National Library of Energy BETA

Sample records for indoor racquet sports

  1. Property:Building/FloorAreaSportCenters | Open Energy Information

    Open Energy Info (EERE)

    This is a property of type Number. Floor area for Swimming baths, indoor and outdoor sports centres Pages using the property "BuildingFloorAreaSportCenters" Showing 2 pages...

  2. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  3. Workshop on indoor air quality research needs

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  4. indoor | OpenEI Community

    Open Energy Info (EERE)

    Contributor 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building...

  5. Greening Up the Sports World

    Broader source: Energy.gov [DOE]

    The Better Buildings Challenge is helping professional sports teams improve their energy efficiency and be more environmentally friendly.

  6. Indoor Environment Program 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Approximately 38% of the energy consumed in the United States is used in buildings. Because humans spend an average of 85% to 90% of their time indoors, energy usage by the buildings sector can have a significant impact on human comfort, health and productivity. To advance energy conservation technologies while maintaining indoor air quality, research in the Indoor Environment Program (IEP) is directed toward understanding relations between building energy (usage and technologies), indoor air quality, and human health, comfort and productivity. The IEP addresses the issue of optimizing the health, comfort and productivity of a building's occupants while maintaining the building's energy efficiency. However, because ventilation is the dominant mechanism for removing pollutants with indoor sources, reduced ventilation may produce undesirable effects on indoor air quality and on the health, comfort, and productivity of a building's occupants. This issue is an important theme for the research of other research groups and projects within IEP.

  7. Indoor Environment Program 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Approximately 38% of the energy consumed in the United States is used in buildings. Because humans spend an average of 85% to 90% of their time indoors, energy usage by the buildings sector can have a significant impact on human comfort, health and productivity. To advance energy conservation technologies while maintaining indoor air quality, research in the Indoor Environment Program (IEP) is directed toward understanding relations between building energy (usage and technologies), indoor air quality, and human health, comfort and productivity. The IEP addresses the issue of optimizing the health, comfort and productivity of a building`s occupants while maintaining the building`s energy efficiency. However, because ventilation is the dominant mechanism for removing pollutants with indoor sources, reduced ventilation may produce undesirable effects on indoor air quality and on the health, comfort, and productivity of a building`s occupants. This issue is an important theme for the research of other research groups and projects within IEP.

  8. GATEWAY Demonstration Indoor Projects | Department of Energy

    Energy Savers [EERE]

    Demonstration Indoor Projects GATEWAY Demonstration Indoor Projects DOE shares the results of completed GATEWAY demonstration projects, publishing detailed reports that include analysis of data collected, projected energy savings, economic analyses, and user feedback. Report briefs summarize key findings in a quick-scan format. Both the reports and briefs are available as Adobe Acrobat PDFs. Completed Indoor Projects photo of a university laboratory, showing recessed troffers in the ceiling

  9. Energy Impacts of Energy and Indoor Environmental Quality Retrofits...

    Office of Scientific and Technical Information (OSTI)

    Energy Impacts of Energy and Indoor Environmental Quality Retrofits of Apartments in California Citation Details In-Document Search Title: Energy Impacts of Energy and Indoor ...

  10. Impacts of contaminant storage on indoor air quality: Model developmen...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Impacts of contaminant storage on indoor air quality: Model development Citation Details In-Document Search Title: Impacts of contaminant storage on indoor air...

  11. Hawaii Department of Health Indoor and Radiological Health Branch...

    Open Energy Info (EERE)

    Indoor and Radiological Health Branch Jump to: navigation, search Name: Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address: 591...

  12. ENERGY STAR Webinar: Energy Savings Plus Health: Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings Plus Health: Indoor Air Quality Guidelines for School Building Upgrades ENERGY STAR Webinar: Energy Savings Plus Health: Indoor Air Quality Guidelines for School...

  13. Combustion Safety for Appliances Using Indoor Air (Fact Sheet...

    Energy Savers [EERE]

    Combustion Safety for Appliances Using Indoor Air PROJECT INFORMATION Project Name: Combustion Safety for Appliances Using Indoor Air Partners: American Gas Association www.aga.org ...

  14. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  15. Indoor environment program - 1995 annual report

    SciTech Connect (OSTI)

    Daisey, J.M.

    1996-06-01

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  16. Saturn's moon rhea sports a dusty halo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saturn's moon rhea sports a dusty halo Saturn's moon rhea sports a dusty halo Cassini is carrying among its instruments a pair of ion-mass and ion-beam spectrometers built by Los...

  17. Indoor airPLUS Construction Specifications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specifications Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 01) EPA 402/K-13/001, February 2013 PDF icon iap_rev1.pdf More Documents & Publications Indoor airPLUS Construction Specifications Version 1 (Rev. 02)

  18. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L.; Sanchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-15

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  19. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.

    1984-01-01

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  20. Title IX: More than Just Sports

    Office of Energy Efficiency and Renewable Energy (EERE)

    Title IX isn't just about sports or the law. It's about securing a clean energy future by closing the gender gap in math and science.

  1. Live from the Lab - SPORT Video | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Live from the Lab - SPORT Video Thanks to the innovation of "single particle orientation and rotation tracking" (SPORT), we now can watch the distinctive movements of drug...

  2. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  3. Energy Department Launches Better Buildings Alliance Indoor Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campaign for Commercial Buildings | Department of Energy Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings May 27, 2015 - 7:30am Addthis Today the Energy Department launched a new indoor lighting campaign to increase the use of high efficiency lighting technologies in commercial buildings. Through the Better Buildings Alliance, the Department is working

  4. Criegee intermediates in the indoor environment. New insights

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shallcross, D. E.; Taatjes, C. A.; Percival, C. J.

    2014-03-25

    Criegee intermediates are formed in the ozonolysis of alkenes and play an important role in indoor chemistry, notably as a source of OH radicals. Recent studies have shown that these Criegee intermediates react very quickly with NO2, SO2, and carbonyls, and in this study, steady-state calculations are used to inspect the potential impact of these data on indoor chemistry. It is shown that these reactions could accelerate NO3 formation and SO2 removal in the indoor environment significantly. In addition, reaction between Criegee intermediates and halogenated carbonyls could provide a significant loss process indoors, where currently one does not exist.

  5. Spatial and temporal variations in indoor environmental conditions...

    Office of Scientific and Technical Information (OSTI)

    conditions, human occupancy, and operational characteristics in a new hospital building Prev Next Title: Spatial and temporal variations in indoor environmental...

  6. Indoor airPLUS Construction Specifications Version 1 (Rev. 02...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indoor airPLUS Construction Specifications Version 1 (Rev. 02), November 2013, from the U.S. Environmental Protection Agency. PDF icon chiap.pdf More Documents & Publications ...

  7. Review of some effects of climate change on indoor environmental...

    Office of Scientific and Technical Information (OSTI)

    Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures Citation Details In-Document Search This content ...

  8. Indoor air quality & airborne disease control in healthcare facilities...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; MEDICAL ESTABLISHMENTS; INDOOR AIR POLLUTION; CONTROL SYSTEMS; DISEASES; THERMAL COMFORT; SPACE HVAC SYSTEMS Word ...

  9. Impacts of contaminant storage on indoor air quality: Model developmen...

    Office of Scientific and Technical Information (OSTI)

    of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building...

  10. Energy Savings with Acceptable Indoor Air Quality Through Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Flow Control in Residential Retrofit Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit Sealed duct penetrations. ...

  11. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  12. Indoor radon and decay products: Concentrations, causes, and control strategies

    SciTech Connect (OSTI)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-11-01

    This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

  13. NREL: Performance and Reliability R&D - Indoor Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indoor Testing Photo of a distant summer view of SERF, FTLB, and OTF/array field. Our indoor testing and R&D equipment can be found in several laboratories across the permanent NREL site, including the Outdoor Test Facility (OTF), the Field Test Laboratory Building (FTLB), and the Solar Energy Research Facility (SERF). We use an assortment of indoor equipment to test modules and systems under simulated and accelerated conditions, as well as to perform module packaging R&D. Our equipment

  14. Criegee intermediates in the indoor environment. New insights

    SciTech Connect (OSTI)

    Shallcross, D. E.; Taatjes, C. A.; Percival, C. J.

    2014-03-25

    Criegee intermediates are formed in the ozonolysis of alkenes and play an important role in indoor chemistry, notably as a source of OH radicals. Recent studies have shown that these Criegee intermediates react very quickly with NO2, SO2, and carbonyls, and in this study, steady-state calculations are used to inspect the potential impact of these data on indoor chemistry. It is shown that these reactions could accelerate NO3 formation and SO2 removal in the indoor environment significantly. In addition, reaction between Criegee intermediates and halogenated carbonyls could provide a significant loss process indoors, where currently one does not exist.

  15. Indoor Thermal Factors and Symptoms in Office Workers: Findings...

    Office of Scientific and Technical Information (OSTI)

    from the U.S. EPA BASE Study Citation Details In-Document Search Title: Indoor Thermal Factors and Symptoms in Office Workers: Findings from the U.S. EPA BASE Study You ...

  16. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect (OSTI)

    Corsi, Dr. Richard; Morandi, Dr. Maria; Siegel, Dr. Jeffrey; Hun, Diana E

    2011-01-01

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  17. Next Generation Luminaires Design Competition Announces 2014 Indoor Winners

    Broader source: Energy.gov [DOE]

    Winners in the Indoor category of the sixth annual Next Generation LuminairesTM Design Competition were announced today at The LED Show in Los Angeles. Sponsored by DOE, the Illuminating...

  18. NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 | Department of Energy

    Energy Savers [EERE]

    NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014 View this behind-the-scenes look at the 2014 NGL judging event where entries were evaluated by a panel of judges drawn from the architectural lighting community in an intensive three-step process that combined the judges' personal evaluations with objective measures of luminaire performance. View the text-alternative version Solid-State Lighting Home About the Solid-State Lighting Program Research &

  19. Single Particle Orientation and Rotational Tracking (SPORT) in biopysical studies

    SciTech Connect (OSTI)

    Gu, Yan; Ha, Ji Won; Augspurger, Ashley E.; Chen, Kuangcai; Zhu, Shaobin; Fang, Ning

    2013-08-02

    The single particle orientation and rotational tracking (SPORT) techniques have seen rapid development in the past 5 years. Recent technical advances have greatly expanded the applicability of SPORT in biophysical studies. In this feature article, we survey the current development of SPORT and discuss its potential applications in biophysics, including cellular membrane processes and intracellular transport.

  20. Exposure to formaldehyde in indoor air

    SciTech Connect (OSTI)

    Gammage, R.B. )

    1990-01-01

    Trends in formaldehyde concentrations to which residents are exposed are reviewed, as are the means for assessing these exposures. Concentrations as high as a few ppm encountered in manufactured housing during the 1970s were eliminated after the Housing and Urban Development (HUD) 1984 ruling came into effect. The pressed-wood product industry, and its trade organizations, have made concerted efforts to comply with the ruling. Moreover, they have imposed additional voluntary product standards upon themselves intended to be applicable to a range of pressed-wood products wider than that defined in the HUD standard. Quarterly product testing on arbitrarily selected products shows a general lowering of emission rates with only a few percent of products now being above the HUD level. Measurement of ambient indoor levels of formaldehyde has been largely replaced by testing to assure conformance to product standards. The lower-emitting products on the market, if used in mobile home construction and furnishing, will expectantly produce formaldehyde levels not exceeding 0.1 ppm, except under conditions of unusually high temperature and humidity. Recent studies implicate household dust as a significant carrier of bound formaldehyde. In a few instances, old urea-formaldehyde cavity wall insulation has become friable and particles have blown into living areas. Future health assessments might need to consider this additional pathway of potential exposure.

  1. Indoor airPLUS Version 1 (Rev. 01) Verification Checklist | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Version 1 (Rev. 01) Verification Checklist Indoor airPLUS Version 1 (Rev. 01) Verification Checklist The Rev. 01 checklist has been modified to reflect only the additional Indoor airPLUS requirements and their corresponding section numbers that must be met after completing the ENERGY STAR checklists. PDF icon iap_verification_checklist_rev_1.pdf More Documents & Publications Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (R

  2. DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Ventilation and Filtration Strategies with Indoor airPLUS DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS Watch the video or view the presentation slides below The Indoor airPLUS qualification, a prerequisite for Zero Energy Ready Homes, offers an important platform to improve the indoor air quality (IAQ) in high-performance homes. A critical aspect of improving both energy efficiency and IAQ is the proper design and installation of HVAC

  3. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect (OSTI)

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  4. Indoor airPLUS Construction Specifications Version 1 (Rev. 02) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Specifications Version 1 (Rev. 02) Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Indoor airPLUS Construction Specifications Version 1 (Rev. 02), November 2013, from the U.S. Environmental Protection Agency. PDF icon ch_iap.pdf More Documents & Publications Indoor airPLUS Construction Specifications

  5. Investigation of key parameters influencing the efficient photocatalytic oxidation of indoor volatile organic compounds (VOCs)

    SciTech Connect (OSTI)

    Quici, Natalia; Kibanova, Daria; Vera, Maria Laura; Choi, Hyeok; Dionysiou, Dionysios D.; Litter, Marta I.; Cervini-Silva, Javiera; Hodgson, Alfred T.; Destaillats, Hugo; Destaillats, Hugo

    2008-06-01

    Photocatalytic oxidation of indoor VOCs has the potential to eliminate pollutants from indoor environments, thus effectively improving and/or maintaining indoor air quality while reducing ventilation energy costs. Design and operation of UV photocatalytic oxidation (UVPCO) air cleaners requires optimization of various parameters to achieve highest pollutant removal efficiencies while avoiding the formation of harmful secondary byproducts and maximizing catalyst lifetime.

  6. Cheap Fixes for Beating the Heat Indoors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cheap Fixes for Beating the Heat Indoors Cheap Fixes for Beating the Heat Indoors July 25, 2013 - 11:20am Addthis Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Instead of turning on the air

  7. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  8. Indoor Environmental Quality Benefits of Apartment Energy Retrofits

    SciTech Connect (OSTI)

    Noris, Federico; Adamkiewicz, Gary; Delp, William W.; Hotchi, Toshifumi; Russell, Marion; Singer, Brett C.; Spears, Michael; Vermeer, Kimberly; Fisk, William J.

    2013-06-01

    Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

  9. The Airborne Metagenome in an Indoor Urban Environment

    SciTech Connect (OSTI)

    Tringe, Susannah; Zhang, Tao; Liu, Xuguo; Yu, Yiting; Lee, Wah Heng; Yap, Jennifer; Yao, Fei; Suan, Sim Tiow; Ing, Seah Keng; Haynes, Matthew; Rohwer, Forest; Wei, Chia Lin; Tan, Patrick; Bristow, James; Rubin, Edward M.; Ruan, Yijun

    2008-02-12

    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.

  10. DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Text Version) | Department of Energy ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS (Text Version) DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS (Text Version) Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014. Watch the presentation. GoToWebinar voice: The broadcast is now starting. All attendees are in listen-only mode. Lindsay

  11. Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate CO2 ... Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States ...

  12. Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish...

    Office of Scientific and Technical Information (OSTI)

    Decision Making Performance Citation Details In-Document Search Title: Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish Decision Making Performance You are ...

  13. EIS-0127: New Energy-Efficient Homes Programs, Assessing Indoor Air Quality Options

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore whether different building techniques will control indoor air quality and still maintain cost-effective energy savings.

  14. Using biomarkers to identify traumatic brain injury for soldiers, sports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    figures Using biomarkers to identify traumatic brain injury for soldiers, sports figures Using biomarkers to identify traumatic brain injury for soldiers, sports figures A new detection approach originally developed for tuberculosis diagnostics is being adapted as a tool for determining traumatic brain injury April 28, 2015 The LANL and SMT collaborators (left to right): Donald Shields, Aaron Anderson, Paul Smith, Nicholas Hengartner, Dr. Donald Becker, Harshini Mukundan (co-PI), Laurie

  15. Indoor air quality study of forty east Tennessee homes

    SciTech Connect (OSTI)

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Hingerty, B.E.; Schuresko, D.D.; Parzyck, D.C.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.

    1984-12-01

    Over a one-year period, measurements of indoor air pollutants (CO/sub x/, NO/sub x/, formaldehyde, volatile organics, particulates, and radon) were made in 40 homes in East Tennessee. The houses were of various ages with different types of insulation and heating. Over one-half of the houses exceeded the ASHRAE indoor ceiling guideline of 0.1 ppM for formaldehyde on at least one occasion. Over the duration of the study, older houses averaged 0.04 ppM of formaldehyde while houses less than 5 years old averaged 0.08 ppM (P < 0.01). The highest concentration of formaldehyde measured was 0.4 ppM in a new home. Diurnal and seasonal fluctuations in levels of formaldehyde in some homes were as much as twofold and tenfold, respectively. The highest levels of formaldehyde were usually recorded during summer months. The concentration in indoor air of various organics was at least tenfold higher than in outdoor air. Carbon monoxide and nitrgen oxides were usually <2 and <0.02 ppM, respectively, except when gas stoves or kerosene space heaters were operating, or when a car was running in the garage. In 30% of the houses, the annual indoor guideline for radon, 4 pCi/L, was exceeded. The mean radon level in houses built on the ridgelines was 4.4 pCi/L, while houses located in the valleys had a mean level of 1.7 pCi/L (P < 0.01). The factor having the most impact on infiltration was operation of the central duct fan of the heating, ventilation, and air conditioning system. The mean rate of air exchange increased from 0.39 to 0.74 h/sup -1/ when the duct fan was operated (measurements prior to December 1982). This report presents the study design and implementation, describes the monitoring protocols, and provides a complete set of the data collected during the project. 25 references, 29 figures, 42 tables.

  16. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect (OSTI)

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  17. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    SciTech Connect (OSTI)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  18. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  19. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  20. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier ...

  1. Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deisel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Deisel ... More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle ...

  2. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 2003 DEER ... More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle ...

  3. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall.

  4. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  5. DOE Publishes CALiPER Snapshot Report on Indoor LED Luminaires

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released a Snapshot Report on indoor LED luminaires, which utilizes the LED Lighting Facts® program's extensive product database to help industry...

  6. Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Is CO2 an Indoor Pollutant? Direct Effects of Low to Moderate CO2 ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  7. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise Residential Buildings - Building America Top Innovation | Department of Energy ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation "Build tight, ventilate right" is a universal mantra of high performance home designers and scientists. Tight construction is

  8. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOE Patents [OSTI]

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  9. Energy and indoor environmental quality in relocatable classrooms

    SciTech Connect (OSTI)

    Apte, Michael; Hodgson, Alfred; Shendell, Derek; Dibartolomeo, Dennis; Hochi, Toshifumi; Kumar, Satish; Lee, Seung-Min; Liff, Shawna; Rainer, Leo; Schmidt, Richard; Sullivan, Douglas; Diamond, Richard; Fisk, William

    2002-02-01

    Relocatable classrooms (RCs) are commonly utilized by school districts with changing demographics and enrollment sizes. Four energy-efficient RCs were designed and constructed for this study to demonstrate technologies that simultaneously attempt to improve energy efficiency and indoor environmental quality (IEQ). Two were installed at each of two school districts, and energy use and IEQ parameters were monitored during occupancy. Two (one per school) were finished with materials selected for reduced emissions of toxic and odorous volatile organic compounds (VOCs). Each RC had two HVAC systems, alternated weekly, consisting of a standard heat-pump system and an indirect-direct evaporative cooling (IDEC) system with gas-fired hydronic heating. The hypothesized advantages of the IDEC include continuous outside air ventilation at {ge}7.5 L s{sup -1} per person, {approx}70% less cooling energy and efficient particle filtration. Measurements include: carbon dioxide, particles, VOCs, temperature, humidity, thermal comfort, noise, meteorology, and energy use. Preliminary IEQ monitoring results are reported.

  10. Indoor nitrogen dioxide in five Chattangooga, Tennessee public housing developments

    SciTech Connect (OSTI)

    Parkhurst, W.J.; Harper, J.P. ); Spengler, J.D.; Fraumeni, L.P.; Majahad, A.M. ); Cropp, J.W. )

    1988-01-01

    This report summarizes an indoor nitrogen dioxide (NO{sub 2}) sampling study conducted during January through March of 1987 in five Chattanooga public housing developments. The origins of this study date to the summer of 1983 when the Piney Woods Community Organization (a citizens action group) expressed concern about toxic industrial air pollution and the effects it might have on their community. In response to these concerns, the Chattanooga-Hamilton County Air Pollution Control Bureau (Bureau) requested assistance from the Tennessee Department of Health and Environment (TDHE) in conducting a community health survey and assistance from the Tennessee Valley Authority (TVA) in conducting a community air quality measurement program. The TDHE community health study did not find any significant differences between the mortality statistics for the Piney Woods community and a demographically similar control group. However, a health survey revealed that Piney Woods residents did not have a statistically significant higher self-reported prevalence of cough, wheezing, phlegm, breathlessness, colds, and respiratory illness.

  11. Numerical simulation of solar heat absorption within indoor space by means of composite grid method

    SciTech Connect (OSTI)

    Omori, Toshiaki; Murakami, Shuzo; Kato, Shinsuke

    1997-12-31

    This paper describes the method for numerical simulation of solar radiation entering indoor spaces through fenestration. The proposed method can systematically deal with the interception of sunlight by buildings in the outdoor space and obstacles in the indoor space by tracing a large number of particles directed toward the sun. Configuration factors from the fenestration to the sky are also three-dimensionally treated by accounting for outdoor geometries. Distribution of the solar heat absorption in the indoor space is calculated by assuming radiation equilibrium. After the solar heat absorption analysis is carried out, heat transfer analysis in the space is conducted taking account of longwave radiation, convective heat transfer, thermal conduction, and cooling/heating by air conditioning. Then, the indoor thermal environment is evaluated using the resulting temperature distribution of air and indoor surfaces. To evaluate the applicability of these procedures, the thermal environment in a model hall with large glass windows and an overhang is predicted. The analyzed hall is assumed to be located near a tall building.

  12. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  13. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  14. I/O values for determination of the origin of some indoor organic pollutants

    SciTech Connect (OSTI)

    Otson, R.; Zhu, J.

    1997-12-31

    To reduce human health risks resulting from exposure to toxic chemicals, it is important to determine the origin of such substances. The ratio (I/O) of indoor to outdoor concentrations of selected airborne vapor phase organic compounds (VPOC) was used to estimate the contribution of indoor sources to levels of the compounds in the air of 44 homes selected randomly in the Greater Toronto Area (GTA). Average I/O values for all of the homes were greater 1.5 for 10 of the 20 detected target compounds, and it could be concluded that indoor VPOC sources had a greater impact on indoor air quality than outdoor air in these instances. A significant finding, which aptly demonstrates the importance of indoor sources and pollution, was the overall I/O value of 5.2 for the 44 representative GTA homes. Possible indoor sources for most of the 10 compounds could be identified, based on information collected by means of a questionnaire, as well as from the scientific literature. However, possible sources for some compounds could not be determined as readily, probably because of the presence of multiple sources, and sources which had not been previously noted, such as foods and beverages. The sensitivity of I/O values to various factors (e.g., source strength, air exchange rates, precision of measurements, unanticipated sources), and the reliability of determining the origin of pollutants by use of I/O values alone were examined, with some examples. If used judiciously, the I/O value can be a useful tool for IAQ investigations.

  15. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    SciTech Connect (OSTI)

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  16. Validation of a zero-equation turbulence model for complex indoor airflow simulation

    SciTech Connect (OSTI)

    Srebric, J.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    The design of an indoor environment requires a tool that can quickly predict the three-dimensional distributions of air velocity, temperature, and contaminant concentrations in the room on a desktop computer. This investigation has tested a zero-equation turbulence model for the prediction of the indoor environment in an office with displacement ventilation, with a heater and infiltration and with forced convection and a partition wall. The computed air velocity and temperature distributions agree well with the measured data. The computing time for each case is less than seven minutes on a PC Pentium II, 350 MHz.

  17. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect (OSTI)

    Englemann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  18. Energy Department Announces Indoor Lighting Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s efforts to reduce energy waste in U.S. buildings and help save Americans money by saving energy, the Energy Department today announced the winners of the sixth annual Next Generation LuminairesTM (NGL) design competition for indoor lighting at the LED Show in Los Angeles.

  19. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  20. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect (OSTI)

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  1. National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity - A Field Investigation

    SciTech Connect (OSTI)

    Pigg, Scott

    2014-09-01

    The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP).

  2. Very low temperature radiant heating/cooling indoor end system for efficient use of renewable energies

    SciTech Connect (OSTI)

    Ren, Jianbo; Wang, Yiping; Wang, Congrong; Xiong, Weicheng; Zhu, Li

    2010-06-15

    Solar or solar-assisted space heating systems are becoming more and more popular. The solar energy utilization efficiency is high when the collector is coupled with indoor radiant heating suppliers, since in principle, lower supply temperature means lower demand temperature and then the system heat loss is less. A new type radiant end system is put forward for even lower supply temperature compared to the conventional radiant floor heating systems. A three dimensional model was established to investigate its energy supply capacities. Simulation results show that 50 W per meter length tube can be achieved with the medium temperature of 30 C for heating and 15 C for cooling. The predicted results agree well with the actual data from a demonstration building. Furthermore, it is demonstrated that a supply temperature of 22 C in winter and of 17 C in summer already met the indoor requirements. The new end system has good prospects for effective use of local renewable resources. (author)

  3. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    SciTech Connect (OSTI)

    Less, Brennan; Mullen, Nasim; Singer, Brett; Walker, Iain

    2015-07-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California.

  4. Indoor risk factors for cough and their relation to wheeze and sensitization in Chilean young adults

    SciTech Connect (OSTI)

    Potts, J.F.; Rona, R.J.; Oyarzun, M.J.; Amigo, H.; Bustos, P.

    2008-04-15

    We assessed the effects of indoor risk factors, including smoking, on different types of cough and on cough and wheeze in combination. Our sample was composed of 1232 men and women residing in a semi-rural area of Chile. We used a standardized questionnaire, sensitization to 8 allergens, and bronchial hyperresponsiveness to methacholine to assess cough and wheeze characteristics. Information was gathered on dampness, mold, ventilation, heating, housing quality, smoking, and environmental tobacco smoke exposure. Most exposures were associated with cough alone or cough in combination with wheeze. Smoking, past smoking, and environmental tobacco smoke exposure were strongly associated with dry cough and wheeze. The use of coal for heating was associated with dry cough. Leaks, mold, and lack of kitchen ventilation were associated with cough and wheeze. Nocturnal cough and productive cough were associated with specific types of sensitization, but dry cough was not. Productive cough was associated with hyperresponsiveness to methacholine. Several different types of indoor exposures, including environmental tobacco smoke exposure, are important contributors to morbidity associated with cough and wheeze. A vigorous preventive strategy designed to lower exposures to indoor risk factors would lower rates of respiratory morbidity.

  5. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children

    SciTech Connect (OSTI)

    Neas, L.M.; Dockery, D.W.; Ware, J.H.; Spengler, J.D.; Speizer, F.E.; Ferris, B.G. Jr. )

    1991-07-15

    The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in the household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.

  6. Respiratory health effects of the indoor environment in a population of Dutch children

    SciTech Connect (OSTI)

    Dijkstra, L.; Houthuijs, D.; Brunekreef, B.; Akkerman, I.; Boleij, J.S. )

    1990-11-01

    The effect of indoor exposure to nitrogen dioxide on respiratory health was studied over a period of 2 yr in a population of nonsmoking Dutch children 6 to 12 yr of age. Lung function was measured at the schools, and information on respiratory symptoms was collected from a self-administered questionnaire completed by the parents of the children. Nitrogen dioxide was measured in the homes of all children with Palmes' diffusion tubes. In addition, information on smoking and dampness in the home was collected by questionnaire. There was no relationship between exposure to nitrogen dioxide in the home and respiratory symptoms. Respiratory symptoms were found to be associated with exposure to tobacco smoke and home dampness. There was a weak, negative association between maximal midexpiratory flow (MMEF) and exposure to nitrogen dioxide. FEV1, peak expiratory flow, and MMEF were all negatively associated with exposure to tobacco smoke. Home dampness was not associated with pulmonary function. Lung function growth, measured over a period of 2 yr, was not consistently associated with any of the indoor exposure variables. The development of respiratory symptoms over time was not associated with indoor exposure to nitrogen dioxide. There was a significant association between exposure to environmental tobacco smoke in the home and the development of wheeze. There was also a significant association between home dampness and the development of cough.

  7. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier II Bin 5 Urea SCR and DPF System for Tier 2 Diesel Light-Duty ...

  8. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    SciTech Connect (OSTI)

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wall coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple chemical sensitivity versus bioaerosols (aerosolized microbes), or the contribution of the microorganisms to the chemical sensitivities, is not yet understood. If the inhabitants of a building exhibit similar symptoms of a clearly defined disease with a nature and time of onset that can be related to building occupancy, the disease is generally referred to as ''building-related illness.'' Once the SBS has been allowed to elevate to this level, buildings are typically evacuated and the costs associated with disruption of the building occupants, identification of the source of the problem, and eventual remediation can be significant. Understanding the primary causes of IAQ problems and how controllable factors--proper HVAC system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert the problems may help all building owners, operators, and occupants to be more productive (Arens and Baughman 1996). This paper provides a comprehensive summary of IAQ research that has been conducted in various types of facilities. However, it focuses primarily on school facilities because, for numerous reasons that will become evident, they are far more susceptible to developing IAQ problems than most other types of facilities; and the occupants, children, are more significantly affected than adults (EPA 1998).

  9. Protocol for Maximizing Energy Savings and Indoor Environmental Quality Improvements when Retrofitting Apartments

    SciTech Connect (OSTI)

    Noris, Federico; Delp, William W.; Vermeer, Kimberly; Adamkiewicz, Gary; Singer, Brett C.; Fis, William J.

    2012-06-18

    The current focus on building energy retrofit provides an opportunity to simultaneously improve indoor environmental quality (IEQ). Toward this end, we developed a protocol for selecting packages of retrofits that both save energy and improve IEQ in apartments. The protocol specifies the methodology for selecting retrofits from a candidate list while addressing expected energy savings, IEQ impacts, and costs in an integrated manner. Interviews, inspections and measurements are specified to collect the needed input information. The protocol was applied to 17 apartments in three buildings in two different climates within California. Diagnostic measurements and surveys conducted before and after retrofit implementation indicate enhanced apartment performance.

  10. NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings

    SciTech Connect (OSTI)

    Wallingford, K.M.

    1987-01-01

    A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

  11. Protocol for maximizing energy savings and indoor environmental quality improvements when retrofitting apartments

    SciTech Connect (OSTI)

    Noris, Federico; Delp, William W.; Vermeer, Kimberly; Adamkiewicz, Gary; Singer, Brett C.; Fisk, William J.

    2013-06-01

    The current focus on building energy retrofit provides an opportunity to simultaneously improve indoor environmental quality (IEQ). Toward this end, we developed a protocol for selecting packages of retrofits that both save energy and improve IEQ in apartments. The protocol specifies the methodology for selecting retrofits from a candidate list while addressing expected energy savings, IEQ impacts, and costs in an integrated manner. Interviews, inspections and measurements are specified to collect the needed input information. The protocol was applied to 17 apartments in three buildings in two different climates within California. Diagnostic measurements and surveys conducted before and after retrofit implementation indicate enhanced apartment performance.

  12. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building

    SciTech Connect (OSTI)

    Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent

    2015-03-02

    The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogate measures for human occupancy and activity in the patient rooms using both indoor air CO₂ concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10⁶ data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections.

  13. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent

    2015-03-02

    The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogatemore » measures for human occupancy and activity in the patient rooms using both indoor air CO₂ concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10⁶ data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections.« less

  14. An Analysis of the Impact of Sport Utility Vehicles in the United States

    SciTech Connect (OSTI)

    Davis, S.C.; Truett, L.F.

    2000-08-01

    It may be labeled sport utility vehicle, SUV, sport-ute, suburban assault vehicle, or a friend of OPEC (Organization for Petroleum Exporting Countries). It has been the subject of comics, the object of high-finance marketing ploys, and the theme of Dateline. Whatever the label or the occasion, this vehicle is in great demand. The popularity of sport utility vehicles (SUVs) has increased dramatically since the late 1970s, and SUVs are currently the fastest growing segment of the motor vehicle industry. Hoping to gain market share due to the popularity of the expanding SUV market, more and more manufacturers are adding SUVs to their vehicle lineup. One purpose of this study is to analyze the world of the SUV to determine why this vehicle has seen such a rapid increase in popularity. Another purpose is to examine the impact of SUVs on energy consumption, emissions, and highway safety.

  15. Effect of residential air-to-air heat and moisture exchangers on indoor humidity

    SciTech Connect (OSTI)

    Barringer, C.G.; McGugan, C.A. )

    1989-01-01

    A project was undertaken to develop guidelines for the selection of residential heat and moisture recovery ventilation systems (HRVs) in order to maintain an acceptable indoor humidity for various climatic conditions. These guidelines were developed from reviews on ventilation requirements, HRV performance specifications, and from computer modeling. Space conditions within three house/occupancy models for several types of HRV were simulated for three climatic conditions (Lake Charles, LA; Seattle, WA; and Winnipeg, MB) in order to determine the impact of the HRVs on indoor relative humidity and space-conditioning loads. Results show that when reduction of cooling cost is the main consideration, exchangers with moisture recovery are preferable to sensible HRVs. For reduction of heating costs, moisture recovery should be done for ventilation rates greater than about 15 L/s and average winter temperatures less than about (minus) 10{degrees}C if internal moisture generation rates are low. For houses with higher ventilation rates and colder average winter temperatures, exchangers with moisture recovery should be used.

  16. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect (OSTI)

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  17. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect (OSTI)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  18. Technology Solutions Case Study: Combustion Safety for Appliances Using Indoor Air

    SciTech Connect (OSTI)

    2014-05-01

    This case study describes how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  19. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  20. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect (OSTI)

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  1. Study on the influence of CR-39 detector size on radon progeny detection in indoor environments

    SciTech Connect (OSTI)

    Pereira, L. A.; Hadler, J. C.; Lixandro F, A. L.; Guedes, S.; Takizawa, R. H.

    2014-11-11

    It is well known that radon daughters up to {sup 214}Po are the real contaminants to be considered in case of indoor radon contamination. Assemblies consisting of 6 circular bare sheets of CR-39, a nuclear track detector, with radius varying from 0.15 to 1.2 cm were exposed far from any material surface for periods of approximately 6 months in 13 different indoor rooms (7 workplaces and 6 dwellings), where ventilation was moderate or poor. It was observed that track density was as greater as smaller was the detector radius. Track density data were fitted using an equation deduced based on the assumption that the behavior of radon and its progeny in the air was described by Fick's Law, i.e., when the main mechanism of transport of radon progeny in the air is diffusion. As many people spend great part of their time in closed or poorly ventilated environments, the confirmation they present equilibrium between radon and its progeny is an interesting start for dosimetric calculations concerning this contamination.

  2. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    2015-10-01

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are compared to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.

  3. Building America Technology Solutions for New and Existing Homes: Combustion Safety Using Appliances for Indoor Air (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this case study, the Partnership for Advanced Residential Retrofit team provides guidance on how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings.

  4. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  5. A crossover design study to evaluate the effectiveness of appliance inspection and servicing for lowering indoor nitrogen dioxide concentrations

    SciTech Connect (OSTI)

    Colome, S.D. ); Billick, I.H. ); Baker, P.E.; Beals, S.A.; Rubio, S.A.; Cunningham, S.J. ); Wilson, A.L. )

    1988-01-01

    Some researchers have suggested that natural gas appliances are significant contributors to indoor air pollution. Indoor unvented combustion appliances, such as gas-fired ranges, unvented space heaters, and portable kerosene space heaters, have been associated with a wide variety of pollutants, including carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), sulfur dioxide (SO{sub 2}), formaldehyde (HCHO), and respirable particles. Previous indoor air quality studies have demonstrated that indoor NO{sub 2} concentrations often exceed outdoor ambient levels when gas- burning appliances are used. Cooking with gas has been the focus of many of these studies, although other unvented appliances, such as space-heaters, have also been associated with elevated NO{sub 2} concentrations. Some epidemiologic studies of exposure to NO{sub 2} in homes with gas ranges have indicated a higher prevalence of respiratory symptoms and illness. However, other studies contradicted these findings and failed to show any significant effects associated with gas cooking.

  6. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect (OSTI)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  7. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  8. Health and productivity gains from better indoor environments and their implications for the U.S. Department of Energy

    SciTech Connect (OSTI)

    Fisk, William J.

    2000-10-01

    A substantial portion of the US population suffers frequently from communicable respiratory illnesses, allergy and asthma symptoms, and sick building syndrome symptoms. We now have increasingly strong evidence that changes in building design, operation, and maintenance can significantly reduce these illnesses. Decreasing the prevalence or severity of these health effects would lead to lower health care costs, reduced sick leave, and shorter periods of illness-impaired work performance, resulting in annual economic benefits for the US in the tens of billions of dollars. Increasing the awareness of these potential health and economic gains, combined with other factors, could help bring about a shift in the way we design, construct, operate, and occupy buildings. The current goal of providing marginally adequate indoor environments could be replaced by the goal of providing indoor environments that maximize the health, satisfaction, and performance of building occupants. Through research and technology transfer, DOE and its contractors are well positioned to help stimulate this shift in practice and, consequently, improve the health and economic well-being of the US population. Additionally, DOE's energy-efficiency interests would be best served by a program that prepares for the potential shift, specifically by identifying and promoting the most energy-efficient methods of improving the indoor environment. The associated research and technology transfer topics of particular relevance to DOE are identified and discussed.

  9. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  10. Towards improved characterization of high-risk releases using heterogeneous indoor sensor systems

    SciTech Connect (OSTI)

    Sreedharan, Priya; Sohn, Michael D.; Nazaroff, William W.; J. Gadgil, Ashok

    2010-06-30

    The sudden release of toxic contaminants that reach indoor spaces can be hazardous to building occupants. For an acutely toxic contaminant, the speed of the emergency response strongly influences the consequences to occupants. The design of a real time sensor system is made challenging both by the urgency and complex nature of the event, and by the imperfect sensors and models available to describe it. In this research, we use Bayesian modeling to combine information from multiple types of sensors to improve the characterization of a release. We discuss conceptual and algorithmic considerations for selecting and fusing information from disparate sensors. To explore system performance, we use both real tracer gas data from experiments in a three story building, along with synthetic data, including information from door position sensors. The added information from door position sensors is found to be useful for many scenarios, but not always. We discuss the physical conditions and design factors that affect these results, such as the influence of the door positions on contaminant transport. We highlight potential benefits of multisensor data fusion, challenges in realizing those benefits, and opportunities for further improvement.

  11. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect (OSTI)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  12. Indoor Chemical Exposures: Humans' Non-respiratory Interactions with Room Air

    ScienceCinema (OSTI)

    Charles Weschler

    2010-09-01

    March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School of Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).

  13. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

  14. Indoor Measurements of Environmental Tobacco Smoke Final Report to the Tobacco Related Disease Research Program

    SciTech Connect (OSTI)

    Apte, Michael G.; Gundel, Lara A.; Dod, Raymond L.; Russell, Marion L.; Singer, Brett C.; Sohn, Michael D.; Sullivan, Douglas P.; Chang, Gee-Minn; Sextro, Richard G.

    2004-03-02

    The objective of this research project was to improve the basis for estimating environmental tobacco smoke (ETS) exposures in a variety of indoor environments. The research utilized experiments conducted in both laboratory and ''real-world'' buildings to (1) study the transport of ETS species from room to room, (2) examine the viability of using various chemical markers as tracers for ETS, and (3) to evaluate to what extent re-emission of ETS components from indoor surfaces might add to the ETS exposure estimates. A three-room environmental chamber was used to examine multi-zone transport and behavior of ETS and its tracers. One room (simulating a smoker's living room) was extensively conditioned with ETS, while a corridor and a second room (simulating a child's bedroom) remained smoking-free. A series of 5 sets of replicate experiments were conducted under different door opening and flow configurations: sealed, leaky, slightly ajar, wide open, and under forced air-flow conditions. When the doors between the rooms were slightly ajar the particles dispersed into the other rooms, eventually reaching the same concentration. The particle size distribution took the same form in each room, although the total numbers of particles in each room depended on the door configurations. The particle number size distribution moved towards somewhat larger particles as the ETS aged. We also successfully modeled the inter-room transport of ETS particles from first principles--using size fractionated particle emission factors, predicted deposition rates, and thermal temperature gradient driven inter-room flows, This validation improved our understanding of bulk inter-room ETS particle transport. Four chemical tracers were examined: ultraviolet-absorbing particulate matter (UVPM), fluorescent particulate matter (FPM), nicotine and solanesol. Both (UVPM) and (FPM) traced the transport of ETS particles into the non-smoking areas. Nicotine, on the other hand, quickly adsorbed on unconditioned surfaces so that nicotine concentrations in these rooms remained very low, even during smoking episodes. These findings suggest that using nicotine as a tracer of ETS particle concentrations may yield misleading concentration and/or exposure estimates. The results of the solanesol analyses were compromised, apparently by exposure to light during collection (lights in the chambers were always on during the experiments). This may mean that the use of solanesol as a tracer is impractical in ''real-world'' conditions. In the final phase of the project we conducted measurements of ETS particles and tracers in three residences occupied by smokers who had joined a smoking cessation program. As a pilot study, its objective was to improve our understanding of how ETS aerosols are transported in a small number of homes (and thus, whether limiting smoking to certain areas has an effect on ETS exposures in other parts of the building). As with the chamber studies, we examined whether measurements of various chemical tracers, such as nicotine, solanesol, FPM and UVPM, could be used to accurately predict ETS concentrations and potential exposures in ''real-world'' settings, as has been suggested by several authors. The ultimate goal of these efforts, and a future larger multiple house study, is to improve the basis for estimating ETS exposures to the general public. Because we only studied three houses no firm conclusions can be developed from our data. However, the results for the ETS tracers are essentially the same as those for the chamber experiments. The use of nicotine was problematic as a marker for ETS exposure. In the smoking areas of the homes, nicotine appeared to be a suitable indicator; however in the non-smoking regions, nicotine behavior was very inconsistent. The other tracers, UVPM and FPM, provided a better basis for estimating ETS exposures in the ''real world''. The use of solanesol was compromised--as it had been in the chamber experiments.

  15. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  16. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  17. Indoor air quality in 24 California residences designed as high-performance homes

    SciTech Connect (OSTI)

    Less, Brennan; Mullen, Nasim; Singer, Brett; Walker, Iain

    2015-01-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California. Although the mechanically vented homes were six times as airtight as non-mechanically ventilated homes (medians of 1.1 and 6.1 ACH50, n=11 and n=8, respectively), their use of mechanical ventilation systems and possibly window operation meant their median air exchange rates were almost the same (0.30 versus 0.32 hr-1, n=8 and n=8, respectively). Pollutant levels were also similar in vented and unvented homes. In addition, these similarities were achieved despite numerous observed faults in complex mechanical ventilation systems. More rigorous commissioning is still recommended. Cooking exhaust systems were used inconsistently and several suffered from design flaws. Failure to follow best practices led to IAQ problems in some cases. Ambient nitrogen dioxide standards were exceeded or nearly so in four homes that either used gas ranges with standing pilots, or in Passive House-style homes that used gas cooking burners without venting range hoods. Homes without active particle filtration had particle count concentrations approximately double those in homes with enhanced filtration. The majority of homes reported using low-emitting materials; consistent with this, formaldehyde levels were approximately half those in conventional, new CA homes built before 2008. Emissions of ultrafine particles (with diameters <100 nm) were dramatically lower on induction electric cooktops, compared with either gas or resistance electric models. These results indicate that high performance homes can achieve acceptable and even exceptional IAQ by providing adequate general mechanical ventilation, using low-emitting materials, providing mechanical particle filtration, incorporating well-designed exhaust ventilation for kitchens and bathrooms, and educating occupants to use the kitchen and bath ventilation.

  18. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  19. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    SciTech Connect (OSTI)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

    2008-04-04

    An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

  20. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect (OSTI)

    Drescher, A.C.

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  1. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect (OSTI)

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  2. Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems

    SciTech Connect (OSTI)

    Cummings, J.

    2014-03-01

    This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

  3. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect (OSTI)

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof assemblies against moisture. The key variables investigated were the leakage area from the attic to the outside, leakage area from the attic to the interior, leakage area from the interior to the outside, supply duct leakage in the attic, and interior moisture generation. These investigations are described in this report.

  4. Work & Life at Bangalore | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The center offers a plethora of activities for employees, from indoor and outdoor sports tournaments to a fully equipped gym, sauna and aerobics and yoga studio. JFWTC is...

  5. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect (OSTI)

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  6. Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments

    SciTech Connect (OSTI)

    Moissl-Eichinger, Christine; Auerbach, Anna K.; Probst, Alexander J.; Mahnert, Alexander; Tom, Lauren; Piceno, Yvette; Andersen, Gary L.; Venkateswaran, Kasthuri; Rettberg, Petra; Barczyk, Simon; Pukall, Rüdiger; Berg, Gabriele

    2015-03-17

    Space agencies maintain highly controlled cleanrooms to ensure the demands of planetary protection. To study potential effects of microbiome control, we analyzed microbial communities in two particulate-controlled cleanrooms (ISO 5 and ISO 8) and two vicinal uncontrolled areas (office, changing room) by cultivation and 16S rRNA gene amplicon analysis (cloning, pyrotagsequencing, and PhyloChip G3 analysis). Maintenance procedures affected the microbiome on total abundance and microbial community structure concerning richness, diversity and relative abundance of certain taxa. Cleanroom areas were found to be mainly predominated by potentially human-associated bacteria; archaeal signatures were detected in every area. Results indicate that microorganisms were mainly spread from the changing room (68%) into the cleanrooms, potentially carried along with human activity. The numbers of colony forming units were reduced by up to ~400 fold from the uncontrolled areas towards the ISO 5 cleanroom, accompanied with a reduction of the living portion of microorganisms from 45% (changing area) to 1% of total 16S rRNA gene signatures as revealed via propidium monoazide treatment of the samples. Our results demonstrate the strong effects of cleanroom maintenance on microbial communities in indoor environments and can be used to improve the design and operation of biologically controlled cleanrooms.

  7. Indoor carbon dioxide concentrations and sick building syndrome symptoms in the BASE study revisited: Analyses of the 100 building dataset

    SciTech Connect (OSTI)

    Erdmann, Christine A.; Steiner, Kate C.; Apte, Michael G.

    2002-02-01

    In previously published analyses of the 41-building 1994-1996 USEPA Building Assessment Survey and Evaluation (BASE) dataset, higher workday time-averaged indoor minus outdoor CO{sub 2} concentrations (dCO{sub 2}) were associated with increased prevalence of certain mucous membrane and lower respiratory sick building syndrome (SBS) symptoms, even at peak dCO{sub 2} concentrations below 1,000 ppm. For this paper, similar analyses were performed using the larger 100-building 1994-1998 BASE dataset. Multivariate logistic regression analyses quantified the associations between dCO{sub 2} and the SBS symptoms, adjusting for age, sex, smoking status, presence of carpet in workspace, thermal exposure, relative humidity, and a marker for entrained automobile exhaust. Adjusted dCO{sub 2} prevalence odds ratios for sore throat and wheeze were 1.17 and 1.20 per 100-ppm increase in dCO{sub 2} (p <0.05), respectively. These new analyses generally support our prior findings. Regional differences in climate, building design, and operation may account for some of the differences observed in analyses of the two datasets.

  8. AN ANALYSIS OF THE IMPACT OF SPORTS UTILITY VEHICLES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-08-16

    During the 1990s, sport utility vehicles (SUVs) became the fastest growing segment of the auto industry, especially those in the medium-size category. In 1999, SUV sales reached almost 19% of the total light vehicle market and the mix of SUVs on the road, as measured by registration data, was about 8.7%. This immense popularity has been called by some a passing fad--vehicle purchases based on the SUV ''image''. But the continued yearly increases in SUV sales seem to indicate a more permanent trend. Additional explanations for SUV popularity include the general economic well being in the United States, a perception of safety, and ''utility''. Generally larger and heavier than the typical automobile, SUVs require more fuel per mile to operate and produce greater amounts of pollutants. They are also driven further annually than are automobiles of the same vintage, a fact that exacerbates the fuel-use and emission problems. Although buyers believe that SUVs are safer than automobiles which they are in some cases, SUVs are more prone to roll-overs than are automobiles. In addition, SUVs, with their higher bumpers and greater weight, may be a threat to other vehicles on the highway, especially in side-impact crashes. With sales projected to grow to over 3 million units per year beginning in 2001, SUVs show no sign of decreasing in popularity. These vehicles are used primarily for general mobility, rather than off-road activities. An emphasis on better fuel economy and improved emissions control could address environmental and oil dependency concerns. In fact, recently, two vehicle manufacturers announced intentions of improving the fuel economy of their SUVs in the next few years. Also, tests simulating crashes involving automobiles and SUVs could provide valuable data for identifying potential safety design issues. It is clear that automobiles and SUVs will be sharing the highways for years to come.

  9. A scoping study on the costs of indoor air quality illnesses:an insurance loss reduction perspective

    SciTech Connect (OSTI)

    Chen, Allan; Vine, Edward L.

    1998-08-31

    The incidence of commercial buildings with poor indoor air quality (IAQ), and the frequency of litigation over the effects of poor IAQ is increasing. If so, these increases have ramifications for insurance carriers, which pay for many of the costs of health care and general commercial liability. However, little is known about the actual costs to insurance companies from poor IAQ in buildings. This paper reports on the results of a literature search of buildings-related, business and legal databases, and interviews with insurance and risk management representatives aimed at finding information on the direct costs to the insurance industry of poor building IAQ, as well as the costs of litigation. The literature search and discussions with insurance and risk management professionals reported in this paper turned up little specific information about the costs of IAQ-related problems to insurance companies. However, those discussions and certain articles in the insurance industry press indicate that there is a strong awareness and growing concern over the "silent crisis" of IAQ and its potential to cause large industry losses, and that a few companies are taking steps to address this issue. The source of these losses include both direct costs to insurers from paying health insurance and professional liability claims, as weIl as the cost of litigation. In spite of the lack of data on how IAQ-related health problems affect their business, the insurance industry has taken the anecdotal evidence about their reality seriously enough to alter their policies in ways that have lessened their exposure. We conclude by briefly discussing four activities that need to be addressed in the near future: (1) quantifying IAQ-related insurance costs by sector, (2) educating the insurance industry about the importance of IAQ issues, (3) examining IAQ impacts on the insurance industry in the residential sector, and (4) evaluating the relationship between IAQ improvements and their impact on energy use.

  10. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  11. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Tyler, Texas PROJECT INFORMATION Project Name: Ventilation Effectiveness Location: Tyler, TX Partners: University of Texas, TxAIRE, uttyler.edu/txaire/houses/ Building Science Corporation, buildingscience.com Building Component: Heating, ventilating, and air conditioning (HVAC), whole-building dilution ventilation Application: New and retrofit; single-family and multifamily Year Tested: 2012 Climate Zones: All PERFORMANCE

  12. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    SciTech Connect (OSTI)

    Mendell, Mark J.; Apte, Mike G.

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.

  13. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  14. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  15. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  16. Associations of indoor carbon dioxide concentrations and environmental susceptibilities with mucous membrane and lower respiratory building related symptoms in the BASE study: Analyses of the 100 building dataset

    SciTech Connect (OSTI)

    Erdmann, Christine A.; Apte, Michael G.

    2003-09-01

    Using the US EPA 100 office-building BASE Study dataset, they conducted multivariate logistic regression analyses to quantify the relationship between indoor CO{sub 2} concentrations (dCO{sub 2}) and mucous membrane (MM) and lower respiratory system (LResp) building related symptoms, adjusting for age, sex, smoking status, presence of carpet in workspace, thermal exposure, relative humidity, and a marker for entrained automobile exhaust. In addition, they tested the hypothesis that certain environmentally-mediated health conditions (e.g., allergies and asthma) confer increased susceptibility to building related symptoms within office buildings. Adjusted odds ratios (ORs) for statistically significant, dose-dependent associations (p < 0.05) for dry eyes, sore throat, nose/sinus congestion, and wheeze symptoms with 100 ppm increases in dCO{sub 2} ranged from 1.1 to 1.2. These results suggest that increases in the ventilation rates per person among typical office buildings will, on average, reduce the prevalence of several building related symptoms by up to 70%, even when these buildings meet the existing ASHRAE ventilation standards for office buildings. Building occupants with certain environmentally-mediated health conditions are more likely to experience building related symptoms than those without these conditions (statistically significant ORs ranged from 2 to 11).

  17. Evaluation of Common Angling-Induced Sources of Epithelial Damage for Popular Freshwater Sport Fish using Fluorescein

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Cooke, Steven J.

    2011-05-01

    Angling is a popular recreational activity across the globe and a large proportion of fish captured by anglers are released due to voluntary or mandatory catch-and-release practices. The handling associated with hook removal and return of the fish to their environment can cause physical damage to the epidermal layer of the fish which may affect the condition and survival of released fish. This study investigated possible sources of epithelial damage associated with several different handling methods (i.e. landing net types, interactions with different boat floor surfaces, tournament procedures) commonly used in recreational angling for two popular freshwater sport fish species, largemouth bass (Micropterus salmoides) and northern pike (Esox lucius). Epithelial damage was examined using fluorescein, a non-toxic dye, which has been shown to detect latent epithelial damage. Northern pike exhibited extensive epithelial damage after exposure to several of the induced treatments (i.e., interaction with a carpeted surface, knotted nylon net, and line rolling) but relatively little epithelial damage when exposed to others (i.e., knotless rubber nets, smooth boat surfaces, or lip gripping devices). Largemouth bass did not show significant epithelial damage for any of the treatments, with the exception of fish caught in a semi-professional live release tournament. The detection of latent injuries using fluorescein can be an important management tool as it provides visual examples of potential damage that can be caused by different handling methods. Such visualizations can be used to encourage fish friendly angler behaviour and enhance the survival and welfare of released fish. It can also be used to test new products that are intended to or claim to reduce injury to fish that are to be released. Future research should evaluate the relationship between different levels of epithelial damage and mortality across a range of environmental conditions.

  18. System for reducing heat losses from indoor swimming pools by use of automatic covers. Final report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    1996-01-01

    This final report is an account of the principal activities of Lof Energy Systems, Inc. in a two-year project funded by the Energy Related Inventions Program (ERIP) of the U.S. Department of Energy. The primary objective has been the development of a fully practical and economical system for saving energy in indoor swimming pools by use of motorized covers. The goal is wide-spread use of a fully developed product, in institutional swimming pools. Four major tasks, depicted in the accompanying Performance Schedule, have been completed, and one other has been initiated and its completion committed. Principal accomplishments have been the selection and improvement of cover materials and designs, lengthening and strengthening of reels and improvements in motorized components and their control, design and installation of pool covers in full scale demonstration and evaluation of fully developed commercial system, preparation and dissemination of manuals and reports, finalization of arrangements for Underwriters Laboratory certification of products, and final report preparation and submission. Of greatest significance has been the successful demonstration of the fully developed system and the verification and reporting by an energy consultant of the large savings resulting from pool cover use. Probably the best evidence of success of the DOE-ERIP project in advancing this invention to a commercial stage is its acceptance for sale by the Lincoln Equipment Company, a national distributor of swimming pool supplies and equipment. A copy of the relevant page in the Lincoln catalog is included in this report as Annex A. Representatives of that company now offer Tof motorized pool cover systems to their pool owner customers. In addition to the plans for securing UL certification the company expects to continue making design improvements that can increase system reliability, durability, and cost-effectiveness.

  19. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    SciTech Connect (OSTI)

    Apte, Michael G.; Mendell, Mark J.; Sohn, Michael D.; Dutton, Spencer M.; Berkeley, Pam M.; Spears, Michael

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California big box stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in Californias big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  20. Pending indoor air quality and radon abatement legislation. Hearing before the Subcommittee on Clean Air and Nuclear Regulation of the Committee on Environment and Public Works, United States Senate, One Hundred Third Congress, First Session on S. 656 and S. 657, May 25, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This hearing on pending indoor air quality and radon abatement legislation includes testimony from individuals and representatives of the following groups: Business Council on Indoor Air; American Lung Association; Consumer Federation of America; Radiation Protection Programs, NJ; School of Hygiene and Public Health, Johns Hopkins University; AFL-CIO; EPA; National Parent Teacher Association. Additional material includes statements from: American Lung Assoc.; Alliance for Radon Reduction; Alliance to Save Energy; American Industrial Hygiene Assoc.; Bowser Morner, Inc.; Building Owners and Managers Assoc. International; Chemical Specialties Manufacturers Assoc.; Council for American Private Education; National Assoc. of Home Builders; National Assoc. of Realtors; National School Boards Assoc.; Sheet Metal and Air Conditioning Contractors National Assoc.

  1. Associations of indoor carbon dioxide concentrations, VOCS, environmental susceptibilities with mucous membrane and lower respiratory sick building syndrome symptoms in the BASE study: Analyses of the 100 building dataset

    SciTech Connect (OSTI)

    Apte, M.G.; Erdmann, C.A.

    2002-10-01

    Using the 100 office-building Building Assessment Survey and Evaluation (BASE) Study dataset, we performed multivariate logistic regression analyses to quantify the associations between indoor minus outdoor CO{sub 2} (dCO{sub 2}) concentrations and mucous membrane (MM) and lower respiratory system (Lresp) Sick Building Syndrome (SBS) symptoms, adjusting for age, sex, smoking status, presence of carpet in workspace, thermal exposure, relative humidity, and a marker for entrained automobile exhaust. Using principal components analysis we identified a number of possible sources of 73 measured volatile organic compounds in the office buildings, and assessed the impact of these VOCs on the probability of presenting the SBS symptoms. Additionally we included analysis adjusting for the risks for predisposition of having SBS symptoms associated with the allergic, asthmatic, and environmentally sensitive subpopulations within the office buildings. Adjusted odds ratios (ORs) for statistically significant, dose-dependant associations (p<0.05) for dry eyes, sore throat, nose/sinus congestion, and wheeze symptoms with 100-ppm increases in dCO{sub 2} ranged from 1.1 to 1.2. These results suggest that increases in the ventilation rates per person among typical office buildings will, on average significantly reduce the prevalence of several SBS symptoms, up to 80%, even when these buildings meet the existing ASHRAE ventilation standards for office buildings. VOC sources were observed to play an role in direct association with mucous membrane and lower respiratory irritation, and possibly to be indirectly involved in indoor chemical reactions with ozone that produce irritating compounds associated with SBS symptoms. O-xylene, possibly emitted from furniture coatings was associated with shortness of breath (OR at the maximum concentration = 8, p < 0.05). The environmental sensitivities of a large subset of the office building population add to the overall risk of SBS symptoms (ORs ranging from 2 to above 11) within the buildings.

  2. Arsenic-related skin lesions and glutathione S-transferase P1 A1578G (lle105Val) polymorphism in two ethnic clans exposed to indoor combustion of high arsenic coal in one village

    SciTech Connect (OSTI)

    Lin, G.F.; Du, H.; Chen, J.G.; Lu, H.C.; Guo, W.C.; Meng, H.; Zhang, T.B.; Zhang, X.J.; Lu, D.R.; Golka, K.; Shen, J.H. [Chinese Academy of Sciences, Shanghai (China)

    2006-12-15

    A total of 2402 patients with arsenic-related skin lesions, such as hyperkeratosis, hyperpigmentation or hypopigmentation, or even skin cancer in a few villages in Southwest Guizhou Autonomous Prefecture, China represent a unique case of endemic arsenism related with indoor combustion of high arsenic coal. This study aimed to investigate the cluster of arsenism cases and the possible relevant factors including GSTP1 polymorphism in two clans of different ethnic origin living in one village for generations. Arsenism morbidity in Miao clan P was significantly lower than in the neighbouring Han clan G1 (5.9 vs. 32.7%, odds ratio (OR)=0.13, 95% confidence interval (CI): 0.06-0.27, P < 0.0001). No sex differences were confirmed inside both clans. Analyses of the environmental samples indicated that Miao clan P members were exposed to higher amounts of arsenic via inhalation and food ingestion. Hair and urine samples also proved a higher arsenic body burden in ethnic Miao individuals. No corresponding differences by sex were found. Higher frequencies of combined mutant genotype G/G1578 and A/G1578 (OR=4.72, 95% CI: 2.34-9.54, P < 0.0001) and of mutant allele G1578 (OR=3.22, 95% CI: 2.00-5.18, P < 0.0001) were detected in diagnosed arsenism patients than in non-diseased individuals. The Miao individuals showed a lower percentage of combined mutant genotypes (30.6 vs. 52.7%, OR=0.40, 95% CI: 0.19-0.84, P=0.015) as well as of mutant allele G1578 (OR=0.46, 95% CI: 0.24-0.88, P=0.017) than their Han neighbours. Conclusions Genetic predisposition influences dermal arsenism toxicity. The GSTP1 A1578G (IIe105Val) status might be a susceptibility factor for arsenic-related skin lesions.

  3. LED Lighting Facts Snapshot: Indoor Ambient Lighting

    SciTech Connect (OSTI)

    2013-04-01

    LED Lighting Facts Snapshot reports reveal how today's products really perform, drawing on analysis of verified performance data from the program's online product list.

  4. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect (OSTI)

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D.

    1990-01-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers two one-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR linearly decreased with HCHO exposure, with estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children.

  5. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect (OSTI)

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D. )

    1990-08-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers during two 1-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR decreased linearly with HCHO exposure, with the estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children. The effects in asthmatic children exposed to HCHO below 50 ppb were greater than in healthy ones. The effects in adults were less evident: decrements in PEFR due to HCHO over 40 ppb were seen only in the morning, and mainly in smokers.

  6. Procedure to Measure Indoor Lighting Energy Performance

    SciTech Connect (OSTI)

    Deru, M.; Blair, N.; Torcellini, P.

    2005-10-01

    This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

  7. Indoor Temperature and Humidity Data Collection and Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use * Temperature and humidity affect comfort, health and safety, and durability ... does data get used? o Improved simulation models and inputs Current Project Scope * ...

  8. LED Watch: Unlocking the Full Potential of Indoor Systems

    Energy Savers [EERE]

    LD+A June 2015 www.ies.org Lighting control has long held the potential to deliver significant energy sav- ings by adjusting the amount of light to the real-time needs of a particular space and its occupants. But while myriad prod- ucts for controlling light have been com- mercially available for quite some time, their deployment and resulting energy savings have been limited. SSL products are poised to be the catalyst that unlocks that potential. SSL technology offers an unprecedented ability

  9. Energy Department Announces Indoor Lighting Winners of Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The competition, sponsored by the Energy Department, the Illuminating Engineering Society of North America and the International Association of Lighting Designers, was launched in ...

  10. Indoor Thermal Factors and Symptoms in Office Workers: Findings...

    Office of Scientific and Technical Information (OSTI)

    We reexamined this relationship in data from 95 office buildings in the U.S. Environmental Protection Agency's Building Assessment Survey and Evaluation (BASE) Study. We ...

  11. Indoor Air Quality in 24 California Residences Designed as High...

    Office of Scientific and Technical Information (OSTI)

    (United States) Sponsoring Org: USDOE Office of Science (SC); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) Country of...

  12. CALiPER Snapshot Report: Indoor LED Luminaires

    SciTech Connect (OSTI)

    2014-04-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  13. The Building America Indoor Temperature and Humidity Measurement Protocol

    SciTech Connect (OSTI)

    Metzger, C.; Norton, Paul

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every four years, the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the "average occupant" in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  14. Building America Indoor Temperature and Humidity Measurement Protocol

    SciTech Connect (OSTI)

    Engebrecht-Metzger, C.; Norton, P.

    2014-02-01

    When modeling homes using simulation tools, the heating and cooling set points can have a significant impact on home energy use. Every 4 years the Energy Information Administration (EIA) Residential Energy Consumption Survey (RECS) asks homeowners about their heating and cooling set points. Unfortunately, no temperature data is measured, and most of the time, the homeowner may be guessing at this number. Even one degree Fahrenheit difference in heating set point can make a 5% difference in heating energy use! So, the survey-based RECS data cannot be used as the definitive reference for the set point for the 'average occupant' in simulations. The purpose of this document is to develop a protocol for collecting consistent data for heating/cooling set points and relative humidity so that an average set point can be determined for asset energy models in residential buildings. This document covers the decision making process for researchers to determine how many sensors should be placed in each home, where to put those sensors, and what kind of asset data should be taken while they are in the home. The authors attempted to design the protocols to maximize the value of this study and minimize the resources required to achieve that value.

  15. TEXT-ALTERNATIVE VERSION: NEXT GENERATION LUMINAIRES INDOOR JUDGING 2014

    Broader source: Energy.gov [DOE]

    Dan Blitzer, NGL Steering Committee, The Practical Lighting Workshop: Products that have been evaluated by the Next Generation Luminaires Design Competition have been vetted to a degree that no...

  16. Indoor Air Quality and Ventilation in Residential Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems...

  17. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... TD Bank Capital One Brokers Laurie McMahon, DTZ Sally Wilson, Newmark Grubb Knight Frank Greta Garner, Green Coast Realty Meade Boutwell, CBRE Randolph (Randy) Harrell, CBRE Brant ...

  18. Energy Efficient Removal of Ozone from Indoor Air

    Office of Scientific and Technical Information (OSTI)

    ... Despite the very promising results of this pilot study, additional tests should be performed before drawing final conclusions about filter performance in actual practice. The ...

  19. Indoor Air Quality and Ventilation in Residential Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 99 GENERAL AND MISCELLANEOUS Word Cloud...

  20. Spatial and temporal variations in indoor environmental conditions...

    Office of Scientific and Technical Information (OSTI)

    beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals...

  1. Energy Impacts of Energy and Indoor Environmental Quality Retrofits...

    Office of Scientific and Technical Information (OSTI)

    Monthly gas and electricity use data from a set of 13 study apartments and 20 control ... The control apartments were not retrofit. Pre-retrofit modeling indicated annual energy ...

  2. Sunrayce 93: The hottest new sport on campus. Technical report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The solar powered electric vehicle race began in Arlington, Texas on June 20, 1993 and finished 7 days later in Minneapolis, Minnesota. Thirty four teams from Universities across the United States and Puerto Rico completed the race out of thirty six entries. The race demonstrated the viability of sunlight powered vehicles as the better average daily speeds were in excess of 50 miles an hour. Even in the rain, most average speeds were in excess of 15 miles an hour. Analyzed results, photographs, and project details are included. (GHH)

  3. Green Up Your Next Movie Night! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Up Your Next Movie Night! Green Up Your Next Movie Night! February 1, 2012 - 7:30am Addthis John Chu John Chu Communications Specialist with the Office of Energy Efficiency and Renewable Energy Winter. For many of us, the season means hot chocolate, winter sports, exercise indoors, and the classic American pastime-movie night. So, if you find yourself caught in a chilly day, and are in the mood for popcorn and a good flick at home, check out the following movies that have environmental or

  4. Evaluating indoor exposure modeling alternatives for LCA: A case study in the vehicle repair industry

    SciTech Connect (OSTI)

    Demou, Evangelia; Hellweg, Stefanie; Wilson, Michael P.; Hammond, S. Katharine; McKone, Thomas E.

    2009-05-01

    We evaluated three exposure models with data obtained from measurements among workers who use"aerosol" solvent products in the vehicle repair industry and with field experiments using these products to simulate the same exposure conditions. The three exposure models were the: 1) homogeneously-mixed-one-box model, 2) multi-zone model, and 3) eddy-diffusion model. Temporally differentiated real-time breathing zone volatile organic compound (VOC) concentration measurements, integrated far-field area samples, and simulated experiments were used in estimating parameters, such as emission rates, diffusivity, and near-field dimensions. We assessed differences in model input requirements and their efficacy for predictive modeling. The One-box model was not able to resemble the temporal profile of exposure concentrations, but it performed well concerning time-weighted exposure over extended time periods. However, this model required an adjustment for spatial concentration gradients. Multi-zone models and diffusion-models may solve this problem. However, we found that the reliable use of both these models requires extensive field data to appropriately define pivotal parameters such as diffusivity or near-field dimensions. We conclude that it is difficult to apply these models for predicting VOC exposures in the workplace. However, for comparative exposure scenarios in life-cycle assessment they may be useful.

  5. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality in Low- Rise Residential Buildings - Building America Top Innovation "Build tight, ventilate right" is a universal mantra of high performance home designers and scientists. ...

  6. Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Science (SC) Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Word Cloud More ...

  7. Building America Road Map: Indoor Air Quality High-Capture Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overall Roadmap Objectives: * Standard Practice as endpoints * Manage risks ... Research & Development Market Engagement Codes & Standards DOE lead Industry lead A. High Performance ...

  8. Acute effect of indoor exposure to paint containing bis(tributyltin) oxide--Wisconsin, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-05-03

    In January 1991, a woman in Wisconsin contacted her local public health department to report that she and her two children had become ill after her landlord painted the walls and ceilings of two rooms of her apartment. Reported symptoms included a burning sensation in the nose and forehead, headache, nose bleed, cough, loss of appetite, nausea, and vomiting. The woman, who was in the third trimester of pregnancy, also complained of a persistent odor from the paint and provided an empty bottle of a paint additive used for mildew control. The label indicated that this product contained 25% bis(tributyltin) oxide (TBTO) as its only active ingredient.

  9. Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  10. Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control in Residential Retrofit

    Broader source: Energy.gov [DOE]

    Lead Performer: Gas Technology Institute—Des Plaines, IL Partners: -- University of Illinois, Urbana IL -- Midwest Energy Efficiency Alliance, Chicago IL

  11. ENERGY STAR Webinar: Energy Savings Plus Health: Indoor Air Quality Guidelines for School Building Upgrades

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR, this webinar will cover how to take a proactive approach to saving energy and money, including some best practices, procedures, policies, and key principles that facility managers need to understand to effectively protect IAQ while increasing energy efficiency. This webinar runs from 1-2:30 p.m. Eastern Standard Time.

  12. Statistical Analyses of Second Indoor Bio-Release Field Evaluation Study at Idaho National Laboratory

    SciTech Connect (OSTI)

    Amidan, Brett G.; Pulsipher, Brent A.; Matzke, Brett D.

    2009-12-17

    In September 2008 a large-scale testing operation (referred to as the INL-2 test) was performed within a two-story building (PBF-632) at the Idaho National Laboratory (INL). The report “Operational Observations on the INL-2 Experiment” defines the seven objectives for this test and discusses the results and conclusions. This is further discussed in the introduction of this report. The INL-2 test consisted of five tests (events) in which a floor (level) of the building was contaminated with the harmless biological warfare agent simulant Bg and samples were taken in most, if not all, of the rooms on the contaminated floor. After the sampling, the building was decontaminated, and the next test performed. Judgmental samples and probabilistic samples were determined and taken during each test. Vacuum, wipe, and swab samples were taken within each room. The purpose of this report is to study an additional four topics that were not within the scope of the original report. These topics are: 1) assess the quantitative assumptions about the data being normally or log-normally distributed; 2) evaluate differences and quantify the sample to sample variability within a room and across the rooms; 3) perform geostatistical types of analyses to study spatial correlations; and 4) quantify the differences observed between surface types and sampling methods for each scenario and study the consistency across the scenarios. The following four paragraphs summarize the results of each of the four additional analyses. All samples after decontamination came back negative. Because of this, it was not appropriate to determine if these clearance samples were normally distributed. As Table 1 shows, the characterization data consists of values between and inclusive of 0 and 100 CFU/cm2 (100 was the value assigned when the number is too numerous to count). The 100 values are generally much bigger than the rest of the data, causing the data to be right skewed. There are also a significant number of zeros. Using QQ plots these data characteristics show a lack of normality from the data after contamination. Normality is improved when looking at log(CFU/cm2). Variance component analysis (VCA) and analysis of variance (ANOVA) were used to estimate the amount of variance due to each source and to determine which sources of variability were statistically significant. In general, the sampling methods interacted with the across event variability and with the across room variability. For this reason, it was decided to do analyses for each sampling method, individually. The between event variability and between room variability were significant for each method, except for the between event variability for the swabs. For both the wipes and vacuums, the within room standard deviation was much larger (26.9 for wipes and 7.086 for vacuums) than the between event standard deviation (6.552 for wipes and 1.348 for vacuums) and the between room standard deviation (6.783 for wipes and 1.040 for vacuums). Swabs between room standard deviation was 0.151, while both the within room and between event standard deviations are less than 0.10 (all measurements in CFU/cm2).

  13. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contents Design Goals & Context Envelope Durability Indoor Air Quality Space Conditioning ... Durability * Indoor Air Quality * Space Conditioning * Energy Analysis * Financial ...

  14. Microsoft Word - PR-05-0213-Northern-PikeminnowSport-Reward-Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    condition-wise, is pretty good," said Eric Winther of the Washington Department of Fish and Wildlife. "Typically, lower water years are better for us as the river is not high...

  15. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect (OSTI)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  16. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect (OSTI)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  17. Participant Assisted Data Collection Methods in the California Healthy Homes Indoor Air Quality Study of 2011-13

    SciTech Connect (OSTI)

    Mullen, Nasim A.; Li, Jina; Singer, Brett C.

    2013-08-01

    From November 2011 to March 2013, air quality was measured over 6-day periods in 324 residences across California using a mail-out strategy. All interactions with study participants, from recruitment, to data collection, to communication of results, were conducted with remote communication methods including conventional mail, electronic mail, telephone and text messaging. Potential participants were reached primarily by sharing study information with community groups and organizations that directed interested individuals to complete an online screening survey. Pollutant concentrations were measured with sampling equipment that was mailed to participants' homes with deployment instructions. Residence and household characteristics and activity data were collected via two phone surveys and an activity log. A comparison of responses to survey questions completed online versus over the phone indicated that a substantial fraction of participants (roughly 20%) required a researcher's assistance to respond to basic questions about appliance characteristics. Using the printed instructions and telephone assistance from researchers, roughly 90% of participants successfully deployed and returned sampling materials accurately and on schedule. The mail-out strategy employed in this study was found to be a cost-effective means for collecting residential air quality data.

  18. Measured Cooling Season Results Relating the Impact of Mechanical Ventilation on Energy, Comfort, and Indoor Air Quality in Humid Climates

    SciTech Connect (OSTI)

    Martin, Eric; Amos, Bryan; McIlvaine, Janet; Chasar, David; Widder, Sarah H.; Fonorow, Ken

    2014-08-22

    Conference Paper for ACEEE Summer Study in Buildings discussing results to date of a project evaluating the impact of ventialtion on energy use, comfort, durability, and cost in the hot humid climate.

  19. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Stynes, J. K.

    2012-02-01

    The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantages to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.

  20. Lead Speciation in Indoor Dust: A Case Study to Assess Old Paint Contribution in a Canadian Urban House

    SciTech Connect (OSTI)

    S Beauchemin; L MacLean; P Rasmussen

    2011-12-31

    Residents in older homes may experience increased lead (Pb) exposures due to release of lead from interior paints manufactured in past decades, especially pre-1960s. The objective of the study was to determine the speciation of Pb in settled dust from an urban home built during WWII. X-ray absorption near-edge structure (XANES) and micro-X-ray diffraction (XRD) analyses were performed on samples of paint (380-2,920 mg Pb kg{sup -1}) and dust (200-1,000 mg Pb kg{sup -1}) collected prior to renovation. All dust samples exhibited a Pb XANES signature similar to that of Pb found in paint. Bulk XANES and micro-XRD identified Pb species commonly found as white paint pigments (Pb oxide, Pb sulfate, and Pb carbonate) as well as rutile, a titanium-based pigment, in the <150 m house dust samples. In the dust fraction <36 {mu}m, half of the Pb was associated with the Fe-oxyhydroxides, suggesting additional contribution of outdoor sources to Pb in the finer dust. These results confirm that old paints still contribute to Pb in the settled dust for this 65-year-old home. The Pb speciation also provided a clearer understanding of the Pb bioaccessibility: Pb carbonate > Pb oxide > Pb sulfate. This study underscores the importance of taking precautions to minimize exposures to Pb in house dust, especially in homes where old paint is exposed due to renovations or deterioration of painted surfaces.

  1. Lead speciation in indoor dust: a case study to assess old paint contribution in a Canadian urban house

    SciTech Connect (OSTI)

    Beauchemin, Suzanne; MacLean, Lachlan C.W.; Rasmussen, Pat E.

    2012-10-23

    Residents in older homes may experience increased lead (Pb) exposures due to release of lead from interior paints manufactured in past decades, especially pre-1960s. The objective of the study was to determine the speciation of Pb in settled dust from an urban home built during WWII. X-ray absorption near-edge structure (XANES) and micro-X-ray diffraction (XRD) analyses were performed on samples of paint (380-2,920 mg Pb kg{sup -1}) and dust (200-1,000 mg Pb kg{sup -1}) collected prior to renovation. All dust samples exhibited a Pb XANES signature similar to that of Pb found in paint. Bulk XANES and micro-XRD identified Pb species commonly found as white paint pigments (Pb oxide, Pb sulfate, and Pb carbonate) as well as rutile, a titanium-based pigment, in the <150 {micro}m house dust samples. In the dust fraction <36 {micro}m, half of the Pb was associated with the Fe-oxyhydroxides, suggesting additional contribution of outdoor sources to Pb in the finer dust. These results confirm that old paints still contribute to Pb in the settled dust for this 65-year-old home. The Pb speciation also provided a clearer understanding of the Pb bioaccessibility: Pb carbonate > Pb oxide > Pb sulfate. This study underscores the importance of taking precautions to minimize exposures to Pb in house dust, especially in homes where old paint is exposed due to renovations or deterioration of painted surfaces.

  2. Obama Administration Announces 14 Initial Partners in the Better...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Green Sports Alliance: 25 sports teams in 17 cities representing more than 20 million square feet of sports arenas The Green Sports Alliance is currently comprised of 25 member ...

  3. Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Outdoor air raises indoor air quality by reducing indoor air pollution, which improves the health and productivity of building occupants. This technology not only reduces energy ...

  4. Energy Department Invests $6 Million to Support Commercial Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will retrofit building ventilation systems with modules that remove indoor air pollutants such as carbon dioxide. This enables the indoor air to be recycled while greatly...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (25) hvac systems (20) office buildings (19) symptoms (17) design (16) indoor air pollution (16) indoors (16) accuracy (15) outdoors (15) carbon dioxide (14) energy ...

  6. ORISE: Environmental Assessments and Health Physics fact sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Indoor Contamination ORAU developed a method for using a robotic total station to capture the geospatial data necessary for 3-D mapping of radiological contamination indoors. ...

  7. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as part of your whole-house design -- an approach for building an energy-efficient home. Indoor Lighting Design When designing indoor lighting for energy efficiency,...

  8. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    equipment that uses indoor air for combustion in low-rise residential buildings. PDF icon Combustion Safety for Appliances Using Indoor Air More Documents & Publications ...

  9. Should Title 24 Ventilation Requirements Be Amended to include...

    Office of Scientific and Technical Information (OSTI)

    include an Indoor Air Quality Procedure? Citation Details In-Document Search Title: Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure? ...

  10. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional...

    Office of Scientific and Technical Information (OSTI)

    This field study measured ventilation rates and indoor air quality parameters in 21 visits ... objectives of increasing energy efficiency and maintaining acceptable indoor air quality. ...

  11. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Stynes, K.

    2010-10-01

    The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust over a range of receiver operating temperatures.

  12. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  13. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Kono, Jamie

    2015-06-24

    A new generation of full variable-capacity air-conditioning (A/C) and heat pump units has come on the market that promises to deliver very high cooling and heating efficiency. The units are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and cycling off when the thermostat is satisfied, the new units can vary their capacity over a wide range (approximately 40%–118% of nominal full capacity) and stay on for 60%–100% more hours per day than the fixed-capacity systems depending on load-to-capacity ratios. Two-stage systems were not evaluated in this research effort.

  14. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Kono, Jamie

    2015-06-01

    ​A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. They are controlled differently than standard fixed-capacity systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40% - 118% of nominal full capacity), thus staying 'on' for 60% - 100% more hours per day compared to fixed -capacity systems. Experiments in this research examined the performance of 2-ton and 3-ton fixed- and variable-capacity systems and the impacts of system oversizing.

  15. Using biomarkers to identify traumatic brain injury for soldiers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using biomarkers to identify traumatic brain injury for soldiers, sports figures Using biomarkers to identify traumatic brain injury for soldiers, sports figures A new detection ...

  16. in Los Alamos National Security, LLC Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to monitor seismic activity. * SportXast of Los Alamos, Los Alamos: mobile app for sports broadcasting. * Customizabooks, Rio Rancho: digital publishing house for children's...

  17. Nine local businesses receive $340,000 in Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to monitor seismic activity. SportXast of Los Alamos, Los Alamos: mobile app for sports broadcasting. Customizabooks, Rio Rancho: digital publishing house for children's...

  18. DOE Tour of Zero: The Illinois First Zero Energy Custom by Evolutionar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    helps this home comply with the EPA Indoor airPLUS guidelines for a healthier indoor environment. 4 of 9 Ultra-efficient triple-pane windows include insulated vinyl frames and...

  19. DOE ZERH Webinar: Ventilation and Filtration Strategies with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Indoor airPLUS qualification, a prerequisite for Zero Energy Ready Homes, offers an important platform to improve the indoor air quality (IAQ) in high-performance homes. A ...

  20. Adoption of Light-Emitting Diodes in Common Lighting Applications

    SciTech Connect (OSTI)

    Yamada, Mary; Chwastyk, Dan

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  1. Sealed Combustion

    SciTech Connect (OSTI)

    2009-05-12

    This information sheet discusses the benefits of sealed combustion appliance units in order to ensure good indoor air quality.

  2. Lighting Design | Department of Energy

    Energy Savers [EERE]

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of

  3. Building America Technologies Solutions Case Study: Ventilation System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness and Tested Indoor Air Quality Impacts | Department of Energy Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts In this study, the Building America team Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of

  4. Quo vadis? Microbial profiling revealed strong effects of cleanroom

    Office of Scientific and Technical Information (OSTI)

    maintenance and routes of contamination in indoor environments (Journal Article) | DOE PAGES Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments « Prev Next » Title: Quo vadis? Microbial profiling revealed strong effects of cleanroom maintenance and routes of contamination in indoor environments Space agencies maintain highly controlled cleanrooms to ensure the demands of planetary protection. To study potential

  5. Building America Technology Solutions Case Study: Ventilation System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effectiveness and Tested Indoor Air Quality Impacts | Department of Energy Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building Science Corporation tested the effectiveness of various ventilation systems at two unoccupied, single-family lab homes at the University of Texas at Tyler. The only difference was that House 1 had a vented

  6. Implementing Arrangement Between the U.S. Department of Energy and the MInistry of Education, Culture, Sports, Science, and Technology of Japan Concerning Cooperation in the Field of Research and Development of Innovative Nuclear Energy Technologies

    Broader source: Energy.gov [DOE]

    The objective of this implementing arrangement is to set forth detailed terms and conditions and to establish a framework for the Cooperation between the Parties for research and development of...

  7. Building America Expert Meeting: Combustion Safety

    Energy Savers [EERE]

    ... Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings. ANSIASHRAE Standard 62.2-2010. Atlanta, GA: ASHRAE. Accessed November 27, 2012: http:...

  8. Ventilation rates per person and per unit floor area affect decision...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: 13th International Conference on Indoor Air Quality and Climate, Hong Kong, July 7 - 12, 2014 Research Org: Ernest Orlando ...

  9. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    book display Fermilab Board Game Guild Wednesday Walkers Swim lessons at Fermilab Pool Adult water aerobics at Fermilab Pool Indoor soccer Submit an announcement Archives...

  10. Building Energy-Efficient Schools in New Orleans: Lessons Learned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Recycle existing materials. * Healthy indoor ... Include goals beyond the design of the school facility, ... A balance between first-cost and life-cycle costs should be ...

  11. Ventilation rates per person and per unit floor area affect decision...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: 13th International Conference on Indoor Air Quality and Climate, Hong Kong, July 7 - 12, 2014 Research Org: Ernest Orlando Lawrence Berkeley National ...

  12. EERE Success Story-Tennessee: Ground-Source Heat Pump Receives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "trilogy" of variable speed technologies: (1) inverter driven compressor, (2) indoor air blower, and (3) water pump-all of which feature permanent magnet electric motor technology. ...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... USDOE Office of Management and Administration ... that improved indoor environmental quality can improve work performance and health. ... reduced medical care cost, reduced sick ...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency standards such as smart mechanical ventilation systems that control indoor air quality and humidity levels. Eligibility: Construction, Local Government, Nonprofit, Low...

  15. Energy Star Lighting Fixtures: How Does THAT Work?

    Broader source: Energy.gov [DOE]

    If you're considering replacing your indoor or outdoor home lighting, you might want to give an ENERGY STAR fixture a shot.

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... sources (3) engineering (3) fabrication (3) fossil fuels (3) fuels (3) indoor air pollution (3) materials (3) thin films (3) x-ray diffraction (3) accelerators (2) accuracy ...

  17. Building America Update: August 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    superior insulation, air sealing, and construction quality; ultra-efficient heating and cooling systems; superior lighting and appliances; and a host of indoor air quality...

  18. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    no source, special nuclear, or by-product materials Conservation, Fossil, and Renewable Energy Activities B5.1 - Actions to conserve energy, no indoor air quality degradation ...

  19. Building America Technology Solutions Case Study: Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building Science Corporation tested the effectiveness of ...

  20. Building America 2014 Top Innovations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Cabinet Air Leakage Test Method California Energy Standards Recognize the Importance of Filter Selection ASSURED HEALTH AND SAFETY ASHRAE Standard 62.2. Ventilation and Indoor ...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Demand Controlled Ventilation and Classroom Ventilation Fisk, William J. ; Mendell, Mark ... Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings Dutton, Spencer ...

  2. Developing evidence-based prescriptive ventilation rate standards...

    Office of Scientific and Technical Information (OSTI)

    ... performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. ...

  3. Building America Webinar: Opportunities in Large Data Collection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indoor Temperature and Humidity Data Collection and Analysis - Chuck Booten and Cheryn Metzger, NREL; Paul Norton, More Documents & Publications Building America Webinar: ...

  4. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technology Solutions for New and Existing Homes: Combustion Safety Using Appliances for Indoor Air (Fact Sheet) Building America Technology Solutions for New and...

  5. enVerid Systems Inc. - Commercial Building Technology Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Mars Mineral NREL NETL Target MarketAudience: Commercial real estate and ... climates) - Total HVAC - Heating and Hot Water * Indoor Environmental Quality - Space ...

  6. Distributed Generation Study/Elgin Community College | Open Energy...

    Open Energy Info (EERE)

    Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System...

  7. Distributed Generation Study/Sea Rise 2 | Open Energy Information

    Open Energy Info (EERE)

    Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application...

  8. Distributed Generation Study/Tudor Gardens | Open Energy Information

    Open Energy Info (EERE)

    Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined...

  9. Distributed Generation Study/Sea Rise 1 | Open Energy Information

    Open Energy Info (EERE)

    Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application...

  10. Distributed Generation Study/Wyoming County Community Hospital...

    Open Energy Info (EERE)

    Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application...

  11. Distributed Generation Study/Oakwood Health Care Center | Open...

    Open Energy Info (EERE)

    Combustion Engine Prime Mover Waukesha VGF 18GLD Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application...

  12. Distributed Generation Study/VIP Country Club | Open Energy Informatio...

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System...

  13. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ...

  14. HIA 2015 DOE Zero Energy Ready Home Case Study: High Performance...

    Energy Savers [EERE]

    ... Verification Checklist RENEWABLE READY ... of the criteria of the EPA's Indoor airPLUS program, including low- or no-VOC ... National Green Building Standards, gold level. ...

  15. Do-It-Yourself Home Energy Audits | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ventilation When sealing any home, you must always be aware of the danger of indoor air pollution and combustion appliance "backdrafts." Backdrafting is when the various...

  16. Link Alpha A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alvarez Physics Memos AmeriFlux Animal Welfare and Research Committee (AWRC) Anti-virus software Apartment Retrofits for Energy and Indoor Environmental Quality (IEQ)...

  17. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  18. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electrical output taken with the module outdoors on a two-axis tracker, or indoors using a solar simulator. These measurements require expensive infrastructure. By...

  19. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Make Residential Ventilation More Effective? Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  20. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  1. Athletic equipment microbiota are shaped by interactions with...

    Office of Scientific and Technical Information (OSTI)

    that colonize these indoor ecosystems are primarily derived from the human microbiome. ... Type: Accepted Manuscript Journal Name: Microbiome Additional Journal Information: Journal ...

  2. Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing: Read This Before You Design, Build or Renovate

    SciTech Connect (OSTI)

    2001-09-06

    This document helps builders design, build, or renovate homes, keeping in mind the issues of asthma, health, indoor air quality, dust, and living creatures.

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (5) california (5) environmental quality (5) environmental sciences (5) indoor air pollution (5) Filter by Author Faulkner, David (45) Fisk, William J. (31) Sullivan, Douglas ...

  4. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Filter Results Filter by Subject energy conservation, consumption, and utilization (18) symptoms (12) office buildings (11) indoor air pollution (6) ventilation (6) environmental ...

  6. Building Envelopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to demonstrate the impact of cool roofs in reducing energy use and improving thermal comfort (e.g., by reducing indoor air and radiant temperatures) Database of radiative ...

  7. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technologies Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Building America Technology Solutions Case Study: ...

  8. Building America Best Practices Series Volume 16: 40% Whole-House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, ...

  9. DOE Zero Energy Ready Home Webinar: Comprehensive Building Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version 3 of the ENERGY STAR Certified Homes program, a prerequisite for every Zero Energy Ready Home, delivers three key systems that improve comfort, indoor air quality, and ...

  10. Hydrogen Fuel for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLASS 3 Forklift Value to the MHE Market z Trend has been toward electric - Indoor air quality issues z Early adopter of fuel cell technology technology - Fleet market - ...

  11. DOE Zero Energy Ready Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Building merica program that provide compelling benefits to homeowners, builders, and our nation. DOE ZERH Purpose Advanced Technology Components Complete Indoor Air Quality ...

  12. Building America Best Practices Series Volume 15: 40% Whole-House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, ...

  13. Better Buildings Residential Network Factsheet: Case Study: Partnershi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (HHIP), which promotes home energy upgrades to Allegheny County, Pennsylvania, residents as a way to increase a home's indoor air quality while saving energy and money. ...

  14. Building America Best Practices Series, Vol. 10 - Retrofit Techniques...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information to contractors and homeowners to identify ways to seal unwanted air leaks in homes, while ensuring healthy levels of ventilation and avoiding indoor air pollution. ...

  15. Microsoft Word - RC_fnl.doc

    Office of Legacy Management (LM)

    ... Office of Radiation and Indoor Air, Washington, DC. US EPA, 2002a, Memorandum: ... References: Gilbert, R.O., 1987, Statistical Methods for Environmental Pollution ...

  16. City of Chicago - Green Permit Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    timeline for projects which are designed to maximize indoor air quality and conserve energy and resources. Green Permit Program Incentives Projects accepted into the Green...

  17. Ventilation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    can improve the effectiveness of natural and whole-house ventilation by removing indoor air pollution andor moisture at its source. Spot ventilation includes the use of...

  18. Energy Saving System to Remove Volatile Organic Compounds (VOCs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Berkeley Lab have developed a catalyst and deployment devices to improve indoor air quality and reduce ventilation energy needs.Description The catalyst, a manganese...

  19. Connecticut: Bridgeport Multifamily Weatherization | Department...

    Energy Savers [EERE]

    the building and addressed health and safety issues, including improving indoor air quality, increasing domestic hot water temperature, ventilating the boiler room, and...

  20. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental quality, indoors and out. RLUOB Our new Radiological Laboratory Utility Office Building was the first of its kind in the Department of Energy family to achieve both...

  1. Building America Webinar: Opportunities in Large Data Collection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Opportunities in Large Data Collection and Analysis-Presentation 3 This is the third presentation, Indoor Temperature and Humidity Data Collection and ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    sources (3) engineering (3) fabrication (3) fossil fuels (3) fuels (3) indoor air pollution (3) materials (3) thin films (3) x-ray diffraction (3) accelerators (2) accuracy ...

  3. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional...

    Office of Scientific and Technical Information (OSTI)

    development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor...

  4. An Assessment of Envelope Measures in Mild Climate Deep Energy...

    Office of Scientific and Technical Information (OSTI)

    energy uses were added to the home during the retrofit that offset some heating savings. ... Indoor temperatures maintained in these DERs were highly variable, and no project home ...

  5. Distributed Generation Study/Harbec Plastics | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System...

  6. New Brunswick Laboratory CX Determinations | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination Date Name of Action: Description Categorical Exclusion Number External link 06082012 NBL-17 GENERIC CATEGORICAL EXCLUSION (CX) FOR THE NBL: Indoor Bench Scale ...

  7. Building America Solution Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. ...

  8. Permit for Charging Equipment Installation: Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Where electric vehicle nonvented storage batteries are used or where the electric vehicle supply equipment is listed or labeled as suitable for charging electric vehicles indoors ...

  9. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... operation Dehumidification: * Relative humidity control ( 50%) Lunos e 2 HRV Ultra-Aire ENERGY STAR 70H Dehumidifier 04 Indoor Air Quality 01 Introduction 02 Design Goals 03 ...

  10. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    -- its amenities include a fitness center with indoor pool, whirlpool and onsite Spa Botanica. About the NTSF The NTSF is the mechanism through which the DOE communicates with...

  11. Search for: microbes OR Microbiomes | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. ...

  12. Athletic equipment microbiota are shaped by interactions with...

    Office of Scientific and Technical Information (OSTI)

    The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. ...

  13. Building America Top Innovations 2014 Profile: ASHRAE Standard...

    Energy Savers [EERE]

    To understand the importance of good indoor air quality, consider that people spend, on ... to fve times greater than in the outdoor air, ventilation is essential to maintaining ...

  14. Building America Case Study: Ventilation System Effectiveness...

    Energy Savers [EERE]

    Ventilation System Effectiveness and Tested Indoor Air Quality Impacts Tyler, Texas ... Building Component: Heating, ventilating, and air conditioning (HVAC), whole-building ...

  15. Penn State to Lead Philadelphia-Based Team that will Pioneer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with integrated indoor air quality management; and sensor and control networks to ... of the role of policy, markets and behavior in driving the adoption and use of ...

  16. Building America Update - December 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sealed duct penetrations. Photo courtesy of the Gas Technology Institute. Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow ...

  17. Building America Whole-House Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Sealed duct penetrations. Photo courtesy of the Gas Technology Institute. Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow ...

  18. Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

  19. Building America Update - February 8, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The user-friendly interface delivers a variety of resources for key construction topics such as air sealing and insulation, HVAC components, windows, indoor air quality and much ...

  20. Honing in on CO2 to Determine Who’s in the 'House'

    Broader source: Energy.gov [DOE]

    Heating and cooling a building seems like a straightforward task. But many buildings’ heating, ventilation and air conditioning (HVAC) systems waste energy and don’t pay any attention to indoor air quality. To combat this common problem, Aircuity developed a demand control ventilation (DCV) system that increases the efficiency of commercial buildings’ HVAC systems and ensures high indoor environmental quality.

  1. 1

    Office of Environmental Management (EM)

    ATTACHMENT G.13 TECHNICAL AREA 54, AREA G, STORAGE SHED 8 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN i Attachment G.13--TA-54 Building 8 Indoor Closure Plan Los Alamos National Laboratory Hazardous Waste Permit November 2010 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES

  2. 1

    Office of Environmental Management (EM)

    TECHNICAL AREA 3, BUILDING 29 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 ii Attachment G.1--TA-3-29 Indoor Closure Plan TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES

  3. 1

    Office of Environmental Management (EM)

    ATTACHMENT G.4 TECHNICAL AREA 50, BUILDING 69 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit June 2012 ii Attachment G.4--TA-50-69 Indoor Closure Plan TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iv LIST OF FIGURES

  4. 1

    Office of Environmental Management (EM)

    3 TECHNICAL AREA 55, BUILDING 4, ROOM 401 INDOOR STORAGE TANK UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 ii Attachment G.23 --TA-55 Building 4 Room 401 Indoor Closure Plan TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES

  5. 1

    Office of Environmental Management (EM)

    4 TECHNICAL AREA 55, BUILDING 4, ROOM 401 INDOOR MIXED WASTE STABILIZATION TREATMENT UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 ii Attachment G.24 --TA-55 Tank Treatment Indoor Closure Plan TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES

  6. DOE Challenge Home Label Methodology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Label Methodology DOE Challenge Home Label Methodology A document of the U.S. Department of Energy's Zero Energy Ready Home (formerly Challenge Home) program. PDF icon ch_label_methodology_1012.pdf More Documents & Publications DOE Zero Energy Ready Home Partner Resources Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02)

  7. Ozone Reductions Using Residential Building Envelopes

    SciTech Connect (OSTI)

    Walker, Iain S.; Sherman, Max; Nazaroff, William W.

    2009-02-01

    Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

  8. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as replacements for internal combustion engine powered vehicles. In early 2007, an entrepreneur in San Jose, California, announced the introduction of an all-electric sports car....

  9. Major prime contractors have developed a plan to address Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in crowns, bridges, and dental plates Metal recycling - computers, electronics, copper-alloy tubing, rod and wire Sporting goods - golf clubs, baseball bats, fishing rods ...

  10. Types of Lighting in Commercial Buildings - Principal Building...

    U.S. Energy Information Administration (EIA) Indexed Site

    of their floorspace lit by HID lamps. Public assembly buildings, which include sports arenas and theaters, have 14 percent of their floorspace illuminated by HID lamps. Figure 10....

  11. Better Buildings Challenge, Atlanta Nears Halfway Mark in Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    improvements across its building portfolio including offices, hospitals, and sports arenas, it is sharing these achievements more broadly with others and fostering competition...

  12. Types of Lighting in Commercial Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    of their floorspace lit by HID lamps. Public assembly buildings, which include sports arenas and theaters, have 14 percent of their floorspace illuminated by HID lamps. Types of...

  13. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hamburg (Germany); Overseas Advanced Education and Research Program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; Creative Research...

  14. Berkeley Lab / EAA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    employee health and well-being by promoting various group sports activities (volleyball, soccer, ultimate Frisbee, football, badminton, etc.) currently meeting 2-3 times...

  15. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollution-save-money Download What Does the Sun Give Us? (5 Activities) You may have...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollution-save-money Download Plants in Your Gas Tank: From Photosynthesis to Ethanol With...

  17. Timeline of Events: 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Education, Culture, Sports, Science and Technology. ... learning leadership techniques, and discussing the ... in a process necessary for the virus to infect a host cell. ...

  18. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leslie Eudy Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like...

  19. Microsoft Word - XX 13 Colville Tribe to celebrate opening of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will significantly boost the availability of chinook salmon for the tribe and for sport fishing in the Columbia River as well as reintroduce spring chinook to the Okanogan...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    early 2007, an entrepreneur in San Jose, California, announced the introduction of an all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollut...

  1. OREM News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Up Oak Ridge OAK RIDGE, Tenn. - A term like "Project Wipeout," may conjure images of military operations, extreme sporting events or a comical competition show on television...

  2. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomarkers to identify traumatic brain injury for soldiers, sports figures April 28, 2015 ... as a tool for determining traumatic brain injury, one of the challenges facing the ...

  3. Bioenergy Impacts ? Green Racing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ushers in the next generation of road- relevant technologies and renewable fuels. Sports car racing is using biofuels to drive renewable fuel development BIOENERGY To learn more,...

  4. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    introduction of an all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollution-save-money Download Understanding Earth's Energy Sources In...

  5. Celebrating and supporting women

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Workshop titles ranged from "Computational Thinking" and "Crystal Craziness" to "Sports Nutrition" and "Ocean Density, Currents and Ice." In the "Let's go to the River ...

  6. Biological Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Select Agents Inspection Report: IG-0681, Concerns Regarding a Non-Viable (Dead) "Anthrax Sport" Research Project at the Oak Ridge National Laboratory Inspection ...

  7. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an entrepreneur in San Jose, California, announced the introduction of an all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollution-save-mon...

  8. Catalog of Waters Important for the Spawning, Rearing or Migration...

    Open Energy Info (EERE)

    Spawning, Rearing or Migration of Anadromous Fishes Organization Alaska Department of Fish and Game Published Divisions of Sport Fish and Habitat, 2012 Report Number 12-05 DOI...

  9. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the use of clean renewable fuels on the racetrack. Photo courtesy of International Motor Sports Association Innovation Unleashed: Sportscar Racing Takes Next Step toward...

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollution-save-money Download Green Fuel This activity allows students the opportunity to...

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    all-electric sports car. http:energy.goveereeducationdownloadshybrid-vehicles-cut-pollution-save-money Download Transportation Fuels: The Future is Today (6 Activities)...

  12. LEDs Go Ivy League: Princeton's Dillon Gymnasium | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    View the video about LED lighting in Dillon Gymnasium, a focal point of sports and recreation at Princeton since 1947. William Evans discusses measurable benefits of LED lighting ...

  13. Enterprise Assessments Review of the Pantex Plant Emergency Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Recommendation PERESTARS Problem Evaluation RequestElectronic Suspense Tracking ... Report SUV Sport Utility Vehicle TD&E Training, Drills, and Exercises VBIED ...

  14. Sandia National Laboratories: About Sandia: Community Involvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    passionate about volunteering. You'll find Sandians judging science fairs, coaching sports teams, leading scouting troops, sorting food, building houses, and serving on...

  15. Inventors Behind General Electric | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studies, Bernardo puts his biochemistry background to work as a home brewer. He enjoys sports and watching movies. Published Work By Bernardo Cinelli Granular starch hydrolysis of...

  16. Composite Technology Development | Open Energy Information

    Open Energy Info (EERE)

    solutions for clients in markets including: alternative energy satellite systems sports and rehabilitation aviation and marine systems1 Composite Technology Development was...

  17. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Education and Research Program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; Creative Research Initiatives of MOSTKOSEF...

  18. Superhydrophobic Thin Film Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical devices subject to the elements (e.g., windshields, windows) Eye glasses, sports goggles, camera lenses Durable, water repellant coatings Self-cleaning coatings More...

  19. Alan Alda tells scientists to cut the jargon, tell a story >...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to scientists about effective communication during a May 22 workshop. To some, the sports section of a newspaper is incomprehensible gibberish - kind of like the way people...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Bluffs Orchard People Railroad Recreation Richland River Riverboat School Sheep Sports Structure Structures Sunnybank Ranch Transportation Water White Bluffs Settlers...

  1. Metallic glass could make your next cell phone harder to break

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (such as metallic glass) are for recreational purposes. Imhoff pointed out that sports are often early adopters of new materials technology because even the slightest...

  2. Employees | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to weather or other circumstances, assistance for working remotely, clubs and sports leagues, and many other topics of interest to the laboratory community. Quick...

  3. I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Initiative (WPI) established by the Japanese Ministry for Education, Culture, Sports, Science and Technology in 2007. WPI provides support for research and development...

  4. New research, publications and videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sara Del Valle said. Using biomarkers to identify traumatic brain injury for soldiers, sports figures A new detection approach originally developed for tuberculosis diagnostics is...

  5. BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be recognized for athletic accomplishment through school-sponsored and club sports, but there are precious few venues for students to be recognized for academic prowess....

  6. Y-12 Employees' Society | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is free to all Y-12 employees and retirees. Members may participate in any team sports, trips, events, vendor discounts, and activities sponsored by YES with proof of...

  7. DOE SSL Postings: June 23, 2015, issue

    Energy Savers [EERE]

    of high-performance LED lighting systems for challenging applications in the sports and industrial lighting markets. The company made news and history earlier this year,...

  8. PROCESSING INVITATIONS FOR A PRESIDENTIAL APPOINTEE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    speaking at large events to attending political events to attending sporting events) ... through the Office of the Assistant General Counsel for General Law Political Events. ...

  9. Arah Schuur | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arah Schuur About Us Arah Schuur - Building Technologies Program, Office of Energy Efficiency and Renewable Energy Most Recent Greening Up the Sports World July 19

  10. Bioenergy Impacts … Green Racing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sports car racing is using biofuels to drive renewable fuel development BIOENERGY To learn more, visit bioenergy.energy.gov. BIOENERGY TECHNOLOGIES OFFICE Photo courtesy of Royal ...

  11. 2015 Annual Merit Review, Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act ASTM American Society for Testing and Materials ... Automotive Technology Education GCI Gasoline compression ... Low-Emission Vehicle SUV Sport utility vehicle SXAS Soft ...

  12. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for internal combustion engine powered vehicles. In early 2007, an entrepreneur in San Jose, California, announced the introduction of an all-electric sports car. http:...

  13. Technologies licensed | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facilities and large sporting venues, as well as for other Department of Energy sites. Sustainable Environment Technologies, LLC (SET), licensed the Access Rate Control System...

  14. Comparison of effectiveness of sub-slab ventilation systems for indoor radon mitigation: A numerical study; Comparaison a l`aide d`un outil numerique de l`efficacite des systemes de ventilation active du sol limitant la penetration du radon dans l`habitat

    SciTech Connect (OSTI)

    Bonnefous, Y.C. |; Gadgil, A.J.; Allard, F.

    1992-04-01

    The functioning of an active sub-slab ventilation system (SVS) has been studied successfully with the help of a previously evaluated numerical model. The parameters explored are the permeability of the sub-slab and the gravel placed beneath it, the amplitude of applied pressure at the installation point of the system and the functioning method: depressurization or pressurization. The mechanisms contributing to the success of the two systems are identified. This numerical study shows that the presence of a layer of gravel beneath the sub-slab considerably improves the performance of the SVS. Considered separately from the extremely permeable sub-slabs, the depressurization systems perform better than the pressurization systems. 17 refs. [Francais] Le fonctionnement des Systemes de Ventilation active du Sol (SVS) a ete etudie a l`aide d`un outil numerique precedemment evalue avec succes. Les parametres explores sont les permeabilites du sol et du gravier place sous plancher bas, l`amplitude de la pression appliquee au point d`installation du systeme, et le mode de fonctionnement: Depressurisation ou Pressurisation. Les mecanismes contribuant au succes des deux systemes sont identifies. Cette etude numerique montre que la presence d`une couche de gravier sous plancher bas ameliore de facon considerable les performances des SVS. Mis a part le cas des sols extremement permeables, les systemes de Depressurisation ont de meilleures performances que les systemes de Pressurisation. 17 refs.

  15. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect (OSTI)

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. Health effects that could arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, to the irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. Results are reported in two volumes. Volume 1 summarizes the results of the search of the peer-reviewed literature on health effects associated with a selected list of indoor air contaminants. In addition, the report discusses potential health effects of polychlorinated biphenyls and chlorofluorocarbons. All references to the literature reviewed are found in this document Volume 2. Volume 2 provides detailed information from the literature reviewed, summarizes potential health effects, reports health hazard ratings, and discusses quantitative estimates of carcinogenic risk in humans and animals. Contaminants discussed in this report are those that; have been measured in the indoor air of a public building; have been measured (significant concentrations) in test situations simulating indoor air quality (as presented in the referenced literature); and have a significant hazard rating. 38 refs., 7 figs., 23 tabs.

  16. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    4 Normalized Annual End Uses of Water in Select Supermarkets in Western United States (1) Fixture/End Use Toilets/Urinals Other/Misc. Indoor (2) Cooling Total Building Size (SF) Benchmarking Values for Supermarkets (3) N Indoor Use with Cooling, gal./SF/year 38 Indoor Use with Cooling, gal./SF/daily transaction 38 Note(s): Source(s): 25th Percentile of Users 52 - 64 9 - 16 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for

  17. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    5 Normalized Annual End Uses of Water in Select Hotels in Western United States (Gallons per Room per Year) (1) Fixture/End Use Bathtub (2) Faucets Showers Toilets Leaks Laundry Ice making (3) Other/misc. indoor Total Indoor Use Number of Rooms Logged average daily use, kgal: Peak instantaneous demand, gpm: Benchmarking Values for Hotels N Indoor Use, gal./day/occupied room 98 Cooling Use, gal./year/occupied room 97 Note(s): Source(s): 25th Percentile of Users 60 - 115 7,400 - 41,600 Based on

  18. System and method for pre-cooling of buildings

    DOE Patents [OSTI]

    Springer, David A.; Rainer, Leo I.

    2011-08-09

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  19. INL Autonomous Navigation System

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  20. HIA 2015 DOE Zero Energy Ready Home Case Study: Mantell-Hecathorn...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Mantell-Hecathorn takes indoor air quality seriously, for the home's occupants and for the workers themselves. "Back in 1999 I had hairycell leukemia. I have no doubt it was due to ...

  1. Health and Safety Guide for Home Performance Contractors (Technical...

    Office of Scientific and Technical Information (OSTI)

    we are not compromising the indoor air quality of the home. This means identifying and mitigating or eliminating pollution sources before and after you make changes to the home. ...

  2. GUIDED TOUR—2016 SSL R&D WORKSHOP

    Broader source: Energy.gov [DOE]

    On the optional guided bus tour, attendees will get a firsthand look at an array of indoor and outdoor LED lighting applications as they visit an auto dealership complex and tour the corporate...

  3. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    SciTech Connect (OSTI)

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  4. Microsoft Word - InjIllRptGuide2011rev8162012.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... time the employee began work, as local time, to the nearest hour using the first two digits of the 24-hour clock (e.g., 1:00 PM is 13 for 1300). Accident Place Indoor Select the ...

  5. CX-005361: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Construction of Protective Force Indoor Live Fire Range at TA-16CX(s) Applied: B1.15Date: 02/28/2011Location(s): New MexicoOffice(s): Los Alamos Site Office

  6. 1

    Office of Environmental Management (EM)

    September 2011 ATTACHMENT G.18 TECHNICAL AREA 55, BUILDING 4 ROOM B40 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit September 2011 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES

  7. 1

    Office of Environmental Management (EM)

    ATTACHMENT G.19 TECHNICAL AREA 55, BUILDING 4 ROOM K13 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES ..................................................................................................................................... v 1.0

  8. 1

    Office of Environmental Management (EM)

    1 TECHNICAL AREA 55, BUILDING 4, ROOM B45 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES ..................................................................................................................................... v 1.0 INTRODUCTION

  9. 1

    Office of Environmental Management (EM)

    2 TECHNICAL AREA 55, BUILDING 4, VAULT INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... 3 LIST OF FIGURES ..................................................................................................................................... 4 1.0 INTRODUCTION

  10. 1

    Office of Environmental Management (EM)

    20 TECHNICAL AREA 55, BUILDING 4, ROOM B05 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN Los Alamos National Laboratory Hazardous Waste Permit November 2010 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... iv LIST OF FIGURES ..................................................................................................................................... v 1.0 INTRODUCTION

  11. Laboratory and Field Demonstration of Energy Efficient VOC Removal...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC02-05CH11231 Resource Type: Conference Resource Relation: Conference: Indoor Air 2014, Hong Kong, July Research Org: Ernest Orlando Lawrence Berkeley ...

  12. DOE Tour of Zero: The Charlottesville Infill by Promethean Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 of 13 Low-no-VOC certified paints and finishes are used for a healthier indoor environment. 6 of 13 This home uses an ultra-efficient heat pump system (21 SEER, 12.2...

  13. CX-001381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Indoor Bench-Scale Research Projects and Conventional Laboratory OperationsCX(s) Applied: B3.6Date: 04/05/2010Location(s): IllinoisOffice(s): Science, Argonne Site Office

  14. Spring into Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As the days become longer, consider opening the curtains in your home to let in more natural light for indoor illumination. This is an especially useful tip if you haven't yet had ...

  15. HIA 2015 DOE Zero Energy Ready Home Case Study: New Town Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version 3.0 and the U.S. Environmental Protection Agency's Indoor airPLUS, as well as the ... covers the strips with additional sprayer-applied coating, then coats the entire building. ...

  16. Distributed Generation Study/10 West 66th Street Corp | Open...

    Open Energy Info (EERE)

    Prime Mover Ingersoll Rand I-R PowerWorks 70 Heat Recovery Systems Built-in Fuel Natural Gas System Installer DSM Engineering System Enclosure Indoor System Application...

  17. improve | OpenEI Community

    Open Energy Info (EERE)

    Contributor 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building...

  18. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    Replies Last Post sort icon Poll building Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? Dc 17 Sep 2013...

  19. What is your favorite OpenEI dataset? | OpenEI Community

    Open Energy Info (EERE)

    Login to post comments Latest polls Dc Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? Posted: 17 Sep...

  20. sms | OpenEI Community

    Open Energy Info (EERE)

    Contributor 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building...

  1. message | OpenEI Community

    Open Energy Info (EERE)

    Contributor 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building...

  2. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    Replies Last Post sort icon Poll comfort Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? Dc 17 Sep 2013...

  3. OpenEI Community Central | OpenEI Community

    Open Energy Info (EERE)

    Replies Last Post sort icon Poll design Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? Dc 17 Sep 2013...

  4. text | OpenEI Community

    Open Energy Info (EERE)

    Contributor 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building...

  5. building | OpenEI Community

    Open Energy Info (EERE)

    Contributor 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building...

  6. All | OpenEI Community

    Open Energy Info (EERE)

    Replies Last Post sort icon Poll building Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? Dc 17 Sep 2013...

  7. Are you willing to reply to a text message once a day with information...

    Open Energy Info (EERE)

    Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? Home > Groups > OpenEI Community Central Dc's picture...

  8. Energy Department Announces Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    The Energy Department announced winners of its seventh annual Next Generation LuminairesTM (NGL) design competition for indoor and outdoor lighting during the LIGHTFAIR® International trade show in New York.

  9. Air Sealing: A Guide for Contractors to Share with Homeowners Volume 10

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-04-12

    This guide provides information to contractors and homeowners to identify ways to seal unwanted air leaks in homes, while ensuring healthy levels of ventilation and avoiding indoor air pollution.

  10. Building America Whole-House Solutions for New Homes: Nexus EnergyHomes- Frederick, Maryland

    Broader source: Energy.gov [DOE]

    This new duplex home successfully combines affordability with state-of-the-art efficiency and indoor environmental quality, achieving the highest rating possible under the National Green Building Standard

  11. CX-004584: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Four Innovative Clean Energy Projects (Indoor Recreation of Orleans County)CX(s) Applied: B5.1Date: 11/29/2010Location(s): Derby, VermontOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  12. Does Mixing Make Residential Ventilation More Effective? (Conference...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. Ventilation dilutes or removes indoor contaminants to reduce occupant exposure. In a multi-zone environment such as a house, there...

  13. Assorted QCI Tips and Standards Review

    Broader source: Energy.gov [DOE]

    This document contains a list of tips for taking the Quality Control Inspector (QCI) Home Energy Professional Certification Exam and a review of standards, provided by the University of Illinois, Urbana-Champaign's Indoor Climate Research & Training.

  14. DOE Zero Ready Home Case Study: Promethean Homes, Gross-Shepard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What they got was a home so energy efficient it will reduce their energy bills by an estimated 1,600 per year compared to a code-built home, with indoor comfort and air quality ...

  15. DOE Zero Energy Ready Home Case Study 2013: New Town Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and comfort; healthy indoor air; high-performance HVAC, lighting, and appliances; and solar-ready components for low or no utility bills in a quality home that will last for ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... we are not compromising the indoor air quality of the home. This means identifying and mitigating or eliminating pollution sources before and after you make changes to the home. ...

  18. National Weatherization Assistance Program Evaluation: Assessment of Refrigerator Energy Use

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Goeltz, Rick

    2015-03-01

    This report assesses the energy consumption characteristics and performance of refrigerators that were monintored as a component of the Indoor Air Quality Study that itself was a component of the retrospective evaluation of the Department of Energy's Weatherization Assistance Program.

  19. DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep overhangs, gutters, and site grading help to carry water away from the slab-on-grade ... that help to promote healthy indoor air. 6 of 10 The hip roof design, concrete block ...

  20. Draft Environmental Assessment for Direct Final Rule, 10 CFR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... from the ground (e.g., radon), from the building occupants' indoor activities (e.g., tobacco smoking, painting), or from the mechanical equipment (e.g., fossil-fuel appliances). ...

  1. DOE Tour of Zero: Vision Hill Lot 1 by Mandalay Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This one-level high-efficiency home meets the criteria of the DOE ZERH, ENERGY STAR, Indoor airPLUS, EPA WaterSense, and LEED for Homes Silver programs. 3 of 8 Tiles combine with ...

  2. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This shift toward low sensible heat ratio (SHR) systems is a ... air below the dew-point temperature and then reheating it to ... Treatment of indoor air requires a separate analysis, which ...

  3. DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...

    Energy Savers [EERE]

    on the underside of the roof; a minisplit heat pump with 4 indoor air handlers; a heat pump water heater; and triple-pane windows. PDF icon DOEZEHCaldwellJohnsonAfford09-20...

  4. DOE Zero Energy Ready Home Case Study: The Imery Group, Serenbe...

    Energy Savers [EERE]

    monitoring equipment tracks the PV, solar thermal water heater, ERV, mini-split heat pump with 3 indoor heads, solar water heater, and LED and CFL lighting. PDF icon...

  5. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The pressure changes caused by the compressor and the expansion valve allow the gas to evaporate at a low temperature outside and condense at a higher temperature indoors. A heat ...

  6. CX-006067: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Indoor Bench-Scale Research Projects and Conventional Laboratory OperationsCX(s) Applied: B3.6Date: 06/21/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

  7. CX-008817: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Indoor Bench Scale Research Projects and Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 06/08/2012 Location(s): Illinois Offices(s): New Brunswick Laboratory

  8. TableHC12.13.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Indoor Lights Turned On During Summer Number of Lights Turned On Between 1 and 4 Hours per Day...... 91.8 21.7 14.5 7.2 1......

  9. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  10. Choosing and Installing Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Choosing and Installing Geothermal Heat Pumps Choosing and Installing Geothermal Heat Pumps These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo courtesy of ©iStockphoto/BanksPhotos These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo

  11. LBL Program Category In Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indoor Air Quality November 19, 2013 by philbutler For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health-from cognitive ability to personal comfort. Bringing Solutions to the Developing World August 20, 2013 by admin Berkeley Lab: Bringing Solutions to the Developing World Efficient Cookstoves for Darfur, Ethiopia Women living in refugee camps in Darfur often walk miles to gather firewood. Volunteer Scott Sadlon trained workers in

  12. Ventilation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Ventilation Ventilation This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde,

  13. DOE Zero Energy Ready Home Partner Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partner Resources DOE Zero Energy Ready Home Partner Resources DOE Zero Energy Ready Home Partner Labe, Label Methodology, and Point of Sale Fact Sheet. PDF icon DOE Zero Energy Ready Home Point of Sale Fact Sheet Image icon Zero_Home_PARTNER_ZERH Site.jpg PDF icon Label_methodology_1012.pdf More Documents & Publications DOE Challenge Home Label Methodology Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02)

  14. DOE Zero Energy Ready Home Savings and Cost Estimate Summary | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Savings and Cost Estimate Summary DOE Zero Energy Ready Home Savings and Cost Estimate Summary The U.S. Department of Energy Zero Energy Ready Home Savings and Cost Estimate Summary, October 2015 PDF icon DOE Zero Energy Ready Home - Cost & Savings Summary OCT 2015.pdf More Documents & Publications Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Washington DOE ZERH Program Requirements

  15. Athletic equipment microbiota are shaped by interactions with human skin

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Athletic equipment microbiota are shaped by interactions with human skin Citation Details In-Document Search Title: Athletic equipment microbiota are shaped by interactions with human skin Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome.

  16. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect (OSTI)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  17. Biomass Cookstoves Technical Meeting. Summary Report

    SciTech Connect (OSTI)

    none,

    2011-05-01

    In regions where biomass is a traditional fuel for cooking, improved cookstoves can enhance indoor air quality, personal health, livelihoods, and the environmentwhile substantially reducing greenhouse gas (GHG) emissions. Although ongoing efforts have successfully disseminated improved stoves that achieve many of these benefits, substantially greater emissions reductions are needed to comply with international guidelines for indoor air quality and to limit GHG emissions like black carbon.

  18. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  19. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  20. Modeling particle loss in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2003-04-01

    Empirical equations were developed and applied to predict losses of 0.01-100 {micro}m airborne particles making a single pass through 120 different ventilation duct runs typical of those found in mid-sized office buildings. For all duct runs, losses were negligible for submicron particles and nearly complete for particles larger than 50 {micro}m. The 50th percentile cut-point diameters were 15 {micro}m in supply runs and 25 {micro}m in return runs. Losses in supply duct runs were higher than in return duct runs, mostly because internal insulation was present in portions of supply duct runs, but absent from return duct runs. Single-pass equations for particle loss in duct runs were combined with models for predicting ventilation system filtration efficiency and particle deposition to indoor surfaces to evaluate the fates of particles of indoor and outdoor origin in an archetypal mechanically ventilated building. Results suggest that duct losses are a minor influence for determining indoor concentrations for most particle sizes. Losses in ducts were of a comparable magnitude to indoor surface losses for most particle sizes. For outdoor air drawn into an unfiltered ventilation system, most particles smaller than 1 {micro}m are exhausted from the building. Large particles deposit within the building, mostly in supply ducts or on indoor surfaces. When filters are present, most particles are either filtered or exhausted. The fates of particles generated indoors follow similar trends as outdoor particles drawn into the building.

  1. Geographical distribution of benzene in air in northwestern Italy and personal exposure

    SciTech Connect (OSTI)

    Gilli, G.; Scursatone, E.; Bono, R.

    1996-12-01

    Benzene is a solvent strictly related to some industrial activities and to automotive emissions. After the reduction in lead content of fuel gasoline, and the consequent decrease in octane number, an increase in benzene and other aromatic hydrocarbons in gasoline occurred. Therefore, an increase in the concentration of these chemicals in the air as primary pollutants and as precursors of photochemical smog could occur in the future. The objectives of this study were to describe the benzene air pollution at three sites in northwestern Italy throughout 1991 and 1994; to examine the relationship between benzene air pollution in indoor, outdoor, and personal air as measured by a group of nonsmoking university students; and to determine the influence of environmental tobacco smoke on the level of benzene exposure in indoor air environments. The results indicate a direct relationship between population density and levels of contamination; an indoor/outdoor ratio of benzene air pollution higher than 1 during day and night; a similar level of personal and indoor air contamination; and a direct relationship between levels of personal exposure to benzene and intensity of exposure to tobacco smoke. Human exposure to airborne benzene has been found to depend principally on indoor air contamination not only in the home but also in many other confined environments. 29 refs., 2 figs., 6 tabs.

  2. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  3. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  5. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... National Science Foundation; DuPont; 3M; Japan Ministry of Education, Science, Sports, and Culture; and the U.S. Department of Energy, Office of Basic Energy Sciences (BES). ...

  6. EERE Success Stories- Back to the Basics: Studying Solar Cell Components

    Broader source: Energy.gov [DOE]

    As any athlete will tell you, going back to the basics when practicing a sport can provide a refreshed perspective on skills that will improve overall performance. One SunShot Initiative awardee...

  7. Microsoft Word - All Discounts updated January 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... may be applied to any pre-owned car, truck, van or sport utility vehicle in stock. ... Did you know Sprint ranks 3 among the 500 Greenest Companies in America? Let us take your ...

  8. Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground rubber, which is used for sports surfacing, asphalt, playgrounds, and other molded ... U.S. Scrap Tire Uses, 2009 Market Tons (Thousands) Tire-derived Fuel 2,084.8 Ground Rubber ...

  9. la02_02-20-04

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field. The coaches, the trainers, and front office personnel, the fans, and the sports media - "All of that is necessary to make this thing we call 'football,'" he said. The...

  10. TTW 2-1-10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kennel Club was established in 1877, and is the oldest organization dedicated to the sport of purebred dogs in America. "I am so excited and proud of him," said Leigh, who...

  11. Patrick Hajek

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Walnut Creek with the scientists or jumping off various mountain peaks in North America (the sport known as Paragliding) during his off-time. Last edited: 2013-12-11 14:09:12...

  12. BPA-2014-01120-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Wild Salmon is a 501(c)(3) tax-exempt non-profit organization of more than 50 sport fishing, commercial fishing, and conservation organizations - local, regional, and...

  13. Carl Gagliardi Modern Particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gagliardi Alyson Clarke * High school All Star swimmer * My niece To do well in her sport, she really needs to know how to ACCELERATE 3 Carl Gagliardi Deena Greer * Physician *...

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and...

  15. Anglers needed - Save young salmon and reel in cash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    young salmon need your help. Today marks the start of a new Northern Pikeminnow Sport Reward Fishery Program that pays anglers for catching one of the biggest predators of...

  16. A.J. Herrera

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soccer. "Soccer is a family affair to me," Herrera says. "I became passionate about the sport as a toddler while watching my sister play in our home town of Albuquerque, and today...

  17. CNS employees volunteer at robotics competition | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competition Hundreds of students, and more than 50 robots, faced off in "the varsity Sport for the Mind(tm)" at the fifth annual Smoky Mountains Regional FIRST Robotics...

  18. Conventional Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sonata 2013 Nissan Altima 2013 Volkswagen Jetta TDI 2012 Chrysler 300 2012 Fiat 500 Sport 2012 Ford F150 Ecoboost 2012 Ford Focus 2012 Ford Fusion V6 2009 VW Jetta TDI...

  19. Gearing up for annual robotics competition | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area high schools are getting a little help in an event that's been called "the varsity Sport for the Mind(tm)" - the FIRST Robotics competition. FIRST (For Inspiration and...

  20. Microsoft Word - Plug-in Hybrids.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. ...

  1. Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975–2012

    Broader source: Energy.gov [DOE]

    In 1975, cars were by far the dominant vehicle style among new light vehicle sales, with a few vans and pickup trucks. Sport Utility Vehicles (SUVs) accounted for less than 2% of the market at that...

  2. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type

    Broader source: Energy.gov [DOE]

    The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

  3. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (sugar water, sports-type drinks) and try to avoid drinks with caffeine (coffee, tea, sodas or hot chocolate). Avoid alcohol. If you think you are experiencing symptoms of...

  4. CX-001754: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sports Field Lighting RetrofitsCX(s) Applied: B5.1Date: 04/20/2010Location(s): Brea, CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  5. Fact #623: May 17, 2010 Classification Changes in the CAFE Standards

    Broader source: Energy.gov [DOE]

    Beginning with model year (MY) 2011, the classification of cars or light trucks has changed for the purposes of the Corporate Average Fuel Economy (CAFE) Standards. Two-wheel-drive (2wd) sport...

  6. Fact #614: March 15, 2010 Average Age of Household Vehicles

    Broader source: Energy.gov [DOE]

    The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first...

  7. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014

    Broader source: Energy.gov [DOE]

    In 1975, cars were just over 80% of light vehicle production. From the early 1980s to 2005, light trucks were an increasing share of the light vehicles produced. The share of sport utility vehicles...

  8. Fermilab GSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a great opportunity to learn from each other, whether it be a new language, or a new recipe, or a new sport. I think that the FSPA serves an important function in our community...

  9. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks

    Broader source: Energy.gov [DOE]

    The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light...

  10. A New Route to Nano Self-Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office; National Science Foundation; DuPont; 3M; Japan Ministry of Education, Science, Sports, and Culture; and the U.S. Department of Energy, Office of Basic Energy Sciences...

  11. One of Knoxville's and Y-12's best assets | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    am") have three children: Matt, 11; Anna, 10 and Jaynie, 8. The family enjoys hiking, sports and backyard farming together. "Living in Knoxville, being at Y-12, I feel like I've...

  12. Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser beams onto a fusion target about the size of a pencil eraser. NIF became operational in March 2009. NIF is the size of a sports stadium-three football fields could fit inside...

  13. PPPL launches a $4.3 million project to expand research on magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increased size and power of the new machine - its diameter will be twice that of the sports-utility-sized MRX - will enable scientists to replicate reconnection in nature more...

  14. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Society for the Promotion of Science, and the Japan Ministry of Education, Culture, Sports, Science, and Technology. Operation of the ALS is supported by the U.S. Department of...

  15. What is NIF?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size of a pencil eraser. NIF became operational in March 2009. NIF is the size of a sports stadium-three football fields could fit inside. LEARN HOW NIF WORKS Built for Extremes...

  16. This Week In Petroleum Printer-Friendly Version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacation than they would see if they drove. But just as it will generate a flurry of sports media activity when Barry Bonds hits home run number 714 and again when he hits number...

  17. Sat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WCI3 Conference Schedule 12-16 February 2005 Recreational Sports Center Room 281 Sat. 12 Feb. 2005 Sun. 13 Feb. Mon. 14 Feb Tues. 15 Feb. Wed. 16 feb. 09h00-09h30 Welcome WCI...

  18. Postings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on Sky Factory February Feb. 24, 2015: SSL Is Stepping Up to the Plate in the Sports World Feb. 18, 2015: A Candid Look at LED PAR38 Lamps Feb. 10, 2015: LED Adoption by...

  19. DOE SSL Postings, February 24, 2015, issue

    Energy Savers [EERE]

    24, 2015 SSL Is Stepping Up to the Plate in the Sports World With spring training starting full-swing this week, baseball is on many people's minds. Fans in Seattle will get an...

  20. Tesla Motors Inc | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Product: California-based producer of luxury electric vehicles, such as sports cars. References: Tesla Motors Inc1 This article is a stub. You can help OpenEI by...

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    starting this fall. "Before the accident, college wasn't on my mind. I was all about sports," said Leyba, who played football, basketball, and ran track at the small Northern New...

  2. This Week In Petroleum Printer-Friendly Version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be the first time they see a robin, for others the first bud seen on a tree, and for sports fans it will be the sound of baseballs hitting gloves as pitchers and catchers report...

  3. Deep forest rebounds from H...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or PhD at a Top Online School. Start Now. CollegeDegreeNetwork Ads by Yahoo NEWS SPORTS BUSINESS LIVING ENTERTAINMENT OPINIONS PHOTOS VIDEOS OBITS SHOP CLASSIFIEDS HOMES...

  4. http://www.bea.gov/regional/rims/

    National Nuclear Security Administration (NNSA)

    to estimate the economic impacts of a wide range of projects, such as building a new sports facility or expanding an airport; of natural disasters, such as Hurricane Katrina; or...

  5. dushyant shekhawat | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provided me a fertile area to grow." Outside of his many lab activities, Dr. Shekhawat enjoys a broad range of interests including watching sports and working on his house and cars...

  6. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    strong favorite to make it to the college football championship game in January. While sports often provide a clear-cut outcome, petroleum data is often not as conclusive. This...

  7. What if we cared about the environment as much as we do about...

    Open Energy Info (EERE)

    What if we cared about the environment as much as we do about sports? Home > Blogs > Dc's blog Dc's picture Submitted by Dc(266) Contributor 13 November, 2014 - 14:25 Great...

  8. PNNL: About PNNL - People

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He is an ordained Elder in the Presbyterian Church, an active coach of youth sports throughout the Tri-Cities for the past 16 years, and spent 13 years as a guitarist for...

  9. Social Activities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    means taking time for social activities. The lab offers a variety of on-site clubs, sports activities and outreach opportunities for you to make the most of your non-work time....

  10. file:///C:/Users/h0732999/AppData/Local/Temp/Low/MZ3NAVPB.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AideHealth Facility Attendant 11.35 28515 - Recreation Specialist 19.27 28630 - Sports Official 12.47 28690 - Swimming Pool Operator 22.22 29000 - Stevedoring...

  11. DE-EM0003383

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AideHealth Facility Attendant 11.35 28515 - Recreation Specialist 19.27 28630 - Sports Official 12.47 28690 - Swimming Pool Operator 22.22 29000 - Stevedoring...

  12. file:///C:/Users/h4293374/AppData/Local/Temp/GMLR2F29.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AideHealth Facility Attendant 11.35 28515 - Recreation Specialist 19.27 28630 - Sports Official 12.47 28690 - Swimming Pool Operator 22.22 29000 - Stevedoring...

  13. http://www.wdol.gov/wdol/scafiles/std/05-2439.txt?v=15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AideHealth Facility Attendant 12.21 28515 - Recreation Specialist 18.87 28630 - Sports Official 12.47 28690 - Swimming Pool Operator 18.73 29000 - Stevedoring...

  14. Contract No. DE-AC06-97RL13184, Modification 158 Attachment J...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AideHealth Facility Attendant 11.35 28515 - Recreation Specialist 19.27 28630 - Sports Official 12.47 28690 - Swimming Pool Operator 22.22 29000 - Stevedoring...

  15. Congresswoman Donna F. Edwards' 2014 Job Fair

    Broader source: Energy.gov [DOE]

    Location:  Prince George’s County, Sports & Learning Complex Field House,8001 Sheriff Road, Landover, MD 20785Attendees: Morgan McKnight, Rauland Sharp, and Debra GlennPOC: Kimberly Chappell or...

  16. ‘Project Wipeout’ Helps Clean Up Oak Ridge

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – A term like “Project Wipeout,” may conjure images of military operations, extreme sporting events or a comical competition show on television.

  17. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomarkers to identify traumatic brain injury for soldiers, sports figures April 28, 2015 Los Alamos and partners identify clues through body chemistry LOS ALAMOS, N.M., April 28, 2015-A new detection approach originally developed for tuberculosis diagnostics is being adapted as a tool for determining traumatic brain injury, one of the challenges facing the medical community as it works to treat military and sports figures with head injuries. Minute chemical alterations in the body, called

  18. Ten New Mexico small businesses recognized at Innovation Celebration April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses recognized at Innovation Celebration April 3 Small businesses participating in projects using the technical expertise and assistance of Los Alamos and Sandia are being recognized. March 26, 2014 Molly Cernicek of SportXast Molly Cernicek of SportXast Contact Steve Sandoval Communications Office (505) 665-9206 Email "The technical expertise Los Alamos and Sandia principal investigators provide to

  19. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    SciTech Connect (OSTI)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

  20. Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates

    SciTech Connect (OSTI)

    Widder, Sarah H.; Martin, Eric

    2013-03-15

    This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

  1. Wind-induced contaminant transport in near-surface soils with application to radon entry into buildings

    SciTech Connect (OSTI)

    Riley, W J

    1996-05-01

    Indoor air exposures to gaseous contaminants originating in soil can cause large human health risks. To predict and control these exposures, the mechanisms that affect vapor transport in near-surface soils need to be understood. In particular, radon exposure is a concern since average indoor radon concentrations lead to much higher risks than are generally accepted for exposure to other environmental contaminants. This dissertation examines an important component of the indoor radon problem: the impacts of wind on soil-gas and radon transport and entry into buildings. The research includes experimental and modeling studies of wind`s interactions with a building`s superstructure and the resulting soil-gas and radon flows in the surrounding soil. In addition to exploring the effects of steady winds, a novel modeling technique is developed to examine the impacts of fluctuating winds on soil-gas and radon transport.

  2. Evaluation of asbestos abatement techniques. Phase 2. Encapsulation with latex paint. Final report, May 1984-November 1985

    SciTech Connect (OSTI)

    Chesson, J.; Margeson, D.P.; Ogden, J.; Bauer, K.; Bergman, F.J.

    1986-07-01

    Airborne asbestos levels were measured by transmission electron microscopy (TEM) before, during and after encapsulation of asbestos-containing material with latex paint in a suburban junior high school. The ceilings of the school were covered with a sprayed-on material containing chrysotile asbestos. Air samples were collected at four types of sites: indoor sites with unpainted asbestos material scheduled for painting, indoor sites with asbestos material which had been painted 16 months prior to the study, indoor sites with no asbestos material, and outdoor sites on the roof of the building. Bulk samples were collected prior to painting and analyzed by polarized light microscopy (PLM) to characterize the asbestos-containing material.

  3. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  4. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect (OSTI)

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  5. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  6. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class

  7. Buildings Energy Data Book: 8.3 Commercial Sector Water Consumption

    Buildings Energy Data Book [EERE]

    6 Normalized Annual End Uses of Water in Two California High Schools Fixture/End Use Toilet Urinal Faucet Shower Kitchen Misc. uses (2) Cooling Leaks Swimming Pool Total Use Benchmarking Values for Schools (3) N Indoor Use, Gal./sq. ft./year 142 Indoor Use, Gal./school day/student 141 Cooling Use, Gal./sq. ft./year 35 Note(s): Source(s): 8 - 20 1) Water use data for the buildings was collected over a few days. Estimates of annual use were created by accounting for seasonal use and other

  8. Energy and IAQ Implications of Residential Ventilation Cooling

    SciTech Connect (OSTI)

    Turner, William; Walker, Iain

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  9. Safety assessment of outdoor live fire range

    SciTech Connect (OSTI)

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  10. Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP)

    Office of Environmental Management (EM)

    Cheap Fixes for Beating the Heat Indoors Cheap Fixes for Beating the Heat Indoors July 25, 2013 - 11:20am Addthis Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Instead of turning on the air

  11. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    SciTech Connect (OSTI)

    Williamson, James; Aldrich, Robb

    2015-08-01

    CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.

  12. Link Alpha I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    i A B C D E F G H I J K L M N O P Q R S T V W Y Z Filter by alpha... A B C D E F G H I J K L M N O P Q R S T U V W Y Z Image Library Project Images - Release for Non-commercial Use Imaging and Distributed Computing Group (Home of the Whole Frog Project) Immigration Services Implicit Bias Improper Governmental Activities Reporting Incident Notification/Contact x6999 Indoor Air Quality Scientific Findings Resource Bank Indoor Air Quality, Inside Information Industrial Energy Analysis Industry

  13. Aspen: Noncompliance Determination (2011-SE-1602)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that indoor unit model AEW244 and outdoor unit model NCPC-424-3010 of residential split system central air conditioning system do not comport with the energy conservation standards.

  14. Natural radiation environment III. [Lead Abstract

    SciTech Connect (OSTI)

    Gesell, T.F.; Lowder, W.M.

    1980-01-01

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  15. DOE/OR/20722-83 Formerly Utilized Sites Remedial Action Program...

    Office of Legacy Management (LM)

    ... ASPHALT GARAGE CONCRETE r l n0 C O BARBECUE PIT 0 NJ q SAOIL TANK LNJ l|- LEGEND O20 0 20 40 0 TLD BADGES sCu" f ee t A INDOOR RADON DECAY A PRODUCTS SAMPLES 0 PIC ...

  16. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air

    SciTech Connect (OSTI)

    2010-09-08

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  17. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  18. Guide to Home Ventilation

    SciTech Connect (OSTI)

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  19. Health effects associated with energy conservation measures in commercial buildings

    SciTech Connect (OSTI)

    Stenner, R.D.; Baechler, M.C.

    1990-09-01

    Indoor air quality can conceivably be impacted by hundreds of different chemicals. More than 900 different organic compounds alone have been identified in indoor air. The health effects that could potentially arise from exposure to individual pollutants or mixtures of pollutants cover the full range of acute and chronic effects, including largely reversible responses, such as rashes and irritations, as well as irreversible toxic and carcinogenic effects. These indoor contaminants are emitted from a large variety of materials and substances that are widespread components of everyday life. Pacific Northwest Laboratory conducted a search of the peer-reviewed literature on health effects associated with indoor air contaminants for the Bonneville Power Administration to aid the agency in the preparation of environmental documents. The results of this search are reported in two volumes. Volume 1 is a summary of the results of the literature search; Volume 2 is the complete results of the literature search and contains all references to the material reviewed. 16 tabs.

  20. DOE Zero Energy Ready Home Recommended Quality Management Provisions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recommended Quality Management Provisions DOE Zero Energy Ready Home Recommended Quality Management Provisions DOE Zero Energy Ready Home Recommended Quality Management Provisions. PDF icon QM Cheklist.pdf More Documents & Publications Version Tracking Document for DOE Challenge Homes, National Program Requirements (Rev. 03) Washington DOE ZERH Program Requirements Indoor airPLUS Version 1 (Rev. 01) Verification Checklist

  1. Climate Change, Energy Efficiency, and IEQ: Challenges and Opportunities for ASHRAE

    SciTech Connect (OSTI)

    Fisk, William J.

    2009-01-01

    In the U.S, buildings consume approximately 39percent of primary energy, including 70percent of electricity [1]. Buildings are responsible for approximately 38percent of U. S. carbon dioxide emissions [1]. The process of HVAC, for maintaining acceptable indoor environmental quality (IEQ), consumes 37percent of the energy used in buildings [1].

  2. CX-100304 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Savings with Acceptable Indoor Air Quality Through Improved Air Flow Control Award Number: DE-EE0007057 CX(s) Applied: A9, B3.1 Building Technologies Office Date: 06/26/2015 Location(s): IL Office(s): Golden Field Office

  3. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect (OSTI)

    Sand, J R; Grossman, G; Rice, C K; Fairchild, P D; Gross, I L

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  4. CX-011193: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determination for Indoor, Small- and Pilot-Scale Research and Development CX(s) Applied: A9, B1.7, B3.6, B3.10, B3.12, B3.15, B5.1, B5.15 Date: 08/05/2013 Location(s): California Offices(s): Berkeley Site Office

  5. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Fisk, William J.

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  6. Sonoma House. Monitoring of the First U.S. Passive House Retrofit

    SciTech Connect (OSTI)

    German, A.; Weitzel, B.; Backman, C.; Hoeschele, M.; Dakin, B.

    2012-12-01

    The Sonoma Deep Retrofit is a single-story deep retrofit project in the marine climate of Sonoma, California. The design was guided by Passive House principles that promote the use of very high levels of wall, ceiling, and floor insulation along with tight envelope construction to maintain a comfortable indoor environment with little or no need for conventional heating or cooling.

  7. Analysis of Buoyancy-Driven Ventilation of Hydrogen from Buildings: Preprint

    SciTech Connect (OSTI)

    Barley, C. D.; Gawlik, K.; Ohi, J.; Hewett, R.

    2007-08-01

    When hydrogen gas is used or stored within a building, as with a hydrogen-powered vehicle parked in a residential garage, any leakage of unignited H2 will mix with indoor air and may form a flammable mixture. One approach to safety engineering relies on buoyancy-driven, passive ventilation of H2 from the building through vents to the outside.

  8. Model conservation standards bibliography

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    This bibliography is divided into sections dealing with building design (superinsulation, solar houses, earth sheltered houses, heat loss calculation, lighting, retrofitting); heating, ventilation, and air conditioning; windows; doors; walls; roofs; floors; air leakage/infiltration; insulation materials; indoor air quality; moisture; performance; codes, laws, standards; economics; and program description. (DLC)

  9. Radon in energy-efficient earth-sheltered structures

    SciTech Connect (OSTI)

    Nero, A.V.

    1983-05-01

    Exposure o the radioactive-decay products of radon 222 that are present in indoor air constitutes the most-significant radiation dose received by the general population in most countries. Indoor concentrations vary from one building to another, ranging from insignificant to very high levels that cause radiation doses higher than those experienced by uranium miners. This wide range of concentrations is attributable to variability in the rate at which radon enters buildings, and differences in the ventilation rate. Earth-sheltered dwellings, because they are more completely surrounded by earth material than other structures, have an as yet unquantified potential for having radon entry rates that are higher than typical for other houses in the region. Moreover, measures that save energy by reducing ventilation rates (for example by reducing infiltration) can also raise indoor radon concentrations. For these reasons a significant effort is needed to determine the potential for ventilation-reducing measures and earth sheltering to increase radon concentrations, especially in regions where they are already high. Where necessary, proper attention to specific design features that affect radon entry rates or residence time indoors should be adequate to avoid undue risk to the public.

  10. Sonoma House: Monitoring of the First U.S. Passive House Retrofit

    SciTech Connect (OSTI)

    German, A.; Weitzel, B.; Backman, C.; Hoeschele, M.; Dakin, B.

    2012-12-01

    The Sonoma Deep Retrofit is a single-story deep retrofit project in the marine climate of Sonoma, California. The design was guided by Passive House principles which promote the use of very high levels of wall, ceiling, and floor insulation along with tight envelope construction to maintain a comfortable indoor environment with little or no need for conventional heating or cooling.

  11. Technology Solutions Case Study: Sealed Air-Return Plenum Retrofit

    SciTech Connect (OSTI)

    none,

    2012-08-01

    In this project, Pacific Northwest National Laboratory researchers greatly improved indoor air quality and HVAC performance by replacing an old, leaky air handler with a new air handler with an air-sealed return plenum with filter; they also sealed the ducts, and added a fresh air intake.

  12. Best Practices Case Study: Tommy Williams Homes -Gainesville, FL

    SciTech Connect (OSTI)

    none,

    2011-04-01

    Case study of Tommy Williams Homes who has continued to outsell the competition with sales increasing despite the recession thanks to a systems-engineering approach developed with DOE’s Building America that yields high energy efficiency, comfort, and indoor air quality. The company offers to pay buyers’ energy bills for the first year.

  13. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  14. Multifamily Ventilation Retrofit Strategies

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  15. Building America Technology Solutions for New and Existing Homes: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This case study examines a Building America builder partner’s implementation of an inexpensive, quick and effective method of building a fur-down or dropped ceiling chase, which brings the duct system into the interior of the house to reduce air leakage and improve durability and indoor air quality

  16. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found to be higher than values reported in comparable housing by Hodgson et al.,3. Emissions of phenol were also found to be slightly higher than values reported in earlier studies1,2,3. This study can assist in retrospective formaldehyde exposure assessments of THUs where estimates of the occupants indoor formaldehyde exposures are needed.

  17. Exposure to methylene chloride from controlled use of a paint remover in residences

    SciTech Connect (OSTI)

    Hodgson, A.T.; Girman, J.R.

    1987-06-01

    A recent laboratory investigation characterized personal exposures to methylene chloride (CH/sub 2/Cl/sub 2/) for simulated typical uses of paint removers and aerosol finishes containing CH/sub 2/Cl/sub 2/ in a room-size environmental chamber at two ventilation rates. Because paint removers produced relatively large exposures to CH/sub 2/Cl/sub 2/ in these experiments, the present investigation was undertaken to measure exposures to CH/sub 2/Cl/sub 2/ for standardized use of a paint remover in a variety of residential environments. A total of 21 experiments were conducted outdoors and indoors in a garage, a basement workshop, and large and small rooms of a house. In the indoor work areas, ventilation patterns and rates were varied by opening windows and doors and by the use of a household fan. Finishes were removed from uniformly-prepared panels and from chairs. The personal exposure of the worker was determined from the continuous measurement of CH/sub 2/Cl/sub 2/ concentration in a pumped breathing-zone sample. Personal exposures resulting from the outdoor use of paint remover were very low (6 to 36 ppM.h). Exposures resulting from the use of paint remover indoors without mechanical exhaust ventilation were considerably higher (190 to 2090 ppM-h). In each indoor location, an open window or exterior door (11 to 142 ppM.h). A single-equation mass-balance model was used to produce estimates of theoretical exposures for experiments conducted indoors. The efficacy of the model for predicting exposures was evaluated by comparing theoretical and measured personal exposures. The model performed best for small-volume work areas with low ventilation rates. In general, the model had an accuracy of +-50 percent when applied to experiments conducted in enclosed work areas without an exhaust fan.

  18. BPA-2012-01695-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 9To Northom, E9 f -' F Horsefhief ad Ceio ,- . - Lake -C Mi E7 Cehlo ' . M4 M5 . sport M3 E4 M6 Village mbiaGorge earfI ake 4 E6 peathsh L Ml I Zjea SC lutes Airport He S M2...

  19. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect (OSTI)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

  20. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    SciTech Connect (OSTI)

    Maddalena, Randy; Li, Na; Hodgson, Alfred; Offermann, Francis; Singer, Brett

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs