Sample records for indoor environment department

  1. The Center for Indoor Environments

    E-Print Network [OSTI]

    Kim, Duck O.

    review of indoor air pollution in schools requested by the Environment Committee of the Connecticut risk 99 Industrial hygiene visit and walk- through assessment 99 Review of industrial hygiene interventions 99 Provide guidance on protecting occupants from exposures during construction 99 Coordinate

  2. Health and productivity gains from better indoor environments and their implications for the U.S. Department of Energy

    SciTech Connect (OSTI)

    Fisk, William J.

    2000-10-01T23:59:59.000Z

    A substantial portion of the US population suffers frequently from communicable respiratory illnesses, allergy and asthma symptoms, and sick building syndrome symptoms. We now have increasingly strong evidence that changes in building design, operation, and maintenance can significantly reduce these illnesses. Decreasing the prevalence or severity of these health effects would lead to lower health care costs, reduced sick leave, and shorter periods of illness-impaired work performance, resulting in annual economic benefits for the US in the tens of billions of dollars. Increasing the awareness of these potential health and economic gains, combined with other factors, could help bring about a shift in the way we design, construct, operate, and occupy buildings. The current goal of providing marginally adequate indoor environments could be replaced by the goal of providing indoor environments that maximize the health, satisfaction, and performance of building occupants. Through research and technology transfer, DOE and its contractors are well positioned to help stimulate this shift in practice and, consequently, improve the health and economic well-being of the US population. Additionally, DOE's energy-efficiency interests would be best served by a program that prepares for the potential shift, specifically by identifying and promoting the most energy-efficient methods of improving the indoor environment. The associated research and technology transfer topics of particular relevance to DOE are identified and discussed.

  3. Simplified methodology for indoor environment designs

    E-Print Network [OSTI]

    Srebric, Jelena, 1970-

    2000-01-01T23:59:59.000Z

    Current design of the building indoor environment uses averaged single parameters such as air velocity, air temperature or contaminant concentration. This approach gives only general information about thermal comfort and ...

  4. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Energy Savers [EERE]

    Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign...

  5. Indoor environment program - 1995 annual report

    SciTech Connect (OSTI)

    Daisey, J.M.

    1996-06-01T23:59:59.000Z

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  6. Indoor environment program. 1994 annual report

    SciTech Connect (OSTI)

    Daisey, J.M.

    1995-04-01T23:59:59.000Z

    Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

  7. Indoor Environment Program 1991 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Approximately 38% of the energy consumed in the United States is used in buildings. Much of this energy can be saved by reducing buildings' air infiltration and ventilation, since the heat load associated with these processes is about 13 quads per year. However, because ventilation is the dominant mechanism for removing pollutants that originate indoors, reducing ventilation can cause undesirable side effects such as lowering indoor air quality and adversely affecting the health, comfort and productivity of building occupants. The purpose of this research is to increase the energy efficiency of buildings while maintaining or improving occupant health and comfort. The research explores energy use and efficiency of buildings; building ventilation and infiltration; the nature, sources, transport, transformation, and deposition of indoor air pollutants; and exposure and risk assessment for indoor air pollutants. Pollutants of particular interest include radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO[sub x]. The Program also conducts multidisciplinary studies on relationships between occupant health and comfort symptoms and factors within a building's environment. Air infiltration and ventilation rates are measured and modeled for residential and commercial buildings in order to understand energy transport and thermal losses from various components of building shells and ventilation systems. Methods for reducing energy losses are based on these studies. The effectiveness of various ventilation systems for pollutant removal is also investigated. Methods for characterizing ventilation and building energy use are developed for experimental and applied uses.

  8. Indoor Environment Program 1991 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Approximately 38% of the energy consumed in the United States is used in buildings. Much of this energy can be saved by reducing buildings` air infiltration and ventilation, since the heat load associated with these processes is about 13 quads per year. However, because ventilation is the dominant mechanism for removing pollutants that originate indoors, reducing ventilation can cause undesirable side effects such as lowering indoor air quality and adversely affecting the health, comfort and productivity of building occupants. The purpose of this research is to increase the energy efficiency of buildings while maintaining or improving occupant health and comfort. The research explores energy use and efficiency of buildings; building ventilation and infiltration; the nature, sources, transport, transformation, and deposition of indoor air pollutants; and exposure and risk assessment for indoor air pollutants. Pollutants of particular interest include radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}. The Program also conducts multidisciplinary studies on relationships between occupant health and comfort symptoms and factors within a building`s environment. Air infiltration and ventilation rates are measured and modeled for residential and commercial buildings in order to understand energy transport and thermal losses from various components of building shells and ventilation systems. Methods for reducing energy losses are based on these studies. The effectiveness of various ventilation systems for pollutant removal is also investigated. Methods for characterizing ventilation and building energy use are developed for experimental and applied uses.

  9. Indoor Environment, Productivity in Offices

    SciTech Connect (OSTI)

    Seppanen, O.; Fisk, W.J.; Wargocki, P.

    2007-12-01T23:59:59.000Z

    Heat from radionuclide decay gives rise to coupled thermal(T), hydrological (H), chemical (C), and mechanical (M) processes in therock mass. These coupled processes impact a repository s ability toisolate waste, both by how they affect water seepage intowaste-emplacement drifts, and by how they affect radionuclide transport.This chapter describes the United States Department of Energy s ThermalTesting Program starting in the mid-1990s, consisting of threelarge-scale in situ thermal tests. The main objective of these thermaltests was to gain an in-depth understanding of the coupled THCM processesthat would occur in the repository rock. This objective was met by (1)planning the types of measurements based on the anticipated coupledprocesses, and (2) adopting an approach requiring close integrationbetween measurements and modeling.

  10. The Center for Indoor Environments and Health's specific mission is

    E-Print Network [OSTI]

    Oliver, Douglas L.

    pollutants and materials Outdoor air contaminants (including diesel particulates) and materials brought for Indoor Environments and Health #12;Why are building communities struggling with managing indoor air air problems? Design Structures built slab on grade, and/or with flat roofs with poor drainage

  11. GATEWAY Demonstration Indoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTAL POLICYEnergyIndoor

  12. Application of CFD Tools for Indoor and Outdoor Environment Design

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    used to assess building shape design, to evaluate the effectiveness of natural ventilation in buildings environment parameters. Nomenclature Ar Archimedes number Ary local Archimedes number, 2 n U/Tyg C for designing a comfortable indoor or outdoor environment. This is because the design of appropriate ventilation

  13. A fine-grained geospatial representation and framework for large-scale indoor environments

    E-Print Network [OSTI]

    Battat, Jonathan

    2010-01-01T23:59:59.000Z

    This thesis describes a system and method for extending the current paradigm of geographic information systems (GIS) to support indoor environments. It introduces features and properties of indoor multi-building environments ...

  14. Impact on the Indoor Environment of the Release and Diffusion of TVOC

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Wang, M.

    2006-01-01T23:59:59.000Z

    The release of VOCs by architectural decorative material, furniture and indoor things for use is considered the main reason for indoor environment pollution. The polypropylene Styene-Butadiene Rubber (abbreviation SBR) is regarded as a TVOC release...

  15. The Airborne Metagenome in an Indoor Urban Environment

    SciTech Connect (OSTI)

    Tringe, Susannah; Zhang, Tao; Liu, Xuguo; Yu, Yiting; Lee, Wah Heng; Yap, Jennifer; Yao, Fei; Suan, Sim Tiow; Ing, Seah Keng; Haynes, Matthew; Rohwer, Forest; Wei, Chia Lin; Tan, Patrick; Bristow, James; Rubin, Edward M.; Ruan, Yijun

    2008-02-12T23:59:59.000Z

    The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.

  16. Indoor environment quality in LEED buildings: Understanding conditions affecting performance

    E-Print Network [OSTI]

    Walker, Kristine

    2015-01-01T23:59:59.000Z

    Listening to the occupants: A web-based indoor environmentalC, Laeser KArens EA (2002) A web-based occupant satisfactionindoor environmental quality: A web- based indoor occupant

  17. Movement of outdoor particles to the indoor environment: An analysis of the Arnhem Lead Study

    SciTech Connect (OSTI)

    Layton, D.W. [Lawrence Livermore National Lab., CA (United States); Thatcher, T.L. [Univ. of California, Berkeley, CA (United States). Dept. of Civil Engineering

    1995-03-01T23:59:59.000Z

    This paper analyzes the role of soil tracking as a source of indoor particles and quantifies key parameters influencing the transport of soil-derived particles (resuspension rates for particulate matter on floors, deposition velocities of suspended particles in indoor and outdoor air). The paper begins with a brief review of studies of particle transport processes and presents a simple model for studying the transport of particles in the indoor environment. The model is used to examine data on Pb distributions in the indoor and outdoor environments of community adjacent to a secondary lead smelter.

  18. Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air Purifiers

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air ozone (O3) during operation, either in- tentionally or as a byproduct of air ionization standards. Sev- eral types of air purifiers were tested for their ability to produce ozone in various indoor

  19. Impact of Indoor Environment Improvement on Comfort and Productivity in a Chipboard Workplace 

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Du, H.; Zhang, G.; Li, L.

    2006-01-01T23:59:59.000Z

    A real example was investigated on the relationship between indoor environment, comfort and productivity in a chipboard workplace location in southern China. In this field study, a subjective evaluation and objective measurement were carried out...

  20. An example of verification, validation, and reporting of indoor environment CFD analyses (RP-1133)

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    through an example of indoor environment modeling (an office with mechanical displacement ventilation similar procedure. The emphasis of the verification and validation is problem dependent. The computational ventilation systems and the development of control strategies require detailed knowledge of airflow

  1. Impact of Indoor Environment Improvement on Comfort and Productivity in a Chipboard Workplace

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Du, H.; Zhang, G.; Li, L.

    2006-01-01T23:59:59.000Z

    A real example was investigated on the relationship between indoor environment, comfort and productivity in a chipboard workplace location in southern China. In this field study, a subjective evaluation and objective measurement were carried out...

  2. Humanoid Robot Localization in Complex Indoor Environments Armin Hornung Kai M. Wurm Maren Bennewitz

    E-Print Network [OSTI]

    Teschner, Matthias

    for humanoid robots operating in such environ- ments is a challenging task. First, humanoids typically execute environment. The robot uses a head-mounted 2D laser range finder, attitude and joint angle sensors, as wellHumanoid Robot Localization in Complex Indoor Environments Armin Hornung Kai M. Wurm Maren

  3. Gas Distribution in Unventilated Indoor Environments Inspected by a Mobile Robot

    E-Print Network [OSTI]

    Zell, Andreas

    Gas Distribution in Unventilated Indoor Environments Inspected by a Mobile Robot Michael Wandel1@tech.oru.se Abstract Gas source localisation with robots is usually per- formed in environments with a strong in different environments, and the similarities as well as differences in the analyte gas distributions

  4. USING SPACE SYNTAX TO UNDERSTAND KNOWLEDGE ACQUISITION AND WAYFINDING IN INDOOR ENVIRONMENTS

    E-Print Network [OSTI]

    Klippel, Alexander

    -001- USING SPACE SYNTAX TO UNDERSTAND KNOWLEDGE ACQUISITION AND WAYFINDING IN INDOOR ENVIRONMENTS@psu.edu Abstract It is critical to understand how characteristics of environment influence human acquisition descriptions of environments and predicating wayfinding behaviors. From the perspective of cognitive geography

  5. USING SPACE SYNTAX TO UNDERSTAND KNOWLEDGE ACQUISITION AND WAYFINDING IN INDOOR ENVIRONMENTS

    E-Print Network [OSTI]

    Klippel, Alexander

    USING SPACE SYNTAX TO UNDERSTAND KNOWLEDGE ACQUISITION AND WAYFINDING IN INDOOR ENVIRONMENTS Rui Li@psu.edu Abstract It is critical to understand how characteristics of environment influence human acquisition descriptions of environments and predicating wayfinding behaviors. From the perspective of cognitive geography

  6. Potential Nationwide Improvements in Productivity and Health from Better Indoor Environments

    SciTech Connect (OSTI)

    Fisk, W.J.; Rosenfeld, A.H.

    1998-05-01T23:59:59.000Z

    Theoretical considerations and empirical data suggest that existing technologies and procedures can improve indoor environments in a manner that significantly increases productivity and health. Existing literature contains moderate to strong evidence that characteristics of buildings and indoor environments significantly influence rates of respiratory disease, allergy and asthma symptoms, sick building symptoms, and worker performance. While there is considerable uncertainty in our estimates of the magnitudes of productivity gains that may be obtained by providing better indoor environments, the projected gains are very large. For the U.S., we estimate potential annual savings and productivity gains of $6 to $19 billion from reduced respiratory disease, $1 to $4 billion from reduced allergies and asthma, $10 to $20 billion from reduced sick building syndrome symptoms, and $12 to $125 billion from direct improvements in worker performance that are unrelated to health. In two example calculations, the potential financial benefits of improving indoor environments exceed costs by a factor of 8 and 14. Productivity gains that are quantified and demonstrated could serve as a strong stimulus for energy efficiency measures that simultaneously improve the indoor environment.

  7. Do indoor environments in schools influence student performance? A review of the literature

    SciTech Connect (OSTI)

    Mendell, Mark J.; Heath, Garvin A.

    2004-11-24T23:59:59.000Z

    Limited research is available on potential adverse effects of school environments on academic performance, despite strong public concern. We examine the scientific evidence relevant to this relationship by reviewing available research relating schools and other indoor environments to human performance or attendance. As a primary focus, we critically review evidence for direct relationships between indoor environmental quality (IEQ) in buildings and performance or attendance. As a secondary focus, we summarize, without critique, evidence on potential connections indirectly linking IEQ to performance or attendance: relationships between IEQ and health, between health and performance or attendance, and between attendance and performance. The most persuasive direct evidence showed increases in indoor concentrations of nitrogen dioxide and outdoor concentrations of several specific pollutants to be related to reduced school attendance. The most persuasive indirect evidence showed indoor dampness and microbiologic pollutants to be related to asthma and respiratory infections, which have in turn been related to reduced performance and attendance. Furthermore, a substantial scientific literature links poor IEQ (e.g., low ventilation rate, excess moisture or formaldehyde) with respiratory and other health effects in children and adults. Overall, evidence suggests that poor IEQ in schools can influence the performance and attendance of students, primarily through health effects from indoor pollutants. Also, inadequate IEQ in schools seems sufficiently common to merit strong public concern. Evidence is available to justify (1) immediate actions to protect IEQ in schools and (2) focused research on exposures, prevention, and causation, to better guide policies and actions on IEQ in schools.

  8. EUROGRAPHICS 2014/ M. Paulin and C. Dachsbacher Poster Reconstructing Complex Indoor Environments

    E-Print Network [OSTI]

    Pajarola, Renato B.

    .5 [Computer Graphics]: Computational Geometry and Object Modeling --Boundary representations; Curve, surface the input model and build our space par- titioning structure directly from them. This differs fromEUROGRAPHICS 2014/ M. Paulin and C. Dachsbacher Poster Reconstructing Complex Indoor Environments

  9. Localization in indoor environments by querying omnidirectional visual maps using perspective images

    E-Print Network [OSTI]

    Barreto, Joao

    , not only speeds up the process of acquiring data for creating the map, but also favors scalabilityLocalization in indoor environments by querying omnidirectional visual maps using perspective. The localization is achieved by querying a database of omnidirectional images that constitutes a detailed visual

  10. Development of a Cost-efficient Autonomous MAV for an Unstructured Indoor Environment

    E-Print Network [OSTI]

    Kernbach, Serge

    2011-01-01T23:59:59.000Z

    Performing rescuing and surveillance operations with autonomous ground and aerial vehicles become more and more apparent task. Involving unmanned robot systems allows making these operations more efficient, safe and reliable especially in hazardous areas. This work is devoted to the development of a cost-efficient micro aerial vehicle in a quadrocopter shape for developmental purposes within indoor scenarios. It has been constructed with off-the-shelf components available for mini helicopters. Additional sensors and electronics are incorporated into this aerial vehicle to stabilize its flight behavior and to provide a capability of an autonomous navigation in a partially unstructured indoor environment.

  11. Study of the relationship between indoor daylight environments and patient average length of stay (ALOS) in healthcare facilities

    E-Print Network [OSTI]

    Choi, Joon Ho

    2007-04-25T23:59:59.000Z

    This study investigates how indoor daylight environments affect patient Average Length of Stay (ALOS), by evaluating and analyzing daylight levels in patient rooms in comparison to their ALOS. The patient ALOS data were taken at one general hospital...

  12. A concentration rebound method for measuring particle penetrationand deposition in the indoor environment

    SciTech Connect (OSTI)

    tlthatcher@lbl.gov

    2002-09-01T23:59:59.000Z

    Continuous, size resolved particle measurements were performed in two houses in order to determine size-dependent particle penetration and deposition in the indoor environment. The experiments consisted of three parts: (1) measurement of the particle loss rate following artificial elevation of indoor particle concentrations, (2) rapid reduction in particle concentration through induced ventilation by pressurization of the houses with HEPA-filtered air, and (3) measurement of the particle concentration rebound after house pressurization stopped. During the particle concentration decay period, when indoor concentrations are very high, losses due to deposition are large compared to gains due to particle infiltration. During the concentration rebound period, the opposite is true. The large variation in indoor concentration allows the effects of penetration and deposition losses to be separated by the transient, two-parameter model we employed to analyze the data. We found penetration factors between 0.3 and 1 and deposition loss rates between 0.1 and 5 h{sup -1}, for particles between 0.1 and 10 {micro}m.

  13. Thermal environment in indoor spaces with under-floor air distribution systems: 2. Determination of design parameters (1522-

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Thermal environment in indoor spaces with under-floor air distribution systems: 2. Determination of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA 2 Building Energy and Environment Engineering LLP, Lafayette, Indiana 47905, USA 3 School of Environmental Science and Engineering

  14. A Marked Point Process Model for the Source Proximity E ect in the Indoor Environment 1

    E-Print Network [OSTI]

    West, Mike

    indoor air quality monitors arise because of the source proximity e#11;ect, in which pollutant sources. McBride Abstract In indoor air quality studies, discrepancies between personal and station- ary Science Foundation Graduate Fellowship as well as the Center for Indoor Air Research. The author thanks

  15. Cheap Fixes for Beating the Heat Indoors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWasteDepartmentUtilities in many

  16. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    system on perceived air quality, Indoor Air 2008, August 17-perception of indoor air quality during immediate and longeraddressing indoor air quality, thermal environment, lighting

  17. Energy Department Announces Indoor Lighting Winners of Next Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog EnergyFuels |Winners |

  18. Indoor airPLUS Construction Specifications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune 25, 2012

  19. IMPACT OF THE URBAN POLLUTION ON THE INDOOR ENVIRONMENT -EXPERIMENTAL STUDY ON A MECHANICAL

    E-Print Network [OSTI]

    Boyer, Edmond

    Bâtiment (CSTB), Nantes, France ABSTRACT This study aims to assess the transfer of outdoor air pollution and the relationships between outdoor and indoor urban air pollutant concentrations are more and more a subject indoor pollutant sources. At the initial state, the dwelling was naturally ventilated. Air renewal

  20. Tips for Reducing Asthma Triggers in Indoor Environments The goal of parents who have children with

    E-Print Network [OSTI]

    products and pesticides can add pollutants to the indoor air. Keep your home well ventilated when using it in a tightly covered container to help control pests. 2. Ventilation Good ventilation can help reduce some. However, if the indoor air is still a problem after doing everything you can to control the source

  1. Monitoring Viable Fungal and Bacterial Bioaerosol Concentrations to Identify Acceptable Levels for Common Indoor Environments

    E-Print Network [OSTI]

    Robertson, L. D.

    1998-01-01T23:59:59.000Z

    and enumerated using several sampling methodologies, yet the specific effects of many airborne microorganisms on human health is not clearly understood. The lack of understanding is in part due to the extreme complexities that exists with respect to sampling... while sterile hyphae averaged 29 CFUlm3. Penicillium was observed in 50% if the indoor samples and averaged 48 CFUlm3. Aspergillus was documented to occur in 33% of the indoor samples and demonstrated an average airborne concentration of 20 CFUlm3...

  2. STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIVISION, HAZARDOUS WASTE BUREAU, Complainant UNITED STATES DEPARTMENT OF ENERGY, and NUCLEAR WASTE PARTNERSIDP, LLC Respondents WASTE ISOLATION PILOT PLANT EDDY COUNTY, NEW...

  3. Environment and Earth Sciences Department The Environment and Earth Sciences Department was created in 1993 from the Department of Environmental

    E-Print Network [OSTI]

    Escolano, Francisco

    Environment and Earth Sciences Department The Environment and Earth Sciences Department was created of the Earth and Vegetal Biology. Following the extension of the educational staff went incorporating of the Geological Society of Spain. It will be organized by the Department of Earth Sciences and the environment

  4. Floor Plan Generation and Room Labeling of Indoor Environments from Laser Range Data

    E-Print Network [OSTI]

    Zakhor, Avideh

    . Such labels are useful for building energy simulations involving thermal models, as well as for ensuring and analysis software, requiring building geometry as input. Even though existing energy simu- lation tools can complex geometry models (Craw- ley et al., 2000). Indoor models can also be used for positioning in wide

  5. A Coupled Airflow-and-Energy Simulation Program for Indoor Thermal Environment Studies (RP-927)

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    for the design of radiative, convective, and hybrid heating and cooling systems. Keywords: Airflow, Air for thermal comfort (ASHRAE 1992). In an indoor space with radiative, convective, and hybrid heating with convective, radiative, and hybrid heating and cooling systems. In the past few years, many investigations

  6. Respiratory health effects of the indoor environment in a population of Dutch children

    SciTech Connect (OSTI)

    Dijkstra, L.; Houthuijs, D.; Brunekreef, B.; Akkerman, I.; Boleij, J.S. (Univ. of Wageningen (Netherlands))

    1990-11-01T23:59:59.000Z

    The effect of indoor exposure to nitrogen dioxide on respiratory health was studied over a period of 2 yr in a population of nonsmoking Dutch children 6 to 12 yr of age. Lung function was measured at the schools, and information on respiratory symptoms was collected from a self-administered questionnaire completed by the parents of the children. Nitrogen dioxide was measured in the homes of all children with Palmes' diffusion tubes. In addition, information on smoking and dampness in the home was collected by questionnaire. There was no relationship between exposure to nitrogen dioxide in the home and respiratory symptoms. Respiratory symptoms were found to be associated with exposure to tobacco smoke and home dampness. There was a weak, negative association between maximal midexpiratory flow (MMEF) and exposure to nitrogen dioxide. FEV1, peak expiratory flow, and MMEF were all negatively associated with exposure to tobacco smoke. Home dampness was not associated with pulmonary function. Lung function growth, measured over a period of 2 yr, was not consistently associated with any of the indoor exposure variables. The development of respiratory symptoms over time was not associated with indoor exposure to nitrogen dioxide. There was a significant association between exposure to environmental tobacco smoke in the home and the development of wheeze. There was also a significant association between home dampness and the development of cough.

  7. A conceptual model to estimate cost effectiveness of the indoor environment improvements

    SciTech Connect (OSTI)

    Seppanen, Olli; Fisk, William J.

    2003-06-01T23:59:59.000Z

    Macroeconomic analyses indicate a high cost to society of a deteriorated indoor climate. The few example calculations performed to date indicate that measures taken to improve IEQ are highly cost-effective when health and productivity benefits are considered. We believe that cost-benefit analyses of building designs and operations should routinely incorporate health and productivity impacts. As an initial step, we developed a conceptual model that shows the links between improvements in IEQ and the financial gains from reductions in medical care and sick leave, improved work performance, lower employee turn over, and reduced maintenance due to fewer complaints.

  8. Workshop on indoor air quality research needs

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  9. SAFE WORKING ENVIRONMENT THE DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS

    E-Print Network [OSTI]

    SAFE WORKING ENVIRONMENT THE DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS MAY 2013MAY 2013 #12;#12;SAFE WORKING ENVIRONMENT 1 The Working Environment Organisation at the Department The Working Environment organisation at the Department of Molecular Biology and Genetics (MBG) is divided into 11 working

  10. STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH...

    Office of Environmental Management (EM)

    STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION, HAZARDOUS WASTE BUREAU, Complainant, v. UNITED STATES DEPARTMENT OF ENERGY, and NUCLEAR WASTE PARTNERSHIP,...

  11. IN THE MATTER OF: STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IN THE MATTER OF: STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT UNITED STATES DEPARTMENT ) ADMINISTRATIVE ORDER UNDER THE NEW MEXICO HAZARDOUS WASTE ACT 74-4-13 OF ENERGY AND...

  12. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

  13. STATE OF TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF RADIOLOGICAL HEALTH L&C ANNEX - THIRD FLOOR 401 CHURCH STREET NASHVILLE, TENNESSEE 37243-1532 LICENSEE: Babcock &...

  14. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01T23:59:59.000Z

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  15. Environment, Safety, and Health Program for Department of Energy Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23T23:59:59.000Z

    To establish the Environment, Safety, and Health (ES&H) Program for Department of Energy (DOE) operations. Cancels DOE O 5480.1A. Canceled by DOE N 251.4.

  16. Webinar: Biofuels for the Environment and Communities | Department...

    Broader source: Energy.gov (indexed) [DOE]

    to 2:00PM EDT Online The Energy Department (DOE) will present a live webinar titled "Biofuels for the Environment and Communities" on Wednesday April 22, 2015, from 1:00 p.m. to...

  17. Effectiveness of Houseplants in Reducing the Indoor Air Pollutant Ozone

    E-Print Network [OSTI]

    Decoteau, Dennis R.

    Effectiveness of Houseplants in Reducing the Indoor Air Pollutant Ozone Heather L. Papinchak1 , E for their species effectiveness in reducing ozone concentrations in a simulated indoor environment. Continuously supply system were used to simulate an indoor environment in which ozone concentrations could be measured

  18. Indoor airPLUS Construction Specifications Version 1 (Rev. 02) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJune 25, 2012 EMSummaryof

  19. Indoor airPLUS Version 1 (Rev. 01) Verification Checklist | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRY ENERGYEnergy

  20. Department of Architecture and Built Environment

    E-Print Network [OSTI]

    Hopkins, Gail

    of Sydney Sydney Australia The University of Western Australia Perth Australia The University of British Australia The University of Melbourne Melbourne Australia Deakin University Geelong, near Melbourne Australia For students from Architecture & Built Environment only The University of Newcastle Newcastle, New

  1. Investigation and Analysis of the Indoor Air Environment of a Large-scale Art Exhibition Hall in Beijing 

    E-Print Network [OSTI]

    Hao, X.; Cao, G.; Wang, Y.; Wang, J.

    2006-01-01T23:59:59.000Z

    environment is analyzed according to the needs of the art exhibitions and collections and the personal feelings of subjects' thermal comfort and health within that environment. Finally, the paper provides advice regarding existing problems with the building...

  2. Investigation and Analysis of the Indoor Air Environment of a Large-scale Art Exhibition Hall in Beijing

    E-Print Network [OSTI]

    Hao, X.; Cao, G.; Wang, Y.; Wang, J.

    2006-01-01T23:59:59.000Z

    environment is analyzed according to the needs of the art exhibitions and collections and the personal feelings of subjects' thermal comfort and health within that environment. Finally, the paper provides advice regarding existing problems with the building...

  3. Environment and Compliance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014July 7,July2014 | DepartmentCooling

  4. Acquisition and the Environment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A Potential Path toDepartmentUsusGuidance

  5. STATEOFNEWMEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u MayDepartment of

  6. Solar Policy Environment: Portland | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 SolarSolarEnergy

  7. Environment, Safety, and Health Program for Department of Energy Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23T23:59:59.000Z

    This Page Change transmits revised pages of DOE O 5480.1B to renew the authority fo the Assistant Secretary for Environment, Safety and Health to curtail or suspend operations at Department of Energy facilities. Chg 1 dated 5-10-93. Canceled by DOE N 251.4.

  8. Factors Analysis on Safety of Indoor Air Quality

    E-Print Network [OSTI]

    Luo, Q.; Liu, Z.; Xiong, J.

    2006-01-01T23:59:59.000Z

    . Handbook on Review and Detection of Indoor Environment [M]. Beijing: Mechanical Industry Press, 2003: 1-5.(In Chinese) [2] Pan Xiaochuan. Review on Indoor Air Pollution and Its Harmfulness to Health [J]. Chin. Prev. Med., 2002,3(3):167-169 (in... of Urban Construction, Nanhua University, Hengyang, P.R.China hunanluoqinghai@163.com Abstract: Influence factors on safety of indoor air quality (IAQ) were analyzed in this paper. Some regeneration compositions resulting from potential indoor...

  9. Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols, or collectively called particulate matters (PM) are ubiquitous indoor

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Editorial Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols or aerosols and their transport in built environment. The first five papers in this special issue addressed influences ozone removal and the secondary organic aerosols generation. The study from Zuraimi et al

  10. Simulation and Comparison of Particle Injection in an Indoor Environment Using the Species Transport and Discrete Phase Models

    SciTech Connect (OSTI)

    Zheng, Zhongquan C.; Wei, Zhenglun A.; Bennett, James S.; Yang, Xiaofan

    2012-12-11T23:59:59.000Z

    In simulating fluid/solid-particle multiphase -flows, various methods are available. One approach is the combined Euler-Lagrange method, which simulates the fluid phase flow in the Eulerian framework and the discrete phase (particle) motion in the Lagrangian framework simultaneously. The Lagrangian approach, where particle motion is determined by the current state of the fluid phase flow, is also called the discrete phase model (DPM), in the context of numerical flow simulation. In this method, the influence of the particle motions on the fluid flow can be included (two-way interactions) but are more commonly excluded (one-way interactions, when the discrete phase concentration is dilute. The other approach is to treat the particle number concentration as a continuous species, a necessarily passive quantity determined by the fluid flow, with no influences from the particles on the fluid flow (one-way interactions only), except to the extent the discrete phase “continuum” alters the overall fluid properties, such as density. In this paper, we compare these two methods with experimental data for an indoor environmental chamber. The effects of injection particle numbers and the related boundary conditions are investigated. In the Euler-Lagrange interaction or DPM model for incompressible flow, the Eulerian continuous phase is governed by the Reynolds-averaged N-S (RANS) equations. The motions of particles are governed by Newton’s second law. The effects of particle motions are communicated to the continuous phase through a force term in the RANS equations. The second formulation is a pure Eulerian type, where only the particle-number concentration is addressed, rather than the motion of each individual particle. The fluid flow is governed by the same RANS equations without the particle force term. The particle-number concentration is simulated by a species transport equation. Comparisons among the models and with experimental and literature data are presented. Particularly, results with different numbers of released particles in the DPM will be investigated.

  11. Energy-related indoor environmental quality research: A priority agenda

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    LBNL - 51328 ENERGY-RELATED INDOOR ENVIRONMENTAL QUALITYof Public Health Florida Solar Energy Center, Florida StateStandards, U.S. Department of Energy National Institute of

  12. 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications Leader Election in a Personal Distributed Environment

    E-Print Network [OSTI]

    Atkinson, Robert C

    of the traditional personal communication model. The PDE requires a device to host the local Device Management Entity, Personal Distributed Environment, Device Management Entity. I. INTRODUCTION As communications systems. These devices are managed by a device management entity (DME) that plays the role of a user personal agent

  13. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  14. Ris-R-1462(EN) Airborne contamination in the indoor

    E-Print Network [OSTI]

    Risø-R-1462(EN) Airborne contamination in the indoor environment and its implications for dose K. Byskov, X.L. Hou, H. Prip, S.K. Olsen, T. Roed Title: Airborne contamination in the indoor environment of contaminant aerosol were examined, and since the previous measurements had indicated that elemental iodine

  15. Impacts of Contaminant Storage on Indoor Air Quality: Model Development

    E-Print Network [OSTI]

    . Impacts of contaminant storage on indoor air quality: Model development. Atmospheric Environment. LBNL the buffering of airborne chemical species by building materials and furnishings in the indoor environment to the time scale of depletion of the compound from the storage medium, however, the total exposure

  16. Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings

    E-Print Network [OSTI]

    Gugercin, Serkan

    Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

  17. Before the Senate Environment and Public Works Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher Smith, PrincipalEnergy Environment

  18. STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT ENVIRONMENTAL HEALTH DIVISION,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergy SmallImplementing J-F-1 SECTION JtheNEW MEXICO ENVIRONMENT DEPARTMENT

  19. Indoor Landscaping with Living Foliage Plants.

    E-Print Network [OSTI]

    DeWerth, A. F.

    1972-01-01T23:59:59.000Z

    exotica Ficus eburnea Ficus elastica Ficus elas tica tlecora Ficus elasstica variegated Ficus nlacrophylla Ficus nititla (retusa) Ficus pandurata Ficus religiosa Ficus rubiginosa variegated (australis) Gyriura aurantiaca . Hedera canariensis... and nutrients. ,411 of these l'actors are interrelated, and all effect the height, strength ant1 health of the plant. Indoor Environmental Factors The selection of plants for indoor landscaping, therefore, is depenclent upon the environment. The problem...

  20. Pedestrian localisation for indoor environments

    E-Print Network [OSTI]

    Woodman, Oliver

    2010-11-16T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 A.1 A possible log-log plot of Allan Deviation . . . . . . . . . . . . . . . . . . . 170 A.2 Allan Deviation curves for the gyroscopes of an Xsens Mtx. . . . . . . . . . 171 A.3 Allan Deviation curves for the accelerometers of an Xsens Mtx...

  1. Experimental Design and Analysis of Transmission Properties in an Indoor Wireless Sensor Network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental Design and Analysis of Transmission Properties in an Indoor Wireless Sensor Network channel common to an indoor, single-hop, wireless sensors networks in which the sensor deployment sensor network in a real-world indoor environment. We quantify the impact of primary factors

  2. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  3. Indoor Environmental Science and Engineering: An Integrated Academic Program

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Quality (Physics and Chemistry), HVAC Design, Building Energy Simulation, Design of Energy Efficient1 . This statistic is disturbing given that recent studies indicate that indoor environments no regulatory attention and little research funding. Academic programs are lacking to train engineers

  4. Indoor Powerline Conductor Accelerated Testing Facility (Indoor-PCAT)

    E-Print Network [OSTI]

    conductors in parallel tests. The tension limitations (i.e., the number of conductors) inherent in towersIndoor Powerline Conductor Accelerated Testing Facility (Indoor-PCAT) Overview: The Indoor Powerline Conductor Accelerated Testing facility (or Indoor-PCAT), planned for construction in FY04 at Oak

  5. Environment, Safety, and Health Special Review, Department of...

    Broader source: Energy.gov (indexed) [DOE]

    approach outlined in DOE's Nanoscale Science Research Centers Approach to Nanoscale Environment, Safety, and Health, and other applicable requirements including 10 C.F.R. Part 851...

  6. DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The Department of Energy (DOE) today awarded a grant for an estimated $1.6 million to the New Mexico Environment Department (NMED). The five-year grant funds an agreement for NMED to conduct non-regulatory environmental oversight and monitoring to evaluate activities conducted at DOE’s Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  7. Before the Subcommittee on Energy and the Environment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher Smith,Commerce | Department

  8. Indoor air quality environmental information handbook: Combustion sources

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This environmental information handbook was prepared to assist both the non-technical reader (i.e., homeowner) and technical persons (such as researchers, policy analysts, and builders/designers) in understanding the current state of knowledge regarding combustion sources of indoor air pollution. Quantitative and descriptive data addressing the emissions, indoor concentrations, factors influencing indoor concentrations, and health effects of combustion-generated pollutants are provided. In addition, a review of the models, controls, and standards applicable to indoor air pollution from combustion sources is presented. The emphasis is on the residential environment. The data presented here have been compiled from government and privately-funded research results, conference proceedings, technical journals, and recent publications. It is intended to provide the technical reader with a comprehensive overview and reference source on the major indoor air quality aspects relating to indoor combustion activities, including tobacco smoking. In addition, techniques for determining potential concentrations of pollutants in residential settings are presented. This is an update of a 1985 study documenting the state of knowledge of combustion-generated pollutants in the indoor environment. 191 refs., 51 figs., 71 tabs.

  9. 2015 Tribal Lands and Environment Forum | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery5 AnnualDillingham,7, 2015 9:00AM

  10. Contaminants in Vadose Zone Environments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy This partAs theFebruary09 FY1,The1, 2015|Department

  11. Before the Senate Environment and Public Works Committee | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energy JonathanEnergyDepartment

  12. Before the Senate Environment and Public Works Committee | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2, 2015Energy JonathanEnergyDepartmentEnergy

  13. Advanced Converter Systems for High Temperature Environments | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartment of EnergyeffortTIF andRenewableof

  14. New Mexico Environment Department Presents WIPP Its Highest Recognition for

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment of EnergyAccelerated by100Brightens

  15. Multipath Reflections Analysis on Indoor Visible Light Positioning System

    E-Print Network [OSTI]

    Gu, Wenjun; Kavehrad, Mohsen

    2015-01-01T23:59:59.000Z

    Visible light communication (VLC) has become a promising research topic in recent years, and finds its wide applications in indoor environments. Particularly, for location based services (LBS), visible light also provides a practical solution for indoor positioning. Multipath-induced dispersion is one of the major concerns for complex indoor environments. It affects not only the communication performance but also the positioning accuracy. In this paper, we investigate the impact of multipath reflections on the positioning accuracy of indoor VLC positioning systems. Combined Deterministic and Modified Monte Carlo (CDMMC) approach is applied to estimate the channel impulse response considering multipath reflections. Since the received signal strength (RSS) information is used for the positioning algorithm, the power distribution from one transmitter in a typical room configuration is first calculated. Then, the positioning accuracy in terms of root mean square error is obtained and analyzed.

  16. Webinar: Biofuels for the Environment and Communities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWaste Heat

  17. Environment, Health, Safety & Security | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome |Cooking forEnvironment, Health, Safety &

  18. Environment Policy, Guidance & Reports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014July 7,July2014 | Department

  19. Before the Senate Environment and Public Works Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher Smith, PrincipalEnergy

  20. Office of Environment, Safety and Health Assessments | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofC T O BEmergencyAssessments Office of

  1. Office of the Assistant General Counsel for Environment | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartment of Energy

  2. Our Commitment to Environment, Security, Safety and Health | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartmentChart Organizational

  3. Integrated Energy Analysis and Validation Environment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartmentEnergy Integrated Energy Analysis and Validation

  4. Radiation Protection of the Public and the Environment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: ThomasDepartment ofThisHiTek logo HiTekLoans

  5. Before the Subcommittee on Energy and the Environment | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplicationCommittee | Department of Energy -

  6. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  7. resulting system (RPLAN) is tested in a natural, indoor environment. RPLAN con sists of three components. The first systematically integrates sonar and vision sensing

    E-Print Network [OSTI]

    Kortenkamp, David

    by inaccurate sensors and motors, and the dynamics and complexity of the environment. People face many in rats and men. Psychological Review, 55(1), 1948. [Tsuji and Li, 1993] Saburo Tsuji and Shigang Li­based caching: Applications of expectations to sensor­based syst

  8. Impacts of contaminant storage on indoor air quality: Model development

    E-Print Network [OSTI]

    environment. The model is applied to describe the interaction between formaldehyde in building materials to the timescale of depletion of the compound from the storage medium, however, the total exposure will depend in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model

  9. In 2006 and 2007, the Division of Water Qual-ity, North Carolina Department of Environment

    E-Print Network [OSTI]

    Hunt, William F.

    Roofs, and Water Harvesting (AG-588-6). As the use of permeable pavement increases in North Carolina In 2006 and 2007, the Division of Water Qual- ity, North Carolina Department of Environment: permeable pave- ment runoff reduction, clogging, long-term hydrology, and water quality. In this update

  10. Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model for energy efficiency in radio over fiber distributed indoor antenna Wi-Fi network Yves Josse communications in indoor environments. In this paper, the power consumption and energy efficiency of a DAS using for different transmission configurations, yielding a distance- dependent energy efficiency model. In a second

  11. Changes in indoor pollutants since the 1950s Charles J. Weschler a,b

    E-Print Network [OSTI]

    Short, Daniel

    University, Piscataway, NJ 08854, USA b International Centre for Indoor Environment and Energy, Technical eventually been regulated. Many of the manufacturers of the materials, furnishings and products used indoors, Europe, Asia and other parts of the world have come to resemble one another. Initially, because

  12. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environment Environment Our good neighbor pledge: to contribute to quality of life in Northern New Mexico through economic development, excellence in education, and active employee...

  13. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    residences: acetaldehyde, acrolein, benzene, 1,3-butadiene,with the addition of acrolein, which was not included inlarge contributors to acrolein and NO 2 respectively indoors

  14. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    The Status of Indoor Air Pollution Research 1976. Geometand appliances and air pollution levels in the indoorAnnual Meeting of the Air Pollution Control Association,

  15. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    The Status of Indoor Air Pollution Research 1976. GeometNovakov, T. : Formation of Pollution Particulate NitrogenGENERATED INDOOR AIR POLLUTION Dr. C. D. Hollowell, Dr. R.

  16. Impacts of contaminant storage on indoor air quality: Model development

    SciTech Connect (OSTI)

    Sherman, Max H.; Hult, Erin L.

    2013-02-26T23:59:59.000Z

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  17. 3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi

    E-Print Network [OSTI]

    Sarabandi, Kamal

    3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms

  18. Coupling of a multizone airflow simulation program with computational fluid dynamics for indoor environmental analysis

    E-Print Network [OSTI]

    Gao, Yang, 1974-

    2002-01-01T23:59:59.000Z

    Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...

  19. Indoor Dose Conversion Coefficients for Radon Progeny for Different

    E-Print Network [OSTI]

    Yu, K.N.

    Indoor Dose Conversion Coefficients for Radon Progeny for Different Ambient Environments K . N . Y Inhaled progeny of 222Rn (radon progeny) are the most important source of irradiation of the human-, urban-, and marine-influenced aerosols. The ASDs of attached radon progeny for all three studied ambient

  20. Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters

    E-Print Network [OSTI]

    Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters I. Guvenc EECE Department of a location system over the deployed network, and the application of a Kalman filtering algorithm to enhance a Kalman filter algorithm are then presented. General Terms Algorithms, Measurement, Experimentation

  1. ENVIRONMENTAL ENERGY TECHNOLOGIES DIVISION INDOOR ENVIRONMENT PROGRAM

    E-Print Network [OSTI]

    -Air Heating and Cooling Systems" -LBNL 47309 "Evaluation of flow hood measurements for residential register........................................................................................................................................ 7 PROGRESS UPDATE ON INDIVIDUAL TASKS...................................... 7 TASK 2: SIZING AND OPERATION OF COOLING SYSTEMS

  2. Department of Energy Environment, Safety and Health Management Plan. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report describes efforts by the Department of Energy (DOE) to effectively plan for environment, safety and health activities that protect the environment, workers and the public from harm. This document, which covers fiscal year 1996, reflects planning by operating contractors and Program Offices in early 1994, updated to be consistent with the President`s FY 1996 budget submittal to Congress, and subsequent Department of Energy Program refinements. Prior to 1992, only a small number of facilities had a structured process for identifying environment, safety and health (ES and H) needs, reporting the costs (in both direct and indirect budgets) of ES and H requirements, prioritizing and allocating available resources, and efficiently communicating this information to DOE. Planned costs for ES and H activities were usually developed as an afterthought to program budgets. There was no visible, consistently applied mechanism for determining the appropriate amount of resources that should be allocated to ES and H, or for assuring that significant ES and H vulnerabilities were planned to be funded. To address this issue, the Secretary (in November 1991) directed DOE to develop a Safety and Health Five-Year Plan to serve as a line management tool to delineate DOE-wide programs to reduce and manage safety and health risks, and to establish a consistent framework for risk-based resource planning and allocation.

  3. Energy and Environment Research Position The Department of Civil and Environmental Engineering at Princeton University seeks a research scientist to

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Energy and Environment Research Position The Department of Civil and Environmental Engineering and the environment, with particular emphasis on geologic sequestration of carbon dioxide. The research program at Princeton University seeks a research scientist to develop a new research program at the nexus of energy

  4. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    SciTech Connect (OSTI)

    Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

    1990-01-01T23:59:59.000Z

    This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

  5. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect (OSTI)

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21T23:59:59.000Z

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  6. Indoor nitrogen dioxide in five Chattangooga, Tennessee public housing developments

    SciTech Connect (OSTI)

    Parkhurst, W.J.; Harper, J.P. (Tennessee Valley Authority (US)); Spengler, J.D.; Fraumeni, L.P.; Majahad, A.M. (Harvard School of Public Health, Boston, MA (US)); Cropp, J.W. (Chattanooga-Hamilton County Air Pollution Control Bureau, Chattanooga, TN (US))

    1988-01-01T23:59:59.000Z

    This report summarizes an indoor nitrogen dioxide (NO{sub 2}) sampling study conducted during January through March of 1987 in five Chattanooga public housing developments. The origins of this study date to the summer of 1983 when the Piney Woods Community Organization (a citizens action group) expressed concern about toxic industrial air pollution and the effects it might have on their community. In response to these concerns, the Chattanooga-Hamilton County Air Pollution Control Bureau (Bureau) requested assistance from the Tennessee Department of Health and Environment (TDHE) in conducting a community health survey and assistance from the Tennessee Valley Authority (TVA) in conducting a community air quality measurement program. The TDHE community health study did not find any significant differences between the mortality statistics for the Piney Woods community and a demographically similar control group. However, a health survey revealed that Piney Woods residents did not have a statistically significant higher self-reported prevalence of cough, wheezing, phlegm, breathlessness, colds, and respiratory illness.

  7. Indoor Pollutants Emitted by Electronic Office Equipment

    SciTech Connect (OSTI)

    Maddalena, Randy L.; Destaillats, Hugo; Russell, Marion L.; Hodgson, Alfred T.; McKone, Thomas E.

    2008-07-01T23:59:59.000Z

    The last few decades have seen major changes in how people collect and process information at work and in their homes. More people are spending significant amounts of time in close proximity to computers, video display units, printers, fax machines and photocopiers. At the same time, efforts to improve energy efficiency in buildings by reducing leaks in building envelopes are resulting in tighter (i.e., less ventilated) indoor environments. Therefore, it is critical to understand pollutant emission rates for office equipment because even low emissions in areas that are under-ventilated or where individuals are in close proximity to the pollutant source can result in important indoor exposures. We reviewed existing literature reports on pollutant emission by office equipment, and measured emission factors of equipment with significant market share in California. We determined emission factors for a range of chemical classes including volatile and semivolatile organic compounds (VOCs and SVOCs), ozone and particulates. The measured SVOCs include phthalate esters, brominated and organophosphate flame retardants and polycyclic aromatic hydrocarbons. Measurements were carried out in large and small exposure chambers for several different categories of office equipment. Screening experiments using specific duty cycles in a large test chamber ({approx}20 m{sup 3}) allowed for the assessment of emissions for a range of pollutants. Results from the screening experiments identified pollutants and conditions that were relevant for each category of office equipment. In the second phase of the study, we used a smaller test chamber ({approx}1 m{sup 3}) to measure pollutant specific emission factors for individual devices and explored the influence of a range of environmental and operational factors on emission rates. The measured emission factors provide a data set for estimating indoor pollutant concentrations and for exploring the importance of user proximity when estimating exposure concentrations.

  8. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavyDepartmentebbaEnvironment Environment A

  9. Indoor Air Quality Poor indoor air quality comes from many sources. It can lead to having

    E-Print Network [OSTI]

    Indoor Air Quality Fact Sheet Poor indoor air quality comes from many sources. It can lead Indoor Air Pollutants · Molds · Pollen · Dander from pet fur · Secondhand smoke · Formaldehyde · Carbon such as cleaners and pesticides How to Improve Indoor Air Quality · Open windows when you can to let in fresh air

  10. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01T23:59:59.000Z

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  11. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovation PortalHanford SiteMonitoringEnvironment

  12. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavyDepartmentebba SignEconomicEnvironment

  13. LABORATORY SAFETY CHECKLIST Department of Environment, Health and Safety v.1.9 July 2014 Page 1

    E-Print Network [OSTI]

    Machel, Hans

    or radioactive waste have the appropriate label. b) Refrigerators and freezers used for radioactive material storage have the appropriate label. c) Equipment used to handle or manipulate radioactive material hasLABORATORY SAFETY CHECKLIST Department of Environment, Health and Safety v.1.9 July 2014 Page 1

  14. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 4 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: Allow occupants to choose the appropriate light level for each

  15. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 3 MANDATORY LIGHTING CONTROLS 1. 130.1 (a) Area Controls: Manual controls that control lighting in each area separately 2. 130.1 (b) Multi-level Controls: "Dimmability." Allow occupants to choose the appropriate light

  16. MANDATORY MEASURES INDOOR LIGHTING CONTROLS

    E-Print Network [OSTI]

    California at Davis, University of

    MANDATORY MEASURES INDOOR LIGHTING CONTROLS (Reference: Sub-Chapter 4, Section 130.1) #12;SECTION 5 MANDATORY LIGHTING CONTROLS 1. Area Controls: Manual controls that control lighting in each area separately 2. Multi-level Controls: Allow occupants to choose the appropriate light level for each area 3. Shut

  17. SUMMER TO SUMMER VARIATIONS IN INDOOR RADON

    E-Print Network [OSTI]

    Paul Dibenenetto; Douglas G. Mose; George W. Mushrush

    Indoor radon concentrations show a strong dependence on weather. winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, in northern Virginia, the summer of 1988 was wetter than the summer of 1987. Consequently, the regional indoor radon during the summer of 1988 was about 30 % higher than during the summer of 1987, and indoor radon during the summer of 1988 actually exceeded the indoor radon level of the 1987-88 winter. Evidently care must be taken when attempting to estimate regional indoor radon concentrations, and homesite risk estimates should rely on long-term measurement intervals. Key word index: summer precipitation, soil capping, alpha-track radon monitors, home heating system, radon and radon progeny,

  18. Environment, Safety, and Health Policy for the Department of Energy Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-06-15T23:59:59.000Z

    The Vision and Principles for the Protection of the Worker, Public, and Environment. Canceled by DOE P 450.7.

  19. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

  20. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    Equivalence in Ventilation and Indoor Air Quality M. H.have a method for determining equivalence in terms of eitherwe need to establish an equivalence principle that allows

  1. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    The Japanese Union of Air Pollution Prevention Associations,The Status of Indoor Air Pollution Research 1976, GeometAnnual Meeting of the Air Pollution Control Association,

  2. Indoor airPLUS Construction Specifications Version 1 (Rev. 02...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specifications Version 1 (Rev. 02) Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Indoor airPLUS Construction Specifications Version 1 (Rev. 02), November 2013,...

  3. Integrating Energy and Indoor Environmental Quality Retrofits in Apartments

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    ventilating, and air conditioning Indoor air quality IndoorRefrigerating, and Air Conditioning Engineers, Inc. ASHRAE (Refrigerating, and Air Conditioning Engineers, Inc. ASHRAE (

  4. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

  5. assessing indoor air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheet Poor indoor air quality comes from many sources. It can lead, and charcoal Household products such as cleaners and pesticides How to Improve Indoor Air Quality Open...

  6. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    SciTech Connect (OSTI)

    Fisk, W.J.

    1994-11-01T23:59:59.000Z

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  7. uWaterloo Annual Department Health, Safety and Environment (HSE) Report (Workwell Version) Reporting Year: 2012 Department: ______________________________________________

    E-Print Network [OSTI]

    Czarnecki, Krzysztof

    ) Occupational Health and Safety Act (OHSA) Poster with names and locations of Faculty/Dept. Health and Safety Co (JHSC) membership. j) Location of Department HSE Board? Building) Classroom Emergency Procedures Poster? (April 11) e) In chemical labs and areas with hazardous materials

  8. ENERGY IMPACTS OF ENERGY AND INDOOR ENVIRONMENTAL QUALITY RETROFITS OF APARTMENTS IN CALIFORNIA

    E-Print Network [OSTI]

    .S. is implementing many energy retrofits in homes with the goal of reducing building energy consumption and carbon1 ENERGY IMPACTS OF ENERGY AND INDOOR ENVIRONMENTAL QUALITY RETROFITS OF APARTMENTS IN CALIFORNIA Environment Group, Berkeley, CA, USA Corresponding author: William J. Fisk 1 Cyclotron Road, 90R3058 Lawrence

  9. Indoor air quality: multivariate analyses of the relationship between indoor and outdoor aerosols

    SciTech Connect (OSTI)

    McCarthy, S.M.

    1986-01-01T23:59:59.000Z

    A unique multivariate data set incorporating simultaneous indoor and outdoor measurements of sixteen air contaminants at ten homes has been used to investigate the contribution of outdoor concentrations to indoor aerosol variability, and to characterize indoor source contribution to the indoor concentrations. The data were available from an earlier field study of particle and gas concentrations outside and inside five homes in each of two cities: Portage, Wisconsin, and Steubenville, Ohio. Three distinct multivariate statistical techniques were used sequentially in the research, successively building on the results and interpretations as they developed. Cluster analysis was selected as the initial method for partitioning the variables into subgroups comprised of highly intercorrelated variables. Significant site-to-site variability was evident in both cities, however within sites, indoor clusters had similarities to the outdoor clusters. Principal component analysis was next performed on the Portage data, reduced in dimension to avoid problems of singularity in the data matrix. The principal component analyses results were used to attribute predominant indoor and outdoor sources, including cigarette smoke, wood stove, road dust, and urban combustion sources. Finally, multiple regression analysis was performed to relate outdoor pollutant concentrations to a composite index of the indoor aerosol as represented by the orthogonal rotations of the indoor principal components. The research indicates that this multivariate analysis framework is preferable to single univariate analysis in evaluating the influence of outdoor aerosols and indoor sources on indoor air quality data.

  10. Session IV Socio Economics of Natural Resources Proceedings of the International Forestry and Environment Symposium 2013 of the Department of Forestry

    E-Print Network [OSTI]

    Session IV ­ Socio Economics of Natural Resources Proceedings of the International Forestry and Environment Symposium 2013 of the Department of Forestry and Environmental Science, University of Sri at Selected Sawmills in Moratuwa Caldera H.T.S.* and Amarasekera H.S. Department of Forestry and Environmental

  11. Classification of dwellings into profiles regarding indoor air quality, and identification of indoor air pollution determinant factors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of indoor air pollution determinant factors Jean-Baptiste Masson1,2 * , Gérard Govaert2 , Corinne Mandin1 representing different types of indoor air pollution. We restrain to the 20 variables corresponding to indoorClassification of dwellings into profiles regarding indoor air quality, and identification

  12. Department of Civil, Architectural, and Environmental Engineering Department of Civil, Architectural, and Environmental Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    . In architectural engineering, faculty conduct research in acoustics, airflow and thermal modeling, enery con- servation, indoor air quality, and thermal comfort. Construction engineering and management research inDepartment of Civil, Architectural, and Environmental Engineering Department of Civil

  13. Department of Civil, Architectural, and Environmental Engineering Department of Civil, Architectural, and Environmental Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    engineering. In architectural engineering, faculty conduct research in acoustics, airflow and thermal modeling, enery con- servation, indoor air quality, and thermal comfort. Construction engineering and managementDepartment of Civil, Architectural, and Environmental Engineering Department of Civil

  14. Environmental sensor technologies and procedures for detecting and identifying indoor air pollution. Final report

    SciTech Connect (OSTI)

    O'Connor, E.T.; Kermath, D.; Kemme, M.R.

    1992-03-01T23:59:59.000Z

    Public concern about environmental quality now encompasses the indoor environment-the buildings where people work and live. In recent years researchers have been discovering new links between indoor air quality (IAQ) and the occupants' comfort, health, and productivity. As the operator of many thousands of buildings, and the employer of the millions of people who use those buildings, the U.S. Army has a strong interest in maintaining and promoting good IAQ. This report presents a concise summary of the key IAQ parameters of interest to building managers, the most common indoor air contaminants, the variety of sensor technology currently available for detect and identifying those contaminants, and basic procedures for using that technology.

  15. Regulation of indoor air quality: The last frontier of environmental regulation

    SciTech Connect (OSTI)

    Dickson, R.B. [Paul, Hastings, Janofsky & Walker, Washington, DC (United States)

    1994-12-31T23:59:59.000Z

    Indoor air pollution (IAP) is ranked by the Environmental Protection Agency (EPA) among the top five environmental risks to human health. The World Health Organization estimates that nearly one in every six commercial buildings in the United States suffers from sick-building syndrome and that occupants of another one in twelve suffer from building-related illnesses. Indoor air quality (IAQ) problems cost American business $10 billion per year through lowered productivity, absenteeism, and medical costs. Yet despite the importance and high cost of IAQ problems, indoor air is not yet specifically addressed in any federal regulatory program. The reason probably is because indoor air is a quanitatively different environment in which traditional modes of regulation, based on pollutant-by pollutant risk assessments, are of limited utility. This paper covers the following topics: four factors influencing IAQ regulation; EPA regulation of indoor air; the role of the consumer product safety commission; OSHA and IAQ issues; state regulation and economic concerns; the pressure for legislation.

  16. U.S. Navy Marine Diesel Engines and the Environment - Part 1 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.DepartmentTexasof Energy 1 U.S. Navy

  17. U.S. Navy Marine Diesel Engines and the Environment - Part 2 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.DepartmentTexasof Energy 1 U.S. Navyof

  18. U.S. Navy Marine Diesel Engines and the Environment - Part 3 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.DepartmentTexasof Energy 1 U.S. Navyofof

  19. Improving Our Environment One Roof at a Time | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform at theDepartment of Energy| Department

  20. Indoor robot gardening: design and implementation

    E-Print Network [OSTI]

    Correll, Nikolaus

    This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening ...

  1. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01T23:59:59.000Z

    x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

  2. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  3. Indoor Chemical Exposures: Humans' Non-respiratory Interactions with Room Air

    ScienceCinema (OSTI)

    Charles Weschler

    2010-09-01T23:59:59.000Z

    March 18, 2010 Berkeley Lab Environmental Energy Technology Division distinguished lecture: The marked difference in pollutant concentrations between an occupied and un-occupied room are only partially explained by human bio-effluents. Humans alter levels of ozone and related oxidants such as nitrate and hydroxyl radicals in the rooms they inhabit; in effect, they change the oxidative capacity of room air. Ozone-initiated reactions on exposed skin, hair and clothing generate products, including potentially irritating chemicals whose concentrations are much higher in the occupant's breathing zone than in the core of the room. Charles J. Weschler is a Professor at the School of Public Health, the Department of Environmental and Occupational Medicine and the Environmental and Occupational Health Sciences Institute (EOHSI) at the University of Medicine and Dentistry of New Jersey (UMDNJ)/Robert Wood Johnson Medical School & Rutgers University (New Jersey). He is also a Visiting Professor at the International Centre for Indoor Environment and Energy, Technical University of Denmark (DTU, Lyngby, Denmark).

  4. ENVIRONMENT AL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM STAR Certified Homes,|

  5. Proceedings: Indoor Air 2005 A PRELIMINARY FIELD STUDY OF INDOOR CHEMISTRY

    E-Print Network [OSTI]

    Boyer, Edmond

    of ozone-initiated reactions products indoors. In particular, formaldehyde, hexanal and presumably occurring indoors (Weschler 2000). The ozone removal on building products has been experimentally-induced reaction products, including odorous compounds (Knudsen et al. 2003) but also airway irritants (Wolkoff et

  6. Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris* , Kerry A and Environmental Engineering * Corresponding email: Fedenoris@mail.utexas.edu SUMMARY HVAC filters are long heavy metal (Pb, Cd and As) concentrations. HVAC filter microbial concentrations appear to be consistent

  7. Evaluation of building and occupant response to temperature and humidity: non-traditional heat stress considerations A comparison of different construction types used by the Texas Department of Criminal Justice

    E-Print Network [OSTI]

    Nalbone, Joseph Torey

    2005-02-17T23:59:59.000Z

    stifling hot in the summer and damp cold in the winter. The design and construction of dedicated prison facilities continued to progress slowly, but is was not until the 18th century and a review of world prisons by John Howard (State of the Prisons... at Dallas Chair of Advisory Committee: Dr. James C. Rock This study examined the effects of construction types on the indoor environment of selected prison facilities in the State of Texas. Three collocated facilities of the Texas Department...

  8. Improving Our Environment One Roof at a Time | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P.Department of EnergyLessons LearnedU.S.Memorandum

  9. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    E-Print Network [OSTI]

    Zhou, Ao

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, ...

  10. Investigation and Analysis of Winter Classroom Thermal Environment in Chongqing 

    E-Print Network [OSTI]

    Liu, J.; Li, B.; Yao, R.

    2006-01-01T23:59:59.000Z

    the thermal sense value of the occupants, the winter classroom thermal environment was evaluated. Measures for improving the classroom indoor thermal environmental quality were also given. The lower limit air temperature of the non-air conditioned classrooms...

  11. Investigation and Analysis of Winter Classroom Thermal Environment in Chongqing

    E-Print Network [OSTI]

    Liu, J.; Li, B.; Yao, R.

    2006-01-01T23:59:59.000Z

    the thermal sense value of the occupants, the winter classroom thermal environment was evaluated. Measures for improving the classroom indoor thermal environmental quality were also given. The lower limit air temperature of the non-air conditioned classrooms...

  12. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent

    2015-03-02T23:59:59.000Z

    The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogatemore »measures for human occupancy and activity in the patient rooms using both indoor air CO? concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10? data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections.« less

  13. Human Occupancy as a Source of Indoor Airborne Bacteria

    E-Print Network [OSTI]

    Hospodsky, Denina

    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study ...

  14. Indoor Environmental Quality Benefits of Apartment Energy Retrofits

    E-Print Network [OSTI]

    Urban Habitat Initiatives Inc. Boston, MA, USA June 2013 Funding was provided by the California Energy energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among1 Indoor Environmental Quality Benefits of Apartment Energy Retrofits Federico Norisa, , Gary

  15. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    incorporating energy efficient designs. Indoor air qualityincorporating energy efficient designs. In the future, theenergy efficient ventilation standards and ventilation designs

  16. Indoor air quality in French dwellings Sverine Kirchner1,*

    E-Print Network [OSTI]

    Boyer, Edmond

    on Indoor Air Quality (OQAI) aims at collecting data on population exposure to indoor pollutants in various INTRODUCTION Our lack of understanding of the health risks related to air pollutants exposure in buildingsIndoor air quality in French dwellings Séverine Kirchner1,* , Mickael Derbez1 , Cédric Duboudin2

  17. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

    1984-01-01T23:59:59.000Z

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  18. The Effects of Indoor Air Velocity on Occupant Thermal Comfort in Winter

    E-Print Network [OSTI]

    Wang, J.; Chen, L.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity, and IAQ, Vol. I-2-5 The Effects of Indoor Air Velocity on Occupant Thermal Comfort in Winter Jiaolin Wang Lu Chen Postgrauate Master... surface temperature decline to reduce the body?s heat loss. Meanwhile shudder will promote the body?s heat production. So the temperature of organism doesn?t drop with decline of the environmental temperature. But if organism stays at cool environment...

  19. Mechanism of Thermal Comfort and Its Application in Indoor Environment

    E-Print Network [OSTI]

    Lian, Z.; Liu, W.; Ye, X.; Ye, Y.

    2006-01-01T23:59:59.000Z

    was maintained at 60-70% and air velocity was maintained at 0.2m/s during the experiment. The range of ambient temperature is from 16 to 34 . We measured the peak value of electric current of metabolite of dopamine (3,4-dihydroxyphenylacetic acid, DOPAC... Students T test. Differences were considered statistically significant as Pambient temperature resulted...

  20. Arnold Schwarzenegger INDOOR-OUTDOOR AIR LEAKAGE

    E-Print Network [OSTI]

    ;#12;Indoor-Outdoor Air Leakage in Apartments and Commercial Buildings Appendix A Air Infiltration Model for Large Buildings Appendix B Analysis of Commercial Building Data Appendix C Commercial Building Data contains data and discussion of the leakage parameter in commercial buildings. The leakage parameter

  1. Algorithms for GPS operation indoors and downtown

    E-Print Network [OSTI]

    Sahai, Anant

    Algorithms for GPS operation indoors and downtown Nainesh Agarwal Æ Julien Basch Æ Paul Beckmann Æ Piyush Bharti Æ Scott Bloebaum Stefano Casadei Æ Andrew Chou Æ Per Enge Æ Wungkum Fong Æ Neesha Hathi. Casadei Æ A. Chou Æ P. Enge Æ W. Fong N. Hathi Æ W. Mann Æ J. Stone Æ J. Tsitsiklis Æ B. Van Roy

  2. Environment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014July 7,July2014 |

  3. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01T23:59:59.000Z

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall.

  4. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect (OSTI)

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01T23:59:59.000Z

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  5. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01T23:59:59.000Z

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  6. Department

    Office of Legacy Management (LM)

    but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain...

  7. administration indoor air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the investigations Mentifyhg indoor eflvironmental @leas were initiated in response to energy audit requests. One investigation was requested after parents cnplained to the school...

  8. acceptable indoor air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the investigations Mentifyhg indoor eflvironmental @leas were initiated in response to energy audit requests. One investigation was requested after parents cnplained to the school...

  9. Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey

    E-Print Network [OSTI]

    Huizenga, C; Abbaszadeh, S.; Zagreus, Leah; Arens, Edward A

    2006-01-01T23:59:59.000Z

    based Indoor Environmental Quality Survey. Indoor Air 2004;L. Zagreus. 2005. Acoustic Quality in Office Workstations asare you with the air quality in your workspace? very

  10. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Swainson, M. (2009). Indoor air quality in highly energyClayton, R. (2001). Indoor air quality: Residential cookingSacramento, CA: California Air Resources Board. Fugler, D. ,

  11. Vision-based guidance and control of a hovering vehicle in unknown, gps-denied environments

    E-Print Network [OSTI]

    Andrews, Gregory

    This paper describes the system architecture and core algorithms for a quadrotor helicopter that uses vision data to navigate an unknown, indoor, GPS-denied environment. Without external sensing, an estimation system that ...

  12. Natural radiation environment III. [Lead Abstract

    SciTech Connect (OSTI)

    Gesell, T.F.; Lowder, W.M. (eds.)

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  13. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics," on May 26-27,2011, in Bethesda, MD (Washington, DC area). This workshop is organized by the Department of Energy's Offices of Nuclear Physics (NP) and Advanced...

  14. Assessment of Indoor Air Quality Benefits and Energy Costs of

    E-Print Network [OSTI]

    Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation J.M.Logue1,P Quality Benefits and Energy Costs of Mechanical Ventilation LBNL-4945E Disclaimer This document.H. Sherman, B.C. Singer, Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

  15. STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION

    E-Print Network [OSTI]

    STATE OF CALIFORNIA INDOOR AIR QUALITY AND MECHANICAL VENTILATION CEC- CF-6R-MECH-05 (Revised 08 Ventilation (Page 1 of 7) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Ventilation for Indoor Air Quality (IAQ): All dwelling units shall meet the requirements

  16. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus of Mixing on Acceptable Indoor Air Quality in Homes ABSTRACT Ventilation reduces occupant exposure to indoor different dilution rates and contaminant source strengths. The total ventilation rate is the most important

  17. inAir: Sharing Indoor Air Quality Measurements and Visualizations

    E-Print Network [OSTI]

    Mankoff, Jennifer

    evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4

  18. Evolving an Indoor Robotic Localization System Based on Wireless Networks

    E-Print Network [OSTI]

    Braun, Torsten

    of indoor robotic localization. We investigate the design and building of an autonomous localization system provides the position of one robot in a space, as in a Cartesian plane, corroborating with the EvoEvolving an Indoor Robotic Localization System Based on Wireless Networks Gustavo Pessin1

  19. Residential HVAC Indoor Air Quality(ASHRAE 62.2)

    E-Print Network [OSTI]

    Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

  20. Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

  1. Predicting air quality in smart environments Seun Deleawea

    E-Print Network [OSTI]

    Cook, Diane J.

    attributable to air pollution, 1.5 million of these from indoor air pollution. Worldwide there are more deathsPredicting air quality in smart environments Seun Deleawea , Jim Kusznirb , Brian Lambb and Diane J that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper

  2. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    SciTech Connect (OSTI)

    Washington State Energy Code Program

    1992-05-01T23:59:59.000Z

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  3. Particle size distribution of indoor aerosol sources

    SciTech Connect (OSTI)

    Shah, K.B.

    1990-10-24T23:59:59.000Z

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  4. Practical approaches for healthcare: Indoor air quality management

    SciTech Connect (OSTI)

    Turk, A.R.; Poulakos, E.M.

    1996-12-31T23:59:59.000Z

    The management of indoor air quality (IAQ) is of interest to building occupants, managers, owners, and regulators alike. Whether by poor design, improper attention, inadequate maintenance or the intent to save energy, many buildings today have significantly degraded IAQ levels. Considering the increase of facilities and occupants in the non-industrial sector of the nation`s workforce, the consequences of inadequate IAQ, as related to productivity, human wellness and healthcare costs in the commercial (healthcare) environment, have become increasingly urgent issues to design professionals, building owners and managers, safety and health professionals, interior product manufacturers, and HVAC control vendors. The first step of proper IAQ management is to fully understand the issue of IAQ and to a certain elemental degree, the extent of the problem(s), causes and possible solution applications. The second step is to conduct a performance review of the HVAC systems based on equipment design specifications and guidelines for acceptable IAQ. And the third step is to identify potential chemical, physical and biological sources that are known to contribute to adverse air quality.

  5. Indoor and outdoor air pollution in the Himalayas

    SciTech Connect (OSTI)

    Davidson, C.I.; Lin, S.F.; Osborn, J.F.; Pandey, M.R.; Rasmussen, R.A.; Khalil, M.A.K.

    1986-06-01T23:59:59.000Z

    Air pollutant concentrations have been measured in residences in the Himalayas of Nepal where biomass fuels are used for cooking and heating. Levels of total suspended particles are in the range 3-42 mg/m/sup 3/, with respirable suspended particles in the range 1-14 mg/m/sup 3/ in the houses sampled. Limited data for gaseous species show appreciable levels of carbon monoxide, carbon dioxide, methane, and several non-methane hydrocarbons. A questionnaire concerning energy use administered in each household suggests that high per capita use of biomass fuels is responsible for excessive pollutant concentrations. Application of a one-compartment mass balance model to these houses shows only rough agreement between calculated and measured values, due to uncertainties in model input parameters as well as difficulties in estimating average pollutant concentrations throughout each house. High outdoor concentrations of potassium and methyl chloride, previously shown to be tracers of biomass combustion, indicate that the indoor biomass combustion also degrades the outdoor environment. Values of crustal enrichment factors for trace elements in the air and snow of the region suggest that the polluted air is generally confined to the populated villages, with more pristine air at higher elevations. 58 references, 1 figure, 5 tables.

  6. Energy Department Announces Indoor Lighting Winners of Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    was launched in 2008 to promote excellence in the design of energy-efficient light-emitting diode (LED) commercial lighting fixtures or "luminaires." Solid-state lighting...

  7. Hawaii Department of Health Indoor and Radiological Health Branch | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |Hatchet Ridge Wind FarmEnergy

  8. Energy Department Launches Better Buildings Alliance Indoor Lighting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE FOrdersServices » EnergyClean EnergyCampaign for

  9. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department

  10. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department of Energy

  11. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department of

  12. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. Department ofCertified

  13. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. DepartmentMarch 25,2010

  14. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. DepartmentMarch

  15. Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that\. '. DepartmentMarchRichland

  16. Reaching agreements on indoor air quality

    SciTech Connect (OSTI)

    Stewart, S.M.

    1992-08-01T23:59:59.000Z

    The phrases sick building syndrome and indoor air quality (IAQ) are in common use today because of a heightened public awareness of various environmental issues. IAQ complaints must be diplomatically resolved because employers and building owners and managers now face a potential impact on their bottom-lines. The office's IAQ was first questioned when 12 of the 47 employees reported complaints particular to the time they spent in the office building. Three employees were so severely affected, they developed respective cases of rhinitis, conjunctivitis and sinus infection. When the tenant presented this information to the building owner, he was told that there was not an IAQ problem within the building. This article summarizes an unfortunate, yet typical, aspect of IAQ problems. It also offers a more efficient method for evaluating and resolving all IAQ problems.

  17. Commissioning to avoid indoor air quality problems

    SciTech Connect (OSTI)

    Sterling, E.M.; Collett, C.W. (Theodore D. Sterling and Associates, Ltd., Vancouver, British Columbia (Canada)); Turner, S. (Healthy Buildings International Inc., Fairfax, VA (United States)); Downing, C.C. (Environmental Science and Technology Lab., Georgia Technology Research Inst., Atlanta, GA (United States))

    1992-10-01T23:59:59.000Z

    This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

  18. Automobile proximity and indoor residential concentrations of BTEX and MTBE

    SciTech Connect (OSTI)

    Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

    2011-01-01T23:59:59.000Z

    Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

  19. Building Efficiency and Indoor Air Quality - You Can Have Both

    E-Print Network [OSTI]

    Kettler, G. J.

    1998-01-01T23:59:59.000Z

    Providing ventilation for acceptable indoor air quality per ASHRAE Standard 62-1989 does not require large increases in utility costs. Building efficiency does not have to be sacrificed for a healthy building. The ASHRAE 62- 1989 requirement...

  20. Condition Controlling and Monitoring of Indoor Swimming Pools

    E-Print Network [OSTI]

    Nissinen, K.; Kauppinen, T.; Hekkanen, M.

    2004-01-01T23:59:59.000Z

    VTT has executed a lot of research work concerning the usage, functionality and refurbishment of indoor swimming pools and spas lately. This work includes for instance detailed condition surveys, energy audits, cost analysis and maintenance planning...

  1. Toward Indoor Flying Robots Jean-D. Nicoud1

    E-Print Network [OSTI]

    Floreano, Dario

    air vehicles, MAVs [4-7]), or airships but most of them are outdoor machines, consequently requiring-than-air, flapping wings, rotary wings, and fixed wings. All of them are not convenient for indoor use. Airships

  2. 2013 4-H Indoor Exhibits Junior New Mexico State Fair

    E-Print Network [OSTI]

    2013 4-H Indoor Exhibits Junior New Mexico State Fair Exhibitor Name County Place Animal Science J 0015 - Exhibit- Rodeo Arden Gardner Dona Ana 2 Timia Northcutt Curry County 3 0017 - Pet Pals Exhibit

  3. Study of building material emissions and indoor air quality

    E-Print Network [OSTI]

    Yang, Xudong, 1966-

    1999-01-01T23:59:59.000Z

    Building materials and furnishings emit a wide variety of indoor pollutants, such as volatile organic compounds (VOCs). At present, no accurate models are available to characterize material emissions and sorption under ...

  4. air pollution indoor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Houseplants in Reducing the Indoor Air Pollutant Ozone Heather L. Papinchak1 , E ndoor air pollution is ranked as one of the world's greatest public health risks (Wolverton,...

  5. Optimal Indoor Air Temperature Considering Energy Savings and Thermal Comfort in the Shanghai Area

    E-Print Network [OSTI]

    Yao, Y.; Lian, Z.; Hou, Z.; Liu, W.

    2006-01-01T23:59:59.000Z

    influence on the optimal indoor air temperature than other influential factors. (2) The optimal indoor air temperature is nonlinear with the air velocity, and be linear with the air humidity and the clothes thermo-resistance. 25 25.5 26 26.5 27 27.5 28...) Optimal indoor air temperature in summer () ? Fig. 3 Influence of clothes thermo-resistance on the optimal indoor air temperature 3. OPTIMAL INDOOR AIR TEMPERATURE Known from the above analysis, when the indoor air velocity is below 0.3m...

  6. Civil, Architectural, and Environmental Engineering Department of Civil, Architectural, and Environmental Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    engineering. In architectural engineering, faculty conduct research in acoustics, airflow and thermal modeling, energy con- servation, indoor air quality, and thermal comfort. Construction engineering and managementCivil, Architectural, and Environmental Engineering Department of Civil, Architectural

  7. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  8. Equivalence in Ventilation and Indoor Air Quality

    E-Print Network [OSTI]

    Sherman, Max

    2012-01-01T23:59:59.000Z

    environment: PM 2.5 , acrolein, and formaldehyde. There isAcetaldehyde  Acrolein  Benzene  Formaldehyde  Naphthalene that total are PM 2.5 , acrolein, formaldehyde, and ozone.

  9. Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD)

    E-Print Network [OSTI]

    Magyar, Z.; Leitner, A.

    2006-01-01T23:59:59.000Z

    of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy....

  10. DRAFT 11/09/2010 PLEASE DO NOT CITE OR QUOTE Indoor Air Quality (IAQ)

    E-Print Network [OSTI]

    )......................................................................................................... 2 gARAgE AIR POLLUTANTSDRAFT 11/09/2010 PLEASE DO NOT CITE OR QUOTE Indoor Air Quality (IAQ) HeAlTHy InDooR env

  11. DOE ZERH Webinar: Ventilation and Filtration Strategies with Indoor airPLUS

    Broader source: Energy.gov [DOE]

    The Indoor airPLUS qualification, a prerequisite for Zero Energy Ready Homes, offers an important platform to improve the indoor air quality (IAQ) in high-performance homes.  A critical aspect of...

  12. Who are Climbing the Walls? An Exploration of the Social World of Indoor Rock Climbing

    E-Print Network [OSTI]

    Kurten, Jason Henry

    2011-02-22T23:59:59.000Z

    , and share values, goals and language. For years, non-academics involved in the indoor climbing industry have recognized the social component of indoor rock climbing. A recent issue of Recreation Management magazine quoted Adam Koberna, the vice...

  13. Modeling the comfort effects of short-wave solar radiation indoors

    E-Print Network [OSTI]

    Arens, Edward; Huang, Li; Hoyt, Tyler; Zhou, Xin; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    effects of short-wave solar radiation indoors. Building andEFFECTS OF SHORT-WAVE SOLAR RADIATION INDOORS Edward ARENSK. The effects of solar radiation on thermal comfort.

  14. Modeling VOC sorption of building materials and its impact on indoor air quality

    E-Print Network [OSTI]

    Zhang, Jinsong, 1975-

    2001-01-01T23:59:59.000Z

    Sorption of volatile organic compounds (VOCs) by building materials can have significant effect on the indoor VOC concentration levels and indoor air quality in buildings. The objective of this study was to investigate ...

  15. Better Indoor Climate With Less Energy: European Energy Performance of Building Directive (EPBD) 

    E-Print Network [OSTI]

    Magyar, Z.; Leitner, A.

    2006-01-01T23:59:59.000Z

    of the energy performance of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate requirements. The main objective is to achieve better indoor climate with less energy....

  16. Research Articles Holistic Programming Environments

    E-Print Network [OSTI]

    Marsden, Gary

    Research Articles Holistic Programming Environments Gary Marsden a Harold Thimbleby b a Department a development environment. Of course, we can scoff at the distinction and say that a development environment to the development of programming environments and suggest ways in which this may be achieved. Keywords: Programming

  17. University of Michigan campuses are smoke-free environments,

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan campuses are smoke-free environments, both indoors and outdoors. A smoke) 936-5988 THE REGENTS OF THE UNIVERSITY OF MICHIGAN Julia Donovan Darlow, Ann Arbor Laurence B. Deitch Mary Sue Coleman, ex officio © 2011 Regents of the University of Michigan. The University of Michigan

  18. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study

    SciTech Connect (OSTI)

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-10-11T23:59:59.000Z

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

  19. Flying over the Reality Gap: From Simulated to Real Indoor Airships

    E-Print Network [OSTI]

    Floreano, Dario

    Flying over the Reality Gap: From Simulated to Real Indoor Airships Jean-Christophe Zufferey-Christophe.Zufferey@epfl.ch Abstract Because of their ability to naturally float in the air, indoor airships (often called blimps) con physics-based dynamic modelling of indoor airships including a pragmatic methodology for parameter

  20. Development of a new model to predict indoor daylighting : integration in CODYRUN software and validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Development of a new model to predict indoor daylighting : integration in CODYRUN software in the scientific literature for determining indoor daylighting values. They are classified in three categories. The originality of our paper relies on the coupling of several simplified models of indoor daylighting

  1. Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer

    E-Print Network [OSTI]

    Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through5250E #12;Logue et al, Health Hazards in Indoor air LBNL5250E Health Hazards in Indoor Air J

  2. Indoor Lighting Overview Page 5-1 2008 Nonresidential Compliance Manual August 2009

    E-Print Network [OSTI]

    Indoor Lighting ­ Overview Page 5-1 2008 Nonresidential Compliance Manual August 2009 5 Indoor Lighting This chapter covers the requirements for indoor lighting design and installation, including controls. It is addressed primarily to lighting designers or electrical engineers and to enforcement agency

  3. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    National Environmental Research Institute Ministry of the Environment . Denmark Air Quality Research Institute Ministry of the Environment Air Quality Monitoring Programme Annual Summary for 2004 Berkowicz and Jørgen Brandt Department: Department of Atmospheric Environment Serial title and no.: NERI

  4. Motion Planning for an Autonomous Helicopter in a GPS-denied Environment

    E-Print Network [OSTI]

    Kanza, Yaron

    it will increase fuel costs, flight time and the vulnerability of the vehicle. Finally, UAVs for indoor appliMotion Planning for an Autonomous Helicopter in a GPS-denied Environment Svetlana Potyagaylo for motion planning of an autonomous heli- copter in a GPS-denied environment. Methods for determining

  5. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01T23:59:59.000Z

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  6. environment and agriculture

    E-Print Network [OSTI]

    environment and agriculture environmentagriculture.curtin.edu.au Bachelor of Science - majorS in agriculture, environmental Biology or coaStal Zone management Science and engineering #12;t he department of environment and agriculture caters for students who are passionate about agriculture, biology, conserving

  7. Wireless Indoor Location Estimation Based on Neural Network RSS Signature Recognition (LENSR)

    SciTech Connect (OSTI)

    Kurt Derr; Milos Manic

    2008-06-01T23:59:59.000Z

    Location Based Services (LBS), context aware applications, and people and object tracking depend on the ability to locate mobile devices, also known as localization, in the wireless landscape. Localization enables a diverse set of applications that include, but are not limited to, vehicle guidance in an industrial environment, security monitoring, self-guided tours, personalized communications services, resource tracking, mobile commerce services, guiding emergency workers during fire emergencies, habitat monitoring, environmental surveillance, and receiving alerts. This paper presents a new neural network approach (LENSR) based on a competitive topological Counter Propagation Network (CPN) with k-nearest neighborhood vector mapping, for indoor location estimation based on received signal strength. The advantage of this approach is both speed and accuracy. The tested accuracy of the algorithm was 90.6% within 1 meter and 96.4% within 1.5 meters. Several approaches for location estimation using WLAN technology were reviewed for comparison of results.

  8. School Indoor Environmental Quality Assessments and Interventions: Benefits of Effective Partnerships in California

    SciTech Connect (OSTI)

    Shendell, Derek G.; Apte, Michael G.; Kim, Janice; Smorodinsky, Svetlana

    2002-07-01T23:59:59.000Z

    Public, private, government, and university stakeholders have focused increasing attention on children's environmental health. Priority areas have been healthy school environments including indoor air and environmental quality (IEQ); susceptibilities of children to environmental factors and associated illness; and, understanding exposure to biological, chemical, and physical agents. As multidisciplinary teams, studies and intervention demonstrations in California public schools were conducted. A common theme among them was a ''partnership,'' the collaboration between stakeholders from the aforementioned sectors. Federal funding and local bond measures for planning, maintenance, and modernization of school facilities have recently been authorized. Therefore, beneficial ''partnerships'' should be established to conduct needed IEQ, environmental health, and productivity research, development and demonstration. This commentary describes benefits for stakeholders and five strategies for future effective collaborations.

  9. Investigative Tools and Techniques for Indoor Air Quality Studies

    E-Print Network [OSTI]

    Kennedy, S. R.; Quinn, C. B.; Henderson, J. E.; Vickery, R. G.

    1994-01-01T23:59:59.000Z

    INVESTIGATIVE TOOLS AND TECHNIQUES FOR INDOOR AIR QUALITY STUDIES Steven R. Kennedy, C.E.P., REM, project Manager I C. Brandon ~uinn, P.E., C.P.G., Project Manager James E. Henderson, Ph. D., Director of ~nalytical services ' Robert G. ~ickery...

  10. Understanding the Limitations of Transmit Power Control for Indoor WLANs

    E-Print Network [OSTI]

    Liblit, Ben

    Understanding the Limitations of Transmit Power Control for Indoor WLANs Vivek Shrivastava range of transmit power control (TPC) algorithms have been proposed in recent literature to reduce need to support power control mechanisms in a fine- grained manner ­ both in the number of possible

  11. Energy and Indoor Environmental Quality Retrofits in Low-Income

    E-Print Network [OSTI]

    environmental measurements and collect energy consumption data. Based on analyses of the data collected fromEnergy and Indoor Environmental Quality Retrofits in Low-Income Apartments ENVIRONMENTAL ENERGY RESEARCH PIER Environmental Research www.energy.ca.gov/research/environmental August 2011 The Issue

  12. A Sensor Placement Approach for the Monitoring of Indoor Scenes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    needed by research projects on energy management (ERGDOM [1]) and on the medical monitoringA Sensor Placement Approach for the Monitoring of Indoor Scenes Pierre David, Vincent Idasiak of a French project, which aims at developing a new human presence sensor, we intend to design a sensor system

  13. Handover Performance of HVAC Duct Based Indoor Wireless Networks

    E-Print Network [OSTI]

    Stancil, Daniel D.

    in indoor wireless net- works (IWN) that use heating, ventilation, and air conditioning (HVAC) ducts]. An alternative approach to transmitt/receive the RF signal is to use heating, ventilation, and airconditioning and is connected to one or more antennas in the duct. Each antenna acts as a remote antenna (RA) for a particular

  14. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    , and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi. The total ventilation rate is the most important factor in determining occupant exposure to given

  15. Experimental Evaluation of an Angle Based Indoor Localization System

    E-Print Network [OSTI]

    Nasipuri, Asis

    Experimental Evaluation of an Angle Based Indoor Localization System Asis Nasipuri and Ribal El available off-the-shelf components. Wireless sensor nodes equipped with photo sensors determine is required at the sensor nodes. The system also does not involve any centralized server or off

  16. Maintaining Indoor Air Quality During Construction and Renovation Projects

    E-Print Network [OSTI]

    Huang, Jianyu

    and pollutants that can impact the indoor air quality (IAQ) of a building. These contaminants may be transported of pollutants. While there are currently no enforceable IAQ standards, workers are certain to consider exposure, they are reported to be irritants to the eyes, nose and throat. Specification of low VOC emitting products is always

  17. Indoor Air Quality and Health in FEMA Temporary Housing

    E-Print Network [OSTI]

    Indoor Air Quality and Health in FEMA Temporary Housing For Healthcare Providers Background formaldehyde and air quality in FEMA trailers. This fact sheet provides basic information on formaldehyde expo sure, other air quality concerns, risk factors and tips to give to trailer residents so they can

  18. An Information Theoretic Analysis on Indoor PLC Channel Characterizations

    E-Print Network [OSTI]

    Gesbert, David

    An Information Theoretic Analysis on Indoor PLC Channel Characterizations Hao LIN , Aawatif MENOUNI. But the development of Power Line Communications (PLC) highly depends on the knowledge of the channel characterizations. For this reason, a large number of attentions have been payed on the PLC channel analysis using

  19. Indoor exposure to radiation in the case of an outdoorrelease

    SciTech Connect (OSTI)

    Price, Phillip N.; Jayaraman, Buvana

    2006-06-01T23:59:59.000Z

    This report quantifies the effectiveness of ''sheltering in place'' in a commercial building in the event of an outdoor radiological release. The indoor exposure to airborne particles is calculated by solving the mass balance equation that accounts for the loss of particles due to deposition, filtration and exhaust. Quantitative estimates of shelter-inplace effectiveness are provided for typical commercial buildings.

  20. New excitation system for indoor testing of overhead conductors

    SciTech Connect (OSTI)

    Gopalan, T.V. (Regional Engineering Coll., Calicut (India). Industry-Inst. Linkage Cell)

    1993-12-01T23:59:59.000Z

    In the study of wind-induced motion of conductors of overhead power transmission lines, an indoor test span measuring 30 m or more is normally used. The span is generally excited into motion by an electrodynamic-type exciter connected at a span end. This connection increases the stiffness of the span at the point of connection, which will affect the dynamic characteristics of the test span. A more exact simulation of the indoor test-conductor motion is essential. Simulation of test-conductor motion using the principle of electrodynamic forces between parallel, long conductors is proposed. Indoor test-span motion by this method is equivalent to steady crosswinds excitation in the field as distinguished from galloping conductors resulting from a combination of wind direction, velocity, moisture, and temperature. Consequently, the results of vibration experiments also will be more exact. The principle employed in the new excitation system, the methods of excitation in indoor spans using the principle, and the advantages of the new excitation system as compared to the presently employed system are discussed in this paper.

  1. Bayesian Prediction of Mean Indoor Radon Concentrations for Minnesota Counties

    SciTech Connect (OSTI)

    Price, P.N.; Nero, A.V.; Gelman, A.

    1995-08-01T23:59:59.000Z

    Past efforts to identify areas having higher than average indoor radon concentrations by examining the statistical relationship between local mean concentrations and physical parameters such as the soil radium concentration have been hampered by the noise in local means caused by the small number of homes monitored in some or most areas, In the present paper, indoor radon data from a survey in Minnesota are analyzed in such a way as to minimize the effect of finite sample size within counties, in order to determine the true county-to-county variation of indoor radon concentrations in the state and the extent to which this variation is explained by the variation in surficial radium concentration among counties, The analysis uses hierarchical modeling, in which some parameters of interest (such as county geometric mean (GM) radon concentrations) are assumed to be drawn from a single population, for which the distributional parameters are estimated from the data. Extensions of this technique, known as a random effects regression and mixed effects regression, are used to determine the relationship between predictive variables and indoor radon concentrations; the results are used to refine the predictions of each county's radon levels, resulting in a great decrease in uncertainty. The true county-to-county variation of GM radon levels is found to be substantially less than the county-to-county variation of the observed GMs, much of which is due to the small sample size in each county. The variation in the logarithm of surficial radium content is shown to explain approximately 80% of the variation of the logarithm of GM radon concentration among counties. The influences of housing and measurement factors, such as whether the monitored home has a basement and whether the measurement was made in a basement, are also discussed. This approach offers a self-consistent statistical method for predicting the mean values of indoor radon concentrations or other geographically distributed environmental parameters.

  2. Mechanical engineering Department Seminar

    E-Print Network [OSTI]

    Lin, Xi

    operating in microfluidic environment, which can dynamically diverge, collimate and focus surface plasmons in 2012, with a joint appointment in the Department of Mechanical & Industrial Engineering

  3. Indoor air and human health revisited: A recent IAQ symposium

    SciTech Connect (OSTI)

    Gammage, R.B.

    1994-12-31T23:59:59.000Z

    Indoor Air and Human Health Revisited was a speciality symposium examining the scientific underpinnings of sensory and sensitivity effects, allergy and respiratory disease, neurotoxicity and cancer. An organizing committee selected four persons to chain the sessions and invite experts to give state-of-the-art presentations that will be published as a book. A summary of the presentations is made and some critical issues identified.

  4. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    E-Print Network [OSTI]

    Logue, J.M.

    2012-01-01T23:59:59.000Z

    Energy Costs of Mechanical Ventilation KEMA-XENERGY.2004.Offermann, F. J.2009. Ventilation and indoor air quality intowards meeting residential ventilation needs. Berkeley, CA,

  5. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  6. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    E-Print Network [OSTI]

    Fischer, M.L.

    2011-01-01T23:59:59.000Z

    OF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, AbraOF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, Abrareporting indoor air contamination (6,7). Estimation of

  7. EIS-0127: New Energy-Efficient Homes Programs, Assessing Indoor Air Quality Options

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this EIS to explore whether different building techniques will control indoor air quality and still maintain cost-effective energy savings.

  8. Indoor exposure to radiation in the case of an outdoor release

    E-Print Network [OSTI]

    Price, Phillip N.; Jayaraman, Buvana

    2006-01-01T23:59:59.000Z

    Indoor C in Deposition Resuspension Exhaust Figure 1deposition loss rate to areas where resuspension may occur (h -1 ) r: resuspension rate from “temporary” areas (h -1 ) D

  9. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    surfaces, and resuspension activities lead to significantnear a secondary lead smelter, indicates that resuspensionresuspension. However, even moderate indoor activity, such as walking, can lead

  10. Shading and Cooling: Impacts of Solar Control and Windows on Indoor Airflow

    E-Print Network [OSTI]

    Hildebrand, Penapa Wankaeo

    2012-01-01T23:59:59.000Z

    summer wind driven natural ventilation potential for indoor estimates the cooling potential of wind?driven ventilation and monsoon ? have  potential for wind?driven occupant 

  11. THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL

    E-Print Network [OSTI]

    Berk, J.V.

    2013-01-01T23:59:59.000Z

    ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIOENERGY~EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIOenergy conservation opportunities i.n ten elementary schools. 1 Fairmoor Elementary School in Columbus • Ohio

  12. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration

    E-Print Network [OSTI]

    Grimsrud, David T.

    2009-01-01T23:59:59.000Z

    solution to ventilation problem in some situations [TurielIndoor Air Quality Problem. - BPA Ventilation - Air Qualityventilation on indoor air Quality and to develop energy conserving strategies to mitigate potential problems

  13. SSRD+: A Privacy-aware Trust and Security Model for Resource Discovery in Pervasive Computing Environment

    E-Print Network [OSTI]

    Madiraju, Praveen

    Environment Moushumi Sharmin, Sheikh I. Ahamed, Shameem Ahmed, and Haifeng Li Department of Mathematics

  14. DCE DANISH CENTRE FOR ENVIRONMENT AND ENERGY

    E-Print Network [OSTI]

    @dmu.dk · +45 8715 8617 DCE ­ DANISH CENTRE FOR ENVIRONMENT AND ENERGY #12;DEPARTMENT OF ENVIRONMENTAL SCIENCEDCE ­ DANISH CENTRE FOR ENVIRONMENT AND ENERGY Director Hanne Bach hba@dmu.dk +45 8715 1348 to authorities and other parties on environment and energy AARHUS UNIVERSITY DCE ­ DANISH CENTRE FOR ENVIRONMENT

  15. DCE DANISH CENTRE FOR ENVIRONMENT AND ENERGY

    E-Print Network [OSTI]

    8617 DCE ­ DANISH CENTRE FOR ENVIRONMENT AND ENERGY #12;DEPARTMENT OF ENVIRONMENTAL SCIENCEDCE ­ DANISH CENTRE FOR ENVIRONMENT AND ENERGY Director Hanne Bach hba@dce.au.dk +45 8715 1348 and other parties on environment and energy AARHUS UNIVERSITY DCE ­ DANISH CENTRE FOR ENVIRONMENT AND ENERGY

  16. Community-wide benefits of targeted indoor residual spray for malaria control in the Western Kenya Highland

    E-Print Network [OSTI]

    Zhou, Guofa; Githeko, Andrew K; Minakawa, Noboru; Yan, Guiyun

    2010-01-01T23:59:59.000Z

    ecological settings [4]. Among those control measures, insecticide- treated bed nets (ITNs) and indoor residual-house

  17. State Estimation for Aggressive Flight in GPS-Denied Environments Using Onboard Sensing

    E-Print Network [OSTI]

    Oliva, Aude

    , Cambridge, MA, USA In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2012) and a planar laser range finder suitable for use in real-time on a fixed- wing micro air vehicle (MAV-wing vehicle flying in a challenging indoor environment. I. INTRODUCTION Developing micro air vehicles

  18. Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality exchange rate, air distribution method, and ventilation control strategies on the IAQ in an arena. With CFD

  19. Automobile Proximity and Indoor Residential Concentrations of BTEX and Diana E. Hun1,*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Automobile Proximity and Indoor Residential Concentrations of BTEX and MTBE Diana E. Hun1 from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car of other BTEX components and MTBE have been reported (CalEPA 2009; U.S. EPA 2005). Up until 2000, MTBE

  20. Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Author's personal copy Automobile proximity and indoor residential concentrations of BTEX and MTBE to indoor benzene and MTBE concentrations appeared to have been dominated by car exhaust concentrations of other BTEX components and methyl tert-butyl ether (MTBE) have been reported [5,6]. Up until

  1. Efficient Probabilistic Localization for Autonomous Indoor Airships using Sonar, Air Flow, and IMU Sensors

    E-Print Network [OSTI]

    Teschner, Matthias

    Efficient Probabilistic Localization for Autonomous Indoor Airships using Sonar, Air Flow, and IMU, {muellerj, burgard}@informatik.uni-freiburg.de Abstract In recent years, autonomous miniature airships have navigation, sonar, IMU 1 Introduction Miniature airships as autonomous mobile systems for indoor navigation

  2. Proceedings: Indoor Air 2005 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    indoor sources such as photocopiers, laser printers or air purifiers, outdoor ozone is the main source generated using pure oxygen (Air Liquide, 99.999 % O2) through an UV light generator (Pen Ray, model SOG 1Proceedings: Indoor Air 2005 2118 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON PRIMARY

  3. Indoor air quality implications of using ion generators in residences Michael S. Waring*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    (IAQ). Positively, ion generators remove the charged particle contaminants to collector plates, Denmark - Paper ID: 598 #12;mortality and exposures to indoor ozone and its oxidation products. Ozone and Shields, 1999). Terpenes are common indoors and are emitted from consumer products such as air fresheners

  4. Particle resuspension from indoor flooring materials James H. Lohaus, Atila Novoselac and Jeffrey A. Siegel*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Particle resuspension from indoor flooring materials James H. Lohaus, Atila Novoselac and Jeffrey A@mail.utexas.edu Keywords: Fluid dynamics, Indoor surfaces, Particle experiments Introduction Particle resuspension from for supermicron particles. Resuspension is usually reported either as a critical velocity, the velocity at which

  5. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    SciTech Connect (OSTI)

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27T23:59:59.000Z

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in the building. The plants used in the rooftop greenhouse and on the floors were made up of a number of species selected for the following functions: daytime metabolic carbon dioxide (CO{sub 2}) absorption, nighttime metabolic CO{sub 2} absorption, and volatile organic compound (VOC) and inorganic gas absorption/removal for air cleaning. The building contains a reported 910 indoor plants. Daytime metabolic species reported by the PBC include Areca Palm, Oxycardium, Rubber Plant, and Ficus alii totaling 188 plants (21%). The single nighttime metabolic species is the Sansevieria with a total of 28 plants (3%). The 'air cleaning' plant species reported by the PBC include the Money Plant, Aglaonema, Dracaena Warneckii, Bamboo Palm, and Raphis Palm with a total of 694 plants (76%). The plants in the greenhouse (Areca Palm, Rubber Plant, Ficus alii, Bamboo Palm, and Raphis Palm) numbering 161 (18%) of those in the building are grown hydroponically, with the room air blown by fan across the plant root zones. The plants on the building floors are grown in pots and are located on floors 1-6. We conducted a one-day monitoring session in the PBC on January 1, 2010. The date of the study was based on availability of the measurement equipment that the researchers had shipped from Lawrence Berkeley National Lab in the U.S.A. The study date was not optimal because a large proportion of the regular building occupants were not present being New Year's Day. An estimated 40 people were present in the building all day during January 1. This being said, the building systems were in normal operations, including the air handlers and other HVAC components. The study was focused primarily on measurements in the Greenhouse and 3rd and 5th floor environments as well as rooftop outdoors. Measurements included a set of volatile organic compounds (VOCs) and aldehydes, with a more limited set of observations of indoor and outdoor particulate and carbon dioxide concentrations. Continuous measurements of Temperature (T) and relative humidity (RH) were made selected indoor and outdoor locations.

  6. Peace Corps / Environment Environment Volunteers

    E-Print Network [OSTI]

    Kaminsky, Werner

    Peace Corps / Environment Environment Volunteers Environmental damage can have enormous choices about how to best protect and preserve the local environment. Programs and Sample Projects and communications technology, agriculture, and environment. We are looking for applicants with a variety of skills

  7. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    National Environmental Research Institute Ministry of the Environment . Denmark Air Quality Research Institute Ministry of the Environment Air Quality Monitoring Programme Annual Summary for 2003: Department of Atmospheric Environment Serial title and no.: NERI Technical Report No. 497 Publisher: National

  8. GENOTYPE x ENVIRONMENT INTERACTIONS (1) J. C. BOWMAN

    E-Print Network [OSTI]

    Boyer, Edmond

    GENOTYPE x ENVIRONMENT INTERACTIONS (1) J. C. BOWMAN Department of Agriculture, University of Reading, Great Britain SUMMARY A genotype x environment interaction may be defined as a change in the relative perfor- mance of a 'environments

  9. META-ENVIRONMENTS FOR SOFTWARE PRODUCTION ANTHONY S. KARRER

    E-Print Network [OSTI]

    Scacchi, Walt

    META-ENVIRONMENTS FOR SOFTWARE PRODUCTION ANTHONY S. KARRER Computer Science Department, Loyola December 1994 Researchers who create software production environments face considerable problems. Soft- ware production environments are large systems that are costly to develop. Furthermore, soft- ware

  10. Combustion Safety for Appliances Using Indoor Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  11. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect (OSTI)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01T23:59:59.000Z

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  12. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    The first section on the Ventilation Program, funded by thea large study on hospital ventilation require- ments.iii Ventilation Program C. D. Hollowell, A. Anaclerio, D. W.

  13. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    ventilation rates established by various state and localVentilation requirements are currently set by state and localventilation rates are specified in the various building codes adopted by state and local

  14. Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments

    E-Print Network [OSTI]

    Zakhor, Avideh

    , Student Member, IEEE, Peter Cheng, and Avideh Zakhor, Fellow, IEEE Abstract--3D modeling of building- realistic models. We apply these techniques to several data sets of building interiors, including multi or missing, especially after several remodelings. Such scans can be used to generate building models

  15. Designing Building Systems to Save Energy and Improve Indoor Environments: A Practical Demonstration

    E-Print Network [OSTI]

    Commission through the Public Interest Energy Research (PIER) program as Element 6 consumption from switch to gas heating; 50,931 MBtu source energy reduction; and a combined school district and the building sector continue to seek improvement in energy efficiency. Designs achieving good IEQ can

  16. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    energy audit provisions of the 1978 U, S, National Energy Act, Finally, also in 1979, the University

  17. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    RESIDENTiAL ENERGY CONSUMPTION DATA (1976) TOTAL 18,95 Quadsregulations; COMMERCIAL ENERGY CONSUMPTION DATA (1976) TOTAL

  18. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    occupants. The heating, ventilation and air conditioning (third of the heating, ventilation, and air conditioning (see Fig. 1) Heating ventilation and air conditioning (HVAC)

  19. Preventing Indoor Environment-Related Symptom Complaints in OfficeBuildings

    SciTech Connect (OSTI)

    Mendell, Mark J.; Brennan, Terry; Hathon, Lee; Odom, J. David; Offerman, Francis J.; Turk, Bradley H.; Wallingford, Kenneth M.; Diamond,Richard C.; Fisk, William J.

    2006-01-01T23:59:59.000Z

    The goal of this project was to develop, based on the experience of those who investigate health complaints in buildings, practical strategies for preventing building-related symptoms in office buildings, suitable for use by those who own, lease, or manage office space.

  20. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    and DiMattio, American Industrial Hygiene Association, "76:471. American Industrial Hygiene Association, "Community

  1. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    many hospitals for energy audits and for energy-conserving1980, will include an energy audit, modifications to theannotated bibliography of energy audit source materials will

  2. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    rubber and resins Chloro Benzenes Strong narcotic; possible lung. liver, and kidney damage Used in production

  3. Potential Nationwide Improvements in Productivity and Health from Better Indoor Environments

    E-Print Network [OSTI]

    Fisk, W.J.

    2011-01-01T23:59:59.000Z

    Increased thermal insulation in building envelope Thermallyand building envelope. Improvements in thermal comfort from

  4. Visual Navigation: Constructing and Utilizing Simple Maps of an Indoor Environment

    E-Print Network [OSTI]

    Sarachik, Karen Beth

    1989-03-01T23:59:59.000Z

    The goal of this work is to navigate through an office environmentsusing only visual information gathered from four cameras placed onboard a mobile robot. The method is insensitive to physical changes within the room ...

  5. Impact on the Indoor Environment of the Release and Diffusion of TVOC 

    E-Print Network [OSTI]

    Cong, X.; Liu, Y.; Wang, M.

    2006-01-01T23:59:59.000Z

    and the release transport function in the interface between air and material and the convention diffusion transport function of the TVOC in the air. The ventilation rate of the local research region was determined after analyzing the VOCS release and diffusion...

  6. Do indoor environments in schools influence student performance? A review of the literature

    E-Print Network [OSTI]

    Mendell, Mark J.; Heath, Garvin A.

    2004-01-01T23:59:59.000Z

    environmental effects on productivity. In: IAQ '96: Paths toself-reported productivity. In: IAQ '91: Healthy Buildings,

  7. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    of automatic variable ventilation control systems based onof automatic variable ventilation control systems, The Johnbe developed. Automatic Variable Ventilation Control Systems

  8. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    and in new "energy-efficient design" hospitals. Developmentenergy-efficient ventilation standards and ventilation designs

  9. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    heat exchangers; additional subcontract activities consisting of: • field survey of current practices in enforcement of ventilation regulations; COMMERCIAL ENERGY CONSUMPTION DATA (

  10. Hazards Control Department 1995 annual report

    SciTech Connect (OSTI)

    Campbell, G.W.

    1996-09-19T23:59:59.000Z

    This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

  11. Department of Energy Oversight Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The Policy establishes a Department-wide oversight process to protect the public, workers, environment, and national security assets effectively through continuous improvement.

  12. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01T23:59:59.000Z

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  13. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    SciTech Connect (OSTI)

    Less, Brennan; Walker, Iain

    2014-06-01T23:59:59.000Z

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  14. EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy and Environment Div

    E-Print Network [OSTI]

    EL Program: Net-Zero Energy, High-Performance Build Program Manager: William Healy, Energy the nation towards net-zero energy, high- performance buildings in a cost-effective manner while maintaining a healthy indoor environment. The research program will target the objective of net-zero operation by 1

  15. Particle Image Velocimetry measurement of indoor airflow field: A review of the technologies and applications

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    quantitative information of indoor air distribution and local air velocity around occupants or passengers, which has strong relationship with the ventilation effectiveness, the pollutant transportation Velocimetry (PIV); Measurement Technology 1. Introduction Ventilation concepts, including natural ventilation

  16. Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building

    E-Print Network [OSTI]

    Catalina, T.

    2011-01-01T23:59:59.000Z

    that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A...

  17. Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three

    E-Print Network [OSTI]

    Wiser, D.

    2011-01-01T23:59:59.000Z

    in the most efficient way possible. However, maintaining optimum indoor air quality often seems to be in conflict with minimizing operating and energy costs. Conventional wisdom says the best IAQ strategy involves increasing ventilation rates. But outdoor air...

  18. Operation of Energy Efficient Residential Buildings Under Indoor Environmental Quality Requirements

    E-Print Network [OSTI]

    Medhat, A. A.; Khalil, E. E.

    2010-01-01T23:59:59.000Z

    This paper is devoted to the influence of Indoor Environmental Quality, [IEQ] requirements associated with occupation regimes on the criterion of energy demand s for HVAC (Heating, Ventilating and Air-Conditioning) central systems that were...

  19. Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension

    E-Print Network [OSTI]

    You, Siming; Wan, Man Pun

    2015-01-01T23:59:59.000Z

    models for fine particle resuspension from indoor surfaces.Reed J, Hall D. On the resuspension of small parti- cles byFichman M, Gutfinger C. Resuspension of par- ticulates from

  20. Improving Indoor Air Quality Improves the Performance of Office Work and School Work 

    E-Print Network [OSTI]

    Wargocki, P.

    2008-01-01T23:59:59.000Z

    Recent studies show that improving indoor air quality (IAQ) from the mediocre level prevalent in many buildings worldwide improves the performance of office work by adults and the performance of schoolwork by children. These results constitute a...

  1. Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies

    E-Print Network [OSTI]

    Nero, A.V.

    2008-01-01T23:59:59.000Z

    Removal of radon and radon progeny from indoor air, inMeeting on Radon-Radon Progeny Measurements, Report 520/5-August 1983. Radon - Radon Progeny Measurements, proceedings

  2. RIS-M-2234 A NOTE ON THE RELATIONSHIP BETWEEN OUTDOOR AND INDOOR

    E-Print Network [OSTI]

    reactor accidents. Earlier investigations relevant to this problem are reviewed. It is concluded of the indoor exposure integral, and thus of the inhalation doses, by deliberately controlling ventilation #12

  3. Operation of Energy Efficient Residential Buildings Under Indoor Environmental Quality Requirements 

    E-Print Network [OSTI]

    Medhat, A. A.; Khalil, E. E.

    2010-01-01T23:59:59.000Z

    Effic iency in residential bui Idings I. INTRODUCTION Com prehensi \\Ie ex perience were gai ned over the past fifty years in Egy pt regarding how therm al comfort and sensations of Egyptians are related to indoor environmental. parameters...

  4. Energy Efficiency & Environmental News: Duct Cleaning and Indoor Air Quality 1 Florida Energy Extension Service and Gary Cook 2 DUCT CLEANING AND INDOOR AIR QUALITY

    E-Print Network [OSTI]

    unknown authors

    1994-01-01T23:59:59.000Z

    With concern about secondary smoke, dust mites, formaldehyde emissions and bioaerosols, the public has become more aware of indoor air quality problems. Heating, air conditioning and ventilation units as well as associated ductwork can be the sources of mold, fungi and other microbial pollutants as well as particulates of dust, secondary smoke and pieces of dead dust mites. Along with the public’s concern has been the development of businesses directly associated with indoor air quality. Some of these businesses are reputable and supply effective indoor air quality services; others, on the other hand, offer little more than technical jargon and will take advantage of the unwary consumer. Duct cleaning has been an area that has been attracted by both reputable and unscrupulous businesses.

  5. Development and application of the scintillation flask technique for the measurement of indoor radon-222 concentrations

    E-Print Network [OSTI]

    Vasquez, Gerard Michael

    1986-01-01T23:59:59.000Z

    half-life. Exposure to alpha emitting radon progeny is the major source of natural radiation doses to the lung (NCRP84b). Almost all of this is received indoors, where radon levels are elevated due to a trapping effect 1n the enclosed areas. Since... measure indoor radon and radon progeny levels, a suitable detection method must be developed. Charles (Ch84) designed and constructed an air grab sampling system using "scintillation flasks". There were, however, some minor problems with the system...

  6. Heat Pipe Impact on Dehumidification, Indoor Air Quality and Energy Savings 

    E-Print Network [OSTI]

    Cooper, J. T.

    1996-01-01T23:59:59.000Z

    HEAT PIPE IMPACT ON DEHUMIDIFICATION, INDOOR AIR QUALITY AND ENERGY SAVINGS by J. Thomas Cooper Heat Pipe Technology, Inc Alachua, Florida, USA TENTH SYMPOSIUM ON IMPROVING BUILDING SYSTEMS IN HOT AND HUMID CLIMATES MAY 13-14, 1996 FT....WORTH, TEXAS ABSTRACT Heat pipe impact on our ability to dehumidify, protect, and improve our indoor air quality and save energy in our building systems is tremendous. Projects all over the world in hot and humid climates are using heat pipes in both...

  7. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOE Patents [OSTI]

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23T23:59:59.000Z

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  8. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect (OSTI)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01T23:59:59.000Z

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  9. sustainable environment

    E-Print Network [OSTI]

    sustainable resource management environment fisheries aquaculture Cefas capability statement #12 that they can manage their environments and resources in a responsible, effective and sustainable manner. Our costs · Understand, assess and develop opportunities in the short, medium and long-term · Build

  10. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    National Environmental Research Institute Ministry of the Environment . Denmark Aerosols in Danish Environmental Research Institute Ministry of the Environment . Denmark Aerosols in Danish Air (AIDA) Mid Department Department of Atmospheric Environment Serial title and no.: NERI Technical Report No.460 Publisher

  11. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    National Environmental Research Institute Ministry of the Environment . Denmark ExternE transport Report No. 523 #12;[Blank page] #12;National Environmental Research Institute Ministry of the Environment Departments: 1 Department of Atmospheric Environment, NERI 2 COWI Serial title and no.: NERI Technical Report

  12. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems: Final Report to Bonneville Power Administration

    E-Print Network [OSTI]

    Grimsrud, David T.

    2009-01-01T23:59:59.000Z

    strategy, developed by Honeywell, Inc. , is describeda separate report. [Honeywell, 1986]. Ref erences ASHRAE (Atlanta, pp. 422-452. Honeywell (1986). "Indoor Air

  13. Environment, Safety, and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19T23:59:59.000Z

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, and DOE O 232.1A. Canceled by DOE O 232.2.

  14. DSW Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pdf) Section 2 - Proposed Action and Alternatives (6.8 MB pdf) Section 3 - Affected Environment for the extension of the right of way to the Harry Allen Substation and for the...

  15. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    Building Environment and Thermal Envelope Council (BETEC)of Thermal Performance of the Exterior Envelopes ofof the Thermal Performance of the Exterior Envelopes of

  16. Energy and indoor environmental quality in relocatable classrooms

    SciTech Connect (OSTI)

    Apte, Michael; Hodgson, Alfred; Shendell, Derek; Dibartolomeo, Dennis; Hochi, Toshifumi; Kumar, Satish; Lee, Seung-Min; Liff, Shawna; Rainer, Leo; Schmidt, Richard; Sullivan, Douglas; Diamond, Richard; Fisk, William

    2002-02-01T23:59:59.000Z

    Relocatable classrooms (RCs) are commonly utilized by school districts with changing demographics and enrollment sizes. Four energy-efficient RCs were designed and constructed for this study to demonstrate technologies that simultaneously attempt to improve energy efficiency and indoor environmental quality (IEQ). Two were installed at each of two school districts, and energy use and IEQ parameters were monitored during occupancy. Two (one per school) were finished with materials selected for reduced emissions of toxic and odorous volatile organic compounds (VOCs). Each RC had two HVAC systems, alternated weekly, consisting of a standard heat-pump system and an indirect-direct evaporative cooling (IDEC) system with gas-fired hydronic heating. The hypothesized advantages of the IDEC include continuous outside air ventilation at {ge}7.5 L s{sup -1} per person, {approx}70% less cooling energy and efficient particle filtration. Measurements include: carbon dioxide, particles, VOCs, temperature, humidity, thermal comfort, noise, meteorology, and energy use. Preliminary IEQ monitoring results are reported.

  17. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect (OSTI)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01T23:59:59.000Z

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  18. Pre-clinical Measures of Eye Damage (Lens Opacity), Case-control Study of Tuberculosis, and Indicators of Indoor Air Pollution from Biomass Smoke

    E-Print Network [OSTI]

    Pokhrel, Amod Kumar

    2010-01-01T23:59:59.000Z

    Indoor air pollution from biomass fuels and respiratoryTuberculosis and Indoor Biomass and Kerosene Use in Nepal: AR.D. Retherford, and K.R. Smith, Biomass cooking fuels and

  19. An indoor radon survey of the X-ray rooms of Mexico City hospitals

    SciTech Connect (OSTI)

    Juarez, Faustino [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100. Estado de Mexico, 50000, Mexico. Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Circuito (Mexico); Reyes, Pedro G. [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100. Estado de Mexico, 50000 (Mexico); Espinosa, Guillermo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior Ciudad Universitaria, Mexico D.F. Cp.04510 (Mexico)

    2013-07-03T23:59:59.000Z

    This paper presents the results of measurements of indoor radon concentrations in the X-ray rooms of a selection of hospitals in the metropolitan area of Mexico City. The metropolitan area of Mexico City is Mexico's largest metropolitan area by population; the number of patients requiring the use of X-rays is also the highest. An understanding of indoor radon concentrations in X-ray rooms is necessary for the estimation of the radiological risk to which patients, radiologists and medical technicians are exposed. The indoor radon concentrations were monitored for a period of six months using nuclear track detectors (NTD) consisting of a closed-end cup system with CR-39 (Lantrack Registered-Sign ) polycarbonate as detector material. The indoor radon concentrations were found to be between 75 and 170 Bq m{sup -3}, below the USEPA-recommended indoor radon action level for working places of 400 Bq m{sup -3}. It is hoped that the results of this study will contribute to the establishment of recommended action levels by the Mexican regulatory authorities responsible for nuclear safety.

  20. Analysis of environment, safety, and health (ES{ampersand}H) management systems for Department of Energy (DOE) Defense Programs (DP) facilities

    SciTech Connect (OSTI)

    Neglia, A. V., LLNL

    1998-03-01T23:59:59.000Z

    The purpose of this paper is to provide a summary analysis and comparison of various environment, safety, and health (ES&H) management systems required of, or suggested for use by, the Departrnent of Energy Defense Programs` sites. The summary analysis is provided by means of a comparison matrix, a set of Vean diagrams that highlights the focus of the systems, and an `End Gate` filter diagram that integrates the three Vean diagrams. It is intended that this paper will act as a starting point for implementing a particular system or in establishing a comprehensive site-wide integrated ES&H management system. Obviously, the source documents for each system would need to be reviewed to assure proper implementation of a particular system. The matrix compares nine ES&H management systems against a list of elements generated by identifying the unique elements of all the systems. To simplify the matrix, the elements are listed by means of a brief title. An explanation of the matrix elements is provided in Attachment 2 entitled, `Description of System Elements.` The elements are categorized under the Total Quality Management (TQM) `Plan, Do, Check, Act` framework with the added category of `Policy`. (The TQM concept is explained in the `DOE Quality Management implementation Guidelines,` July 1997 (DOE/QM- 0008)). The matrix provides a series of columns and rows to compare the unique elements found in each of the management systems. A `V` is marked if the element is explicitly identified as part of the particular ES&H management system. An `X` is marked if the element is not found in the particular ES&H management system, or if it is considered to be inadequately addressed. A `?` is marked if incorporation of the element is not clear. Attachment I provides additional background information which explains the justification for the marks in the matrix cells. Through the Vean diagrams and the `End Gate` filter in Section 3, the paper attempts to pictorially display the focus of each system with respect to ES&H, the hazard of concern, and any limitations with respect to the TQM categories. A summary evaluation and explanation of each of the systems is provided in Section 4 of the paper. Several other ES&H systems were reviewed in preparation of the paper, but were not specifically included as a system in this matrix. Only those ES&H management systems that are potentially applicable to DOE Defense Program sites were included as part of the matrix comparison. A description of other ES&H management systems that were evaluated, but not specifically incorporated in this matrix comparison, are provided in Attachment 3 entitled, `Other ES&H Management Systems Reviewed.` In the past, it has been difficult integrating ES&H into work planning for several reasons. One barrier to this integration has been the complexity caused by the existence of several `stove pipe` ES&H systems. By analyzing the unique elements of the various ES&H systems, as well as their strengths and limitations, and their similarities and differences, it is envisioned that this paper will aid in facilitating the integration of ES&H into work planning. This paper was developed by the Office of Defense Programs (DP-45) and all questions or comments should be directed to Anthony Neglia of that office at (301) 903-3531 or Anthony.Neglia@dp.doe.gov.

  1. Bridges of Random Walks in a Random Environment

    E-Print Network [OSTI]

    Jonathon Peterson

    2010-02-19T23:59:59.000Z

    Feb 25, 2010 ... Bridges of Random Walks in a Random Environment. Jonathon Peterson. Cornell University. Department of Mathematics. Joint work with Nina ...

  2. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20T23:59:59.000Z

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low-emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  3. Line Environment, Safety and Health Oversight

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-06-26T23:59:59.000Z

    Sets forth the Department's expectations line management environment, safety and health (ES&H) oversight and for the use of contractor self-assessment programs as the cornerstone for this oversight. Canceled by DOE O 226.1.

  4. Impact of ozone on indoor air quality: a preliminary field study M. Nicolas, O. Ramalho, F. Maupetit

    E-Print Network [OSTI]

    Boyer, Edmond

    indoor air quality (IAQ) since they produce secondary pollutants, mainly aldehydes which are known to document the impact on IAQ of outdoor ozone during summer air pollution episodes. For this purpose, a oneImpact of ozone on indoor air quality: a preliminary field study M. Nicolas, O. Ramalho, F

  5. Post Occupancy Evaluation of Indoor Environmental Quality in Commercial Buildings: Do green buildings have more satisfied occupants?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Post Occupancy Evaluation of Indoor Environmental Quality in Commercial Buildings: Do green of Indoor Environmental Quality in Commercial Buildings: Do green buildings have more satisfied occupants the promise of a bright future ­ just like the green building movement. i #12;Post Occupancy Evaluation

  6. Environmental Health Perspectives VOLUME 109 | NUMBER 5 | May 2001 481 Quantifying the Effects of Exposure to Indoor Air Pollution from Biomass

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of Exposure to Indoor Air Pollution from Biomass Combustion on Acute Respiratory Infections in Developing to indoor air pollution, especially to particulate matter, from the combustion of biofuels (wood, charcoal to indoor air pollution high on the agenda of international development and public health organizations (10

  7. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL] [ORNL; Djouadi, Seddik M [ORNL] [ORNL; Li, Yanyan [ORNL] [ORNL; Fathy, Aly [University of Tennessee (UT)] [University of Tennessee (UT)

    2013-01-01T23:59:59.000Z

    In this paper, stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and non-resolvable multipath received signals are considered and represented as small-scaled Nakagami fading. The proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method s viability and the results are presented.

  8. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect (OSTI)

    Rudd, A.; Bergey, D.

    2014-02-01T23:59:59.000Z

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  9. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    SciTech Connect (OSTI)

    Steven B. Hawthorne

    2007-04-15T23:59:59.000Z

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  10. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-01T23:59:59.000Z

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, DOE O 232.1A. Canceled by DOE O 231.1B. DOE O 231.1B cancels all portions pertaining to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions remain in effect until January 1, 2012.

  11. INDOOR POSITIONING AN AD-HOC POSITIONING SYSTEM Rainer Mautz

    E-Print Network [OSTI]

    to enable continuous tracking of the location of devices in all environments. Highly accurate, reliable 3D computers, printers, or simple tags with wireless radio connections that are `intelligent' enough to be able

  12. Field study of exhaust fans for mitigating indoor air quality problems: Final report

    SciTech Connect (OSTI)

    Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.

    1986-09-01T23:59:59.000Z

    Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.

  13. s Earth and environment s Living resources

    E-Print Network [OSTI]

    4 s Earth and environment s Living resources s Societies and health s Expertise and consulting of this trend is the acquisition, on a joint proposal from the Earth and Environment department and the Living phenomena so as to improve forecasting of the attendant hazards. The earth's crust: processes and natural

  14. DCE DANISH CENTRE FOR ENVIRONMENT AND ENERGY

    E-Print Network [OSTI]

    DCE ­ DANISH CENTRE FOR ENVIRONMENT AND ENERGY Director Hanne Bach hba@dmu.dk · +45 8715 1348 Vibeke Vestergaard Nielsen · vive@dmu.dk · + 45 8715 1304 DEPARTMENT OF BIOSCIENCE Arctic marine.wang@biology.au.dk · +45 8715 5998 DEPARTMENT OF ENVIRONMENTAL SCIENCE Atmospheric chemistry and physics, air quality

  15. Implementation of Department of Energy Oversight Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    This Order implements the policy that establishes a Department-wide oversight process to protect the public, workers, environment, and national security assets effectively through continuous improvement.

  16. GATEWAY Demonstration Outdoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTAL POLICYEnergyIndoorOutdoor

  17. Colorado Department of Public Health and Environment

    Office of Environmental Management (EM)

    25,000 acres - that are leased to private entities for uranium and vanadium mining. No mining operations are active on these lands at this time. DOE is preparing the ULP...

  18. Acquisition and the Environment | Department of Energy

    Energy Savers [EERE]

    of recycled and environmentally preferred products and services. (Exits Energy.gov) Pollution Prevention P2 Program. Federal Energy Management Program The ENERGY STAR Program...

  19. Acquisition and the Environment | Department of Energy

    Energy Savers [EERE]

    to Richard Langston at (202) 287-1339, or e-mail them to richard.langston@hq.doe.gov GREEN PURCHASING OVERVIEW The White House Task Force on Recycling along with the US Army...

  20. Colorado Department of Public Health and Environment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIREmergencyNewsEnergyTeams8, 2013

  1. Solar Policy Environment: Boston | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Metersof Energy LEDMarketReady

  2. Policy and Regulatory Environment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired)ofandProperty Management |Policy

  3. New Mexico Environment Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information Operating Permit List ofEnergyNew MexicoNewNew

  4. STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8B100B100WWNASCUBA80 ' , STATE

  5. A Novel Transmitter Placement Scheme based on Hierarchical Simplex Search for Indoor Wireless

    E-Print Network [OSTI]

    , we propose an adaptive number adjustment algorithm (ANA) to speed up the search process, which adjusts the number of transmitters with variable step-sizes. A hierarchical simplex search algorithm (HSS1 A Novel Transmitter Placement Scheme based on Hierarchical Simplex Search for Indoor Wireless

  6. Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes

    SciTech Connect (OSTI)

    Engelmann, P.; Roth, K.; Tiefenbeck, V.

    2013-01-01T23:59:59.000Z

    This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).

  7. Effect of a Radiant Panel Cooling System on Indoor Air Quality of a Conditioned Space

    E-Print Network [OSTI]

    Mohamed, E.; Abdalla, K. N.

    2010-01-01T23:59:59.000Z

    This paper discusses the effect of a radiant cooling panel system on an indoor air quality (IAQ) of a conditioned space. In this study, ceiling radiant cooling panel, mechanical ventilation with fan coil unit (FCU) and 100% fresh air are used...

  8. Technical note Barriers and opportunities for passive removal of indoor ozone

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Technical note Barriers and opportunities for passive removal of indoor ozone Elliott T. Gall presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone of homes in Houston, Texas, were taken from the literature and combined with back- ground ozone removal

  9. Indoor Air Quality in Retail Stores: A Review Joshua D. Rhodes1,*

    E-Print Network [OSTI]

    Siegel, Jeffrey

    , and potential sales impacts associated with poor indoor air quality. In the U.S. alone, approximately 15 million environmental conditioning (ESource, 2006). The purpose of this extended abstract is to summarize the literature and a significant baseline concentration of textile particles. Hartmann et al. (2004) found acceptable SVOC

  10. Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Meera A. Sidheswaran a

    E-Print Network [OSTI]

    to reduce the energy required for heating and cooling of ventilation air by 35% to almost 50%. Ó 2011 Keywords: Activated carbon fiberVolatile organic compoundIndoor pollutantEnergy efficient ventilation a b allow reduced rates and energy consumption for outdoor air ventilation. We evaluated the use of ACF

  11. Impact of domestic woodburning appliances on indoor air quality Corinne Mandin1

    E-Print Network [OSTI]

    Boyer, Edmond

    air pollution study (CITEPA), France * Corresponding email: Eva.Leoz@ineris.fr SUMMARY Data pollutants in ambient air. Consequently our study aims at describing both emission factors and inerisImpact of domestic woodburning appliances on indoor air quality Corinne Mandin1 , Jacques Ribéron2

  12. Matchstick: A Room-to-Room Thermal Model for Predicting Indoor Temperature from Wireless Sensor Data

    E-Print Network [OSTI]

    Hazas, Mike

    that our model can predict future indoor temperature trends with a 90th percentile aggregate error between thermo- stat actuates the heating, ventilation, and air condition- ing (HVAC) infrastructure to bring and these energy approaches, a heating model could allow future temperature trends to be predicted using

  13. Ris-M-2476 RELATIONSHIPS IN INDOOR/OUTDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Risø-M-2476 RELATIONSHIPS IN INDOOR/OUTDOOR AIR POLLUTION Jørn Roed Abstract. Beryllium-7 a pollution episode, especially a reactor accident. The effect of operating a vacuum cleaner during the pollution episode and airing shortly after is also investigated. Earlier relevant literature is reviewed

  14. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    SciTech Connect (OSTI)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01T23:59:59.000Z

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  15. Intelligent Computing in Engineering -ICE08 Indoor User Localization for Rapid Information Access and

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Access and Retrieval on Construction Sites H Khoury 1 , V Kamat 2 1 University of Michigan Ann Arbor, Michigan 48109 2 University of Michigan Ann Arbor, Michigan 48109 hkhoury@umich.edu Abstract. Manual searchIntelligent Computing in Engineering - ICE08 497 Indoor User Localization for Rapid Information

  16. Indoor Air Quality Plan Page 1 of 5 Environmental Health and Safety Original: December 15, 2007

    E-Print Network [OSTI]

    Rainforth, Emma C.

    Air Quality (IAQ) Standard (N.J.A.C. 12:100-13)(2007), which was proposed on December 18, 2006's health and productivity. The College has established the following plan to promote good indoor air quality for employees in our buildings. This plan follows the requirements established by the PEOSH IAQ

  17. Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    , building materials and systems, ventilation models, design tools Shortened title: IAQ in Designing and regulations, rapid introduction of new building materials and commercial products, as well as the prevailing indoor air quality (IAQ) is an important determinant of healthy design, it is not the sole determinant

  18. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    E-Print Network [OSTI]

    , or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ

  19. Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for Indoor Applications

    E-Print Network [OSTI]

    Zhao, Feng

    Design and Evaluation of a Wireless Magnetic-based Proximity Detection Platform for Indoor and evaluation of a wireless proximity detection platform based on magnetic induction - LiveSynergy. Live to reach people who can see and touch these clothes. A home appliance (e.g., refrigerator or microwave) may

  20. A two-layer turbulence model for simulating indoor airow Part I. Model development

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    ) data [Int. J. Heat Fluid Flow 18 (1997) 88]. # 2001 Published by Elsevier Science B.V. Keywords: Two convection model [Int. J. Heat Mass Transfer 41 (1998) 3161] with the aid of direct numerical simulation (DNS). On the other hand, indoor air¯ow have the impact on building energy consumption. For example, it is well

  1. Personal exposure to nitrogen dioxide: relationship to indoor/outdoor air quality and activity patterns

    SciTech Connect (OSTI)

    Quackenboss, J.J.; Spengler, J.D.; Kanarek, M.S.; Letz, R.; Duffy, C.P.

    1986-08-01T23:59:59.000Z

    Personal NO/sub 2/ exposures and indoor and outdoor concentrations were measured for nearly 350 individuals in the Portage, WI, area. Concentrations in homes with gas stoves averaged 18 ..mu..g/m/sup 3/ higher in the summer (median indoor/outdoor ratio 2.4) and 36 ..mu..g/m/sup 3/ (median indoor/outdoor ratio 3.2) higher in the winter than outdoor levels. Personal exposures were closely related to indoor averages for households with gas stoves (r = 0.85 summer, r = 0.87 winter) and with electric stoves (r = 0.68 summer, r = 0.61 winter); more than 65% of the average day was spent at home while about 15% was spent outdoors in summer and less than 5% in winter. The association between personal exposure and outdoor levels of NO/sub 2/ was weakest during the winter for both gas (r = 0.20) and electric (r = 0.28) stove groups. The measures of exposure and time allocation indicate that there is a wide range of variability in personal exposures to NO/sub 2/ that may not be adequately accounted for by simple stratifications based on cooking fuel type. 46 references, 7 tables.

  2. Passive Ozone Control Through Use of Reactive Indoor Wall and Ceiling Materials

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Passive Ozone Control Through Use of Reactive Indoor Wall and Ceiling Materials Paper # 715 Donna A and unpainted drywall as passive ozone control surfaces in a room-sized laboratory chamber. Mean deposition-50%, resulted in increased reactivity for activated carbon. In our model for a typical house, about 35

  3. A two-layer turbulence model for simulating indoor airow Part II. Applications

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    , improve and optimize their ventilation systems and to save energy. This is because different air of the ventilation systems, the air-conditioning load can be reduced. One typical example of this design is the displacement ventilation systems. In order to calculate the indoor air¯ows, Xu and Chen (Part I) has recently

  4. Department of Energy Oversight Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-25T23:59:59.000Z

    The Policy establishes a Department-wide oversight process to protect the public, workers, environment, and national security assets effectively through continuous improvement. Cancels DOE P 226.1. Canceled by DOE P 226.1B

  5. DOE awards contract for sludge buildout project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoorVehicles |andat Day One DOE

  6. DOE eGuide Lite | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoorVehicles |andat Day

  7. DOE to Defer Strategic Petroleum Reserve RIK Deliveries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoorVehiclesof Energyto

  8. IAQ in Hospitals - Better Health through Indoor Air Quality Awareness

    E-Print Network [OSTI]

    Al-Rajhi, S.; Ramaswamy, M.; Al-Jahwari, F.

    2010-01-01T23:59:59.000Z

    .S, 2004). Nordstrom and his team from Sweden investigated IAQ in hospitals in relation to building dampness and type of construction. They analyzed four hospital buildings of different age and design and concluded that building dampness in the floor...? Department of Occupational and Environmental Medicine, Uppsala University hospital, Sweden.1998 Proc CIB World Building Congress ,Gaevle,Sweden. ? O'Neal C. Infection control; Keeping diseases at bay a full-time effort for healthcare professionals...

  9. French permanent survey on indoor air quality--microenvironmental concentrations of volatile organic compounds in 90 French dwellings

    E-Print Network [OSTI]

    Boyer, Edmond

    conducted in France on indoor pollution. The survey's design (sampling, analytical methods, questionnaire, temperature, humidity) and questionnaires on building characteristics, occupants' description and time (30 compounds including formaldehyde, acetaldehyde, BTEX) were measured by passive samplers, during 7

  10. Seeds may be started in peat pots; they are slow to germinate (up to three weeks indoors),

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Seeds may be started in peat pots; they are slow to germinate (up to three weeks indoors), so in peat pots; they are slow to germinate, so be patient. Seedlings may be transplanted in June. Crowns

  11. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2 and DOE N 234.1. Admin Chg 1, dated 11-28-12, cancels DOE O 231.1B.

  12. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2 and DOE N 234.1. Admin Chg 1, dated 11-28-12.

  13. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    National Environmental Research Institute Ministry of the Environment . Denmark The Danish Air;National Environmental Research Institute Ministry of the Environment The Danish Air Quality Monitoring: Department of Atmospheric Environment Serial title and no.: NERI Technical Report No. 584 Publisher: National

  14. Indoor airPLUS Construction Specifications Version 1 (Rev. 02)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRY ENERGYEnergy IndianaSystem1)2)

  15. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    E. Svoukis; H. Tsertos

    2006-10-02T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  16. Indoor and Outdoor in Situ High-Resolution Gamma Radiation Measurements in Urban Areas of Cyprus

    E-Print Network [OSTI]

    Svoukis, E

    2006-01-01T23:59:59.000Z

    In situ, high-resolution, gamma-ray spectrometry of a total number of 70 outdoor and 20 indoor representative measurements were performed in preselected, common locations of the main urban areas of Cyprus. Specific activities and gamma absorbed dose rates in air due to the naturally occurring radionuclides of Th-232 and U-238 series, and K-40 are determined and discussed. Effective dose rate to the Cyprus population due to terrestrial gamma radiation is derived directly from this work. The results obtained outdoors match very well with those derived previously by high-resolution gamma spectrometry of soil samples, which were collected from the main island bedrock surface. This implies that the construction and building materials in urban areas do not affect the external gamma dose rate; thus they are mostly of local origin. Finally, the indoor/outdoor gamma dose ratio was found to be 1.4 +- 0.5.

  17. Indoor-Atmospheric Radon-Related Radioactivity Affected by a Change of Ventilation Strategy

    E-Print Network [OSTI]

    Kobayashi, T

    2006-01-01T23:59:59.000Z

    The present author has kept observation for concentrations of atmospheric radon, radon progeny and thoron progeny for several years at the campus of Fukushima Medical University. Accidentally, in the midst of an observation term, i.e., February 2005, the facility management group of the university changed a strategy for the manner of ventilation, probably because of a recession: (I) tidy everyday ventilation of 7:30-24:00 into (II) shortened weekday ventilation of 8:00-21:00 with weekend halts. This change of ventilation manner brought a clear alteration for the concentrations of radon-related natural radioactivity in indoor air. The present paper concerns an investigation of the effect of the ventilation strategy on the indoor-atmospheric radon-related radioactivity.

  18. Indoor-air-quality management for operations and maintenance personnel. Final report

    SciTech Connect (OSTI)

    Sliwinski, B.J.; Kermath, D.; Kemme, M.R.; Imel, M.R.

    1991-09-01T23:59:59.000Z

    There is a growing body of information related to facility indoor air quality (IAQ) and its affect on the health and productivity of building occupants. Indoor air pollution can increase employee absenteeism and reduce productivity. Poor IAQ may be a result of poor building or ventilation design, improper maintenance, or inappropriate energy conservation strategies. To help ensure the health, welfare, and productivity of Army personnel and the performance of Army facilities, installation operations and maintenance (O and M) personnel need access to relevant and useful information about IAQ issues. This report includes background information for O and M managers and staff, an installation-level IAQ management plan, and practical O and M procedures for correcting the problems that most commonly lead to IAQ-related complaints.

  19. Resolving the ambiguities: An industrial hygiene Indoor Air Quality (IAQ) symposium

    SciTech Connect (OSTI)

    Gammage, R.B.

    1995-01-01T23:59:59.000Z

    Resolving the Ambiguities: An Industrial Hygiene (IAQ) Symposium was a one-day event designed to inform practicing industrial hygienists about highlight presentations made at Indoor Air `93. A broad range of topics was presented by invited speakers. Topics included were attempts to deal with guidelines and standards, questionnaires, odors and sensory irritation, respiratory allergies, neuroses, sick building syndrome (SBS), and multiple chemical sensitivity (MCS).

  20. Association of indoor nitrogen dioxide with respiratory symptoms and pulmonary function in children

    SciTech Connect (OSTI)

    Neas, L.M.; Dockery, D.W.; Ware, J.H.; Spengler, J.D.; Speizer, F.E.; Ferris, B.G. Jr. (Harvard School of Public Health, Boston, MA (USA))

    1991-07-15T23:59:59.000Z

    The effect of indoor nitrogen dioxide on the cumulative incidence of respiratory symptoms and pulmonary function level was studied in a cohort of 1,567 white children aged 7-11 years examined in six US cities from 1983 through 1988. Week-long measurements of nitrogen dioxide were obtained at three indoor locations over 2 consecutive weeks in both the winter and the summer months. The household annual average nitrogen dioxide concentration was modeled as a continuous variable and as four ordered categories. Multiple logistic regression analysis of symptom reports from a questionnaire administered after indoor monitoring showed that a 15-ppb increase in the household annual nitrogen dioxide mean was associated with an increased cumulative incidence of lower respiratory symptoms (odds ratio (OR) = 1.4, 95% confidence interval (95% Cl) 1.1-1.7). The response variable indicated the report of one or more of the following symptoms: attacks of shortness of breath with wheeze, chronic wheeze, chronic cough, chronic phlegm, or bronchitis. Girls showed a stronger association (OR = 1.7, 95% Cl 1.3-2.2) than did boys (OR = 1.2, 95% Cl 0.9-1.5). An analysis of pulmonary function measurements showed no consistent effect of nitrogen dioxide. These results are consistent with earlier reports based on categorical indicators of household nitrogen dioxide sources and provide a more specific association with nitrogen dioxide as measured in children's homes.

  1. Indoor risk factors for cough and their relation to wheeze and sensitization in Chilean young adults

    SciTech Connect (OSTI)

    Potts, J.F.; Rona, R.J.; Oyarzun, M.J.; Amigo, H.; Bustos, P. [Kings College London, London (United Kingdom). Dept. for Public Health Science

    2008-04-15T23:59:59.000Z

    We assessed the effects of indoor risk factors, including smoking, on different types of cough and on cough and wheeze in combination. Our sample was composed of 1232 men and women residing in a semi-rural area of Chile. We used a standardized questionnaire, sensitization to 8 allergens, and bronchial hyperresponsiveness to methacholine to assess cough and wheeze characteristics. Information was gathered on dampness, mold, ventilation, heating, housing quality, smoking, and environmental tobacco smoke exposure. Most exposures were associated with cough alone or cough in combination with wheeze. Smoking, past smoking, and environmental tobacco smoke exposure were strongly associated with dry cough and wheeze. The use of coal for heating was associated with dry cough. Leaks, mold, and lack of kitchen ventilation were associated with cough and wheeze. Nocturnal cough and productive cough were associated with specific types of sensitization, but dry cough was not. Productive cough was associated with hyperresponsiveness to methacholine. Several different types of indoor exposures, including environmental tobacco smoke exposure, are important contributors to morbidity associated with cough and wheeze. A vigorous preventive strategy designed to lower exposures to indoor risk factors would lower rates of respiratory morbidity.

  2. UNLV FINANCE DEPARTMENT ACADEMIC INTEGRITY POLICY

    E-Print Network [OSTI]

    Ahmad, Sajjad

    UNLV FINANCE DEPARTMENT ACADEMIC INTEGRITY POLICY Academic integrity and ethical behavior are cornerstones of a high quality educational environment and the Finance Department fully embraces the University dishonesty will be kept in the Finance Department. An individual with a second violation of our academic

  3. Strategic Plan, 2006 Department of Physics

    E-Print Network [OSTI]

    Rock, Chris

    Strategic Plan, 2006 Department of Physics Texas Tech University Department of Physics Mission education, and quality physics and astronomy service courses for other departments at Texas Tech University, to produce high quality research, and to provide an environment where research and creativity in physics can

  4. Ecology and environment

    E-Print Network [OSTI]

    Sussex, University of

    Ecology and environment Essentials Courses MSci (Hons) in Ecology and Environment MSci (Hons) in Ecology and Environment (research placement) BSc (Hons) in Ecology and Environment Foundation year for UK for the MSci in Ecology and Environment (research placement): AAA Typical A level offer range for the other

  5. Department of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials, and Aerospace Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    in Mechanical and Aerospace Engineering with specialization in Energy/Environment/Economics (E3 ) Master of Mechanical and Aerospace Enginering with specialization in Energy/Environment/Economics (E3 ) CertificateDepartment of Mechanical, Materials, and Aerospace Engineering Department of Mechanical, Materials

  6. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    convert sunlight into electricity, and are easy to install and virtually maintenance free. July 29, 2012 Energy-efficient indoor and outdoor lighting design focuses on ways to...

  7. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31T23:59:59.000Z

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.

  8. United States Environmental Protection Agency Office of Radiation and Indoor Air (6608J) EPA 402-F-12-001 | September 2013 www.epa.gov/radiation/laws/190

    E-Print Network [OSTI]

    discussion about whether to revise the Environmental Radiation Protection Standards for Nuclear Power and Indoor Air (6608J) EPA 402-F-12-001 | September 2013 www.epa.gov/radiation/laws/190 EPA and Nuclear PowerUnited States Environmental Protection Agency Office of Radiation and Indoor Air (6608J) EPA 402-F

  9. Monitoring indoor air quality in French schools and day-care centres. Results from the first phase of a pilot survey.

    E-Print Network [OSTI]

    Boyer, Edmond

    . KEYWORDS Air pollution, air stuffiness, formaldehyde, benzene. 1 INTRODUCTION Indoor air quality to determine an air stuffiness index as an indirect mean to assess pollutants accumulation in a closed spaceMonitoring indoor air quality in French schools and day-care centres. Results from the first phase

  10. Gosselin, J.R. and Chen, Q. 2008. "A dual airflow window for indoor air quality improvement and energy conservation in buildings," HVAC&R Research, 14(3), 359-372.

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    and energy conservation in buildings," HVAC&R Research, 14(3), 359-372. A Dual Airflow Window for Indoor Air with exhausted indoor air. The energy needed to condition outdoor air is reduced because of the counterflow heat, the dual airflow window has a great potential for conserving energy and improving indoor air quality

  11. Air Pollution Control Program (South Dakota) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Provider South Dakota Department of Environment and Natural Resources South Dakota's Air Pollution Control Program is intended to maintain air quality standards through...

  12. Secretary Chu and Energy Department Officials to Continue Post...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Energy Department's Deputy Assistant Secretary for Oil and Natural Christopher Smith will deliver keynote remarks at the Energy, Utility and Environment Conference in...

  13. Radiation Safety – Protecting the Public and the Environment

    Broader source: Energy.gov [DOE]

    The Department of Energy has a stringent program for protecting its workers, the public, and the environment from radiation.  This web area has links to tools and aids for the radiation protection...

  14. Environment and Land in Bushbuckridge, South Africa

    E-Print Network [OSTI]

    Environment and Land in Bushbuckridge, South Africa © 2002, Professor Robert Thornton Department of Anthropology University of the Witwatersrand, Johannesburg, South Africa Acknowledgements: Research), and by the Centre for Science Development, Human Sciences Research Council, Pretoria, South Africa. Printed:24 April

  15. REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES

    E-Print Network [OSTI]

    Cooperstock, Jeremy R.

    REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES by Jeremy R. Cooperstock A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto © Copyright by Jeremy R. Cooperstock, 1996 #12;ii REACTIVE

  16. MATLAB as an Environment for Bayesian Computation

    E-Print Network [OSTI]

    Albert, James H.

    MATLAB as an Environment for Bayesian Computation Jim Albert 1 Bowling Green State University July 1997 1 Address for correspondence: Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA. #12; Abstract The current status of Bayesian software is reviewed

  17. IN TELLIGENT CONTROLLING SYSTEM OF AQUICULTURE ENVIRONMENT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    oxygen and fan and opening of windows and electromagnetism valve, The system hardware is composed of monitoring computer and PROFIBUS-DP field controlling units, which detects and controls the ecologicalIN TELLIGENT CONTROLLING SYSTEM OF AQUICULTURE ENVIRONMENT Deshen Zhao ,*1 1 Department of Electric

  18. UNDERGRADUATE DEGREES 2015 ENVIRONMENT

    E-Print Network [OSTI]

    COME AND YOUR F I N D PLACE UNDERGRADUATE DEGREES 2015 EARTH and ENVIRONMENT #12;| CONTENTS | www OF EARTH AND ENVIRONMENT Why study earth and environment at Leeds? 2 Why study an earth science course? 4 Why study an environment course? 8 Choosing the right degree 12 Four-year industrial degrees (BA

  19. NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings

    SciTech Connect (OSTI)

    Wallingford, K.M.

    1987-01-01T23:59:59.000Z

    A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

  20. AC System Equipment Specification, Installation and Operational Options for Improved Indoor Humidity Control

    E-Print Network [OSTI]

    Shirey, D. B.

    of 80?F (26.7?C) dry-bulb temperature and 67?F (19.4?C) wet-bulb temperature air entering the indoor unit (AHRI 2006), the equipment SHRs range from 0.67 to 0.8. Thus, the dehumidification fraction (one minus SHR) varies from 0.2 (20%) to 0.33 (33... Building Systems in Hot and Humid Climates, Plano, TX, December 15-17, 2008 Figure 3. Latent Capacity Degradation with Supply Air Fan Overrun at Reduced Air Flow compressor on cycle (Shirey et al. 2006). The plotted lines are results from a...

  1. Protocol for Maximizing Energy Savings and Indoor Environmental Quality Improvements when Retrofitting Apartments

    SciTech Connect (OSTI)

    Noris, Federico; Delp, William W.; Vermeer, Kimberly; Adamkiewicz, Gary; Singer, Brett C.; Fisk, William J.

    2012-06-18T23:59:59.000Z

    The current focus on building energy retrofit provides an opportunity to simultaneously improve indoor environmental quality (IEQ). Toward this end, we developed a protocol for selecting packages of retrofits that both save energy and improve IEQ in apartments. The protocol specifies the methodology for selecting retrofits from a candidate list while addressing expected energy savings, IEQ impacts, and costs in an integrated manner. Interviews, inspections and measurements are specified to collect the needed input information. The protocol was applied to 17 apartments in three buildings in two different climates within California. Diagnostic measurements and surveys conducted before and after retrofit implementation indicate enhanced apartment performance.

  2. Defining the Problem Known Environment Unknown Environment Improvements Reinforcement Learning

    E-Print Network [OSTI]

    Kjellström, Hedvig

    Defining the Problem Known Environment Unknown Environment Improvements Reinforcement Learning Bel¨oningsbaserad Inl¨arning Defining the Problem Known Environment Unknown Environment Improvements 1 Defining the Problem Framework Role of Reward Simplifying Assumptions Central Concepts 2 Known Environment Bellmans

  3. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect (OSTI)

    Brand, L.

    2014-04-01T23:59:59.000Z

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  4. Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?

    SciTech Connect (OSTI)

    Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

    2013-05-13T23:59:59.000Z

    Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

  5. Team Structure and Quality Improvement in Collaborative Environments

    E-Print Network [OSTI]

    Eppstein, Margaret J.

    Team Structure and Quality Improvement in Collaborative Environments Narine Manukyan Department@vtoxford.org Abstract-- Teams comprising diverse individuals have been shown to increase the collective creativity in complex environments, it is not clear whether team diversity will help or hinder effective learning

  6. TIME REVERSAL IN CHANGING ENVIRONMENT GUILLAUME BAL AND RAM

    E-Print Network [OSTI]

    Bal, Guillaume

    TIME REVERSAL IN CHANGING ENVIRONMENT GUILLAUME BAL #3; AND RAM #19; ON VER #19; ASTEGUI y Abstract of the refocused signal as the backward propagation medium departs from the forward propagation medium, Wigner transform, changing environment. AMS subject classi#12;cations. 35R60 35L40 78A45 82D30 1

  7. On Planning and Design of Logistics Systems for Uncertain Environments

    E-Print Network [OSTI]

    Daganzo, Carlos F.

    On Planning and Design of Logistics Systems for Uncertain Environments Carlos F. Daganzo Department and design of logistics systems when the environment in which they are to be operated cannot be modeled introduced by uncertainty in the planning and design of logistics systems, and (ii) to suggest approximate

  8. Department of Energy Nuclear Safety Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-08T23:59:59.000Z

    It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

  9. DOE appoints four new members to advisory board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoorVehicles |and

  10. DOE site facility mgt contracts Internet Posting 5-2-11.xlsx | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment of EnergyCustomIndoorVehiclesof Energy site

  11. EnvironMEntAl EnginEEring AnD EnvironMEntAl QuAlity

    E-Print Network [OSTI]

    Hartman, Chris

    EnvironMEntAl EnginEEring AnD EnvironMEntAl QuAlity SciEncE College of Engineering and Mines Department of Civil and Environmental Engineering 907-474-6129 http://cem.uaf.edu/cee/environmental-engineering/ MS Degree Minimum Requirements for Degree: 30 credits The environmental engineering and environmental

  12. Designing an Interface and Path Translator for a Smart Phone-Based Indoor Navigation System for Visually Impaired Users

    E-Print Network [OSTI]

    Mellon University Pittsburgh, PA 15213 Thesis Committee: M. Bernardine Dias, Chair Manuela Veloso Yonina, of the sponsor or the U.S. Government #12;Keywords: Indoor navigation, orientation and mobility, blind users], there are 15 million blind and visually impaired people in the United States. They have different important

  13. Mechanistic modeling of the interrelationships between indoor/outdoor air quality and human exposure in a GIS framework

    SciTech Connect (OSTI)

    Isukapalli, S.S.; Purushothaman, V.; Georgopoulos, P.G.

    1999-07-01T23:59:59.000Z

    Evaluation of human exposure to atmospheric contaminants such as ozone and particulate matter (PM) is often based on measured data from fixed ambient (outdoors) Air Monitoring Stations. This results in an artificial characterization of indoor exposures, as concentrations and physicochemical attributes of indoor pollutants vary significantly and are different from corresponding outdoor values. A mechanistically-based modeling approach is presented here that aims to improve estimates for the outdoor/indoor relationships of photochemical pollutants and of associated fine particles and, subsequently, of human exposure assessments. New approaches for refining the spatial, temporal, and indoor/outdoor patterns of gas phase photochemical contaminants and PM are currently being developed and tested. These approaches are combined with information from either ambient monitoring networks or from ambient air quality models that consider aerosol physics and chemistry coupled with gas phase photochemistry (e.g. UAM-AERO). This process utilizes Geographic Information Systems (GIS) and Relational Database (RD) methods, to facilitate detailed exposure scenario construction (involving e.g. the geographic location of an individual considered in time) and to aid in the estimation of population exposure over selected geographic areas. The combination of monitor data or air quality modeling with microenvironmental modeling in a GIS framework can potentially provide a useful platform for more accurate assessments of human exposure to co-occurring gas and particulate phase air pollutants.

  14. Indoor Thermal Factors and Symptoms in Office Workers: Findings from the U.S. EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, Mark; Mirer, Anna

    2008-06-01T23:59:59.000Z

    Some prior research in office buildings has associated higher indoor temperatures even within the recommended thermal comfort range with increased worker symptoms. We reexamined this relationship in data from 95 office buildings in the U.S. Environmental Protection Agency's Building Assessment Survey and Evaluation (BASE) Study. We investigated relationships between building-related symptoms and thermal metrics constructed from real-time measurements. We estimated odds ratios (ORs) and 95percent confidence intervals in adjusted logistic regression models with general estimating equations, overall and by season. Winter indoor temperatures spanned the recommended winter comfort range; summer temperatures were mostly colder than the recommended summer range. Increasing indoor temperatures, overall, were associated with increases in few symptoms. Higher winter indoor temperatures, however, were associated with increases in all symptoms analyzed. Higher summer temperatures, above 23oC, were associated with decreases in most symptoms. Humidity ratio, a metric of absolute humidity, showed few clear associations. Thus, increased symptoms with higher temperatures within the thermal comfort range were found only in winter. In summer, buildings were overcooled, and only the higher observed temperatures were within the comfort range; these were associated with decreased symptoms. Confirmation of these findings would suggest that thermal management guidelines consider health effects as well as comfort.

  15. Towards a Fully Autonomous Indoor Helicopter Slawomir Grzonka, Samir Bouabdallah, Giorgio Grisetti, Wolfram Burgard and Roland Siegwart

    E-Print Network [OSTI]

    Teschner, Matthias

    Fly project is to introduce low processing-power localization algorithms for micro helicopters. However-board sensors. Furthermore, the accuracy of the positioning system is an essential requirement for indoor decade, navigation systems for autonomous flying vehicles have received an increasing attention

  16. Inverse Design Methods for Indoor Ventilation Systems Using1 CFD-Based Multi-Objective Genetic Algorithm2

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    use efficiency are three important29 indices for heating, ventilation and air-conditioning (HVAC1 Inverse Design Methods for Indoor Ventilation Systems Using1 CFD-Based Multi equilibrium and require ventilation rates of12 a space to design ventilation systems for the space

  17. Proceedings of Healthy Buildings 2009 Paper 535 HVAC filters as "passive" samplers: fate analysis of indoor particles

    E-Print Network [OSTI]

    Siegel, Jeffrey

    Proceedings of Healthy Buildings 2009 Paper 535 HVAC filters as "passive" samplers: fate analysis: fedenoris@mail.utexas.edu SUMMARY To assess the potential use of HVAC filters as passive indoor samplers, exfiltration, and capture in the HVAC filter. The results suggest that large particles are likely to deposit

  18. Cornell's Ranger robot navigated 108.5 times around the Barton Hall indoor track, about 212 meters pe Entertainment

    E-Print Network [OSTI]

    Ruina, Andy L.

    . Unlike other walking robots that use motors to control every movement, the Ranger appears more relaxed could be applied to rehabilitation, prostheses for humans and improving athletic performance. New 6Cornell's Ranger robot navigated 108.5 times around the Barton Hall indoor track, about 212 meters

  19. Lesson 34a: Environment

    E-Print Network [OSTI]

    Pasifiki [Pacific Ocean] Bahari Aktiki [Arctic Ocean] Bahari ya Mediterani [Mediterranean Sea] Bahari yaLesson 34a: Environment Environment [mazingira] bahari / bahari [ocean / sea / oceans / seas / farms] Bahari [ocean / sea] Bahari Hindi [Indian Ocean] Bahari Atlantiki [Atlantic Ocean] Bahari

  20. DEPARTMENT OF ENERGY Privacy Awareness Training | Department...

    Energy Savers [EERE]

    DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy Awareness Training DEPARTMENT OF ENERGY Privacy...

  1. 106 The Environment and Sustainable Development Unit (ESDU) 107The Environment and Sustainable Development Unit (ESDU) Graduate Catalogue 201415 Graduate Catalogue 201415

    E-Print Network [OSTI]

    106 The Environment and Sustainable Development Unit (ESDU) 107The Environment and Sustainable Development Unit (ESDU) Graduate Catalogue 2014­15 Graduate Catalogue 2014­15 The Environment and Sustainable collaboration on sustainable development initiatives among departments at AUB and with a wide variety of other

  2. Computing environment logbook

    DOE Patents [OSTI]

    Osbourn, Gordon C; Bouchard, Ann M

    2012-09-18T23:59:59.000Z

    A computing environment logbook logs events occurring within a computing environment. The events are displayed as a history of past events within the logbook of the computing environment. The logbook provides search functionality to search through the history of past events to find one or more selected past events, and further, enables an undo of the one or more selected past events.

  3. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect (OSTI)

    Porter, C.

    2013-04-01T23:59:59.000Z

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Monte Carlo Simulation of Indoor External Exposure due to Gamma-emitting Radionuclides in Building Materials

    E-Print Network [OSTI]

    Jun Deng; Lei Cao; Xu Su

    2014-01-14T23:59:59.000Z

    The use of building materials containing naturally occurring radionuclides,such as K-40, U-238 and Th-232 and their progeny, could lead to external exposures of the residents of such buildings. In this paper, a set of models are set up to calculate the specific effective dose rates(the effective dose rate per Bq/kg of K-40, U-238 series, and Th-232 series) imposed to residents by building materials with MCNPX code. Effect of chemical composition, position concerned in the room and thickness as well as density of material is analyzed. In order to facilitate more precise assessment of indoor external dose due to gamma emitting radionuclides in building materials, three regressive expressions are proposed and validated by measured data to calculate specific effective rate for K-40, U-238 series and Th-232 series, respectively.

  5. Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications

    SciTech Connect (OSTI)

    Hodgson, A.T.; Sullivan, D.P.; Fisk, W.J.

    2006-02-01T23:59:59.000Z

    Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.

  6. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect (OSTI)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01T23:59:59.000Z

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  7. Department of Energy EPA\\OAR\\Office of Radiation and Indoor Air U. S. Environmental Protection Agency

    E-Print Network [OSTI]

    and corrosion products were removed and packaged into multi-canister overpacks and managed as spent nuclear fuel Cotsworth -2- 2) Does the K-Basin sludge contain chunks of spent nuclear fuel, or has all of the residue TRU waste inventory contains no "chunks" of spent nuclear fuel. Wastes generated from spent fuel

  8. The effect of fibrillar matrix architecture on tumor cell invasion of physically challenging environments

    E-Print Network [OSTI]

    Kaufman, Laura

    environments Asja Guzman, Michelle J. Ziperstein, Laura J. Kaufman* Department of Chemistry, Columbia) extracellular matrix culture systems was studied. This work showed that in 3D fibrillar environments composed architecture is a crucial factor that allows for efficient 3D invasion. In a 3D non-fibrillar environment

  9. An Agent-Environment Interaction Model Scott A. DeLoach and Jorge L. Valenzuela

    E-Print Network [OSTI]

    Deloach, Scott A.

    An Agent-Environment Interaction Model Scott A. DeLoach and Jorge L. Valenzuela Department with objects in its environment through the use of its capabilities. Capabilities are recursively defined in terms of lower-level capabilities and actions, which represent atomic interactions with the environment

  10. Health, Safety, and Environment Division

    SciTech Connect (OSTI)

    Wade, C [comp.] [comp.

    1992-01-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  11. Environment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Ecological Resources and Systems Environmental Security and Restoration Land and Renewable Resources Radiation and Chemical Risk Management Environment True energy...

  12. Climate Change, Drought & Environment

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Climate Change, Drought, and Environment—Michael Champ, Executive Director, The Sustainable Water Challenge

  13. Low Cost Indoor Location Management System using Infrared Leds and Wii Remote Controller

    E-Print Network [OSTI]

    Tosun, Ali Saman

    , Nihat Altiparmak and Ali S¸aman Tosun Department of Computer Science University of Texas at San Antonio

  14. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  15. Hvac systems as a tool in controlling indoor air quality: A literature review. Final report, May-August 1993

    SciTech Connect (OSTI)

    Samfield, M.M.

    1995-12-01T23:59:59.000Z

    The report gives results of a review of literature on the use of heating, ventilation, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). One conclusion of the review is that HVAC systems very often contribute to the indoor air pollution because of (1) poor system maintenance, (2) overcrowding or the introduction of new pollution-generating sources with buildings, and (3) the location of outdoor air near ambient pollution sources. Another conclusion is that failure to trade off between energy conservation and employee productivity may result in increased IAQ problems. The report contents are based on literature survey covering the years 1988 through 1993, involving 60 references, 32 of which are cited in the report.

  16. Sustainability Statement Environment Team

    E-Print Network [OSTI]

    Metropolitan University www.mmu.ac.uk/environment MMU Annual Sustainability Statement 2008/2009 CO2 2 Contents 6 MMU Environment Strategy 7 Key Area 1 ­ Environmental Management Systems & Reporting 8 ­ 9 Key Area 2 ­ Energy and Carbon Emissions 10 ­ 11 Key Area 3 ­ Sustainable Buildings 12 Key Area 4 ­ Water

  17. Forests and historic environment

    E-Print Network [OSTI]

    Forests and historic environment UK Forestry Standard Guidelines #12;Key to symbols UKFS Reference number #12;Forests and historic environment Forestry Commission: Edinburgh UK Forestry Standard in any format or medium, under the terms of the Open Government Licence. To view this licence, visit: www

  18. Transmission | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| Department ofServices » Environment

  19. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01T23:59:59.000Z

    We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m{sup 3}/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in buildings containing typical VOC sources. The magnitude of the expected increase will depend upon a number of interrelated factors. Series of experiments were conducted to determine if the oxidizer, sodium permanganate (NaMnO{sub 4}{center_dot}H{sub 2}O), has sufficient reaction rates and capacity to counteract formaldehyde and acetaldehyde production and enable a 50 % reduction in building ventilation rate without net increases in indoor aldehyde concentrations. A commercially produced filter element and two laboratory-fabricated media beds containing NaMnO{sub 4}{center_dot}H{sub 2}O chemisorbent media were evaluated. The effectiveness of a device for removal of formaldehyde, acetaldehyde and other VOCs was determined by measurement of concentrations immediately upstream and downstream of the device. In some experiments, conversion efficiencies and byproduct generation by the UVPCO device also were determined. Six experiments were conducted with the commercial filter element installed downstream of the UVPCO reactor. Eleven experiments were conducted with a single panel media bed (30 cm by 61 cm by 2.5 cm deep) installed downstream of the UVPCO reactor; in these, the effects of temperature and air residence time on conversion efficiency were examined. Two experiments were conducted with a four-panel, folded, media bed (approximately four times the size of the single panel bed) installed downstream of the reactor. Because the commercial unit contained activated carbon as an additional component, it was effective at removing lower volatility compounds that typically have low oxidation rates in the UVPCO reactor. The filter element also met the minimum efficiency objective for formaldehyde. However, the removal of acetaldehyde was less than required. The air residence time in the single panel bed was not optimized as the removal efficiencies for both formaldehyde and acetaldehyde were strongly inversely related to the air flow rate through the device. In addition, the acetaldehyde removal efficiency decreased to less than 10% with extended use of the device. The fold

  20. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    E-Print Network [OSTI]

    Apte, Michael G.

    2013-01-01T23:59:59.000Z

    evaluation of displacement ventilation and dedicated outdoorB, Carlson N (2009). Ventilation requirements in a retailof Intermittent Ventilation for Providing Acceptable Indoor

  1. Defining the Problem Known Environment Unknown Environment Improvements Reinforcement Learning

    E-Print Network [OSTI]

    Kjellström, Hedvig

    Defining the Problem Known Environment Unknown Environment Improvements Reinforcement Learning Bel¨oningsbaserad Inl¨arning #12;Defining the Problem Known Environment Unknown Environment Improvements 1 Defining the Problem Framework Role of Reward Simplifying Assumptions Central Concepts 2 Known Environment Bellman

  2. Defining the Problem Known Environment Unknown Environment Improvements Reinforcement Learning

    E-Print Network [OSTI]

    Kjellström, Hedvig

    Defining the Problem Known Environment Unknown Environment Improvements Reinforcement Learning Bel¨oningsbaserad Inl¨arning #12;Defining the Problem Known Environment Unknown Environment Improvements 1 Defining the Problem Framework Role of Reward Simplifying Assumptions Central Concepts 2 Known Environment Bellmans

  3. System for reducing heat losses from indoor swimming pools by use of automatic covers. Final report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This final report is an account of the principal activities of Lof Energy Systems, Inc. in a two-year project funded by the Energy Related Inventions Program (ERIP) of the U.S. Department of Energy. The primary objective has been the development of a fully practical and economical system for saving energy in indoor swimming pools by use of motorized covers. The goal is wide-spread use of a fully developed product, in institutional swimming pools. Four major tasks, depicted in the accompanying Performance Schedule, have been completed, and one other has been initiated and its completion committed. Principal accomplishments have been the selection and improvement of cover materials and designs, lengthening and strengthening of reels and improvements in motorized components and their control, design and installation of pool covers in full scale demonstration and evaluation of fully developed commercial system, preparation and dissemination of manuals and reports, finalization of arrangements for Underwriters Laboratory certification of products, and final report preparation and submission. Of greatest significance has been the successful demonstration of the fully developed system and the verification and reporting by an energy consultant of the large savings resulting from pool cover use. Probably the best evidence of success of the DOE-ERIP project in advancing this invention to a commercial stage is its acceptance for sale by the Lincoln Equipment Company, a national distributor of swimming pool supplies and equipment. A copy of the relevant page in the Lincoln catalog is included in this report as Annex A. Representatives of that company now offer Tof motorized pool cover systems to their pool owner customers. In addition to the plans for securing UL certification the company expects to continue making design improvements that can increase system reliability, durability, and cost-effectiveness.

  4. CX-000153: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    doors and walls. This project will provide energy savings of at least 50 percent of total utility consumption, while resolving the indoor comfort issues and providing better...

  5. CX-006564: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    3) retrofit outdoor lighting, traffic signals, and lighted street signs with light emitting diode bulbs and replace indoor light fixtures in the Esther Snyder Community Center...

  6. Kushil Priyan Perera (PhD.) Department of Forestry and Environmental Science,

    E-Print Network [OSTI]

    i Kushil Priyan Perera (PhD.) Department of Forestry and Environmental Science, University of Sri, Environmental Sciences (2009), School of Coast & Environment, Department of Environmental Science, Louisiana. Concentrations: Forest Certification, Forest Products Marketing BSc, Forestry and Environmental Science [Special

  7. Photographs of MIT environments

    E-Print Network [OSTI]

    Strand, C. Mark

    1984-01-01T23:59:59.000Z

    This thesis is based on an exhibition of 43 photographs shown in a visual thesis exhibition at the Creative Photography Gallery November 15-December 15, 1983. The photographs document MIT environments with special categories ...

  8. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    E-Print Network [OSTI]

    McNeil, Michael

    2008-01-01T23:59:59.000Z

    Page 23 Energy Information Administration (EIA). Residential2001. Energy Information Administration, U.S. Department ofWashington, D.C. Energy Information Administration (EIA).

  9. Energy Impacts of Energy and Indoor Environmental Quality Retrofits of Apartments in California

    SciTech Connect (OSTI)

    Fisk, William J.; Norris, Federico; Singer, Brett C.

    2013-11-01T23:59:59.000Z

    Monthly gas and electricity use data from a set of 13 study apartments and 20 control apartments from three apartment buildings (B1 B3) in California were analyzed. The study apartments were retrofit with simultaneous energy savings and indoor environmental quality (IEQ) improvements as the goal. The control apartments were not retrofit. Pre-retrofit modeling indicated annual energy savings of 21percent, 17percent, and 27percent for the study apartments in B1-B3, respectively. Based on a comparison of changes in energy use of study apartments to energy use changes of control apartments, total measured savings of gas energy plus site electrical energy were 28percent in B1, 5percent in B2, and 3percent in B3. Given the small number of study apartments and the substantial changes in energy use within control apartments, the project yielded no conclusive evidence of energy savings. Apartment energy use increased with number of occupants and with floor area; however, the association with occupancy was most evident. Climate differences did not appear to be the major driver for the variability in energy use among apartments. Changes in occupant behaviors affecting energy use may have overwhelmed and obscured the energy savings in this small number of buildings. Much larger prior studies employing similar retrofits indicate that the retrofits usually do save energy.

  10. U.S. Department of Energy's Request for Hearing and Answer to...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy (DOE or Respondent) and Requests a Hearing and Answers the State of New Mexico Environment Department's (NMED) Administrative Order Requiring Compliance and...

  11. Environment induced incoherent controllability

    E-Print Network [OSTI]

    Raffaele Romano; Domenico D'Alessandro

    2005-11-08T23:59:59.000Z

    We prove that the environment induced entanglement between two non interacting, two-dimensional quantum systems S and P can be used to control the dynamics of S by means of the initial state of P. Using a simple, exactly solvable model, we show that both accessibility and controllability of S can be achieved under suitable conditions on the interaction of S and P with the environment.

  12. Hotspots, Jets and Environments

    E-Print Network [OSTI]

    M. J. Hardcastle

    2007-07-12T23:59:59.000Z

    I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.

  13. Polymers in disordered environments

    E-Print Network [OSTI]

    V. Blavatska; N. Fricke; W. Janke

    2014-11-18T23:59:59.000Z

    A brief review of our recent studies aiming at a better understanding of the scaling behaviour of polymers in disordered environments is given. The main emphasis is on a simple generic model where the polymers are represented by (interacting) self-avoiding walks and the disordered environment by critical percolation clusters. The scaling behaviour of the number of conformations and their average spatial extent as a function of the number of monomers and the associated critical exponents $\\gamma$ and $\

  14. Energy/Environment/Commissioning

    E-Print Network [OSTI]

    Nakahara, N.

    2006-01-01T23:59:59.000Z

    / Energy / Environment/ SutainabilitySutainability Resource/ Energy System TheoryPreserve/Degrade Man Economy/SocietyHealth/Hygiene Enviro nment Global Env.Urban Env. Environm- ent ModelChemical/Thermal PollutionRecycle Diffused Energy Active System... Energy Use Pattern Global Env. Pollution Urban Environment ? Demand Control Optimization Humanism Maintenance/Moral ? Renewable Energy Energy Recycle Proper Evaluation ? High Efficiency Energy Conservation PrincipleEnergy Conservation Principle Reflection...

  15. The Desert Environment January 26, 1999 1 The Desert Environment

    E-Print Network [OSTI]

    Reiss, Steven P.

    The Desert Environment January 26, 1999 1 The Desert Environment Revised Paper Steven P. Reiss1@cs.brown.edu Abstract The Desert software engineering environment is a suite of tools developed to enhance pro- grammer virtual files on demand to address specific tasks. All this is done in an open and extensible environment

  16. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

    2008-02-28T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

  17. Environment scattering in GADRAS.

    SciTech Connect (OSTI)

    Thoreson, Gregory G.; Mitchell, Dean James; Theisen, Lisa Anne; Harding, Lee T.

    2013-09-01T23:59:59.000Z

    Radiation transport calculations were performed to compute the angular tallies for scattered gamma-rays as a function of distance, height, and environment. Green's Functions were then used to encapsulate the results a reusable transformation function. The calculations represent the transport of photons throughout scattering surfaces that surround sources and detectors, such as the ground and walls. Utilization of these calculations in GADRAS (Gamma Detector Response and Analysis Software) enables accurate computation of environmental scattering for a variety of environments and source configurations. This capability, which agrees well with numerous experimental benchmark measurements, is now deployed with GADRAS Version 18.2 as the basis for the computation of scattered radiation.

  18. Department of Energy Employee Concerns Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-02-01T23:59:59.000Z

    The Department of Energy (DOE) recognizes that free and open expression of DOE Federal and contractor and subcontractor employee concerns is essential to safe and efficient accomplishment of DOE's missions. DOE employees and any contractor or subcontractor fulfilling DOE's mission have the right and responsbility to report concerns relating to the environment, safety, health, or management of Department operations. The guide provides methods of implementing requirements of DOE O 442.1.

  19. Inspection of Environment, Safety, and Health Management at the Hanford Site, March 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) management at the Department of Energy (DOE) Hanford Site in January-February 2002.

  20. Design Notations for Creating Virtual Environments Charlene Elliott, Gary Marsden, Marion Walton & Edwin Blake

    E-Print Network [OSTI]

    Blake, Edwin

    1 Design Notations for Creating Virtual Environments Charlene Elliott, Gary Marsden, Marion Walton & Edwin Blake Department of Computer Science University of Cape Town gaz@cs.uct.ac.za ABSTRACT

  1. The dynamic radiation environment assimilation model (DREAM)

    SciTech Connect (OSTI)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  2. Sandia National Laboratories: Climate/Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateEnvironment ClimateEnvironment On January 27, 2011, in ClimateEnvironment Sensing and Monitoring Modeling and Analysis Carbon Management Water & Environment Publications...

  3. Department of Bioengineering Educating the leaders of tomorrow

    E-Print Network [OSTI]

    . Bioengineering is fundamentally multidisciplinary, integrating engineering, mathematics, physics, chemistry engineering, natural sciences and medicine, both through the Department of Bioengineering and the Institute of Biomedical Engineering. Thanks to this environment, and the efforts of our staff and students, we

  4. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-07T23:59:59.000Z

    To establish standards and requirements for operations of the Department of Energy (DOE) and DOE contractors with respect to protection of members of the public and the environment against undue risk from radiation. Supersession of DOE O 5480.1A. Canceled by DOE O 458.1 Admin Chg 2.

  5. Airshed Pollution Modeling in an HPF Style Environment Jaspal Subhlok

    E-Print Network [OSTI]

    Subhlok, Jaspal

    This paper reports on the development of Airshed, a large air pollution modeling application [17], in the Fx. The Fx Airshed air pollution modeling application was integrated with a parallel A preliminary versionAirshed Pollution Modeling in an HPF Style Environment Jaspal Subhlok Department of Computer

  6. ENVIRONMENT, HEALTH & SAFETY Risk Management Services, University of Alberta

    E-Print Network [OSTI]

    Machel, Hans

    Provide technical expertise and service to departments in aspects of hazardous waste management, re-cycle and disposal and the environment Collect and transport hazardous waste from the campus to the waste facility of research proposals for funding applications Approval of work protocols involving biohazards Regulate

  7. Characterization of the Hanford Site and environs

    SciTech Connect (OSTI)

    Cushing, C.E. (ed.)

    1991-03-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to site, construct, and operate a new production reactor (NPR) intended to produce materials for the US nuclear weapons program. The DOE has determined that this proposed action constitutes an action that may significantly affect the quality of the human environment; therefore, the DOE is preparing an environmental impact statement (EIS) to assess the potential impacts of the proposed action and reasonable alternatives on the human and natural environment. The NPR-EIS is being prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act of 1969 (NEPA), as implemented in regulations (40 CFR 1500--1508) promulgated by the Council on Environmental Quality (CEQ). Information on the potentially affected environment at the Hanford Site and its environs was provided to ANL by PNL in various submissions during CY-1989, and some of that information was consolidated into this report, which is considered to be supporting documentation for the NPR-EIS. 93 refs., 35 figs., 46 tabs.

  8. Built-Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01T23:59:59.000Z

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  9. Environment, Safety and Health (ESH) Goals

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-02T23:59:59.000Z

    The purpose of this Policy is to establish Environment, Safety and Health (ES&H) goals for Department of Energy (DOE) personnel and its contractors. These goals are designed to establish Departmental ES&H expectations for: 1) DOE and contractor personnel ES&H behaviors and attitudes in the conduct of their daily work activities, and 2) operational performance regarding worker injuries and illnesses, regulatory enforcement actions, and environmental releases. Cancels DOE P 450.1, DOE P 450.6. Canceled by DOE O 450.4A

  10. Sample Environment Plans and Progress

    E-Print Network [OSTI]

    Pennycook, Steve

    Sample Environment Plans and Progress at the SNS & HFIR SNS HFIR User Group Meeting American Conference on Neutron Scattering Ottawa, Canada June 26 ­ 30, 2010 Lou Santodonato Sample Environment Group our sample environment capabilities Feedback SHUG meetings User surveys Sample Environment Steering

  11. DISTRIBUTED AND COLLABORATIVE SYNTHETIC ENVIRONMENTS

    E-Print Network [OSTI]

    Texas at Austin, University of

    1 DISTRIBUTED AND COLLABORATIVE SYNTHETIC ENVIRONMENTS Chandrajit L. Bajaj and Fausto Bernardini with synthetic environments1,2,3,4,5,6 . A synthetic environment system is generally characterized and the synthetic environment generated by the computer. Several degrees of immersion are possible, ranging from

  12. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    Washington, D.C. : U.S. Green Building Council. U.S. DOE. (NAHB/ICC. (2009). National green building standard. NAHBcommercial-customers/green-building-and- the- environment/

  13. Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  14. Author's personal copy Environments

    E-Print Network [OSTI]

    Carrascal, Luis M.

    . The easternmost main islands of the Canary archipelago (Fuerteventura and Lanzarote, North Atlantic Ocean, Spain Ltd. All rights reserved. Keywords: Arid environments; Canary islands; Cream-coloured courser) harbour a stable population. The species showed an intense habitat selection pattern in these islands. Its

  15. Environment US Army Corps

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Asia, Europe and the U. S. An environment once pristine and rich in biological diversity now suffers · Pentagon official lauds services for energy strategies · Corps among winners at `GOVgreen' 16 Sustainability Awards coming soon Corps team earns international recognition Regulators discuss mitigation

  16. Interactive Virtual Environments Introduction

    E-Print Network [OSTI]

    Petriu, Emil M.

    sensor data or by animation scripts. Human users can interact and directly manipulate objects within Reality Interactive Virtual Reality Virtualized Reality Augmented Reality #12;HUMAN PERCEPTION OF REALITY REAL WORLD / ENVIRONMENT HUMAN (sentient living animal able of sensible reasoning) #12;Real

  17. Multiprocessor programming environment

    SciTech Connect (OSTI)

    Smith, M.B.; Fornaro, R.

    1988-12-01T23:59:59.000Z

    Programming tools and techniques have been well developed for traditional uniprocessor computer systems. The focus of this research project is on the development of a programming environment for a high speed real time heterogeneous multiprocessor system, with special emphasis on languages and compilers. The new tools and techniques will allow a smooth transition for programmers with experience only on single processor systems.

  18. save energy, environment

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    was especially emphasized dur- ing the 1970s to combat the energy crisis caused by Arab oil embargoes. The recentsave energy, money, and the environment Windbreaks and shade trees #12;PrePared by Bryan R trees is based on their potential to save money from subsequent energy re- ductions. Winter heating

  19. Department of Mathematics

    E-Print Network [OSTI]

    The Department of Mathematics is one of seven departments making up Purdue's College of Science. The Department has an international reputation as an ...

  20. STATE OF NEW MEXICO ENVIRONMENT DEPARTMENT IN THE MATTER OF:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND NUCLEAR ) WASTE PARTNERSHIP LLC ) ) ) WASTE ISOLATION PILOT PLANT ) EDDY COUNTY, NEW MEXICO ) ADMINISTRATIVE ORDER UNDER THE NEW MEXICO HAZARDOUS WASTE ACT 74-4-13...