pair, solder material being provided between the interconnect and the respective wafers. A solder head is then located adjacent the interconnect, and the coil is energized to effect inductive heating of the solder material. The solder head comprises an induction coil shaped to define an eye, and a magnetic field concentrator located at least partially in the eye of the coil. The magnetic field concentrator defines a passage extending axially through the eye of the coil, and may be of a material with a high magnetic permeability.

  8. Induction linear accelerator technology for SDIO applications

    SciTech Connect (OSTI)

    Birx, D.; Reginato, L.; Rogers, D.; Trimble, D.

    1986-11-01

    The research effort reported concentrated primarily on three major activities. The first was aimed at improvements in the accelerator drive system of an induction linac to meet the high repetition rate requirements of SDI applications. The second activity centered on a redesign of the accelerator cells to eliminate the beam breakup instabilities, resulting in optimized beam transport. The third activity sought to improve the source of electrons to achieve a higher quality beam to satisfy the requirement of the free electron laser. (LEW)

  9. Circuit level modeling of inductive elements

    SciTech Connect (OSTI)

    Muyshondt, G.P.; Portnoy, W.M.

    1989-01-01

    Design and analysis of spacecraft power systems have been difficult to perform because of the lack of circuit level models for nonlinear inductive elements. This paper reviews some of the models which have been proposed, their limitations, and applications. An improved saturation dependent model will be described. The model has been implemented in SPICE and with a commercial circuit program and demonstrated to be satisfactory in both implementations. 3 refs., 9 figs.

  10. Magnetic coupling device

    DOE Patents [OSTI]

    Nance, Thomas A. (Aiken, SC)

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  11. Quick torque coupling

    DOE Patents [OSTI]

    Luft, Peter A. (El Cerrito, CA)

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  12. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  13. Segmented ceramic liner for induction furnaces

    DOE Patents [OSTI]

    Gorin, Andrew H. (Knoxville, TN); Holcombe, Cressie E. (Knoxville, TN)

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  14. Strongly Coupled Data Assimilation Using Leading Averaged Coupled

    Office of Scientific and Technical Information (OSTI)

    Covariance (LACC). Part II: CGCM experiments (Journal Article) | SciTech Connect Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Citation Details In-Document Search Title: Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Authors: Liu, Feiyu ; Liu, Zhengyu ; Zhang, S. ; Liu, Y. ; Jacob, Robert L. Publication Date: 2015-11-01 OSTI Identifier: 1237902 DOE Contract Number:

  15. Verification and validation for induction heating

    SciTech Connect (OSTI)

    Lam, Kin [Los Alamos National Laboratory; Tippetts, Trevor B [Los Alamos National Laboratory; Allen, David W [NON LANL

    2008-01-01

    Truchas is a software package being developed at LANL within the Telluride project for predicting the complex physical processes in metal alloy casting. The software was designed to be massively parallel, multi-material, multi-physics, and to run on 3D, fully unstructured meshes. This work describes a Verification and Validation assessment of Truchas for simulating the induction heating phase of a casting process. We used existing data from a simple experiment involving the induction heating of a graphite cylinder, as graphite is a common material used for mold assemblies. Because we do not have complete knowledge of all the conditions and properties in this experiment (as is the case in many other experiments), we performed a parameter sensitivity study, modeled the uncertainties of the most sensitive parameters, and quantified how these uncertainties propagate to the Truchas output response. A verification analysis produced estimates of the numerical error of the Truchas solution to our computational model. The outputs from Truchas runs with randomly sampled parameter values were used for the validation study.

  16. Sealing coupling. [LMFBR

    DOE Patents [OSTI]

    Pardini, J.A.; Brubaker, R.C.; Rusnak, J.J.

    1982-09-20

    Disclosed is a remotely operable releasable sealing coupling which provides fluid-tight joinder of upper and a lower conduit sections. Each conduit section has a concave conical sealing surface adjacent its end portion. A tubular sleeve having convex spherical ends is inserted between the conduit ends to form line contact with the concave conical end portions. An inwardly projecting lip located at one end of the sleeve cooperates with a retaining collar formed on the upper pipe end to provide swivel capture for the sleeve. The upper conduit section also includes a tapered lower end portion which engages the inside surface of the sleeve to limit misalignment of the connected conduit sections.

  17. Novel Manufacturing Technologies for High Power Induction and Permanent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnet Electric Motors | Department of Energy Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon pm004_grant_2012_o.pdf More Documents & Publications Novel Manufacturing Technologies for High Power Induction and Permanent Magnet

  18. Applications of the VLF Induction Method For Studying Some Volcanic...

    Open Energy Info (EERE)

    the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  19. Multiphysics Application Coupling Toolkit

    Energy Science and Technology Software Center (OSTI)

    2013-12-02

    This particular consortium implementation of the software integration infrastructure will, in large part, refactor portions of the Rocstar multiphysics infrastructure. Development of this infrastructure originated at the University of Illinois DOE ASCI Center for Simulation of Advanced Rockets (CSAR) to support the center's massively parallel multiphysics simulation application, Rocstar, and has continued at IllinoisRocstar, a small company formed near the end of the University-based program. IllinoisRocstar is now licensing these new developments as free, openmore » source, in hopes to help improve their own and others' access to infrastructure which can be readily utilized in developing coupled or composite software systems; with particular attention to more rapid production and utilization of multiphysics applications in the HPC environment. There are two major pieces to the consortium implementation, the Application Component Toolkit (ACT), and the Multiphysics Application Coupling Toolkit (MPACT). The current development focus is the ACT, which is (will be) the substrate for MPACT. The ACT itself is built up from the components described in the technical approach. In particular, the ACT has the following major components: 1.The Component Object Manager (COM): The COM package provides encapsulation of user applications, and their data. COM also provides the inter-component function call mechanism. 2.The System Integration Manager (SIM): The SIM package provides constructs and mechanisms for orchestrating composite systems of multiply integrated pieces.« less

  20. Induction slag reduction process for purifying metals

    DOE Patents [OSTI]

    Traut, Davis E. (Corvallis, OR); Fisher, II, George T. (Albany, OR); Hansen, Dennis A. (Corvallis, OR)

    1991-01-01

    A continuous method is provided for purifying and recovering transition metals such as neodymium and zirconium that become reactive at temperatures above about 500.degree. C. that comprises the steps of contacting the metal ore with an appropriate fluorinating agent such as an alkaline earth metal fluosilicate to form a fluometallic compound, and reducing the fluometallic compound with a suitable alkaline earth or alkali metal compound under molten conditions, such as provided in an induction slag metal furnace. The method of the invention is advantageous in that it is simpler and less expensive than methods used previously to recover pure metals, and it may be employed with a wide range of transition metals that were reactive with enclosures used in the prior art methods and were hard to obtain in uncontaminated form.

  1. Black hole temperature: Minimal coupling vs conformal coupling

    SciTech Connect (OSTI)

    Fazel, Mohamadreza; Mirza, Behrouz; Mansoori, Seyed Ali Hosseini

    2014-05-15

    In this article, we discuss the propagation of scalar fields in conformally transformed spacetimes with either minimal or conformal coupling. The conformally coupled equation of motion is transformed into a one-dimensional Schrödinger-like equation with an invariant potential under conformal transformation. In a second stage, we argue that calculations based on conformal coupling yield the same Hawking temperature as those based on minimal coupling. Finally, it is conjectured that the quasi normal modes of black holes are invariant under conformal transformation.

  2. Study on the Mechanical Instability of MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Gou, Xing Long; Wu, Hong; Zheng, Shi Xian; Green, Michael A

    2011-05-04

    The superconducting coupling solenoid magnet is one of the key equipment in the Muon Ionization Cooling Experiment (MICE). The coil has an inner radius of 750 mm, length of 281 mm and thickness of 104 mm at room temperature. The peak induction in the coil is about 7.3 T with a full current of 210 A. The mechanical disturbances which might cause the instability of the impregnated superconducting magnet involve the frictional motion between conductors and the cracking of impregnated materials. In this paper, the mechanical instability of the superconducting coupling magnet was studied. This paper presents the numerical calculation results of the minimum quench energy (MQE) of the coupling magnet, as well as the dissipated strain energy in the stress concentration region when the epoxy cracks and the frictional energy caused by 'stick-slip' of the conductor based on the bending theory of beam happens. Slip planes are used in the coupling coil and the frictional energy due to 'slow slip' at the interface of the slip planes was also investigated. The dissipated energy was compared with MQE, and the results show that the cracking of epoxy resin in the region of shear stress concentration is the main factor for premature quench of the coil.

  3. Mobility platform coupling device and method for coupling mobility platforms

    DOE Patents [OSTI]

    Shirey, David L. (Albuquerque, NM); Hayward, David R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM)

    2002-01-01

    A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.

  4. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    SciTech Connect (OSTI)

    Alves, L.C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled ({minus}80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  5. QCD coupling constants and VDM

    SciTech Connect (OSTI)

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  6. Induction Consolidation/Molding of Thermoplastic Composites Using Smart Susceptors

    SciTech Connect (OSTI)

    None

    2009-02-01

    This factsheet describes a research project whose objective is to explore and define the technical and economic viability of induction consolidation for thermoplastic composites and to fabricate a wide spectrum of components in an energy-efficient manner.

  7. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    SciTech Connect (OSTI)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  8. Linear induction accelerator and pulse forming networks therefor

    DOE Patents [OSTI]

    Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  9. Novel Packaging to Reduce Stray Inductance in Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Packaging to Reduce Stray Inductance in Power Electronics Novel Packaging to Reduce Stray Inductance in Power Electronics 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape022_tolbert_2010_p.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Power Device Packaging High Power Density Integrated Traction Machine Drive

  10. Coupling MM5 with ISOLSM:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yun (Helen) He 1 Coupling MM5 with ISOLSM: Development, Testing, and Application W.J. Riley, H.S. Cooley, Y. He*, M.S. Torn Lawrence Berkeley National Laboratory June 2003 Yun (Helen) He 2 Outline ! Introduction ! Model Integration ! Model Configuration ! Model Testing ! Simulation and Impacts of Winter Wheat Harvest ! Conclusions ! Observations and Future Work June 2003 Yun (Helen) He 3 Introduction ! CO 2 fluxes and other trace-gas exchanges are tightly coupled to the surface water and energy

  11. Study of in-duct spray drying using condensation aerosol

    SciTech Connect (OSTI)

    Chen, W.J.R.; Chang, S.M.; Adikesavalu, R. )

    1992-06-01

    Sulfur removal efficiency of in-duct spray drying is limited by sorbent content and surface properties of the sorbent-water aerosol. It was the purpose of this study to improve the sulfur removal efficiency for in-duct spray drying by injecting condensation aerosol instead of conventional dispersion aerosol. The program was composed of three phases. In Phase I, a novel pulsed fluid bed feeder was developed and was used to feed hydrated lime for subsequent experiments. A small condensation aerosol generator was then built, which produces a lime-water condensation aerosol by condensing steam on lime particles. The results show that novel lime-water aerosols less than 10 microns were generated. The central task in Phase II was to simulate experimentally in-duct spray drying using condensation aerosols and compare the results with those using dispersion aerosols reported in the literature. A small entrained-flow reactor was constructed to simulate an in-duct spray dryer. The condensation aerosol was then introduced to the reactor at various approach to saturation temperature, calcium/sulfur stoichiometry and sulfur dioxide concentration for desulfurization study. The results show that we have improved the sulfur removal efficiency for in-duct spray drying to 90 percent or above. Thus we have met and exceeded the stated project goal of 70 percent sulfur removal. A comprehensive computer code was employed to calculate sulfur removal efficiency in Phase III.

  12. Planar slot coupled microwave hybrid

    DOE Patents [OSTI]

    Petter, Jeffrey K. (Williston, VT)

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  13. Inductive coupler for downhole components and method for making same

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael A.

    2006-10-03

    An inductive coupler for downhole components. The inductive coupler includes an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  14. Optical induction scheme for assembling nondiffracting aperiodic Vogel spirals

    SciTech Connect (OSTI)

    Diebel, Falko Rose, Patrick; Boguslawski, Martin; Denz, Cornelia

    2014-05-12

    We introduce an experimental approach to realize aperiodic photonic lattices based on multiplexing of nondiffracting Bessel beams. This holographic optical induction scheme takes advantage of the well localized Bessel beam as a basis to assemble two-dimensional photonic lattices. We present the realization of an optically induced two-dimensional golden-angle Vogel spiral lattice, which belongs to the family of deterministic aperiodic structures. With our technique, a very broad class of photonic refractive index landscapes now becomes accessible to optical induction, which could not be realized with established distributed holographic techniques.

  15. A computer simulation of an induction heating system

    SciTech Connect (OSTI)

    Egan, L.R. ); Furlani, E.P. )

    1991-09-01

    In this paper a method is presented for the design and analysis of induction heating systems. The method entails the simulation of system performance using an equivalent circuit approach. Equivalent circuit models are obtained for the three pats of an induction heating system: the power source, the impedance matching circuit, and the load. These model are combined in a system model which is analyzed using the Advanced Continuous Simulation Language (ACSL). This approach is applied to an existing system, and the predicted performance is in close agreement with measured data.

  16. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    DOE Patents [OSTI]

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  17. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  18. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  19. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  20. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  1. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  2. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-04-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U{sup 235}/U{sup 238} ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U{sup 234} and U{sup 236} isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given.

  3. Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching.

    SciTech Connect (OSTI)

    Moldovan, N.; Divan, R.; Zeng, H.; Carlisle, J. A.; Advanced Diamond Tech.

    2009-12-07

    Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD{reg_sign}) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips ({approx} 10 nm tip radius) with etch rates of 650 nm/min.

  4. Inductively heated particulate matter filter regeneration control system

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  5. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  6. Series-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-06-05

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  7. Induction heating apparatus and methods of operation thereof

    DOE Patents [OSTI]

    Richardson, John G.

    2006-08-01

    Methods of operation of an induction melter include providing material within a cooled crucible proximate an inductor. A desired electromagnetic flux skin depth for heating the material within the crucible may be selected, and a frequency of an alternating current for energizing the inductor and for producing the desired skin depth may be selected. The alternating current frequency may be adjusted after energizing the inductor to maintain the desired electromagnetic flux skin depth. The desired skin depth may be substantially maintained as the temperature of the material varies. An induction heating apparatus includes a sensor configured to detect changes in at least one physical characteristic of a material to be heated in a crucible, and a controller configured for selectively varying a frequency of an alternating current for energizing an inductor at least partially in response to changes in the physical characteristic to be detected by the sensor.

  8. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  9. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  10. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  11. Swapan Chattopadhyay Inducted into AAAS Fellowship | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Swapan Chattopadhyay Inducted into AAAS Fellowship February 16, 2006 Swapan Chattopadhyay Swapan Chattopadhyay, Jefferson Lab's Associate Director for Accelerators, now a Fellow of the American Association for the Advancement of Science Swapan Chattopadhyay, Associate Director for Accelerators at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, in Newport News, Va., has been awarded the distinction of Fellow by the American Association for the Advancement of

  12. Felix Bloch, Nuclear Induction, Bloch Equations, Bloch Theorem, Bloch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States Felix Bloch, Nuclear Induction, and Bloch Equations Resources with Additional Information Stressing "the importance both of demonstrating the neutron's magnetic moment and of determining its magnitude", Felix Bloch began his research on neutron physics at Stanford [University] in early 1936. "Using mostly X-ray and microwave equipment from the physics labs, he and Norris Bradbury ... built [a neutron] source ... . (Bloch later pointed out that this equipment was more

  13. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  14. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits

    SciTech Connect (OSTI)

    Bermeister, Adam; Keith, Daniel; Culcer, Dimitrie

    2014-11-10

    Quantum dot quantum computing architectures rely on systems in which inversion symmetry is broken, and spin-orbit coupling is present, causing even single-spin qubits to be susceptible to charge noise. We derive an effective Hamiltonian for the combined action of noise and spin-orbit coupling on a single-spin qubit, identify the mechanisms behind dephasing, and estimate the free induction decay dephasing times T{sub 2}{sup *} for common materials such as Si and GaAs. Dephasing is driven by noise matrix elements that cause relative fluctuations between orbital levels, which are dominated by screened whole charge defects and unscreened dipole defects in the substrate. Dephasing times T{sub 2}{sup *} differ markedly between materials and can be enhanced by increasing gate fields, choosing materials with weak spin-orbit, making dots narrower, or using accumulation dots.

  15. Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment

    SciTech Connect (OSTI)

    Hansen, C.; Marklin, G.; Victor, B.; Akcay, C.; Jarboe, T.

    2015-04-15

    We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) device that treats the entire plasma volume in a single dynamic MHD model. A new fully 3D numerical tool, the PSI-center TETrahedral mesh code, was developed that provides the geometric flexibility required for this investigation. Implementation of a zero-? Hall MHD model using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented focusing on injector dynamics that are investigated numerically for the first time. Asymmetries in the plasma loading between the two helicity injectors and progression of field reversal in each injector are observed. Analysis indicates cross-coupling between injectors through confinement volume structures. Injector impedance is found to scale with toroidal current at fixed density, consistent with experimental observation. Comparison to experimental data with an injector drive frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

  16. Welding shield for coupling heaters

    DOE Patents [OSTI]

    Menotti, James Louis (Dickinson, TX)

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  17. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  18. Design and Construction of Test Coils for the MICE Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Xu, F.Y.; Liu, XioaKun; Chen, AnBin; Li, LanKai; Gou, XingLong; Wu, Hong; Green, Michael; Li, Darun; Strauss, Bruce

    2008-08-08

    The superconducting coupling solenoid to be applied in the Muon Ionization Cooling Experiment (MICE) is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 102.5 mm at room temperature. The magnetic field up to 2.6 T at the magnet centerline is to keep the muons within the MICE RF cavities. Its self inductance is around 592 H and its magnet stored energy is about 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The stress induced inside the coil during cool down and charging is relatively high. Two test coils are to build and test in order to validate the design method and develop the fabrication technique required for the coupling coil winding, one is 350 mm inner diameter and full length same as the coupling coil, and the other is one-quarter length and 1.5 m diameter. The 1.5 m diameter coil will be charged to strain conditions that are greater than would be encountered in the coupling coil. This paper presents detailed design of the test coils as well as developed winding skills. The analyses on stress in coil assemblies, AC loss, and quench process are carried out.

  19. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  20. Interface effect in coupled quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  1. Joint used for coupling long heaters

    DOE Patents [OSTI]

    Menottie, James Louis

    2013-02-26

    Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

  2. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  3. Double perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Alkali metal doped double perovskites containing manganese and at least one of cobalt, iron and nickel are useful in the oxidative coupling of alkane to higher hydrocarbons.

  4. Development of capabilities to simulate the coupled

    Office of Scientific and Technical Information (OSTI)

    the coupled thermal-hydrological-mechanical-chemical (THMC) processes during in situ oil shale production Pawar, Rajesh J. Los Alamos National Laboratory 02 PETROLEUM; 04 OIL...

  5. Vacuum coupling of rotating superconducting rotor

    DOE Patents [OSTI]

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  6. Multielectron Oxidation in a Ferromagnetically Coupled Dinickel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Ferromagnetically Coupled Dinickel(II) Triple Mesocate Previous Next List Ferrando-Soria, Jesus; Fabelo, Oscar; Castellano, Maria; Cano, Joan;Fordham, Stephen; and...

  7. Quintessence with quadratic coupling to dark matter

    SciTech Connect (OSTI)

    Boehmer, Christian G.; Chan, Nyein; Caldera-Cabral, Gabriela; Lazkoz, Ruth; Maartens, Roy

    2010-04-15

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  8. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  9. Inductive coupler for downhole components and method for making same

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Briscoe, Michael A.; Sneddon, Cameron; Fox, Joe

    2006-05-09

    The present invention includes a method of making an inductive coupler for downhole components. The method includes providing an annular housing, preferably made of steel, the housing having a recess. A conductor, preferably an insulated wire, is also provided along with a plurality of generally U-shaped magnetically conducting, electrically insulating (MCEI) segments. Preferably, the MCEI segments comprise ferrite. An assembly is formed by placing the plurality of MCEI segments within the recess in the annular housing. The segments are aligned to form a generally circular trough. A first portion of the conductor is placed within the circular trough. This assembly is consolidated with a meltable polymer which fills spaces between the segments, annular housing and the first portion of the conductor. The invention also includes an inductive coupler including an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  10. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, George R. (Norris, TN)

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  11. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, G.R.

    1983-11-29

    A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.

  12. Pole-phase modulated toroidal winding for an induction machine

    DOE Patents [OSTI]

    Miller, John Michael (Saline, MI); Ostovic, Vlado (Weinheim, DE)

    1999-11-02

    A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.

  13. Series-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM)

    1986-01-01

    A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.

  14. Experimental Observations and Numerical Prediction of Induction Heating in a Graphite Test Article

    SciTech Connect (OSTI)

    Jankowski, Todd A [Los Alamos National Laboratory; Johnson, Debra P [Los Alamos National Laboratory; Jurney, James D [Los Alamos National Laboratory; Freer, Jerry E [Los Alamos National Laboratory; Dougherty, Lisa M [Los Alamos National Laboratory; Stout, Stephen A [Los Alamos National Laboratory

    2009-01-01

    The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds during casting operations. Preliminary results of experiments aimed at understanding the induction heating process in the mold portion of the furnaces are reported. The experiments have been modeled in COMSOL Multiphysics and the numerical and experimental results are compared to one another. These comparisons provide insight into the heating process and provide a benchmark for COMSOL calculations of induction heating in the mold portion of the plutonium casting furnaces.

  15. High density growth of T7 expression strains with auto-induction option

    DOE Patents [OSTI]

    Studier, F. William

    2010-04-27

    Methods for promoting and suppressing auto-induction of transcription of cloned DNA in cultures of T7 expression strains are disclosed.

  16. Highly damped kinematic coupling for precision instruments

    DOE Patents [OSTI]

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  17. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    SciTech Connect (OSTI)

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies. Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy efficiency results in potential energy savings of {approx}75% as compared to autoclave processing in aerospace, {approx}63% as compared to compression molding in automotive, and {approx}42% energy savings as compared to convectively heated tools in wind energy. The ability to make parts in a rapid and controlled manner provides significant economic advantages for each of the industrial segments. These attributes were demonstrated during the processing of the demonstration components on this project.

  18. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect (OSTI)

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  19. Gas insulated transmission line having low inductance intercalated sheath

    DOE Patents [OSTI]

    Cookson, Alan H. (Southboro, MA)

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  20. Method and system for determining induction motor speed

    DOE Patents [OSTI]

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  1. Element for use in an inductive coupler for downhole components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2009-03-31

    An element for use in an inductive coupler for downhole components comprises an annular housing having a generally circular recess. The element further comprises a plurality of generally linear, magnetically conductive segments. Each segment includes a bottom portion, an inner wall portion, and an outer wall portion. The portions together define a generally linear trough from a first end to a second end of each segment. The segments are arranged adjacent to each other within the housing recess to form a generally circular trough. The ends of at least half of the segments are shaped such that the first end of one of the segments is complementary in form to the second end of an adjacent segment. In one embodiment, all of the ends are angled. Preferably, the first ends are angled with the same angle and the second ends are angled with the complementary angle.

  2. High pressure, high current, low inductance, high reliability sealed terminals

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN) [Oak Ridge, TN; McKeever, John W. (Oak Ridge, TN) [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  3. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect (OSTI)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  4. Forward and reverse control system for induction motors

    DOE Patents [OSTI]

    Wright, J.T.

    1987-09-15

    A control system for controlling the direction of rotation of a rotor of an induction motor includes an array of five triacs with one of the triacs applying a current of fixed phase to the windings of the rotor and four of the triacs being switchable to apply either hot ac current or return ac current to the stator windings so as to reverse the phase of current in the stator relative to that of the rotor and thereby reverse the direction of rotation of the rotor. Switching current phase in the stator is accomplished by operating the gates of pairs of the triacs so as to connect either hot ac current or return ac current to the input winding of the stator. 1 fig.

  5. Integrated Pilot Plant for a Large Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Do Quang, R.; Jensen, A.; Prod'homme, A.; Fatoux, R.; Lacombe, J.

    2002-02-26

    COGEMA has been vitrifying high-level liquid waste produced during nuclear fuel reprocessing on an industrial scale for over 20 years, with two main objectives: containment of the long lived fission products and reduction of the final volume of waste. Research performed by the French Atomic Energy Commission (CEA) in the 1950s led to the selection of borosilicate glass as the most suitable containment matrix for waste from spent nuclear fuel and to the development of the induction melter technology. This was followed by the commissioning of the Marcoule Vitrification Facility (AVM) in 1978. The process was implemented at a larger scale in the late 1980s in the R7 and T7 facilities of the La Hague reprocessing plant. COGEMA facilities have produced more than 11,000 high level glass canisters, representing more than 4,500 metric tons of glass and 4.5 billion curies. To further improve the performance of the vitrification lines in the R7 and T7 facilities, the CEA and COGEMA have been developing the Cold Crucible Melter (CCM) technology since the 1980s. This technology benefits from the 20 years of COGEMA HLW vitrification experience and ensures a virtually unlimited equipment service life and extensive flexibility in dealing with different types of waste. The high specific power directly transferred by induction to the melt allows high operating temperatures without any impact on the process equipment. In addition, the mechanical stirring of the melter significantly reduces operating constraints. COGEMA is already providing the CCM technology to international customers for nuclear and non-nuclear applications and plans to implement it in the La Hague vitrification plant for the vitrification of highly concentrated and corrosive solutions produced by uranium/molybdenum fuel reprocessing. The paper presents the CCM project that led to the building and start-up of this evolutionary and flexible pilot plant. It also describes the plant's technical characteristics and reports commissioning results.

  6. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect (OSTI)

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  7. Energy flux density in a thermoacoustic couple

    SciTech Connect (OSTI)

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  8. Tuning the DARHT Axis-II linear induction accelerator focusing

    SciTech Connect (OSTI)

    Ekdahl, Carl A.

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.

  9. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  10. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  11. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1987-02-10

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  12. Economics of induction linac drivers for radiation sources

    SciTech Connect (OSTI)

    Barletta, W.A.

    1987-06-15

    Recent developments in high reliability components for linear induction accelerators (LIA) make possible the use of LIAs as large-scale, economical sources of radio-frequency (rf) power for many applications. One particularly attractive example of interest to high energy physicists is a ''two-beam accelerator'' version of a linear e/sup +/-e/sup -/ collider at TeV energies in which the LIA is configured as a monolithic relativistic klystron operating at 10 to 12 GHz. Another example of keen interest to the fusion community is the use of the LIA to drive a free-electron laser operating at 200 to 500 GHz for use in heating fusion plasma via electron resonance cyclotron heating. This paper briefly describes several potential uses of LIA radiation sources. It discusses the physical basis for scaling our present experience with LIAs to the operating characteristics applicable to large-scale sources of rf power and synchrotron radiation. 14 refs., 6 figs., 1 tab.

  13. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling

    Office of Scientific and Technical Information (OSTI)

    LHC and ILC Capabilities for Higgs Boson Coupling Measurements Peskin, Michael E.; SLAC 43 PARTICLE ACCELERATORS; ACCURACY; BOSONS; COUPLING CONSTANTS; DECOUPLING; FERMIONS;...

  14. Generation of even harmonics in coupled quantum dots (Journal...

    Office of Scientific and Technical Information (OSTI)

    Generation of even harmonics in coupled quantum dots Citation Details In-Document Search Title: Generation of even harmonics in coupled quantum dots Using the spatial-temporal...

  15. Determination of the strong coupling constant ({alpha}{sub s...

    Office of Scientific and Technical Information (OSTI)

    coupling constant (alphasub s) and a test of perturbative QCD using W + jets ... Title: Determination of the strong coupling constant (alphasub s) and a test of ...

  16. Covalent agonists for studying G protein-coupled receptor activation...

    Office of Scientific and Technical Information (OSTI)

    Covalent agonists for studying G protein-coupled receptor activation Citation Details In-Document Search Title: Covalent agonists for studying G protein-coupled receptor activation ...

  17. Top quark anomalous couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider ...

  18. Simulation Study of Near-Surface Coupling of Nuclear Devices...

    Office of Scientific and Technical Information (OSTI)

    Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges Citation Details In-Document Search Title: Simulation Study of Near-Surface Coupling of Nuclear Devices vs. ...

  19. Sandia Energy - Control of Strong Light-Matter Coupling Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Strong Light-Matter Coupling Using the Capacitance of Metamaterial Nanocavities Home Highlights - Energy Research Control of Strong Light-Matter Coupling Using the...

  20. Evidence for coupling between collective state and phonons in...

    Office of Scientific and Technical Information (OSTI)

    for coupling between collective state and phonons in two-dimensional charge-density-wave systems Citation Details In-Document Search Title: Evidence for coupling between...

  1. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape034hsu2011p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John...

  2. Tangential induction and its effect on wind turbine performance and loads

    SciTech Connect (OSTI)

    Wilson, R.E.; Harman, C.R.

    1995-05-01

    In the modeling of wind turbine loads, the effect of tangential induction on relative velocity is frequently neglected in blade element/momentum theory computer codes. Tangential induction is neglected in the FLAP (Wright et al., 1992) and FAST (Wilson et al., 1993) codes, while it is included in the PHATAS code (Snel et al., 1992). In order to determine the impact of neglecting tangential induction, calculations of power, angle-of-attack, dynamic pressure, and root bending moment were made on the ESI-80 wind turbine (Musial et al., 1985) using an updated version of PROP (Harman, 1994).

  3. Status report on SHARP coupling framework.

    SciTech Connect (OSTI)

    Caceres, A.; Tautges, T. J.; Lottes, J.; Fischer, P.; Rabiti, C.; Smith, M. A.; Siegel, A.; Yang, W. S.; Palmiotti, G.

    2008-05-30

    This report presents the software engineering effort under way at ANL towards a comprehensive integrated computational framework (SHARP) for high fidelity simulations of sodium cooled fast reactors. The primary objective of this framework is to provide accurate and flexible analysis tools to nuclear reactor designers by simulating multiphysics phenomena happening in complex reactor geometries. Ideally, the coupling among different physics modules (such as neutronics, thermal-hydraulics, and structural mechanics) needs to be tight to preserve the accuracy achieved in each module. However, fast reactor cores in steady state mode represent a special case where weak coupling between neutronics and thermal-hydraulics is usually adequate. Our framework design allows for both options. Another requirement for SHARP framework has been to implement various coupling algorithms that are parallel and scalable to large scale since nuclear reactor core simulations are among the most memory and computationally intensive, requiring the use of leadership-class petascale platforms. This report details our progress toward achieving these goals. Specifically, we demonstrate coupling independently developed parallel codes in a manner that does not compromise performance or portability, while minimizing the impact on individual developers. This year, our focus has been on developing a lightweight and loosely coupled framework targeted at UNIC (our neutronics code) and Nek (our thermal hydraulics code). However, the framework design is not limited to just using these two codes.

  4. Cosmology of bigravity with doubly coupled matter

    SciTech Connect (OSTI)

    Comelli, D.; Crisostomi, M.; Koyama, K.; Pilo, L.; Tasinato, G.

    2015-04-20

    We study cosmology in the bigravity formulation of the dRGT model where matter couples to both metrics. At linear order in perturbation theory two mass scales emerge: an hard one from the dRGT potential, and an environmental dependent one from the coupling of bigravity with matter. At early time, the dynamics is dictated by the second mass scale which is of order of the Hubble scale. The set of gauge invariant perturbations that couples to matter follow closely the same behaviour as in GR. The remaining perturbations show no issue in the scalar sector, while problems arise in the tensor and vector sectors. During radiation domination, a tensor mode grows power-like at super-horizon scales. More dangerously, the only propagating vector mode features an exponential instability on sub-horizon scales. We discuss the consequences of such instabilities and speculate on possible ways to deal with them.

  5. Coupled-cavity drift-tube linac

    DOE Patents [OSTI]

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  6. On coupling impedances of pumping holes

    SciTech Connect (OSTI)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  7. Coupled-channel scattering on a torus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Peng; Dudek, Jozef Jon; Edwards, Robert G.; Szczepaniak, Adam Pawel

    2013-07-01

    Based on the Hamiltonian formalism approach, a generalized Luscher's formula for two particle scattering in both the elastic and coupled-channel cases in moving frames is derived from a relativistic Lippmann-Schwinger equation. Some strategies for extracting scattering amplitudes for a coupled-channel system from the discrete finite-volume spectrum are discussed and illustrated with a toy model of two-channel resonant scattering. This formalism will, in the near future, be used to extract information about hadron scattering from lattice QCD computations.

  8. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  9. WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams...

    Broader source: Energy.gov (indexed) [DOE]

    award from Neal Merrifield, administrator for the Mine Safety and Health Administration MetalNon-Metal mines, after Kessler was inducted into the National Mine Rescue Hall of Fame...

  10. A new method for the design optimization of three-phase induction motors

    SciTech Connect (OSTI)

    Daidone, A.; Parasiliti, F.; Villani, M.; Lucidi, S.

    1998-09-01

    The paper deals with the optimization problem of induction motors design. In particular a new global minimization algorithm is described; it tries to take into account all the features of these particular problems. A first numerical comparison between this new algorithm and a method widely used in the design optimization of induction motors has been performed. The obtained results show that the proposed approach is promising.

  11. Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Gombert, Dirk; Richardson, John Grant

    2001-09-01

    This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

  12. Synchronous behavior of two coupled electronic neurons

    SciTech Connect (OSTI)

    Pinto, R. D.; Varona, P.; GNB, Departamento Ingenieria Informatica, Universidad Autonoma de Madrid, 28049 Madrid, ; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Department of Physics and Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0402 ; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.

  13. Torque-balanced vibrationless rotary coupling

    DOE Patents [OSTI]

    Miller, Donald M. (Sunnyside, WA)

    1980-01-01

    This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.

  14. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    SciTech Connect (OSTI)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-10-15

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  15. Feasibility Evaluation and Retrofit Plan for Cold Crucible Induction Melter Deployment in the Defense Waste Processing Facility at Savannah River Site

    SciTech Connect (OSTI)

    Barnes, A.B. [Savannah River National Laboratory, Washington Savannah River Company, Aiken, SC (United States); Iverson, D.C.; Adkins, B.J. [Liquid Waste Operations, Washington Savannah River Company, Aiken, SC (United States); Tchemitcheff, E. [AREVA NC Inc., Richland Office, Richland, WA (United States)

    2008-07-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 kHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 deg. C to 200 deg. C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 deg. C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed JHM, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF. (authors)

  16. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    SciTech Connect (OSTI)

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-02-06

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed JHM, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF.

  17. Synthetic magnetoelectric coupling in a nanocomposite multiferroic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jain, P.; Wang, Q.; Roldan, M.; Glavic, A.; Lauter, V.; Urban, C.; Bi, Z.; Ahmed, T.; Zhu, J.; Varela, M.; et al

    2015-03-13

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less

  18. Magnetically Coupled Adjustable Speed Motor Drives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetically Coupled Adjustable Speed Motor Drives Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fxed speed systems are modifed to allow for variable load requirements of a centrifugal fan or pump. 1 Loads that vary by 30% of full load over time offer good opportunities for cost-effective adjustable speed drive (ASD) retrofts. Market assessment studies indicate that

  19. Sensitivity analysis of coupled criticality calculations

    SciTech Connect (OSTI)

    Perko, Z.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)

  20. ANTENNA-COUPLED LIGHT-MATTER INTERACTIONS

    SciTech Connect (OSTI)

    NOVOTNY, LUKAS

    2014-01-10

    This project is focused on antenna-coupled photon emission from single quantum emitters. The properties of optical antennas are tailored to control different photophysical parameters, such as the excited state lifetime, the saturation intensity, and the quantum yield [3]. Using a single molecule coupled to an optical antenna whose position and properties can be controllably adjusted we established a detailed and quantitative understanding of light-matter interactions in nanoscale environments. We have studied various quantum emitters: single molecules [11], quantum dots [7], rareearth ions [2], and NV centers in diamond [19]. We have systematically studied the interaction of these emitters with optical antennas. The overall objective was to establish a high-level of control over the light-matter interaction. In order to eliminate the coupling to the environment, we have taken a step further and explored the possibility of levitating the quantum emitter in high vacuum. What started as a side-project soon became a main activity in our research program and led us to the demonstration of vacuum trapping and cooling of a nanoscale particle [14].

  1. High density growth of T7 expression strains with auto-induction option

    DOE Patents [OSTI]

    Studier, F. William

    2009-07-14

    Disclosed is a method for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise, the transcription being under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells. Initially, a culture media is provided which includes: i) an inducer that causes induction of transcription from said promoter in said bacterial cells; and ii) a metabolite that prevents induction by said inducer, the concentration of said metabolite being adjusted so as to substantially preclude induction by said inducer in the early stages of growth of the bacterial culture, but such that said metabolite is depleted to a level that allows induction by said inducer at a later stage of growth. The culture medium is inoculated with a bacterial inoculum, the inoculum comprising bacterial cells containing cloned DNA, the transcription of which is induced by said inducer. The culture is then incubated under conditions appropriate for growth of the bacterial cells.

  2. Synthesis report on thermally driven coupled processes

    SciTech Connect (OSTI)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of material documenting the conceptual and mathematical basis for modeling coupled phenomena. The actual models and codes, and their specific empirical and theoretical bases, will be documented in a separate report to be delivered in FY99.

  3. Standard operating procedure for the laboratory analysis of lead in paint, bulk dust, and soil by ultrasonic, acid digestion and inductively coupled plasma emission spectrometric measurement

    SciTech Connect (OSTI)

    Grohse, P.M.; Gutknecht, W.F.; Luk, K.K.; Wilson, B.M.; Van Hise, C.C.

    1997-09-01

    The details and performance of a simplified extraction procedure and analysis for three media are provided. Paint, bulk dust, and soil are collected using standard or referenced methods. Up to 0.25 g of paint, bulk dust, or soil weighted out and placed in a 50-mL centrifuge tube. Five mL of 25% (v/v) nitric acid is added and the sample is ultrasonicated for 30 minutes.

  4. Combination induction plasma tube and current concentrator for introducing a sample into a plasma

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

    1988-01-01

    An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

  5. Magnetoelectric coupling tuned by competing anisotropies in Mn...

    Office of Scientific and Technical Information (OSTI)

    Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3 Prev Next Title: Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO ...

  6. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling ARPES Provides Direct Evidence of Spin-Wave Coupling Print Wednesday, 30 March 2005 00:00 The electronic properties of a metal...

  7. Non-minimal derivative couplings of the composite metric (Journal...

    Office of Scientific and Technical Information (OSTI)

    Non-minimal derivative couplings of the composite metric Citation Details In-Document Search Title: Non-minimal derivative couplings of the composite metric In the context of ...

  8. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOE Patents [OSTI]

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  9. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOE Patents [OSTI]

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  10. Acoustic sensor for real-time control for the inductive heating process

    DOE Patents [OSTI]

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  11. Borehole induction logging for the Dynamic Underground Stripping Project LLNL gasoline spill site

    SciTech Connect (OSTI)

    Boyd, S.; Newmark, R.; Wilt, M.

    1994-01-21

    Borehole induction logs were acquired for the purpose of characterizing subsurface physical properties and monitoring steam clean up activities at the Lawrence Livermore National Laboratory. This work was part of the Dynamic Underground Stripping Project`s demonstrated clean up of a gasoline spin. The site is composed of unconsolidated days, sands and gravels which contain gasoline both above and below the water table. Induction logs were used to characterize lithology, to provide ``ground truth`` resistivity values for electrical resistance tomography (ERT), and to monitor the movement of an underground steam plume used to heat the soil and drive volatile organic compounds (VOCs) to the extraction wells.

  12. DOE - Office of Legacy Management -- Tocco Induction Heating Div of Ohio

    Office of Legacy Management (LM)

    Crankshaft Co - OH 42 Tocco Induction Heating Div of Ohio Crankshaft Co - OH 42 FUSRAP Considered Sites Site: TOCCO INDUCTION HEATING, DIV. OF OHIO CRANKSHAFT CO. (OH.42 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cleveland , Ohio OH.42-1 Evaluation Year: 1994 OH.42-2 OH.42-3 Site Operations: Tested uranium heating methods during the late 1960s; only small amounts of material indicated. OH.42-1 OH.42-3 Site Disposition:

  13. Detection of J-coupling using atomic magnetometer

    DOE Patents [OSTI]

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  14. Change of translational-rotational coupling in liquids revealed...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 22416020 Resource Type: Journal Article Resource Relation: Journal ... Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CHLOROFORM; COUPLING; ...

  15. Applications of molecular replacement to G protein-coupled receptors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Applications of molecular replacement to G protein-coupled receptors Citation Details In-Document Search Title: Applications of molecular replacement to G protein-coupled receptors The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every

  16. Gluons and the NJL coupling constant

    SciTech Connect (OSTI)

    Braghin, Fábio L.; Barros Jr, Ednaldo; Paulo Jr, Ademar

    2014-11-11

    The QCD origin of the NJL model is re-analysed by considering the gluon condensate of order two . The key point is the treatment of the gluon interactions. To linearize the action the auxiliary variable method is employed to introduce a scalar variable ?(x) that yield such condensate by means of its value in the vacuum, and then another auxiliary variable that corresponds to an antisymmetric gluon configuration ?(x). For that, besides that, two different possible limits of the fourth order non local quark interaction that may contribute to the NJL coupling are compared.

  17. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Kiekel, Paul (Albuquerque, NM)

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  18. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  19. Effect of fractons in strongly coupled superconductors

    SciTech Connect (OSTI)

    Tewari, S.P.; Gumber, P.K. )

    1990-02-01

    The effect of fractons on strongly coupled superconductors has been studied using both McMillan's equation and Kresin's equation which is valid for any arbitrary value of {lambda}. Contrary to common belief it is found that there is no significant increase in {ital T}{sub {ital c}} when the crystal lattice is changed into a fractal lattice. However, under certain conditions there may be a substantial increase in the critical temperature in the fractal superconductor over its value in the corresponding crystalline superconductor.

  20. High precision tune and coupling measurements and tune/coupling feedback in RHIC

    SciTech Connect (OSTI)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schulthiess, C.; Wilinski, M.

    2010-08-01

    Precision measurement and control of the betatron tunes and betatron coupling in RHIC are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  1. Multiphysics Integrated Coupling Environment (MICE) User Manual

    SciTech Connect (OSTI)

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated Coupling Environment (MICE) has been developed to create a cohesive simulation of a waste glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D simulation. The two processes are linked through ModelCenter integration software using time steps that are specified for each process. Data is to be exchanged circularly between the two models, as the inputs and outputs of each model depend on the other.

  2. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    SciTech Connect (OSTI)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-03-18

    This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

  3. High density growth of T7 expression strains with auto-induction option

    DOE Patents [OSTI]

    Studier, F. William

    2013-03-19

    A method for promoting and suppressing auto-induction of transcription of a cloned gene 1 of bacteriophage T7 in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells.

  4. Element for use in an inductive coupler for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron

    2006-08-29

    The present invention includes an element for use in an inductive coupler in a downhole component. The element includes a plurality of ductile, generally U-shaped leaves that are electrically conductive. The leaves are less than about 0.0625" thick and are separated by an electrically insulating material. These leaves are aligned so as to form a generally circular trough. The invention also includes an inductive coupler for use in downhole components, the inductive coupler including an annular housing having a recess with a magnetically conductive, electrically insulating (MCEI) element disposed in the recess. The MCEI element includes a plurality of segments where each segment further includes a plurality of ductile, generally U-shaped electrically conductive leaves. Each leaf is less than about 0.0625" thick and separated from the otherwise adjacent leaves by electrically insulating material. The segments and leaves are aligned so as to form a generally circular trough. The inductive coupler further includes an insulated conductor disposed within the generally circular trough. A polymer fills spaces between otherwise adjacent segments, the annular housing, insulated conductor, and further fills the circular trough.

  5. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect (OSTI)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b}?=?(I{sub 2}?+?I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  6. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  7. WIPP Employee Inducted Into Mine Rescue Hall of Fame- WIPP Teams Recognized at National Competition

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M., August 2, 2013 - Long-time Waste Isolation Pilot Plant (WIPP) employee Gary Kessler was inducted into the Metal/Non-Metal National Mine Rescue Hall of Fame on Aug. 1, 2013 at the biennial mine rescue competition in Reno, Nevada.

  8. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect (OSTI)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  9. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1more » and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  10. Method and apparatus for controlling current in inductive loads such as large diameter coils

    DOE Patents [OSTI]

    Riveros, Carlos A.

    1981-01-01

    A method and apparatus for controlling electric current in loads that are essentially inductive, such that sparking and "ringing" current problems are reduced or eliminated. The circuit apparatus employs a pair of solid state switches (each of which switch may be an array of connected or parallel solid state switching devices such as transistors) and means for controlling those switches such that a power supply supplying two d.c. voltages (e.g. positive 150 volts d.c. and negative 150 volts d.c.) at low resistance may be connected across an essentially inductive load (e.g. a 6 gauge wire loop one hundred meters in diameter) alternatively and such that the first solid state switch is turned off and the second is turned on such that both are not on at the same time but the first turned on and the other on in less time than the inductive time constant (L/R) so that the load is essentially always presented with a low resistance path across its input. In this manner a steady AC current may be delivered to the load at a frequency desired. Shut-off problems are avoided by gradually shortening the period of switching to less than the time constant so that the maximum energy contained in the inductive load is reduced to approximately zero and dissipated in the inherent resistance. The invention circuit may be employed by adjusting the timing of switching to deliver a desired waveform (such as sinusoidal) to the load.

  11. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect (OSTI)

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1 and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  12. Heralding efficiency and correlated-mode coupling of near-IR fiber coupled photon pairs

    SciTech Connect (OSTI)

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-01-01

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory and we demonstrated a correlated-mode coupling efficiency of 97 +-2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. It is expected that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.

  13. Coupling device for pressurized fluid connections

    DOE Patents [OSTI]

    van Boxtel, R.P.; Yayanos, A.A.

    1984-01-01

    Quick-coupling device for high pressure connections, comprising a cylindrical adapter member, closed at an outer end thereof, the opposite end being attachable to a pressure fitting, and an aperture therein spaced from the closed end of the adapter member. The device also comprises a coupler body having a first passageway therein for slidably receiving the outer end of the adapter, a central portion of said passageway being in communication with the adapter aperture, a pair of seal members disposed on opposite sides of the central portion of the passageway to provide a seal between the coupler body and the adapter member, and a second passageway in said coupler body in communication with said central portion.

  14. Rf capacitively-coupled electrodeless light source

    DOE Patents [OSTI]

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA); Fugitt, Jock A. (Livingston, TX)

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  15. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling ARPES Provides Direct Evidence of Spin-Wave Coupling Print Wednesday, 30 March 2005 00:00 The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional"

  16. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape034_hsu_2011_p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles

  17. Computational and experimental techniques for coupled acoustic/structure

    Office of Scientific and Technical Information (OSTI)

    interactions. (Technical Report) | SciTech Connect Computational and experimental techniques for coupled acoustic/structure interactions. Citation Details In-Document Search Title: Computational and experimental techniques for coupled acoustic/structure interactions. This report documents the results obtained during a one-year Laboratory Directed Research and Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions by means of algorithm development and

  18. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled

    Office of Scientific and Technical Information (OSTI)

    analysis (Conference) | SciTech Connect Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis Citation Details In-Document Search Title: Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a

  19. Novel Flux Coupling Machine without Permanent Magnets - U Machine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Magnets - U Machine Novel Flux Coupling Machine without Permanent Magnets - U Machine 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon apep_07_hsu.pdf More Documents & Publications Novel Flux Coupling Machine without Permanent Magnets Novel Flux Coupling Machine without Permanent Magnets Vehicle Technologies Office Merit Review 2014: Alternative High-Performance

  20. Brian K. Kobilka and G-protein-coupled Receptors (GPCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brian K. Kobilka and G-protein-coupled Receptors (GPCR) Resources with Additional Information Brian K. Kobilka Credit: Linda A. Cicero Stanford News Service 'Thanks in part to research performed at the U.S. Department of Energy's (DOE) Argonne National Laboratory, the 2012 Nobel Prize in Chemistry was awarded today to Americans Brian Kobilka and Robert Lefkowitz for their work on G-protein-coupled receptors. G-protein-coupled receptors, or GPCRs, are a large family of proteins embedded in a

  1. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Automotive Energy Recovery | Department of Energy Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Presents recent accomplishments and couple test results with these (In, Ce)-based skutterudite TE materials and potential impacts TE power system performance in military and commercial applications PDF icon hendricks_pm.pdf More

  2. Application of coupled codes for safety analysis and licensing issues

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.

    2006-07-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  3. Modeling shear failure and permeability enhancement due to coupled...

    Office of Scientific and Technical Information (OSTI)

    model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. ...

  4. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive...

  5. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined...

  6. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for...

  7. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Coupled Kinetic, Thermal, and Mechanical Modeling of FIB ...

  8. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  9. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOE Patents [OSTI]

    Shi, Jun (Glastonbury, CT); Bombara, David (New Hartford, CT); Green, Kevin E. (Broad Brook, CT); Bird, Connic (Rocky Hill, CT); Holowczak, John (South Windsor, CT)

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  10. Spectral function of a fermion coupled with a massive vector...

    Office of Scientific and Technical Information (OSTI)

    temperature in a gauge invariant formalism Citation Details In-Document Search Title: Spectral function of a fermion coupled with a massive vector boson at finite temperature in ...

  11. ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY Citation Details In-Document Search Title: ENERGY PARTITIONING, ENERGY...

  12. Prospects for Higgs coupling measurements in SUSY with radiatively...

    Office of Scientific and Technical Information (OSTI)

    Title: Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness Authors: Bae, Kyu Jung ; Baer, Howard ; Nagata, Natsumi ; Serce, Hasan Publication ...

  13. Novel Flux Coupling Machine without Permanent Magnets - U Machine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnets Novel Flux Coupling Machine without Permanent Magnets Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials...

  14. Simultaneous linear optics and coupling correction for storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data Citation Details In-Document Search Title:...

  15. Dynamic simulation of kinematic Stirling engines: Coupled and...

    Office of Scientific and Technical Information (OSTI)

    Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis Citation ... Subject: 42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; STIRLING ENGINES; MATHEMATICAL ...

  16. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional...

  17. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further...

  18. Coupling through tortuous path narrow slot apertures into complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 IEEE TRANSACTIONS ON ANTENNAS AND PROPOGATION, VOL. 48, NO. 3, MARCH 2000 Coupling Through Tortuous Path Narrow Slot Apertures into Complex Cavities Russell P. Jedlicka, Senior...

  19. ARM - Field Campaign - Enhanced Soundings for Local Coupling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsEnhanced Soundings for Local Coupling Studies Campaign Links Science Plan ARM Data Discovery Browse Data Related Campaigns Scintillometry and Soil Moisture Remote...

  20. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect (OSTI)

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  1. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  2. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  3. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling...

    Office of Scientific and Technical Information (OSTI)

    I estimate the accuracies on Higgs boson coupling constants that experiments at the Large Hadron Collider and the International Linear Collider are capable of reaching over the ...

  4. Translation-Coupling Cassette for Quickly and Reliably Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Translation-Coupling Cassette for Quickly and Reliably Monitoring Protein Translation in Host Cells Inventors: Brian Pfleger, Daniel Mendez Perez Great Lakes Bioenergy Research...

  5. Top Quark Anomalous Couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    the tbar tZ and Wtbar b couplings. Authors: Devetak, Erik ; Nomerotski, Andrei ; Oxford U. ; Peskin, Michael ; SLAC Publication Date: 2011-08-15 OSTI Identifier: 1022544...

  6. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect (OSTI)

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  7. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect (OSTI)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  8. Three-dimensional charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  9. Process for fabricating a charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  10. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  11. Delineating parton distributions and the strong coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jimenez-Delgado, P.; Reya, E.

    2014-04-29

    In this study, global fits for precision determinations of parton distributions, together with the highly correlated strong coupling ?s, are presented up to next-to-next-to- leading order (NNLO) of QCD utilizing most world data (charm and jet production data are used where theoretically possible), except Tevatron gauge boson production data and LHC data which are left for genuine predictions. This is done within the 'dynamical' (valencelike input at Q02 = 0.8 GeV2 ) and 'standard' (input at Q02 = 2 GeV2) approach. The stability and reliability of the results are ensured by including nonperturbative higher-twist terms, nuclear corrections as well asmore »target mass corrections, and by applying various (Q2, W2) cuts on available data. In addition, the Q02 dependence of the results is studied in detail. Predictions are given, in particular for LHC, on gauge and Higgs boson as well as for top-quark pair production. At NNLO the dynamical approach results in ?s(MZ2) = 0.1136 ± 0.0004, whereas the somewhat less constrained standard fit gives ?s(MZ2) = 0.1162 ± 0.0006.« less

  12. Use of miniature magnetic sensors for real-time control of the induction heating process

    DOE Patents [OSTI]

    Bentley, Anthony E. (Tijeras, NM); Kelley, John Bruce (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    2002-01-01

    A method of monitoring the process of induction heating a workpiece. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can also be used to measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  13. Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India

    SciTech Connect (OSTI)

    Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2008-07-01

    Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

  14. Closed loop control of the induction heating process using miniature magnetic sensors

    DOE Patents [OSTI]

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  15. High density growth of T7 expression strains with auto-induction option

    DOE Patents [OSTI]

    Studier, F. William (Stony Brook, NY)

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  16. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect (OSTI)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ?J = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ?J = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ?J = ? 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  17. Wake potentials and impedances for the ATA (Advanced Test Accelerator) induction cell

    SciTech Connect (OSTI)

    Craig, G.D.

    1990-09-04

    The AMOS Wakefield Code is used to calculate the impedances of the induction cell used in the Advanced Test Accelerator (ATA) at Livermore. We present the wakefields and impedances for multipoles m = 0, 1 and 2. The ATA cell is calculated to have a maximum transverse impedance of approximately 1000 {Omega}/m at 875 MHz with a quality factor Q = 5. The sensitivity of the impedance spectra to modeling variations is discussed.

  18. Donald J. Cram, Host-Guest Chemistry, Cram's Rule of Asymmetric Induction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Carceplexes Donald J. Cram, Host-Guest Chemistry, Cram's Rule of Asymmetric Induction and Carceplexes Resources with Additional Information * Cram Honored Donald J. Cram Courtesy of UCLA Photography Donald J. Cram ... taught and conducted research at UCLA for more than 50 years ... . A chemist at UCLA since 1947, Cram opened broad new avenues for exploration across organic chemistry, with applications in both basic research as well as specific fields, such as pharmaceutical production

  19. A probabilistic approach to calculating AC induction levels on power line collocated pipelines

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1995-12-01

    For calculating induced voltage levels on pipelines paralleling overhead power lines available computational methods assume that the line circuit currents are balanced, i.e., equal. In this paper probabilistic computational methods are used to calculate induction levels for the more realistic assumption that the line currents carry a small randomly fluctuating component, and therefore, are unbalanced. Results show that limiting consideration to the balanced currents case can result in substantially underestimated induced voltage levels on the pipeline.

  20. Limiting electron beam current for cyclic induction acceleration in a constant guide field

    SciTech Connect (OSTI)

    Kanunnikov, V.N.

    1982-09-01

    Theoretical relations are derived for the limiting beam current in a cyclic induction accelerator (CIA) with a constant guide field. The calculations are in agreement with the available experimental data. It is shown that the limiting average beam current in a CIA is of the order of 100 microamperes, i.e., the level attained in microtrons and linear accelerators. The CIA may find industrial applications.

  1. Self-excitation of a single-phase induction pulse-excited generator

    SciTech Connect (OSTI)

    Romanov, Y.A.; Sipaylov, G.A.

    1985-10-10

    The question of the power feed of electromagnets which require high reserves of reactive energy takes on great urgency with the development and creation of powerful accelerators of charged particles. Both a continuous- and pulsed-power feed of the apparatuses is possible. Both forms of power supply can be accomplished if the storage devices of reactive energy, capacitive banks or electrical machine apparatus are used. In the development of electric-machine energy storage devices with the use of synchronous and homopolar generators, attention began to be paid to the induction (asynchronous) machine. Investigations on the use of induction generators in pulsed systems for the charging of capacitors are being conducted; These experimental studies are indicative of the prospect of similar synthetic schemes. Use of the induction generator with a capacitive excitation as the source of high pulsed power is indicated, and the possibility of the complete conversion of kinetic energy of the rotating masses into electromagnetic energy during one pulse is examined.

  2. Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae

    SciTech Connect (OSTI)

    Kapoun, A.M.; Geer, B.W.; Heinstra, P.W.H. ); Corbin, V. ); McKechnie, S.W. )

    1990-04-01

    The activity of alcohol dehydrogenase, the initial enzyme in the major pathway for ethanol degradation, is induced in Drosophila melanogaster larvae by low concentrations of dietary ethanol. Two lines of evidence indicate that the metabolic products of the ADH pathway for ethanol degradation are not directly involved in the induction of Adh. First, the accumulation of the proximal transcript in Adh{sup n2} larvae was increased when the intracellular level of ethanol was elevated. In addition, the ADH activity, the proximal Adh mRNA, and the intracellular concentration of ethanol were elevated coordinately in wild-type larvae fed hexadeuterated-ethanol, which is metabolized more slowly than normal ethanol.l An examination of P element transformant lines with specific deletions in the 5{prime} regulatory DNA of the Adh gene showed that the DNA sequence between +604 and +634 of the start site of transcription from the distal promoter was essential for this induction. The DNA sequence between {minus}660 and about {minus}5,000 of the distal transcript start site was important for the down-regulation of the induction response.

  3. Higgs coupling constants as a probe of new physics

    SciTech Connect (OSTI)

    Kanemura, Shinya; Okada, Yasuhiro; Senaha, Eibun; Yuan, C.-P.

    2004-12-01

    We study new physics effects on the couplings of weak gauge bosons with the lightest CP-even Higgs boson (h), hZZ, and the trilinear coupling of the lightest Higgs boson, hhh, at the one-loop order, as predicted by the two Higgs doublet model. Those renormalized coupling constants can deviate from the standard model (SM) predictions due to two distinct origins: the tree level mixing effect of Higgs bosons and the quantum effect of additional particles in loop diagrams. The latter can be enhanced in the renormalized hhh coupling constant when the additional particles show the nondecoupling property. Therefore, even in the case where the hZZ coupling is close to the SM value, deviation in the hhh coupling from the SM value can become as large as plus 100%, while that in the hZZ coupling is at most minus 1% level. Such large quantum effect on the Higgs trilinear coupling is distinguishable from the tree level mixing effect, and is expected to be detectable at a future linear collider.

  4. Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling

    Office of Scientific and Technical Information (OSTI)

    Microstructure evolution and Mechanical Localization. (Conference) | SciTech Connect Conference: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and Mechanical Localization. Citation Details In-Document Search Title: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and Mechanical Localization. Abstract not provided. Authors: Dingreville, Remi Philippe Michel ; Robbins, Joshua ; Bartel, Timothy James Publication

  5. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular

    Office of Environmental Management (EM)

    Salt Consolidation, Constitutive Model and Micromechanics | Department of Energy Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1)

  6. Non-minimal derivative couplings of the composite metric

    SciTech Connect (OSTI)

    Heisenberg, Lavinia

    2015-11-04

    In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study these non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.

  7. Spatially indirect excitons in coupled quantum wells

    SciTech Connect (OSTI)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

  8. A scenario for inflationary magnetogenesis without strong coupling problem

    SciTech Connect (OSTI)

    Tasinato, Gianmassimo

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  9. Initial Coupling of the RELAP-7 and PRONGHORN Applications

    SciTech Connect (OSTI)

    J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson

    2012-10-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.

  10. Generation of even harmonics in coupled quantum dots

    SciTech Connect (OSTI)

    Guo Shifang; Duan Suqing; Yang Ning; Chu Weidong; Zhang Wei

    2011-07-15

    Using the spatial-temporal symmetry principle we developed recently, we propose an effective scheme for even-harmonics generation in coupled quantum dots. The relative intensity of odd and even harmonic components in the emission spectrum can be controlled by tuning the dipole couplings among the dots, which can be realized in experiments by careful design of the nanostructures. In particular, pure 2nth harmonics and (2n+1)th harmonics (where n is an integer) can be generated simultaneously with polarizations in two mutual perpendicular directions in our systems. An experimental design of the coupled dots system is presented.

  11. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems PACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsPajarito Aerosol Coupling to Ecosystems PACE ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Pajarito Aerosol Coupling to Ecosystems PACE 2011.12.16 - 2012.04.29 Lead Scientist : Manvendra Dubey For data sets, see below. Abstract The primary goal of the Pajarito Aerosol Couplings to Ecosystems (PACE) IOP is to demonstrate routine MAOS field operations and finesse instrumental and operational

  12. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  13. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top

  14. SL-01, an oral derivative of gemcitabine, inhibited human breast cancer growth through induction of apoptosis

    SciTech Connect (OSTI)

    Li, Yuan-Yuan; Qin, Yi-Zhuo; Wang, Rui-Qi; Li, Wen-Bao; Qu, Xian-Jun

    2013-08-23

    Highlights: •SL-01 is an oral derivative of gemcitabine. •SL-01 possessed activity against human breast cancer growth via apoptotic induction. •SL-01’s activity was more potently than that of gemcitabine. •SL-01 inhibited cancer growth without toxicity to mice. -- Abstract: SL-01 is an oral derivative of gemcitabine that was synthesized by introducing the moiety of 3-(dodecyloxycarbonyl) pyrazine-2-carbonyl at N4-position on cytidine ring of gemcitabine. We aimed to evaluate the efficacy of SL-01 on human breast cancer growth. SL-01 significantly inhibited MCF-7 proliferation as estimated by colorimetric assay. Flow cytometry assay indicated the apoptotic induction and cell cycle arrest in G1 phase. SL-01 modulated the expressions of p-ATM, p53 and p21 and decrease of cyclin D1 in MCF-7 cells. Further experiments were performed in a MCF-7 xenografts mouse model. SL-01 by oral administration strongly inhibited MCF-7 xenografts growth. This effect of SL-01 might arise from its roles in the induction of apoptosis. Immunohistochemistry assay showed the increase of TUNEL staining cells. Western blotting indicated the modulation of apoptotic proteins in SL-01-treated xenografts. During the course of study, there was no evidence of toxicity to mice. In contrast, the decrease of neutrophil cells in peripheral and increase of AST and ALT levels in serum were observed in the gemcitabine-treated mice. Conclusion: SL-01 possessed similar activity against human breast cancer growth with gemcitabine, whereas, with lower toxicity to gemcitabine. SL-01 is a potent oral agent that may supplant the use of gemcitabine.

  15. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOE Patents [OSTI]

    Smither, R.K.

    1993-05-11

    An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  16. The pulsed linear induction motor concept for high-speed trains

    SciTech Connect (OSTI)

    Turman, B.N.; Marder, B.M.; Rohwein, G.J.; Aeschliman, D.P.; Kelley, J.B.; Cowan, M.; Zimmerman, R.M.

    1995-06-01

    The SERAPBIM (SEgmented RAil PHased Induction Motor) concept is a linear induction motor concept which uses rapidly-pulsed magnetic fields and a segmented reaction rail, as opposed to low-frequency fields and continuous reaction rails found in conventional linear induction motors. These improvements give a high-traction, compact, and efficient linear motor that has potential for advanced high speed rail propulsion. In the SERAPBIM concept, coils on the vehicle push against a segmented aluminum rail, which is mounted on the road bed. Current is pulsed as the coils cross an edge of the segmented rail, inducing surface currents which repel the coil. The coils must be pulsed in synchronization with the movement by reaction rail segments. This is provided by a sense-and-fire circuit that controls the pulsing of the power modulators. Experiments were conducted to demonstrate the feasibility of the pulsed induction motor and to collect data that could be used for scaling calculations. A 14.4 kg aluminum plate was accelerated down a 4 m track to speeds of over 15 m/sec with peak thrust up to 18 kN per coilset. For a trainset capable of 200 mph speed, the SERAPHIM concept design is based on coils which are each capable of producing up to 3.5 kN thrust, and 30 coil pairs are mounted on each power car. Two power cars, one at each end of the train, provide 6 MW from two gas turbine prime power units. The thrust is about 210.000 N and is essentially constant up to 200 km/hr since wheel slippage does not limit thrust as with conventional wheeled propulsion. A key component of the SERAPHIM concept is the use of passive wheel-on-rah support for the high speed vehicle. Standard steel wheels are capable of handling over 200 mph. The SERAPHIM cost is comparable to that for steel-wheel high-speed rail, and about 10% to 25% of the projected costs for a comparable Maglev system.

  17. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect (OSTI)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  18. Electromagnetic induction pump for pumping liquid metals and other conductive liquids

    DOE Patents [OSTI]

    Smither, Robert K.

    1993-01-01

    An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

  19. Scalable parallel solution coupling for multi-physics reactor simulation.

    SciTech Connect (OSTI)

    Tautges, T. J.; Caceres, A.; Mathematics and Computer Science

    2009-01-01

    Reactor simulation depends on the coupled solution of various physics types, including neutronics, thermal/hydraulics, and structural mechanics. This paper describes the formulation and implementation of a parallel solution coupling capability being developed for reactor simulation. The coupling process consists of mesh and coupler initialization, point location, field interpolation, and field normalization. We report here our test of this capability on an example problem, namely, a reflector assembly from an advanced burner test reactor. Performance of this coupler in parallel is reasonable for the chosen problem size and range of processor counts. The runtime is dominated by startup costs, which amortize over the entire coupled simulation. Future efforts will include adding more sophisticated interpolation and normalization methods, to accommodate different numerical solvers used in various physics modules and to obtain better conservation properties for certain field types.

  20. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  1. Kondo effect in coupled quantum dots under magnetic fields

    SciTech Connect (OSTI)

    Aono, Tomosuke; Eto, Mikio

    2001-08-15

    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates the peak structures of Kondo resonant spectra. When the dot-dot tunneling coupling V{sub C} is smaller than the dot-lead coupling {Delta} (level broadening), Kondo resonant levels appear at the Fermi level (E{sub F}). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When V{sub C} is larger than {Delta}, the Kondo resonances form bonding and antibonding levels, located below and above E{sub F}, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at E{sub F}. In the presence of antiferromagnetic spin coupling between the dots, the sign of the MC can change as a function of the gate voltage.

  2. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  3. Quantum transport, anomalous dephasing, and spin-orbit coupling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum transport, anomalous dephasing, and spin-orbit coupling in an open ballistic bismuth nanocavity Home Author: B. Hackens, J. P. Minet, S. Faniel, G. Farhi, C. Gustin, J. P....

  4. Interfacial Electron-Phonon Coupling as the Cause of Enhanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfacial Electron-Phonon Coupling as the Cause of Enhanced Tc in Single-layer FeSe Films on SrTiO3 Friday, February 27, 2015 In the past several years, multiple studies have...

  5. Transverse coupling property of beam from ECR ion sources

    SciTech Connect (OSTI)

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  6. CASL - VERA-CS Coupled Multi-physics Capability demonstrated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VERA-CS Coupled Multi-physics Capability demonstrated in a Full Core Simulation In December, CASL reported on the latest results from its Watts Bar reactor progression problem...

  7. Magnetically Coupled Adjustable Speed Motor Drives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump. This tip sheet describes the advantages of magnetically coupled ASDs and provides suggested actions. Motor Systems Tip Sheet #13 PDF icon Magnetically Coupled Adjustable Speed Motor Drives (November

  8. Rashba spin-orbit coupling effects in armchair graphene nanoribbons

    SciTech Connect (OSTI)

    Prabhakar, S.; Melnik, R.; Sebetci, A.

    2015-03-30

    We study the influence of the Rashba spin-orbit coupling effects on the electronic properties of armchair graphene nanoribbons (GNRs). By utilizing both analytical and numerical schemes, we show that the finite width of the graphene nanoribbon breaks its energy spectrum into an infinite number of bands. By considering the Rashba spin-orbit coupling term as a perturbation, we show that zero energy bands between electron and hole states at Dirac points are lifted into a finite bandgap.

  9. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germán C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  10. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Wednesday, 30 August 2006 00:00 Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent

  11. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  12. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  13. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  14. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  15. Key-and-keyway coupling for transmitting torque

    DOE Patents [OSTI]

    Blue, S.C.; Curtis, M.T.; Orthwein, W.C.; Stitt, D.H.

    1975-11-18

    The design of an improved key-and-keyway coupling for the transmission of torque is given. The coupling provides significant reductions in stress concentrations in the vicinity of the key and keyway. The keyway is designed with a flat-bottomed u-shaped portion whose inboard end terminates in a ramp which is dished transversely, so that the surface of the ramp as viewed in transverse section defines an outwardly concave arc.

  16. Modeling shear failure and permeability enhancement due to coupled

    Office of Scientific and Technical Information (OSTI)

    Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs (Conference) | SciTech Connect Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs Citation Details In-Document Search Title: Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs The connectivity and accessible surface area of flowing

  17. Suppression of Rayleigh Taylor instability in strongly coupled plasmas

    SciTech Connect (OSTI)

    Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-06-15

    The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

  18. Computational and experimental techniques for coupled acoustic/structure

    Office of Scientific and Technical Information (OSTI)

    interactions. (Technical Report) | SciTech Connect Computational and experimental techniques for coupled acoustic/structure interactions. Citation Details In-Document Search Title: Computational and experimental techniques for coupled acoustic/structure interactions. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to

  19. Covalent agonists for studying G protein-coupled receptor activation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Covalent agonists for studying G protein-coupled receptor activation Citation Details In-Document Search Title: Covalent agonists for studying G protein-coupled receptor activation Authors: Weichert, Dietmar ; Kruse, Andrew C. ; Manglik, Aashish ; Hiller, Christine ; Zhang, Cheng ; Hübner, Harald ; Kobilka, Brian K. ; Gmeiner, Peter [1] ; Nürnberg) [2] + Show Author Affiliations (Stanford-MED) ( Publication Date: 2015-02-06 OSTI Identifier: 1164196

  20. Direct in situ measurement of coupled magnetostructural evolution in a

    Office of Scientific and Technical Information (OSTI)

    ferromagnetic shape memory alloy and its theoretical modeling (Journal Article) | SciTech Connect in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling Citation Details In-Document Search This content will become publicly available on October 14, 2016 Title: Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling In this study, ferromagnetic

  1. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface.

  2. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  3. Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research

    Office of Scientific and Technical Information (OSTI)

    Facility Field Campaign (Program Document) | SciTech Connect Program Document: Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign Citation Details In-Document Search Title: Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign Matching observed diurnal cycles is a fundamental yet extremely complex test for models. High temporal resolution measurements of surface turbulent heat fluxes and boundary layer

  4. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic

    Office of Scientific and Technical Information (OSTI)

    disks: distorted viscous vortex (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex « Prev Next » Title: A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting

  5. Direct in situ measurement of coupled magnetostructural evolution in a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ferromagnetic shape memory alloy and its theoretical modeling (Journal Article) | DOE PAGES Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling This content will become publicly available on October 14, 2016 Title: Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling In this study, ferromagnetic shape memory alloys (FSMAs) have shown

  6. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  7. Exact solutions for a coupled nonlocal model of nanobeams

    SciTech Connect (OSTI)

    Marotti de Sciarra, Francesco E-mail: raffaele.barretta@unina.it; Barretta, Raffaele E-mail: raffaele.barretta@unina.it

    2014-10-06

    BERNOULLI-EULER nanobeams under concentrated forces/couples with the nonlocal constitutive behavior proposed by ERINGEN do not exhibit small-scale effects. A new model obtained by coupling the ERINGEN and gradient models is formulated in the present note. A variational treatment is developed by imposing suitable thermodynamic restrictions for nonlocal models and the ensuing differential and boundary conditions of elastic equilibrium are provided. The nonlocal elastostatic problem is solved in a closed-form for nanocantilever and clamped nanobeams.

  8. Implicitly-Coupled Electromechanical and Electromagnetic Transient Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using a Frequency Dependent Network Equivalent | Argonne National Laboratory Implicitly-Coupled Electromechanical and Electromagnetic Transient Analysis using a Frequency Dependent Network Equivalent Title Implicitly-Coupled Electromechanical and Electromagnetic Transient Analysis using a Frequency Dependent Network Equivalent Publication Type Journal Article Year of Publication 2015 Authors Zhang, X, Flueck, AJ, Abhyankar, S Journal IEEE Transactions on Power Delivery Volume PP Issue 99

  9. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal

  10. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  11. Top quark anomalous couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider Authors: Devetak, Erik ; Nomerotski, Andrei ; Peskin, Michael Publication Date: 2011-08-17 OSTI Identifier: 1100572 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 84; Journal Issue: 3; Journal ID: ISSN 1550-7998

  12. Ultrafast all-optical manipulation of interfacial magnetoelectric coupling

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Citation Details In-Document Search Title: Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Authors: Sheu, Yu-Miin [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-04-24 OSTI Identifier: 1129830 Report Number(s): LA-UR-14-22829 DOE Contract

  13. Uncertainty Reduction in Power Generation Forecast Using Coupled

    Office of Scientific and Technical Information (OSTI)

    Wavelet-ARIMA (Conference) | SciTech Connect Conference: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA Citation Details In-Document Search Title: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction

  14. CP violating anomalous top-quark couplings at the LHC

    SciTech Connect (OSTI)

    Gupta, Sudhir Kumar; Mete, Alaettin Serhan; Valencia, G.

    2009-08-01

    We study the T odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg{yields}tt{yields}(b{mu}{sup +}{nu}{sub {mu}})(b{mu}{sup -}{nu}{sub {mu}}). We consider several counting asymmetries at the parton level and find the ones with the most sensitivity to each of these anomalous couplings at the LHC.

  15. Point kinetics calculations with fully coupled thermal fluids reactivity feedback

    SciTech Connect (OSTI)

    Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.

    2013-07-01

    The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)

  16. Couplings between dipole and quadrupole vibrations in tin isotopes

    SciTech Connect (OSTI)

    Simenel, C.; Chomaz, Ph.

    2009-12-15

    We study the couplings between collective vibrations such as the isovector giant dipole and isoscalar giant quadrupole resonances in tin isotopes in the framework of the time-dependent Hartree-Fock theory with a Skyrme energy density functional. These couplings are a source of anharmonicity in the multiphonon spectrum. In particular, the residual interaction is known to couple the isovector giant dipole resonance with the isoscalar giant quadrupole resonance built on top of it, inducing a nonlinear evolution of the quadrupole moment after a dipole boost. This coupling also affects the dipole motion in a nucleus with a static or dynamical deformation induced by a quadrupole constraint or boost, respectively. Three methods associated with these different manifestations of the coupling are proposed to extract the corresponding matrix elements of the residual interaction. Numerical applications of the different methods to {sup 132}Sn are in good agreement with each other. Finally, several tin isotopes are considered to investigate the role of isospin and mass number on this coupling. A simple 1/A dependence of the residual matrix elements is found with no noticeable contribution from the isospin. This result is interpreted within the Goldhaber-Teller model.

  17. Study of in-duct spray drying using condensation aerosol. Final report, June 16, 1990--June 15, 1992

    SciTech Connect (OSTI)

    Chen, W.J.R.; Chang, S.M.; Adikesavalu, R.

    1992-06-01

    Sulfur removal efficiency of in-duct spray drying is limited by sorbent content and surface properties of the sorbent-water aerosol. It was the purpose of this study to improve the sulfur removal efficiency for in-duct spray drying by injecting condensation aerosol instead of conventional dispersion aerosol. The program was composed of three phases. In Phase I, a novel pulsed fluid bed feeder was developed and was used to feed hydrated lime for subsequent experiments. A small condensation aerosol generator was then built, which produces a lime-water condensation aerosol by condensing steam on lime particles. The results show that novel lime-water aerosols less than 10 microns were generated. The central task in Phase II was to simulate experimentally in-duct spray drying using condensation aerosols and compare the results with those using dispersion aerosols reported in the literature. A small entrained-flow reactor was constructed to simulate an in-duct spray dryer. The condensation aerosol was then introduced to the reactor at various approach to saturation temperature, calcium/sulfur stoichiometry and sulfur dioxide concentration for desulfurization study. The results show that we have improved the sulfur removal efficiency for in-duct spray drying to 90 percent or above. Thus we have met and exceeded the stated project goal of 70 percent sulfur removal. A comprehensive computer code was employed to calculate sulfur removal efficiency in Phase III.

  18. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities

    SciTech Connect (OSTI)

    Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  19. Nuclear Waste Analytical Round Robins 1-6 summary report

    SciTech Connect (OSTI)

    Smith, G.L.; Marschman, S.C.

    1993-12-31

    The MCC has conducted six round robins for the waste management, research, and development community from 1987 to present. The laboratories participating regularly are Ames, Argonne, Catholic University, Lawrence Livermore, Pacific Northwest Laboratory, Savannah River, and West Valley Nuclear. Glass types analyzed in these round robins all have been simulated nuclear waste compositions expected from vitrification of high-level nuclear waste. A wide range of analytical procedures have been used by the participating laboratories including Atomic Absorption spectroscopy, inductively coupled plasma-atomic emission spectroscopy, direct current plasma-emission spectroscopy, and inductively coupled plasma-mass spectroscopy techniques. Consensus average relative error for Round Robins 1 through 6 is 5.4%, with values ranging from 9.4 to 1.1%. Trend on the average improved with each round robin. When the laboratories analyzed samples over longer periods of time, the intralaboratory variability increased. Lab-to-lab variation accounts for most of the total variability found in all the round robins. Participation in the radiochemistry portion has been minimal, and analytical results poor compared to nonradiochemistry portion. Additional radiochemical work is needed in future round robins.

  20. Measuring anomalous couplings in H→WW* decays at the International...

    Office of Scientific and Technical Information (OSTI)

    Measuring anomalous couplings in HWW* decays at the International Linear Collider Citation Details In-Document Search Title: Measuring anomalous couplings in HWW* decays at ...

  1. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled...

    Office of Scientific and Technical Information (OSTI)

    Facilitate G Protein-Coupled Receptor Crystallogenesis Citation Details In-Document Search Title: Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor ...

  2. Ultrafast spin exchange-coupling torque via photo-excited charge...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes Citation Details In-Document Search Title: Ultrafast spin exchange-coupling torque via ...

  3. Enhancements to the SHARP Build System and NEK5000 Coupling

    SciTech Connect (OSTI)

    McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay

    2014-10-01

    The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase in overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.

  4. Advanced Multiphysics Coupling for LWR Fuel Performance Analysis

    SciTech Connect (OSTI)

    J. D. Hales; M. R. Tonks; F. N. Gleicher; B. W. Spencer; S. R. Novascone; R. L. Williamson; G. Pastore; D. M. Perez

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower length scale models such as those used in the mesoscale MARMOT code to compute average properties, e.g. swelling or thermal conductivity. These may then be used by an engineering-scale model. Examples of this type of multiscale, multiphysics modeling are shown.

  5. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    SciTech Connect (OSTI)

    Littlewood, David John; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob; Gunzburger, Max

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for dramatically improved consistency at domain boundaries, and an enhancement to the meshfree discretization applied to peridynamic models that removes irregularities at the limit of the nonlocal length scale and dramatically improves conver- gence behavior. Finally, a novel approach for modeling ductile failure has been developed, moti- vated by the desire to apply coupled local-nonlocal models to a wide variety of materials, including ductile metals, which have received minimal attention in the peridynamic literature. Software im- plementation of the partial-stress coupling strategy, the position-aware peridynamic constitutive models, and the strategies for improving the convergence behavior of peridynamic models was completed within the Peridigm and Albany codes, developed at Sandia National Laboratories and made publicly available under the open-source 3-clause BSD license.

  6. Coupled Thermal and Electrical Analysis of Obstructed RTGs

    SciTech Connect (OSTI)

    Schock, Alfred; Noravian, Heros; Or, Chuen T.

    1990-01-01

    A Radioisotope Thermoelectric Generator (RTG) with an unsymmetrically obstructed heat rejection path can have significant axial and circumferential variations in the temperatures, currents, and voltages of its thermoelectric couple network. The present paper describes a methodology for analyzing the thermal and electrical performance of such an RTG, and the development of a computer code for implementing that emthodology. The code derives coupled solutions of the RTG's thermal, thermoelectric, and electrical equations. It accounts for the Peltier effect, Ohmic heating, and the Thomson effect, and treats the electrical power produced in each couple as an effective heat sink. It satisfies the condition that all parallel couples produce the same voltage, and that all series-connected couple groups produce the same current. Finally, the paper illustrates the use of the code by applying it to the detailed analysis of the RTGs for the CRAF and Cassini missions. In each of these, there are two adjacent RTGs which are obstructed by each other and by the nearby spacecraft. The results of the analysis will be used by the spacecraft designers in selecting the location, orientation, and spacing of the two RTGs. There are two copies in the file.

  7. Extracting Effective Higgs Couplings in the Golden Channel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  8. Self locking coupling mechanism for engaging and moving a load

    DOE Patents [OSTI]

    Wood, Richard L. (Livermore, CA); Casamajor, Alan B. (Pleasanton, CA); Parsons, Richard E. (Orinda, CA)

    1982-01-01

    Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

  9. Self locking coupling mechanism for engaging and moving a load

    DOE Patents [OSTI]

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  10. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOE Patents [OSTI]

    Amey, David L. (Birmingham, MI); Degner, Michael W. (Farmington Hills, MI)

    2002-01-01

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  11. Inductive Sustainment of Oblate FRCs with the Assistance of Magnetic Diffusion, Shaping and Finite-Lamor Radius Stabilization

    SciTech Connect (OSTI)

    Gerhardt, S.; Belova, E. V.; Yamada, M.; Ji, H.; Inomoto, M.; Jacobson, C. M.; Maqueda, R.; McGeehan, B.; Y., Ren

    2008-07-31

    Oblate field-reversed configurations FRCs have been sustained for >300 µs, or >15 magnetic diffusion times, through the use of an inductive solenoid. These argon FRCs can have their poloidal flux sustained or increased, depending on the timing and strength of the induction. An inward pinch is observed during sustainment, leading to a peaking of the pressure profile and maintenance of the FRC equilibrium. The good stability observed in argon (and krypton) does not transfer to lighter gases, which develop terminal co-interchange instabilities. The stability in argon and krypton is attributed to a combination of external field shaping, magnetic diffusion, and finite-Larmor radius effects.

  12. Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2

    Office of Scientific and Technical Information (OSTI)

    hepatoma cell line (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line Citation Details In-Document Search Title: Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line Diterpenoid tanshinones including tanshinone IIA (TIIA), cryptotanshinone (CTS), tanshinone I (TI) and dihydrotanshinone I (DHTI) are the major bioactive components

  13. Electro-optic device with gap-coupled electrode

    DOE Patents [OSTI]

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  14. Coupling coefficients for tensor product representations of quantum SU(2)

    SciTech Connect (OSTI)

    Groenevelt, Wolter

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometric orthogonal polynomials and q-Bessel-type functions.

  15. Ab-initio modeling of electromechanical coupling at Si surfaces

    SciTech Connect (OSTI)

    Hoppe, Sandra; Müller, Stefan; Michl, Anja; Weissmüller, Jörg

    2014-08-21

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain response of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.

  16. Inductive crystal field control in layered metal oxides with correlated electrons

    SciTech Connect (OSTI)

    Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M.; Nelson-Cheeseman, B. B.; Bhattacharya, A.

    2014-07-01

    We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.

  17. Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

    SciTech Connect (OSTI)

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, B.; McGeehan, B.; Inomoto, M.

    2008-06-12

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

  18. Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction

    SciTech Connect (OSTI)

    Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.; Inomoto, M.

    2008-03-15

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state.

  19. A 30 MW, 200 MHz Inductive Output Tube for RF Accelerators

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read

    2008-06-19

    This program investigated development of a multiple beam inductive output tube (IOT) to produce 30 MW pulses at 200 MHz. The program was successful in demonstrating feasibility of developing the source to achieve the desired power in microsecond pulses with 70% efficiency. The predicted gain of the device is 24 dB. Consequently, a 200 kW driver would be required for the RF input. Estimated cost of this driver is approximately $1.25 M. Given the estimated development cost of the IOT of approximately $750K and the requirements for a test set that would significantly increase the cost, it was determined that development could not be achieved within the funding constraints of a Phase II program.

  20. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  1. Cold Crucible Induction Melter Studies for Making Glass Ceramic Waste Forms: A Feasibility Assessment

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Maio, Vincent; McCloy, John S.; Scott, Clark; Riley, Brian J.; Benefiel, Bradley; Vienna, John D.; Archibald, Kip; Rodriguez, Carmen P.; Rutledge, Veronica; Zhu, Zihua; Ryan, Joseph V.; Olszta, Matthew J.

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (~1/4 scale) cold crucible induction meter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  2. Cold crucible induction melter studies for making glass ceramic waste forms: A feasibility assessment

    SciTech Connect (OSTI)

    Crum, Jarrod; Maio, Vince; McCloy, John; Scott, Clark; Riley, Brian; Benefiel, Brad; Vienna, John; Archibald, Kip; Rodriguez, Carmen; Rutledge, Veronica; Zhu, Zihua; Ryan, Joe; Olszta, Matthew

    2014-01-01

    Glass ceramics are being developed to immobilize fission products, separated from used nuclear fuel by aqueous reprocessing, into a stable waste form suitable for disposal in a geological repository. This work documents the glass ceramic formulation at bench scale and for a scaled melter test performed in a pilot-scale (approximately 1/4 scale) cold crucible induction melter (CCIM). Melt viscosity, electrical conductivity, and crystallization behavior upon cooling were measured on a small set of compositions to select a formulation for melter testing. Property measurements also identified a temperature range for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form. Bench scale and melter run results successfully demonstrate the processability of the glass ceramic using the CCIM melter technology.

  3. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  4. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

    SciTech Connect (OSTI)

    Cikhardt, J.; Klír, D.; ?ezá?, K.; Krása, J.; De Marco, M.; Pfeifer, M.; Velyhan, A.; Krouský, E.; Cikhardtová, B.; Kubeš, P.; Kravárik, J.; Ullschmied, J.; Skála, J.

    2014-10-15

    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 ?C. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

  5. CAN COUPLED DARK ENERGY SPEED UP THE BULLET CLUSTER?

    SciTech Connect (OSTI)

    Lee, Jounghun; Baldi, Marco E-mail: marco.baldi@universe-cluster.de

    2012-03-01

    It has been recently shown that the observed morphological properties of the Bullet Cluster can be accurately reproduced in hydrodynamical simulations only when the infall pairwise velocity V{sub c} of the system exceeds 3000 km s{sup -1} (or at least possibly 2500 km s{sup -1}) at the pair separation of 2R{sub vir}, where R{sub vir} is the virial radius of the main cluster, and that the probability of finding such a bullet-like system is extremely low in the standard {Lambda} cold dark matter ({Lambda}CDM) cosmology. We suggest here the fifth force mediated by coupled dark energy (cDE) as a possible velocity-enhancing mechanism and investigate its effect on the infall velocities of bullet-like systems from the Coupled Dark Energy Cosmological Simulations public database. Five different cDE models are considered: three with constant coupling and exponential potential, one with exponential coupling and exponential potential, and one with constant coupling and supergravity potential. For each model, after identifying the bullet-like systems, we determine the probability density distribution of their infall velocities at pair separations of (2-3)R{sub vir}. Approximating each probability density distribution as a Gaussian, we calculate the cumulative probability of finding a bullet-like system with V{sub c} {>=} 3000 km s{sup -1} or V{sub c} {>=} 2500 km s{sup -1}. Our results show that in all of the five cDE models the cumulative probabilities increase compared to the {Lambda}CDM case and that in the model with exponential coupling P(V{sub c} {>=} 2500 km s{sup -1}) exceeds 10{sup -4}. The physical interpretations and cosmological implications of our results are provided.

  6. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; Stocks, George Malcolm; Landau, David P.

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  7. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    SciTech Connect (OSTI)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  8. Change of translational-rotational coupling in liquids revealed by

    Office of Scientific and Technical Information (OSTI)

    field-cycling {sup 1}H NMR (Journal Article) | SciTech Connect Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR Citation Details In-Document Search Title: Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the {sup 1}H spin-lattice relaxation rate, R{sub 1}(ω)=T{sub 1}{sup -1}(ω), is measured for propylene

  9. Physical + Digital: The New Power Couple |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical + Digital = the New Power Couple Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Physical + Digital = the New Power Couple Birthed from the marriage of physical and digital industrial concepts, Digital Twin is GE's foundational analytic that aims to bring increased insight, understanding, and added value to

  10. Cosmic expansion histories in massive bigravity with symmetric matter coupling

    SciTech Connect (OSTI)

    Enander, Jonas; Mörtsell, Edvard [Oskar Klein Center, Stockholm University, Albanova University Center, 106 91 Stockholm (Sweden); Solomon, Adam R. [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA (United Kingdom); Akrami, Yashar, E-mail: enander@fysik.su.se, E-mail: a.r.solomon@damtp.cam.ac.uk, E-mail: yashar.akrami@astro.uio.no, E-mail: edvard@fysik.su.se [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2015-01-01

    We study the cosmic expansion history of massive bigravity with a viable matter coupling which treats both metrics on equal footing. We derive the Friedmann equation for the effective metric through which matter couples to the two metrics, and study its solutions. For certain parameter choices, the background cosmology is identical to that of ?CDM. More general parameters yield dynamical dark energy, which can still be in agreement with observations of the expansion history. We study specific parameter choices of interest, including minimal models, maximally-symmetric models, and a candidate partially-massless theory.

  11. Non-minimal Kinetic coupling to gravity and accelerated expansion

    SciTech Connect (OSTI)

    Granda, L.N.

    2010-07-01

    We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

  12. Scale-Invariance and the Strong Coupling Problem (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Scale-Invariance and the Strong Coupling Problem Citation Details In-Document Search Title: Scale-Invariance and the Strong Coupling Problem Authors: Baumann, Daniel ; /Princeton, Inst. Advanced Study ; Senatore, Leonardo ; /Stanford U., ITP /KIPAC, Menlo Park ; Zaldarriaga, Matias ; /Princeton, Inst. Advanced Study Publication Date: 2013-06-06 OSTI Identifier: 1082791 Report Number(s): SLAC-PUB-15530 arXiv:1101.3320 DOE Contract Number: AC02-76SF00515 Resource Type: Journal

  13. Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and

    Office of Scientific and Technical Information (OSTI)

    Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 (Journal Article) | SciTech Connect Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 Citation Details In-Document Search Title: Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped

  14. Unusual layer-dependent charge distribution, collective mode coupling, and

    Office of Scientific and Technical Information (OSTI)

    superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 (Journal Article) | SciTech Connect layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 Citation Details In-Document Search Title: Unusual layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped

  15. Coupling Mechanical with Electrochemical-Thermal Models for Batteries under Abuse

    SciTech Connect (OSTI)

    Wierzbicki, Tomasz; Sahraei, Elham; Dajka, Stephen; Li, Genong; Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Sprague, Michael A.

    2015-06-09

    This presentation provides an update on coupled mechanical-electrochemical-thermal models for batteries under abuse.

  16. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect (OSTI)

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  17. Coupling Between An Optical Phonon and the Kondo Effect

    SciTech Connect (OSTI)

    Burch, Kenneth; Chia, Elbert E. M.; Talbayev, D.; Sales, Brian C; Mandrus, David; Taylor, A. J.; Averitt, R. D.

    2008-01-01

    We explore the ultrafast optical response of Yb14MnSb11, providing further evidence that this Zintl compound is one of the first examples of a ferromagnetic under-screened Kondo lattice. These experiments also provide the first demonstration of coupling between an optical phonon and the Kondo effect.

  18. Bimetric gravity doubly coupled to matter: theory and cosmological implications

    SciTech Connect (OSTI)

    Akrami, Yashar; Koivisto, Tomi S.; Mota, David F.; Sandstad, Marit E-mail: t.s.koivisto@astro.uio.no E-mail: marit.sandstad@astro.uio.no

    2013-10-01

    A ghost-free theory of gravity with two dynamical metrics both coupled to matter is shown to be consistent and viable. Its cosmological implications are studied, and the models, in particular in the context of partially massless gravity, are found to explain the cosmic acceleration without resorting to dark energy.

  19. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape034_ozpineci_2012_o.pdf More Documents & Publications Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter

  20. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  1. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, Richard B. (Hurricane, WV); Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  2. Electrical and Quench Performance of the First MICE Coupling Coil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; et al

    2014-11-10

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet.

  3. Coupled Serial and Parallel Non-uniform SQUIDs

    SciTech Connect (OSTI)

    Longhini, Patrick; In, Visarath; Berggren, Susan; Palacios, Antonio; Leese de Escobar, Anna

    2011-04-19

    In this work we numerical model series and parallel non-uniform superconducting quantum interference device (SQUID) array. Previous work has shown that series SQUID array constructed with a random distribution of loop sizes, (i.e. different areas for each SQUID loop) there exists a unique 'anti-peak' at the zero magnetic field for the voltage versus applied magnetic field (V-B). Similar results extend to a parallel SQUID array where the difference lies in the arrangement of the Josephson junctions. Other system parameter such as bias current, the number of loops, and mutual inductances are varied to demonstrate the change in dynamic range and linearity of the V-B response. Application of the SQUID array as a low noise amplifier (LNA) would increase link margins and affect the entire communication system. For unmanned aerial vehicles (UAVs), size, weight and power are limited, the SQUID array would allow use of practical 'electrically small' antennas that provide acceptable gain.

  4. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  5. Ikaros is degraded by proteasome-dependent mechanism in the early phase of apoptosis induction

    SciTech Connect (OSTI)

    He, Li-Cai; Xu, Han-Zhang; Gu, Zhi-Min; Liu, Chuan-Xu; Chen, Guo-Qiang; Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences-SJTU-SM, Shanghai 200025 ; Wang, Yue-Fei; Wen, Dong-Hua; Wu, Ying-Li

    2011-03-18

    Research highlights: {yields} Chemotherapeutic drugs or UV treatment reduces Ikaros prior to caspase-3 activation. {yields} Etoposide treatment does not alter the mRNA but shortens the half-life of Ikaros. {yields} MG132 or epoxomicin but not calpeptin inhibits etoposide-induced Ikaros degradation. {yields} Overexpression of Ikaros accelerates etoposide-induced apoptosis in NB4 cells. -- Abstract: Ikaros is an important transcription factor involved in the development and differentiation of hematopoietic cells. In this work, we found that chemotherapeutic drugs or ultraviolet radiation (UV) treatment could reduce the expression of full-length Ikaros (IK1) protein in less than 3 h in leukemic NB4, Kasumi-1 and Jurkat cells, prior to the activation of caspase-3. Etoposide treatment could not alter the mRNA level of IK1 but it could shorten the half-life of IK1. Co-treatment with the proteasome inhibitor MG132 or epoxomicin but not calpain inhibitor calpeptin inhibited etoposide-induced Ikaros downregulation. Overexpression of IK1 could accelerate etoposide-induced apoptosis in NB4 cells, as evidenced by the increase of Annexin V positive cells and the more early activation of caspase 3. To our knowledge, this is the first report to show that upon chemotherapy drugs or UV treatment, IK1 could be degraded via the proteasome system in the early phase of apoptosis induction. These data might shed new insight on the role of IK1 in apoptosis and the post-translational regulation of IK1.

  6. Method and apparatus for pulse width modulation control of an AC induction motor

    DOE Patents [OSTI]

    Geppert, Steven (Bloomfield Hills, MI); Slicker, James M. (Union Lake, MI)

    1984-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  7. Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors

    SciTech Connect (OSTI)

    Moore, D. C.; Golwala, S. R.; Cornell, B. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Bumble, B.; Day, P. K.; LeDuc, H. G. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Zmuidzinas, J. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2012-06-04

    We demonstrate position and energy-resolved phonon-mediated detection of particle interactions in a silicon substrate instrumented with an array of microwave kinetic inductance detectors (MKIDs). The relative magnitude and delay of the signal received in each sensor allow the location of the interaction to be determined with < or approx. 1mm resolution at 30 keV. Using this position information, variations in the detector response with position can be removed, and an energy resolution of {sigma}{sub E} = 0.55 keV at 30 keV was measured. Since MKIDs can be fabricated from a single deposited film and are naturally multiplexed in the frequency domain, this technology can be extended to provide highly pixelized athermal phonon sensors for {approx}1 kg scale detector elements. Such high-resolution, massive particle detectors would be applicable to rare-event searches such as the direct detection of dark matter, neutrinoless double-beta decay, or coherent neutrino-nucleus scattering.

  8. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    SciTech Connect (OSTI)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-17

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.

  9. RKKY interaction in a chirally coupled double quantum dot system

    SciTech Connect (OSTI)

    Heine, A. W.; Tutuc, D.; Haug, R. J.; Zwicknagl, G.; Schuh, D.; Wegscheider, W.

    2013-12-04

    The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.

  10. Strong-Coupling Resistivity in the Kondo Model

    SciTech Connect (OSTI)

    Lesage, F.; Saleur, H.

    1999-05-01

    By applying methods of integrable quantum field theory to the Kondo problem, we develop a systematic perturbation expansion near the IR (strong coupling) fixed point. This requires knowledge of an infinity of irrelevant operators and their couplings, which we determine exactly. A low temperature expansion (i.e., all the corrections to Fermi liquid theory) of the resistivity follows, extending the well-known Nozi{grave e}res T{sup 2} result in the exactly screened case to arbitrary order. The example of the ordinary Kondo model is worked out in detail: We determine {rho} up to order T{sup 6} and compare the result with available numerical data. {copyright} {ital 1999} {ital The American Physical Society}

  11. Transformer coupling for transmitting direct current through a barrier

    DOE Patents [OSTI]

    Brown, Ralph L. (Albuquerque, NM); Guilford, Richard P. (Albuquerque, NM); Stichman, John H. (Albuquerque, NM)

    1988-01-01

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.

  12. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect (OSTI)

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  13. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egami, T.; Fine, B. V.; Parshall, D.; Subedi, A.; Singh, D. J.

    2010-01-01

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for themore »onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.« less

  14. Mechanism of the metallic metamaterials coupled to the gain material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas; Soukoulis, Costas M.

    2014-10-11

    We present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split–ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ?T/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gapmore »and gain covering the SRR structure, while in the fishnet metamaterial with gain ?T/T is positive.« less

  15. Ferrite core coupled slapper detonator apparatus and method

    DOE Patents [OSTI]

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  16. Effective field theory: A modern approach to anomalous couplings

    SciTech Connect (OSTI)

    Degrande, Céline; Centre for Particle Physics and Phenomenology , Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve ; Greiner, Nicolas; Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München ; Kilian, Wolfgang; University of Siegen, Fachbereich Physik, D-57068 Siegen ; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen; Centre for Particle Physics and Phenomenology , Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve

    2013-08-15

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics.

  17. Quantum emitters dynamically coupled to a quantum field

    SciTech Connect (OSTI)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2013-12-04

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  18. Mechanism of the metallic metamaterials coupled to the gain material

    SciTech Connect (OSTI)

    Huang, Zhixiang; Droulias, Sotiris; Koschny, Thomas; Soukoulis, Costas M.

    2014-10-11

    We present evidence of strong coupling between the gain material and the metallic metamaterials. It is of vital importance to understand the mechanism of the coupling of metamaterials with the gain medium. Using a four-level gain system, the numerical pump-probe experiments are performed in several configurations (split–ring resonators (SRRs), inverse SRRs and fishnets) of metamaterials, demonstrating reduction of the resonator damping in all cases and hence the possibility for loss compensation. We find that the differential transmittance ?T/T can be negative in different SRR configurations, such as SRRs on the top of the gain substrate, gain in the SRR gap and gain covering the SRR structure, while in the fishnet metamaterial with gain ?T/T is positive.

  19. Why should we care about the top quark Yukawa coupling?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapshnikov, Mikhail; Bezrukov, Fedor

    2015-04-15

    In the cosmological context, for the Standard Model to be valid up to the scale of inflation, the top quark Yukawa coupling yt should not exceed the critical value ytcrit , coinciding with good precision (about 0.2‰) with the requirement of the stability of the electroweak vacuum. So, the exact measurements of yt may give an insight on the possible existence and the energy scale of new physics above 100 GeV, which is extremely sensitive to yt. In this study, we overview the most recent theoretical computations of and the experimental measurements of ytcrit and the experimental measurements ofmore » yt. Within the theoretical and experimental uncertainties in yt, the required scale of new physics varies from 10⁷ GeV to the Planck scale, urging for precise determination of the top quark Yukawa coupling.« less

  20. Transformer coupling for transmitting direct current through a barrier

    DOE Patents [OSTI]

    Brown, R.L.; Guilford, R.P.; Stichman, J.H.

    1987-06-29

    The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.

  1. Optical phased arrays with evanescently-coupled antennas

    DOE Patents [OSTI]

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  2. IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION.

    SciTech Connect (OSTI)

    LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.

    2005-05-16

    A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics.

  3. Ferrite core coupled slapper detonator apparatus and method

    DOE Patents [OSTI]

    Boberg, Ralph E. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Weingart, Richard C. (Livermore, CA)

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  4. Nuclear structure studies with INGA coupled to a fast DDAQ

    SciTech Connect (OSTI)

    Palit, R.

    2014-08-14

    Studies of different types of nuclear excitation and isomers remain the main thrust area of the last experimental campaign using INGA at TIFR-BARC Pelletron Linac Facility at Mumbai. A digital data acquisition system has been coupled with the INGA which has improved the data throughput and better gain stability. About forty experiments that have been proposed in this experimental campaign. Selected results from these experiments will be discussed.

  5. Cosmological tests of the disformal coupling to radiation

    SciTech Connect (OSTI)

    Brax, Philippe; Davis, Anne-Christine; Gubitosi, Giulia E-mail: Clare.Burrage@nottingham.ac.uk E-mail: giulia.gubitosi@roma1.infn.it

    2013-11-01

    Light scalar fields can naturally couple disformally to Standard Model fields without giving rise to the unacceptably large fifth forces usually associated with light scalars. We show that these scalar fields can still be studied and constrained through their interaction with photons, and focus particularly on changes to the Cosmic Microwave Background spectral distortions and violations of the distance duality relation. We then specialise our constraints to scalars which could play the role of pseudo-Goldstone quintessence.

  6. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  7. Antenna-coupled high T[sub c] superconducting microbolometer

    DOE Patents [OSTI]

    Hu, Q.

    1992-12-15

    A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T[sub c] superconducting material disposed on the substrate in an area that is about 1[times]5 [mu]m[sup 2] and about 0.02 [mu]m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer. 5 figs.

  8. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent magnetization opposite to the field (negative Mrem). A collaboration led by researchers from the Stanford

  9. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent magnetization opposite to the field (negative Mrem). A collaboration led by researchers from the Stanford

  10. Viscoelastic modes in a strongly coupled, cold, magnetized dusty plasma

    SciTech Connect (OSTI)

    Banerjee, Debabrata; Mylavarapu, Janaki Sita; Chakrabarti, Nikhil

    2010-11-15

    A generalized hydrodynamical model has been used to study the low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to the strong correlations among dust particles and the tensile stresses imparted by the magnetic field. It has been shown that longitudinal compressional Alfven modes and elasticity modified transverse shear mode exist in such a medium. The features of these collective modes are established and discussed.

  11. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect (OSTI)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  12. Antenna-coupled high T.sub.c superconducting microbolometer

    DOE Patents [OSTI]

    Hu, Qing (Boston, MA)

    1992-01-01

    A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T.sub.c superconducting material disposed on the substrate in an area that is about 1.times.5 .mu.m.sup.2 and about 0.02 .mu.m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer.

  13. Classical strongly coupled quark-gluon plasma. V. Structure factors

    SciTech Connect (OSTI)

    Cho, Sungtae; Zahed, Ismail

    2010-10-15

    We show that the classical and strongly coupled quark-gluon plasma is characterized by a multiple of structure factors that obey generalized Orstein-Zernicke equations. We use the canonical partition function and its associated density functional to derive analytical equations for the density and charge monopole structure factors for arbitrary values of {Gamma}=V/K, the ratio of the mean potential to the Coulomb energy. The results are compared with SU(2) molecular dynamics simulations.

  14. Quantum simulations of strongly coupled quark-gluon plasma

    SciTech Connect (OSTI)

    Filinov, V. S.; Ivanov, Yu. B.; Bonitz, M.; Levashov, P. R.; Fortov, V. E.

    2012-06-15

    A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasi-particles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the classical molecular dynamics by Gelman, Shuryak, and Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state. The results indicate that the QGP reveals liquid-like rather than gaslike properties. Quantum effects turned out to be of prime importance in these simulations.

  15. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent magnetization opposite to the field (negative Mrem). A collaboration led by researchers from the Stanford

  16. Two photon couplings of the lightest isoscalars from BELLE data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ?? and K¯K, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the ?/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  17. Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es082_sastry_2010_p.pdf More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes 2015 GTO Peer Review | Poster Session

  18. Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_17_sastry.pdf More Documents & Publications Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion

  19. Resonances in Coupled ?K??K Scattering from Quantum Chromodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.

    2014-10-01

    Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled ?K, ?K scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.

  20. Complex network synchronization of chaotic systems with delay coupling

    SciTech Connect (OSTI)

    Theesar, S. Jeeva Sathya Ratnavelu, K.

    2014-03-05

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology.

  1. Axial couplings and strong decay widths of heavy hadrons

    SciTech Connect (OSTI)

    William Detmold, C.-J. David Lin, Stefan Meinel

    2012-04-01

    We calculate the axial couplings of mesons and baryons containing a heavy quark in the static limit using lattice QCD. These couplings determine the leading interactions in heavy hadron chiral perturbation theory and are central quantities in heavy quark physics, as they control strong decay widths and the light-quark mass dependence of heavy hadron observables. Our analysis makes use of lattice data at six different pion masses, 227 MeV < m{sub {pi}} < 352 MeV, two lattice spacings, a = 0.085, 0.112 fm, and a volume of (2.7 fm){sup 3}. Our results for the axial couplings are g{sub 1} = 0.449(51), g{sub 2} = 0.84(20), and g{sub 3} = 0.71(13), where g{sub 1} governs the interaction between heavy-light mesons and pions and g{sub 2,3} are similar couplings between heavy-light baryons and pions. Using our lattice result for g{sub 3}, and constraining 1/m{sub Q} corrections in the strong decay widths with experimental data for {Sigma}{sub c}{sup (*)} decays, we obtain {Gamma}[{Sigma}{sub b}{sup (*)} {yields} {Lambda}{sub b} {pi}{sup {+-}}] = 4.2(1.0), 4.8(1.1), 7.3(1.6), 7.8(1.8) MeV for the {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}{sub b}{sup *+}, {Sigma}{sub b}{sup *-} initial states, respectively. We also derive upper bounds on the widths of the {Xi}{sub b}{sup prime(*)} baryons.

  2. Two photon couplings of the lightest isoscalars from BELLE data

    SciTech Connect (OSTI)

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ?? and K¯K, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the ?/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  3. Coupled beam motion in a storage ring with crab cavities

    SciTech Connect (OSTI)

    Huang, Xiaobiao

    2015-11-16

    We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions introduced by crab cavities. Analytic form of the linear decoupling transformation is derived. Also, the equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution to the eigen-emittance induced by the crab cavity. Application to the short pulse generation scheme using crab cavities [1] is considered.

  4. Resonances in coupled ?K, ?K scattering from lattice QCD

    SciTech Connect (OSTI)

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel ?K and ?K scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at m? = 391 MeV, we find a gradual increase in the JP = 0+ ?K phase-shift which may be identified with a broad scalar resonance that couples strongly to ?K and weakly to ?K. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the ? resonance. A bound state with JP = 1- is found very close to the ?K threshold energy, whose coupling to the ?K channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 ?K scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  5. Coupled and extended quintessence: Theoretical differences and structure formation

    SciTech Connect (OSTI)

    Pettorino, Valeria [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany); Baccigalupi, Carlo [SISSA/ISAS, Via Beirut 4, I-34014 Trieste, and INFN, Sezione di Trieste, Via Valerio 2, I-34127 Trieste (Italy)

    2008-05-15

    The case of a coupling between dark energy and matter [coupled quintessence (CQ)] or gravity [extended quintessence (EQ)] has recently attracted a deep interest and has been widely investigated both in the Einstein and in the Jordan frames (EF, JF), within scalar-tensor theories. Focusing on the simplest models proposed so far, in this paper we study the relation existing between the two scenarios, isolating the Weyl scaling which allows one to express them in the EF and JF. Moreover, we perform a comparative study of the behavior of linear perturbations in both scenarios, which turn out to behave in a markedly different way. In particular, while the clustering is enhanced in the considered CQ models with respect to the corresponding quintessence ones where the coupling is absent and to the ordinary cosmologies with a cosmological constant and cold dark matter ({lambda}CDM), structures in EQ models may grow slower. This is likely to have direct consequences on the inner properties of nonlinear structures, like cluster concentration, as well as on the weak lensing shear on large scales. Finally, we specialize our study for interfacing linear dynamics and N-body simulations in these cosmologies, giving a recipe for the corrections to be included in N-body codes in order to take into account the modifications to the expansion rate, growth of structures, and strength of gravity.

  6. Exact propagating nonlinear singular disturbances in strongly coupled dusty plasmas

    SciTech Connect (OSTI)

    Das, Amita; Tiwari, Sanat Kumar; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-08-15

    The dynamical response of the strongly coupled dusty plasma medium has recently been described by utilizing the Generalized Hydrodynamic (GHD) model equations. The GHD equations capture the visco-elastic properties of the medium and have been successful in predicting a host of phenomena (e.g., existence of novel transverse shear waves in the fluid medium, modification of longitudinal wave dispersion by elastic effects, etc.) which have found experimental confirmation. In this paper, the nonlinear longitudinal response of the medium governed by GHD equations in strong coupling limit is discussed analytically. The structure of the equations rules out the balance between dispersion and nonlinearity, thereby, forbidding soliton formation. However, a host of new varieties of nonlinear solutions are found to exist, which have singular spatial profiles and yet have conservative properties. For instance, existence of novel conservative shock structures with zero strength is demonstrated, waves whose breaking produces no dissipation in the medium are observed, propagating solutions which produce cusp like singularities can exist and so on. It is suggested that simulations and experiments should look for these novel nonlinear structures in the large amplitude strong coupling limit of longitudinal disturbances in dusty plasmas.

  7. Performance of a hybrid ground-coupled heat pump system

    SciTech Connect (OSTI)

    Phetteplace, G.; Sullivan, W.

    1998-10-01

    In climates dominated by air conditioning, a few so-called hybrid ground-coupled heat pump (GCHP) systems have been built. The hybrid system uses both a ground-coupled heat exchanger and a cooling tower, thereby reducing the amount of ground-coupling heat exchanger necessary. Although this concept has been shown to be feasible, the performance of such a system has not been measured in detail. Since it may be possible to achieve significant performance improvements in such systems by modifying the design and operational practices, detailed performance monitoring of such systems is needed. This paper describes a project that has been undertaken to collect performance data from a hybrid GCHP system at Fort Polk, LA. This paper presents performance data for a period of about 22 months, including data from portions of two heating and cooling seasons. The energy input to the GCHPs themselves will be presented, as well as the energy rejected to the ground in the cooling mode and that extracted from the ground in the heating mode. Energy flows in the cooling tower also will be addressed, along with the power consumption of the circulating pumps and the cooling tower.

  8. Simple Coupling of Reactor Physics Effects and Uncertain Nuances

    Energy Science and Technology Software Center (OSTI)

    2012-08-27

    The "Simple Coupling of Reactor Physics Effects and Uncertain Nuances" (SCORPEUN) code is a simple r-z 1-group neutron diffusion code where each r-mesh is coupled to a single-flow-channel model that represents all flow-channels in that r-mesh. This 1-D model assesses q=m*Cp*deletaT for each z-mesh in that channel. This flow channel model is then coupled to a simple 1-D heat conduction model for ascertaining the peak center-line fuel temperature in a hypothetical pin assigned to thatmore » flow channel. The code has property lookup capability for water, Na, Zirc, HT9, metalic fuel, oxide fuel, etc. It has linear interpolation features for micro-scopic cross-sections with respect to coolant density and fuel temperature. ***This last feature has not been fully tested and may need development***. The interpolated microscopic cross-sections are then combined (using the water density from the T/H calculation) to generate macroscopic diffusion coefficient, removal cross-section and nu-sigmaF for each r-z mesh of the neutron diffusion code.« less

  9. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; Zupan, Jure

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  10. Recent progress in the development of a circular ion induction accelerator for space charge dominated beams at LLNL

    SciTech Connect (OSTI)

    Ahle, L; Autrey, D; Barnard, J; Berners, D; Craig, G; Debeling, A; Eylon, S; Friedman, A; Fritz, W; Grote, D P; Halaxa, E; Hanks, R L; Hernandez, M; Judd, D L; Kirbie, H C; Logan, B G; Lund, S M; Mant, G; Molvik, A W; Reginato, L; Sangster, T C; Sharp, W M

    1998-08-19

    The Heavy Ion Fusion Group at Lawrence Livermore National Laboratory has for several years been developing the world's first circular ion induction accelerator. This machine has recently been extended to 90 degrees, or 10 half-lattice periods (HLP) with full beam transport. In addition, induction cores have been installed on five of the HLP's, each with an independent arbitrary waveform pulser. An arbitrary waveform pulser for the bending electrostatic dipoles has also been enabled. Together, they have allowed the first attempts at coordinated bending and acceleration of the beam. The results of these first attempts will be reported on in the paper by examining the output of various diagnostic devices, such as the capacitive Beam Probes (C-probes), slit scanners, and the Gated Beam Imager(GBI).

  11. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  12. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    SciTech Connect (OSTI)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  13. Volatilization of heavy metals and radionuclides from soil heated in an induction ``cold`` crucible melter

    SciTech Connect (OSTI)

    Aloy, A.S.; Belov, V.Z.; Trofimenko, A.S. [Khlopin Radium Inst., St. Petersburg (Russian Federation); Dmitriev, S.A.; Stefanovsky, S.V. [SIA Radon, Moscow (Russian Federation); Gombert, D.; Knecht, D.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1997-12-31

    The behavior of heavy metals and radionuclides during high-temperature treatment is very important for the design and operational capabilities of the off-gas treatment system, as well as for a better understanding of the nature and forms of the secondary waste. In Russia, a process for high-temperature melting in an induction heated cold crucible system is being studied for vitrification of Low Level Waste (LLW) flyash and SYNROC production with simulated high level waste (HLW). This work was done as part of a Department of Energy (DOE) funded research project for thermal treatment of mixed low level waste (LLW). Soil spiked with heavy metals (Cd, Pb) and radionuclides (Cs-137, U-239, Pu-239) was used as a waste surrogate. The soil was melted in an experimental lab-scale system that consisted of a high-frequency generator (1.76 MHz, 60 kW), a cold crucible melter (300 mm high and 90 mm in diameter), a shield box, and an off-gas system. The process temperature was 1,350--1,400 C. Graphite and silicon carbide were used as sacrificial conductive materials to start heating and initial melting of the soil batch. The off-gas system was designed in such a manner that after each experiment, it can be disconnected to collect and analyze all deposits to determine the mass balance. The off-gases were also sampled during an experiment to analyze for hydrogen, NO{sub x}, carbon dioxide, carbon monoxide and chlorine formation. This paper describes distribution and mass balance of metals and radionuclides in various parts of the off-gas system. The leach rate of the solidified blocks identified by the PCT method is also reported.

  14. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    SciTech Connect (OSTI)

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive agents, such as curcumin, effective in suppressing TCC-induced cellular pre-malignancy.

  15. An Eulerian CFD model and X-ray radiography for coupled nozzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines Title An Eulerian CFD model and X-ray radiography for coupled nozzle...

  16. An Eulerian CFD Model and X-ray Radiography for Coupled Nozzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model and X-ray Radiography for Coupled Nozzle Flow and Spray in Internal Combustion Engines Title An Eulerian CFD Model and X-ray Radiography for Coupled Nozzle Flow and Spray in...

  17. Improving LER Coupling and PEP-II Luminosity with Model-Independent...

    Office of Scientific and Technical Information (OSTI)

    LER Coupling and PEP-II Luminosity with Model-Independent Analysis Citation Details In-Document Search Title: Improving LER Coupling and PEP-II Luminosity with Model-Independent ...

  18. Redwing: A MOOSE application for coupling MPACT and BISON

    SciTech Connect (OSTI)

    Frederick N. Gleicher; Michael Rose; Tom Downar

    2014-11-01

    Fuel performance and whole core neutron transport programs are often used to analyze fuel behavior as it is depleted in a reactor. For fuel performance programs, internal models provide the local intra-pin power density, fast neutron flux, burnup, and fission rate density, which are needed for a fuel performance analysis. The fuel performance internal models have a number of limitations. These include effects on the intra-pin power distribution by nearby assembly elements, such as water channels and control rods, and the further limitation of applicability to a specified fuel type such as low enriched UO2. In addition, whole core neutron transport codes need an accurate intra-pin temperature distribution in order to calculate neutron cross sections. Fuel performance simulations are able to model the intra-pin fuel displacement as the fuel expands and densifies. These displacements must be accurately modeled in order to capture the eventual mechanical contact of the fuel and the clad; the correct radial gap width is needed for an accurate calculation of the temperature distribution of the fuel rod. Redwing is a MOOSE-based application that enables coupling between MPACT and BISON for transport and fuel performance coupling. MPACT is a 3D neutron transport and reactor core simulator based on the method of characteristics (MOC). The development of MPACT began at the University of Michigan (UM) and now is under the joint development of ORNL and UM as part of the DOE CASL Simulation Hub. MPACT is able to model the effects of local assembly elements and is able calculate intra-pin quantities such as the local power density on a volumetric mesh for any fuel type. BISON is a fuel performance application of Multi-physics Object Oriented Simulation Environment (MOOSE), which is under development at Idaho National Laboratory. BISON is able to solve the nonlinearly coupled mechanical deformation and heat transfer finite element equations that model a fuel element as it is depleted in a nuclear reactor. Redwing couples BISON and MPACT in a single application. Redwing maps and transfers the individual intra-pin quantities such as fission rate density, power density, and fast neutron flux from the MPACT volumetric mesh to the individual BISON finite element meshes. For a two-way coupling Redwing maps and transfers the individual pin temperature field and axially dependent coolant densities from the BISON mesh to the MPACT volumetric mesh. Details of the mapping are given. Redwing advances the simulation with the MPACT solution for each depletion time step and then advances the multiple BISON simulations for fuel performance calculations. Sub-cycle advancement can be applied to the individual BISON simulations and allows multiple time steps to be applied to the fuel performance simulations. Currently, only loose coupling where data from a previous time step is applied to the current time step is performed.

  19. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  20. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect (OSTI)

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  1. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect (OSTI)

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  2. Comment on “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation” [Phys. Fluids 26, 065105 (2014)

    SciTech Connect (OSTI)

    Hietala, Niklas Hänninen, Risto

    2014-11-15

    Van Gorder considers a formulation of the local induction approximation, which allows the vortex to move in the direction of the reference axis [“General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)]. However, in his analytical and numerical study he does not use it. A mistake in the torsion of a helical vortex is also corrected.

  3. Ward identities and chiral anomalies for coupled fermionic chains

    SciTech Connect (OSTI)

    Costa, L. C.; Ferraz, A.; Mastropietro, Vieri

    2013-12-15

    Coupled fermionic chains are usually described by an effective model written in terms of bonding and anti-bonding fermionic fields with linear dispersion in the vicinities of the respective Fermi points. We derive for the first time exact Ward Identities (WI) for this model, proving the existence of chiral anomalies which verify the Adler-Bardeen non-renormalization property. Such WI are expected to play a crucial role in the understanding of the thermodynamic properties of the system. Our results are non-perturbative and are obtained analyzing Grassmann functional integrals by means of constructive quantum field theory methods.

  4. Fully-Coupled Metallic Fuel Performance Simulations using BISON

    SciTech Connect (OSTI)

    Galloway, Jack D.; Unal, Cetin

    2015-08-27

    This document is a set of slides intended to accompany a talk at a meeting. The first topic taken up is zirconium redistribution. The rod edge Zr increase is evidently due to the Soret term and temperature gradient. Then metallic fission gas release modeling is considered. Based on a GRSIS/FEAST model, the approach of generating fission gas in the fuel matrix is described. A sensitivity study on parameters is presented, including sodium bond & diffusion coefficient sensitivity along with dt sensitivity. Finally, results of some coupled simulations are shown, with ideas about future work.

  5. Graphene-coated coupling coil for AC resistance reduction

    DOE Patents [OSTI]

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  6. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect (OSTI)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

  7. Coupled spin-boson systems far from equilibrium

    SciTech Connect (OSTI)

    Salkola, M.I. [Department of Physics, Stanford University, Stanford, California 94305 (United States)] [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bishop, A.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kenkre, V.M.; Raghavan, S. [Center for Advanced Studies, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Center for Advanced Studies, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1996-11-01

    Nonequilibrium quantum dynamics of a system comprising a (pseudo) spin-1/2 object coupled to a boson degree of freedom is studied. It is shown that the time evolution of the system is described by a set of elementary scattering processes. Through these processes the system approaches an equilibrium in which the spin is in a mixed state that on average maximizes its entropy. However, the irregular behavior of the system is unrelated to {open_quote}{open_quote}quantum chaos{close_quote}{close_quote} as the Hamiltonian is integrable. {copyright} {ital 1996 The American Physical Society.}

  8. Calculation of anharmonic couplings and THz linewidths in crystalline PETN

    SciTech Connect (OSTI)

    Pereverzev, Andrey Sewell, Thomas D. Thompson, Donald L.

    2014-03-14

    We have developed a method for calculating the cubic anharmonic couplings in molecular crystals for normal modes with the zero wave vector in the framework of classical mechanics, and have applied it, combined with perturbation theory, to obtain the linewidths of all infrared absorption lines of crystalline pentaerythritol tetranitrate in the terahertz region (<100 cm{sup ?1}). Contributions of the up- and down-conversion processes to the total linewidth were calculated. The computed linewidths are in qualitative agreement with experimental data and the results of molecular dynamics simulations. Quantum corrections to the linewidths in the terahertz region are shown to be negligible.

  9. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis

    SciTech Connect (OSTI)

    Fischer, K.; Lemrani, H.; Stouffs, P.

    1995-12-31

    A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a result, modelling is merely a matter of linking appropriate objects from a model library and the outcoming tool is very flexible and powerful. Some simulation results are presented and compared with those obtained from a decoupled analysis. It clearly appears that the main imperfection of the model does not come from the modelling process itself but from their incomplete knowledge of the physics behind the Stirling engine operation.

  10. Antenna-coupled microcavities for enhanced infrared photo-detection

    SciTech Connect (OSTI)

    Nga Chen, Yuk; Todorov, Yanko Askenazi, Benjamin; Vasanelli, Angela; Sirtori, Carlo; Biasiol, Giorgio; Colombelli, Raffaele

    2014-01-20

    We demonstrate mid-infrared detectors embedded into an array of double-metal nano-antennas. The antennas act as microcavities that squeeze the electric field into thin semiconductor layers, thus enhancing the detector responsivity. Furthermore, thanks to the ability of the antennas to gather photons from an area larger than the device's physical dimensions, the dark current is reduced without hindering the photo-generation rate. In these devices, the background-limited performance is improved with a consequent increase of the operating temperature. Our results illustrate how the antenna-coupled microcavity concept can be applied to enhance the performances of infrared opto-electronic devices.

  11. General non-minimal kinetic coupling to gravity

    SciTech Connect (OSTI)

    Granda, L.N.; Cardona, W. E-mail: wilalbca@univalle.edu.co

    2010-07-01

    We study a model of scalar field with a general non-minimal kinetic coupling to itself and to the curvature, as a source of dark energy, and analyze the cosmological dynamics of this model and the issue of accelerated expansion. Solutions giving rise to power-law expansion have been found. The dynamical equation of state is studied for the two cases, without and with free kinetic term . In the first case, a behavior very close to that of the cosmological constant was found. In the second case, a solution was found, which match the current phenomenology of the dark energy. The model shows a rich variety of dynamical scenarios.

  12. Simulating the Dynamic Coupling of Market and Physical System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Roop, Joseph M.; Guttromson, Ross T.; Huang, Zhenyu

    2004-06-01

    Abstract-As energy trading products cover shorter time periods and demand response programs move toward real-time pricing, financial market-based activity impacts ever more directly the physical operation of the system. To begin to understand the complex interactions between the market-driven operation signals, the engineered controlled schemes, and the laws of physics, new system modeling and simulation techniques must be explored. This discussion describes requirements for new simulation tools to address such market transaction control interactions and an approach to capture the dynamic coupling between energy markets and the physical operation of the power system appropriate for dispatcher reaction time frames.

  13. Relativistic Point Coupling Model for Vibrational Excitations in the Continuum

    SciTech Connect (OSTI)

    Ring, P.; Daoutidis, J.; Litvinova, E.; Niksic, T.; Paar, N.; Vretenar, D.

    2009-08-26

    An implementation of the relativistic random phase approximation with the proper treatment of the continuum has been developed for the relativistic point coupling model and applied to investigate collective excitations in spherical nuclei. The results are compared with the spectral implementation of the same model. In heavy nuclei, where the escape width is negligible, we find an excellent agreement between both methods in the region of giant resonance and some discrepancies in the region of low-lying pygmy resonance. The differences are more pronounced in light nuclei due to the larger values of the escape widths.

  14. Solar axion flux from the axion-electron coupling

    SciTech Connect (OSTI)

    Redondo, Javier

    2013-12-01

    In non-hadronic axion models, where axions couple to electrons at tree level, the solar axion flux is completely dominated by the ABC reactions (Atomic recombination and deexcitation, Bremsstrahlung and Compton). In this paper the ABC flux is computed from available libraries of monochromatic photon radiative opacities (OP, LEDCOP and OPAS) by exploiting the relations between axion and photon emission cross sections. These results turn to be ? 30% larger than previous estimates due to atomic recombination (free-bound electron transitions) and deexcitation (bound-bound), which where not previously taken into account.

  15. Affine group formulation of the Standard Model coupled to gravity

    SciTech Connect (OSTI)

    Chou, Ching-Yi; Ita, Eyo; Soo, Chopin

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant ?, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  16. Effect of strongly coupled plasma on photoionization cross section

    SciTech Connect (OSTI)

    Das, Madhusmita

    2014-01-15

    The effect of strongly coupled plasma on the ground state photoionization cross section is studied. In the non relativistic dipole approximation, cross section is evaluated from bound-free transition matrix element. The bound and free state wave functions are obtained by solving the radial Schrodinger equation with appropriate plasma potential. We have used ion sphere potential (ISP) to incorporate the plasma effects in atomic structure calculation. This potential includes the effect of static plasma screening on nuclear charge as well as the effect of confinement due to the neighbouring ions. With ISP, the radial equation is solved using Shooting method approach for hydrogen like ions (Li{sup +2}, C{sup +5}, Al{sup +12}) and lithium like ions (C{sup +3}, O{sup +5}). The effect of strong screening and confinement is manifested as confinement resonances near the ionization threshold for both kinds of ions. The confinement resonances are very much dependent on the edge of the confining potential and die out as the plasma density is increased. Plasma effect also results in appearance of Cooper minimum in lithium like ions, which was not present in case of free lithium like ions. With increasing density the position of Cooper minimum shifts towards higher photoelectron energy. The same behaviour is also true for weakly coupled plasma where plasma effect is modelled by Debye-Huckel potential.

  17. Spin-phonon coupling in scandium doped gallium ferrite

    SciTech Connect (OSTI)

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Paul, Barnita; Roy, Anushree; Grover, Vinita; Tyagi, A. K.

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5?K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1?x}Sc{sub x}FeO{sub 3}: x?=?0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Néel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  18. Coupling of oxidative dehydrogenation and aromatization reactions of butane

    SciTech Connect (OSTI)

    Xu, Wen-Qing; Suib, S.L. )

    1994-01-01

    Coupling of oxidative dehydrogenation and aromatization of butane by using a dual function catalyst has led to a significant enhancement of the yields (from 25 to 40%) and selectivities to aromatics (from 39 to 64%). Butane is converted to aromatics by using either zinc-promoted [Ga]-ZSM-5 or zinc and gallium copromoted [Fe]-ZSM-5 zeolite as a catalyst. However, the formation of aromatics is severely limited by hydrocracking of butane to methane, ethane, and propane due to the hydrogen formed during aromatization reactions. On the other hand, the oxidative dehydrogenation of butane to butene over molybdate catalysts is found to be accompanied by a concurrent undesirable reaction, i.e., total oxidation. When two of these reactions (oxidative dehydrogenation and aromatization of butane) are coupled by using a dual function catalyst they have shown to complement each other. It is believed that the rate-limiting step for aromatization (butane to butene) is increased by adding an oxidative dehydrogenation catalyst (Ga-Zn-Mg-Mo-O). The formation of methane, ethane, and propane was suppressed due to the removal of hydrogen initially formed as water. Studies of ammonia TPD show that the acidities of [Fe]-ZSM-5 are greatly affected by the existence of metal oxides such as Ga[sub 2]O[sub 3], MgO, ZnO, and MoO[sub 3]. 40 refs., 9 figs., 1 tab.

  19. Coupled cluster channels in the homogeneous electron gas

    SciTech Connect (OSTI)

    Shepherd, James J. E-mail: jamesjshepherd@gmail.com; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-03-28

    We discuss diagrammatic modifications to the coupled cluster doubles (CCD) equations, wherein different groups of terms out of rings, ladders, crossed-rings, and mosaics can be removed to form approximations to the coupled cluster method, of interest due to their similarity with various types of random phase approximations. The finite uniform electron gas (UEG) is benchmarked for 14- and 54-electron systems at the complete basis set limit over a wide density range and performance of different flavours of CCD is determined. These results confirm that rings generally overcorrelate and ladders generally undercorrelate; mosaics-only CCD yields a result surprisingly close to CCD. We use a recently developed numerical analysis [J. J. Shepherd and A. Grüneis, Phys. Rev. Lett. 110, 226401 (2013)] to study the behaviours of these methods in the thermodynamic limit. We determine that the mosaics, on forming the Brueckner one-body Hamiltonian, open a gap in the effective one-particle eigenvalues at the Fermi energy. Numerical evidence is presented which shows that methods based on this renormalisation have convergent energies in the thermodynamic limit including mosaic-only CCD, which is just a renormalised MP2. All other methods including only a single channel, namely, ladder-only CCD, ring-only CCD, and crossed-ring-only CCD, appear to yield divergent energies; incorporation of mosaic terms prevents this from happening.

  20. On the propagation of a coupled saturation and pressure front

    SciTech Connect (OSTI)

    Vasco, D. W.

    2010-12-01

    Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.