Powered by Deep Web Technologies
Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Indoor Module Light-Soaking Facility  

DOE Green Energy (OSTI)

An overview of the accelerated, indoor light-soaking test station is presented in this paper, along with data obtained for six modules that underwent exposure. The station comprises a climate-controlled chamber equipped with a solar simulator that allows 1-sun light intensity exposure. Concurrently, we monitor the electrical characteristics of multiple PV modules and exercise active control over their electrical bias using programmable electronic loads, interfaced to a data acquisition system that acquires power-tracking and current-voltage data. This capability allows us to the test different bias conditions and to cyclically alternate between them. Additionally, we can vary the light intensity and module temperatures to garner realistic temperature coefficients of module performance. Data obtained on cadmium telluride (CdTe) and amorphous silicon (a-Si) modules are presented.

del Cueto, J. A.; Osterwald, C.; Pruett, J.

2005-01-01T23:59:59.000Z

2

Indoor unit for electric heat pump  

DOE Patents (OSTI)

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

1984-05-22T23:59:59.000Z

3

Texas Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

4

Central Hudson Gas & Electric (Electric) - Commercial Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate Program Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate...

5

Madrid Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Page 1 of 2 ELECTRIC LIGHTING QUALITY MAGIC BOX is a versatile home. Its design allows to change the room size by opening and closing the movable walls...

6

Procedure to Measure Indoor Lighting Energy Performance  

SciTech Connect

This document provides standard definitions of performance metrics and methods to determine them for the energy performance of building interior lighting systems. It can be used for existing buildings and for proposed buildings. The primary users for whom these documents are intended are building energy analysts and technicians who design, install, and operate data acquisition systems, and who analyze and report building energy performance data. Typical results from the use of this procedure are the monthly and annual energy used for lighting, energy savings from occupancy or daylighting controls, and the percent of the total building energy use that is used by the lighting system. The document is not specifically intended for retrofit applications. However, it does complement Measurement and Verification protocols that do not provide detailed performance metrics or measurement procedures.

Deru, M.; Blair, N.; Torcellini, P.

2005-10-01T23:59:59.000Z

7

Virginia Tech Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHTING Daylight and Electric Careful consideration has been given to the integration of daylight, electric light, and the consequences relative to energy conservation, spatial...

8

Central Hudson Gas & Electric (Electric) - Commercial Lighting...  

Open Energy Info (EERE)

icon Twitter icon Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate Program (New York) This is the approved revision of this page, as well as...

9

Using LED Lighting for Ubiquitous Indoor Wireless Networking  

E-Print Network (OSTI)

Abstract—Wireless networking is currently dominated by radio frequency (RF) techniques. However, the soon-to-be ubiquity of LED-based lighting motivated by significant energy savings provides an opportunistic deployment of widespread free-space optical (FSO) communications. LEDbased network transceivers have a variety of competitive advantages over RF including high bandwidth density, security, energy consumption, and aesthetics. They also use a highly reusable unregulated part of the spectrum (visible light). In this paper we describe results from a pilot project to demonstrate the viability of an optical free-space visible light transceiver as a basis for indoor wireless networking. Inexpensive, commercial, off-the shelf LEDs and photodiodes we used to construct two prototypes; a simplex channel as expected as a component of an asymmetric/hybrid RF-FSO system, and a full-duplex channel demonstrating the ability to isolate multiple channels. On— off keying (OOK) was applied without observable flicker in the target modulation ranges. Results indicate the viability of creating inexpensive FSO transceivers that might be embedded in commercial lighting products to support ceiling-to-floor distances of approximately 3m. Index Terms—Wireless networking, indoor communications, free-space optical communications, visible light LED, modulation, OOK, FSO. 1 I.

T. D. C. Little; P. Dib; K. Shah; N. Barraford; B. Gallagher

2008-01-01T23:59:59.000Z

10

Energy Saving and Good Quality Lighting for Indoor Applications  

E-Print Network (OSTI)

Artificial Lighting in indoor applications is throughout Europe in a lot of cases 20 years or older. That means there are luminaries, lamps and gear in use that are inefficient and so contributing to environmental pollution due to high energy use. These installations one can find in public buildings, offices and industry halls. In offices 75% of the existing installations are old-fashioned and consumes too much energy. A tremendous high potential for energy savings is available. In the past years more and more efficient lighting solutions for these areas where developed. An increase in efficiency but at the same time also in quality of lighting took place. This increase of efficiency can be realized in different ways. In e.g. offices, new fluorescent lamps TL5 with extremely high lamp efficacies, silver-coated aluminum lamellae optics for high luminares efficiency, as well as highly efficient electronic gear take care that the energy consumption is decreasing up to 40%, while the light quality is improving. Latest developments in lighting controls, daylight regulation and presence detection, again reduces the energy bill by another up to 50%.

Lange, H.

2008-01-01T23:59:59.000Z

11

Electric energy savings and light guides  

Science Conference Proceedings (OSTI)

Light guides are systems which serve for illumination of internal windowless parts of buildings. Their function is based on the principle of light transport from outdoor to distant indoor places due to multi-reflections on their highly reflective internal ... Keywords: daylight, energy savings, illuminance, light guides, solar energy, solar radiation

Jitka Mohelnikova

2008-02-01T23:59:59.000Z

12

Cornell University Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Electric Lighting Quality The CUSD lighting design team utilized energy efficient products that meshed well with our daylighting scheme. We chose to use fluorescent tubes or compact fluorescent bulbs with an energy consumption of between 15 and 30 Watts throughout the house. The ballasts for all lamps dim to a 1% light output, so the interior and exterior lights can be adjusted as the level of available daylight fluctuates. Light sensors have been placed in front of our two largest apertures, allowing us to control how much artificial light is supplied to each space. The control of our ballasts is intricate, but refined and tested to avoid dysfunctional dimming or switching. While automatic controls are included, manual user overrides are provided in case the occupant prefers

13

Chicopee Electric Light - Residential Solar Rebate Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Solar Rebate Program Chicopee Electric Light - Residential Solar Rebate Program Eligibility Residential Savings For Solar Buying & Making...

14

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

15

Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems  

Science Conference Proceedings (OSTI)

For most wireless sensor networks, one common and major bottleneck is the limited battery lifetime. The frequent maintenance efforts associated with battery replacement significantly increase the system operational and logistics cost. Unnoticed power ... Keywords: Design consideration, PV cells wireless sensor node, energy harvesting, indoor light illuminance, maximum power point tracking, supercapacitor

W. S. Wang; T. O'Donnell; N. Wang; M. Hayes; B. O'Flynn; C. O'Mathuna

2010-06-01T23:59:59.000Z

16

Flathead Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Flathead Electric Cooperative - Commercial Lighting Rebate Program Flathead Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Maximum Rebate 70% of project cost Program Info State Montana Program Type Utility Rebate Program Rebate Amount Retrofit Lighting: $3 - $400 per unit New Construction Lighting: $10 - $50 per unit Provider Flathead Electric Cooperative Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program and a new

17

Last Out of Office, Electricity and Lighting Checklist | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Last Out of Office, Electricity and Lighting Checklist Last Out of Office, Electricity and Lighting Checklist Last Out of Office, Electricity and Lighting Checklist Last Out of...

18

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

Solar Electric Light Fund Solar Electric Light Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund Agency/Company /Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar Phase: Create Early Successes Resource Type: Publications, Training materials Website: www.self.org/ Locality: US, Africa, Asia, Latin America Cost: Free The mission of the Solar Electric Light Fund (SELF) is to empower people in developing countries to rise from poverty using energy from the sun. What We Do The Solar Electric Light Fund (SELF) has been working in the field of renewable energy, household energy and decentralized rural electrification for over 18 years. We have a proven track record of managing complex, multi-disciplinary international projects and have worked on renewable

19

Residential electricity use, wood use, and indoor temperature; An econometric model  

DOE Green Energy (OSTI)

A lagged-dependent variable, simultaneous-equation system model of residential electricity use for space heating and other uses, wood use, and indoor temperature is presented. The model is specified by means of a five-element model-building framework developed at Oak Ridge National Laboratory. Data were collected from 100 households that had end-use metering installed as part of the Hood River Conservation Project. The most important finding is that the dependent variables are relatively independent of each other. Model results also indicate that houses with central heating use more electricity for space heating and that households with favorable attitudes toward conservation prefer lower indoor temperatures and use less energy.

Tonn, B.E.; White, D.L. (Oak Ridge National Lab., TN (USA))

1988-01-01T23:59:59.000Z

20

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) This is the approved revision of this page, as well...

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrically driven nanopyramid green light emitting diode  

Science Conference Proceedings (OSTI)

An electrically driven nanopyramid green light emitting diode(LED) was demonstrated. The nanopyramid arrays were fabricated from a GaN substrate by patterned nanopillar etch

S.-P. Chang; Y.-C. Chen; J.-K. Huang; Y.-J. Cheng; J.-R. Chang; K.-P. Sou; Y.-T. Kang; H.-C. Yang; T.-C. Hsu; H.-C. Kuo; C.-Y. Chang

2012-01-01T23:59:59.000Z

22

Central Hudson Gas & Electric (Electric)- Commercial Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Central Hudson Gas & Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam...

23

Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Rebate Program Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Up to 70% of the equipment cost of a qualified efficiency upgrade Provider Central Hudson Gas and Electric Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam utilizes the services of Lime Energy to install new lighting fixtures with Central Hudson covering up to 70% of the cost. The 30 percent of cost remaining can be financed at

24

Pedernales Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pedernales Electric Cooperative - Commercial Lighting Rebate Pedernales Electric Cooperative - Commercial Lighting Rebate Program Pedernales Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Program Info Expiration Date Installation must be made within one year of the preliminary approval date State Texas Program Type Utility Rebate Program Rebate Amount 20-29 kW saved: $75/kW new; $150/kW retrofit 30-39 kW saved: $100/kW new; $200/kW retrofit 40-49 kW saved: $125/kW new; $250/kW retrofit 50 or more kW saved: $150/kW new; $300/kW retrofit Provider Conservation Section For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting.

25

Efficient Electrical Lighting for Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

typically accounts for between 8% and 25% of total electricity use, depending on the percentage of lab area. While not a significant percentage compared to HVAC systems, it...

26

Chicopee Electric Light- Residential Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

27

Cheyenne Light, Fuel and Power (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program <...

28

Irrigation Districts: Establishment of Electric Light and Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers...

29

CoServ Electric Cooperative - Commercial Energy Efficient Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program Eligibility...

30

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

31

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back...

32

Solar Electric Light Company SELCO | Open Energy Information  

Open Energy Info (EERE)

Light Company SELCO Light Company SELCO Jump to: navigation, search Name Solar Electric Light Company (SELCO) Place Bangalore, Karnataka, India Zip 560078 Sector Services, Solar Product Solar Electric Light Company (SELCO) manufactures photovoltaic products and services targeted especially at end consumers in developing countries who have no access to land electricity. References Solar Electric Light Company (SELCO)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Electric Light Company (SELCO) is a company located in Bangalore, Karnataka, India . References ↑ "Solar Electric Light Company (SELCO)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Electric_Light_Company_SELCO&oldid=35125

33

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ Electric Cooperative - Commercial Energy Efficient Lighting CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Via partnership with whole sale provider Brazos Electric Power, Inc. and escheat funds Start Date 09/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Custom Lighting Upgrade: 0.30/watt saved per fixture T8 Fluorescent Upgrade: 1.50 - 2.25/bulb per fixture Provider CoServ Electric Cooperative CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom lighting upgrades and a

34

Validation of veracity on simulating the indoor temperature in PCM light weight building by energyplus  

Science Conference Proceedings (OSTI)

This article surveys the EnergyPlus constructions solution algorithm and heat balance method in EnergyPlus, presents the new conduction finite difference solution algorithm and enthalpy-temperature function features, describes the implementation of the ... Keywords: energyplus, indoor temperature, phase change materials(PCMs), validation

Chun-Long Zhuang; An-Zhong Deng; Yong Chen; Sheng-Bo Li; Hong-Yu Zhang; Guo-Zhi Fan

2010-09-01T23:59:59.000Z

35

Avista Utilities (Electric) - Commercial Lighting Energy Efficiency...  

Open Energy Info (EERE)

Applicable Sector Commercial Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

36

Cagayan Electric Power and Light Co Cepalco | Open Energy Information  

Open Energy Info (EERE)

Solar Product Provides electricity to Cagayan de Oro City. Has developed a 1MW solar power plant. References Cagayan Electric Power and Light Co (Cepalco)1 LinkedIn Connections...

37

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

38

MidAmerican Energy (Electric) - Municipal Solid-State Lighting...  

Open Energy Info (EERE)

must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

39

Hawaii Electric Light Company News Release | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Electric Light Company News Release Citation () . () . Hawaii...

40

Fitchburg Gas and Electric Light Company (Massachusetts) | Open...  

Open Energy Info (EERE)

Company (Massachusetts) Jump to: navigation, search Name Fitchburg Gas and Electric Light Company Place Massachusetts Utility Id 6374 References EIA Form EIA-861 Final Data File...

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CoServ Electric Cooperative - Commercial Energy Efficient Lighting...  

Open Energy Info (EERE)

icon Twitter icon CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program (Texas) This is the approved revision of this page, as well as being...

42

Alliant Energy Interstate Power and Light (Electric) - Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and...

43

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New Chevrolet Volt Vehicle Demonstration: Project to...

44

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New EV Project Overview Report: Project to date...

45

Alliant Energy Interstate Power and Light (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Electric) - Residential Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Iowa) < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Central Air Conditioners: $100 - $200 Air Source Heat Pumps: $100 - $400 Geothermal Heat Pumps: $300/ton + $50/EER/ton Fan Motors: $50/unit Programmable Thermostats: $25 Tank Water Heater: $50

46

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Electric) - Business Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate See program web site Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings New Construction: Varies widely

47

NYSEG (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

48

Chicopee Electric Light - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Commercial Energy Efficiency Rebate Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) < Back Savings Category Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $25,000; 30% of total cost if project did not recieve financing from CEL, 20% of total cost if project did recieve financing from CEL Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: $0.17 per annual kWh saved Lighting: $0.17 per annual kWh saved New Construction: $0.17 per annual kWh saved Provider Program Administrator Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue

49

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

50

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric) - Farm Gas and Electric) - Farm Equipment Energy Efficiency Incentives Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Heating & Cooling Heating Commercial Lighting Lighting Manufacturing Water Heating Program Info Start Date 1/1/2012 State Iowa Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $100 Refrigerator Replacement: $50 Dishwasher Replacement: $20 Freezer: $25 Room Air Conditioner: $25 Water Heater: $50 Electric Heat Pump Water Heaters: $100 Circulating Fans: $25 - $75

51

Golden Valley Electric Association - Commercial Lighting Retrofit Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000 per project Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Up to $1,000/kW or 50% of the project cost Provider Golden Valley Electric Association BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to existing facilities receiving the commercial rate who reduce their lighting loads through energy efficient lighting retrofit projects. Facilities on GVEA's

52

Alliant Energy Interstate Power and Light (Electric) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Commercial Weatherization Construction Design & Remodeling Water Heating Maximum Rebate See program web site Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount New Construction: Varies, see program web site Custom: Based on Annual Dollar Energy Savings

53

Chicopee Electric Light - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: 0.17 per annual kWh saved Lighting: 0.17 per annual kWh saved New Construction: 0.17 per annual kWh saved...

54

Chicopee Electric Light - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Residential Energy Efficiency Rebate Chicopee Electric Light - Residential Energy Efficiency Rebate Program Chicopee Electric Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Water Heating Maximum Rebate Insulation: $300 maximum rebate Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $50 Freezer: $50 Dishwasher: $25 Heat Pump Water Heater: $300 Central A/C: Up to $500 Ductless Mini-Split AC: Up to $500 Air Source Heat Pump: Up to $500 Insulation: 30% of installed cost Provider EFI Municipal Rebates Chicopee Electric Light (CEL) offers a variety of incentives for its

55

Central Electric Cooperative- Non-Residential Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE))

The Central Electric Cooperative offers a commercial lighting system improvement incentive for any customer not on a residential utility rate. To use the program and learn how much the rebates can...

56

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

57

Electric Light and Power Rules (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Light and Power Rules (North Carolina) Electric Light and Power Rules (North Carolina) Electric Light and Power Rules (North Carolina) < Back Eligibility Utility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Generating Facility Rate-Making Renewables Portfolio Standards and Goals Safety and Operational Guidelines Provider NC Utilities Commission These rules shall apply to any person, firm, or corporation (except municipalities, or agents thereof) which is now or may hereafter become engaged as a public utility in the business of furnishing electric current for domestic, commercial or industrial consumers within the State of North Carolina. The rules are intended to define good practice which can normally

58

Irrigation Districts: Establishment of Electric Light and Power Systems:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Irrigation Districts: Establishment of Electric Light and Power Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) Irrigation Districts: Establishment of Electric Light and Power Systems: Powers (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources Irrigation districts, created in section 46-1xx, are encouraged to

59

Hawaii Electric Light Co Inc | Open Energy Information  

Open Energy Info (EERE)

Hawaii Electric Light Co Inc Hawaii Electric Light Co Inc Jump to: navigation, search Name Hawaii Electric Light Co Inc Place Hawaii Utility Id 8287 Utility Location Yes Ownership I NERC Location HI NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE "F" Street Light Service Lighting SCHEDULE "G" General Service Non-Demand - Single Phase Commercial SCHEDULE "G" General Service Non-Demand - Three Phase Commercial

60

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Commercial Energy Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount T8 Fixtures: $5 - $18 /system or $0.50 /lamp Fluorescents: $4 - $125 CFLs: $8 - $25 Indirect Lighting: $16 - $24 Pulse Start Metal Halide Fixtures: $25 - $65 Lighting Controls: $12 - $35 Variable Frequency Drive: $30 /hp Totally Enclosed Fan-Cooled: $10 - $600 Open Drip-Proof: $10 - $600 Custom: Buy down to 2 year pay back or 50% of cost, whichever is less

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Indoor Lighting Overview Page 5-1 2008 Nonresidential Compliance Manual August 2009  

E-Print Network (OSTI)

lighting system controls and photocells. · Install fixtures with metal halide lamps. Refer to the Advanced and Appliances 8 Space Planning 8 Heating, Cooling, and Ventilating Systems 9 Plumbing 10 Materials Use (see page 14). Energy efficiency yields benefits far beyond energy savings. Daylighting and efficient

62

Zhongshan Quanxin Electric Lighting Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhongshan Quanxin Electric Lighting Co Ltd Zhongshan Quanxin Electric Lighting Co Ltd Jump to: navigation, search Name Zhongshan Quanxin Electric Lighting Co Ltd Place Zhongshan, China Zip 528411 Sector Solar Product Chinese light manufactuere who is building a 10MW a-Si thin-film solar cell factory. Coordinates 22.516701°, 113.366699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.516701,"lon":113.366699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Electric dipole moment of light nuclei  

Science Conference Proceedings (OSTI)

We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

64

Electric dipole moment of light nuclei  

Science Conference Proceedings (OSTI)

We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

Afnan, Iraj R. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001 (Australia); Gibson, Benjamin F. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2010-07-27T23:59:59.000Z

65

Stabilization of High Efficiency CdTe Photovoltaic Modules in Controlled Indoor Light Soaking  

Science Conference Proceedings (OSTI)

The performance and stabilization of large-area, high-efficiency 9%, CdTe photovoltaic (PV) modules maintained under controlled light-soaking nominally at 800 Watts/m2 irradiance and 65C module temperature are investigated. Degradation of module performance occurs predominantly in the first few hundred hours of exposure under these conditions; these symptoms included losses in fill factor (FF), open-circuit voltage (Voc), and short-circuit current (Isc), which amount to between 7% and 15% total loss in performance. Higher stabilized performance was achieved with lower copper content in the back contact. Transient effects in module Voc and Isc were observed, suggesting partial annealing thereof when stored under low-light levels. Performance changes are analyzed, aided by monitoring the current-voltage characteristics in situ during exposure.

del Cueto, J. A.; Pruett, J.; Cunningham, D.

2003-05-01T23:59:59.000Z

66

Bremen Electric Light & Power Co | Open Energy Information  

Open Energy Info (EERE)

Bremen Electric Light & Power Co Bremen Electric Light & Power Co Jump to: navigation, search Name Bremen Electric Light & Power Co Place Indiana Utility Id 2192 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Single Phase Commercial Commercial: Three Phase Commercial Industrial: Single Phase Industrial Industrial: Three Phase Industrial Large Power Industrial Mega Industrial Power Industrial Municipal: Single Phase Commercial Municipal: Three Phase Commercial Residential Residential

67

Fitchburg Gas and Electric Light Company | Open Energy Information  

Open Energy Info (EERE)

Fitchburg Gas and Electric Light Company Fitchburg Gas and Electric Light Company Place New Hampshire Utility Id 6374 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Fitchburg Gas and Electric Light Company (Massachusetts).

68

Alaska Electric Light&Power Co | Open Energy Information  

Open Energy Info (EERE)

Light&Power Co Light&Power Co Jump to: navigation, search Name Alaska Electric Light&Power Co Place Alaska Utility Id 213 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial & Government Dual Fuel Commercial Experimental Off-Peak Electric Vehicle Charging 10:00 pm - 7:00 am Commercial General Residential Residential Large Commercial Commercial Off-Peak/Heat storage from 10pm-6am Large Commercial Commercial

69

Barron Electric Cooperative- Energy Star Appliance & Energy Efficient Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Barron Electric Cooperative (BEC) offers rebates to any member receiving electrical service for the purchase of Energy Star appliances and energy efficient lighting. All appliance rebates are $25...

70

Semiconductor light source with electrically tunable emission wavelength  

DOE Patents (OSTI)

A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

2011-01-25T23:59:59.000Z

71

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

72

Central Electric Cooperative - Non-Residential Lighting Rebate...  

Open Energy Info (EERE)

Government, Tribal Government Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

73

Avista Utilities (Electric)- Commercial Lighting Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities' Commercial Lighting Program provides incentives for lighting upgrades. New construction projects and proved energy saving lighting measures not listed on rebate form are...

74

Avista Utilities (Electric)- Commercial Lighting Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities' Commercial Lighting Program provides incentives for lighting upgrades. New construction projects and proved energy saving lighting measures not listed on rebate form are evaluated...

75

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate $25,000 Program Info State Iowa Program Type Utility Loan Program Rebate Amount $1,500 - $25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells

76

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

77

How much electricity is used for lighting in the United States ...  

U.S. Energy Information Administration (EIA)

EIA estimates that in 2011, about 461 billion kilowatt-hours (kWh) of electricity were used for lighting by the residential and commercial sectors.

78

indoor | OpenEI Community  

Open Energy Info (EERE)

indoor indoor Home Dc's picture Submitted by Dc(15) Member 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building comfort design improve incentive indoor message sms text Yes 60% (3 votes) No 0% (0 votes) Maybe if I had an incentive 20% (1 vote) Maybe if my reply is confidential and anonymous 0% (0 votes) Maybe if the data will be used to improve building design 20% (1 vote) Total votes: 5 Buildings account for roughly 40% of all U.S. energy use (70% of all electricity): residential buildings account for 22% of all U.S. energy use and commercial buildings account for 18% of all U.S. energy use[i]. There is an unanswered need for information about buildings in use and how building design affects building occupant comfort, productivity, and, by

79

Energy and economic efficiency alternatives for electric lighting in commercial buildings  

SciTech Connect

This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categories offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.

Robbins, C.L.; Hunter K.C.; Carlisle, N.

1985-10-01T23:59:59.000Z

80

Alliant Energy Interstate Power and Light (Electric) - Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design & Remodeling Other Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate See program web site Program...

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Envelope & Lighting Technologies to Reduce Electric Demand in...  

NLE Websites -- All DOE Office Websites (Extended Search)

of light shelf reflectors. Deploying Integrated Systems Realizing the full energy-saving potential of envelope and lighting technologies for commercial buildings means...

82

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MidAmerican Energy (Electric) - Municipal Solid-State Lighting MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program < Back Eligibility Local Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Minimum project size for the full $5,000 grant is 20 fixtures; smaller projects will receive a $250 per-fixture grant. Program Info State Iowa Program Type Utility Grant Program Rebate Amount Up to $5,000 Provider MidAmerican Energy Company MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible roadway lighting fixtures. Participants must be an Iowa electric governmental customer of

83

Lighting Electricity Rates on OpenEI | OpenEI Community  

Open Energy Info (EERE)

Lighting Electricity Rates on OpenEI Lighting Electricity Rates on OpenEI Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 31 May, 2013 - 12:04 API Utility Rates I'm pleased to announce that a new lighting rate category and about 10,000 lighting rates are now officially offered in OpenEI's utility rate database! Streetlights and other similar electric lighting uses are typically billed using uniquely designed lighting rates. Illinois State University (ISU) had contributed approximately 10,000 lighting rates, and now these rates have been categorized under a new "lighting" category (in the same dropdown list that contains "residential", "commercial" and "industrial" categories). With the new categorization, users can now query

84

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Open Energy Info (EERE)

Heat pumps, Lighting, Programmable Thermostats, Refrigerators, Water Heaters, Windows, Room Air Conditioners, Geothermal Heat Pumps, Appliance Recycling, Home Energy...

85

Indoor Environment Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Environment Group Indoor Environment Group The Indoor Environment Group performs research that aims to maintain healthy and productive indoor environments while buildings are made more energy efficient. We study the links between indoor environmental quality, building ventilation, building energy efficiency and occupants' health, performance and comfort. We undertake experiments in laboratory and field settings and employ modeling to characterize indoor environmental conditions and evaluate the fate, transport and chemical transformations of indoor pollutants. We elucidate pathways of pollutant exposure, evaluate and develop energy efficient means of controlling indoor environmental quality, and provide input for related guidelines and standards. Contacts William Fisk WJFisk@lbl.gov (510) 486-5910

86

Department of Electrical Engineering Spring 2012 Boeing LED Strobe Light System  

E-Print Network (OSTI)

strobe light system used by Boeing. The current Xenon bulb system is bulky, inefficient, and unreliable other light bulbs, this improves the longevity of the device Excellent frequency response of the LEDsPENNSTATE Department of Electrical Engineering Spring 2012 Boeing LED Strobe Light System Overview

Demirel, Melik C.

87

Electricity Advisory Committee (EAC) 2009: Keeping the Lights on in a New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09: Keeping the Lights on in 09: Keeping the Lights on in a New World Electricity Advisory Committee (EAC) 2009: Keeping the Lights on in a New World Elertricity Advisory Committee (EAC) Keeping the Lights on in a New World: The purpose of the report is to address current trends with respect to construction of generation and transmission; use of demand-side resources and increased efficiency; and plans for meeting future electricity needs that will result in reliable supplies of electricity, at reasonable cost and with due regard for the environment. The report focuses on specific actions the U.S. Department of Energy can take to meet these challenges. Electricity Advisory Committee (EAC) 2009: Keeping the Lights on in a New World More Documents & Publications Chapter 3 Demand-Side Resources

88

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residences, farms or ag-related businesses are eligible if Alliant Energy supplies the electricity or natural gas on a retail rate basis for the applicable technology. Interest...

89

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Amount Energy Audit: Free Clothes Washer: 100 Refrigerator Replacement: 50 Dishwasher Replacement: 20 Freezer: 25 Room Air Conditioner: 25 Water Heater: 50 Electric...

90

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

by the U.S. Department of Energys (DOE) Vehicle Technology Program (VTP) to collect electric drive vehicle and charging infrastructure data for several deployment projects...

91

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Open Energy Info (EERE)

Water Heaters, Windows, Whole House Fans, Room Air Conditioners, Geothermal Heat Pumps, LED Lighting, Heat Pump Water Heaters Active Incentive Yes Implementing Sector Utility...

92

Alliant Energy Interstate Power and Light (Electric) - Residential...  

Open Energy Info (EERE)

Programmable Thermostats, Refrigerators, Water Heaters, Windows, Geothermal Heat Pumps, LED Lighting, Heat Pump Water Heaters Active Incentive Yes Implementing Sector Utility...

93

Alliant Energy Interstate Power and Light (Electric) - Business...  

Open Energy Info (EERE)

Commercial Refrigeration Equipment, Food Service Equipment, Room Air Conditioners, LED Lighting, Tankless Water Heaters, Heat Pump Water Heaters Active Incentive Yes...

94

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant  

Open Energy Info (EERE)

MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program (Iowa) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on November 9, 2012. Financial Incentive Program Place Iowa Additional Place applies to MidAmerican Energy Name MidAmerican Energy (Electric) - Municipal Solid-State Lighting Grant Program Incentive Type Utility Grant Program Applicable Sector Local Government Eligible Technologies Lighting, Lighting Controls/Sensors, Induction Lighitng, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy Efficiency Incentive Programs Amount Up to $5,000 Equipment Requirements Fixtures must have an efficiency rating equal to or greater than 66 lumens per watt as tested under Illuminating Engineering Society of North America LM-79-08 testing to qualify for a grant.

95

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 1,500 - 25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential,...

96

Alliant Energy Interstate Power and Light (Electric)- Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient New Construction: 600-3500home Home Energy Audit: Free CFLs: 50% of cost LED Bulbs: 10 Light Fixtures or Fan: 20unit Water Heaters: 50 Programmable Thermostat: 25...

97

Last Out of Office, Electricity and Lighting Checklist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Last-Out Energy Conservation Check List Office Symbol Name: Suite Room Number: Date Initials All Lights in Suite are Off? All Printers in Suite are Off? All Scanners in Suite are...

98

Manual on indoor air quality  

Science Conference Proceedings (OSTI)

This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

Diamond, R.C.; Grimsrud, D.T.

1983-12-01T23:59:59.000Z

99

This is an Accepted Article that has been peer-reviewed and approved for publication in the Indoor Air, but has yet to undergo copy-editing and proof correction. Please cite this article as an "Accepted  

E-Print Network (OSTI)

to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can Distributions and Indoor Concentrations from Kerosene and Diesel Lamps J. Apple 1 , R. Vicente 1 , A. Yarberry 1, and Jenny Tracy for collecting data in Kenya in 2008 and 2009. We thank Art Rosenfeld and the Blum Center

Jacobson, Arne

100

RG&E (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Lighting Retrofit Program Small Business Lighting Retrofit Program RG&E (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG RG&E offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electric dipole moments of light nuclei from {chi}EFT  

SciTech Connect

I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

Higa, Renato [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05314-970, Sao Paulo, SP (Brazil)

2013-03-25T23:59:59.000Z

102

Electric Boosting System for Light Truck/SUV Application  

DOE Green Energy (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

103

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

104

The Diagnostic Process All plants grown indoors in containers  

E-Print Network (OSTI)

existing light. Bulbs of different light Caring for Plants in the Home Lynn Ellen Doxon, former Extension temperatures more closely resemble the tropics than local outdoor temperatures. Light Needs Even among plants that naturally grow in the shade, light needs vary. There are four basic light categories for indoor plants grown

Castillo, Steven P.

105

Indoor Air Quality Group  

Science Conference Proceedings (OSTI)

... CONTAM has been used at NIST to study the indoor air quality impacts of HVAC systems in single-family residential buildings, ventilation in large ...

2011-10-31T23:59:59.000Z

106

The USDOE Forrestal Lighting Retrofit: Analysis of Electricity and Thermal Savings  

E-Print Network (OSTI)

This report provides an overview of the lighting retrofit and the resultant electricity and thermal savings. It presents results from the whole-building monitoring effort that show that the measured gross electricity savings accounted for $324,705 or 76% of the total monetary savings. The measured energy savings performed within 90% of the estimated savings. Quite surprisingly, the thermal savings which were not included in initial estimates by the USDOE accounted for $102,824 or 24% of the overall savings and increased the total cost savings to $427,529 (107% of expected electricity cost savings of $399,058). The measured reductions in monthly peak hourly electric demand performed within 68% to 91% of estimated demand reductions depending upon the month of the year.

Haberl, J. S.; Bou-Saada, T. E.

1995-01-01T23:59:59.000Z

107

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

62440 Appliances, Lighting, Electronics, and Miscellaneousof California. Appliances, Lighting, Electronics, anduses (appliances, lighting, electronics, and miscellaneous

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

108

Linn County Rural Electric Cooperative - Agricultural Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linn County Rural Electric Cooperative - Agricultural Energy Linn County Rural Electric Cooperative - Agricultural Energy Efficiency Rebate Program Linn County Rural Electric Cooperative - Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Heating Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate 50% of installed costs Geothermal Heat Pumps: 20 tons General: See equipment brochure for specific technology incentive caps Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Indoor Agricultural Lighting: Varies; see program web site Dairy/Livestock: Varies

109

Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)  

SciTech Connect

Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

2010-06-01T23:59:59.000Z

110

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic Linear Fluorescent Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update is one of four in a series that addresses the basic dimming performance of advanced lighting sources8212linear electronic fluorescent ballasts. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth dimming methods used in advanced lighting sources and controls for incandescent, fluores...

2008-12-15T23:59:59.000Z

111

Indoor Environmental Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

office interior, people talking, computational fluid dynamics image office interior, people talking, computational fluid dynamics image Indoor Environmental Quality EETD conducts a broad program of research, technology development, and dissemination activities directed toward improving the health, comfort, and energy efficiency of the indoor environment. EETD researchers conduct a broad program of research and development with the goals of: reducing the energy used for thermally conditioning and distributing ventilation air in buildings improving indoor air quality (IAQ), thermal comfort and the health and productivity of building occupants understanding human exposures to environmental pollutants found in indoor and outdoor air improving the scientific understanding of factors and processes affecting air quality developing sound science to inform public policy on the most

112

Low frequency indoor radiolocation  

E-Print Network (OSTI)

This thesis concerns the application of electromagnetic wave propagation to the problem of indoor radiolocation. Determining the location of people and objects relative to their environment is crucial for asset tracking, ...

Reynolds, Matthew S. (Matthew Stephen), 1975-

2003-01-01T23:59:59.000Z

113

Power Quality Hotline Call-of-the-Month for November 2009: Failure of a Lighting-Control System Caused by Electrical Fast Transients (EFTs)  

Science Conference Proceedings (OSTI)

This Call of the Month discusses the basics of lighting-control systems, a recent failure of a lighting-control system caused by a common electrical disturbance, and some solutions to resolving compatibility problems with lighting-control systems.

2009-12-11T23:59:59.000Z

114

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network (OSTI)

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES) agreement as authorized under Public Law 99-272. As DOE's first major SES contract, it was important that every aspect of this project serve as the cornerstone of DOE's Federal Relighting Initiative, including the careful measurement of the electricity and thermal energy savings.

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

115

Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes  

SciTech Connect

The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

2007-02-28T23:59:59.000Z

116

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic Light-Emitting Diode (LED) Fixtures, Lamps, and Drivers  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and LED sources. Chapter 3 ad...

2008-12-19T23:59:59.000Z

117

Green Light-Emitting Diode Makes Highly Efficient White Light, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum of Spectrum of Clean Energy Innovation innovati n Green Light-Emitting Diode Makes Highly Efficient White Light Scientists at the National Renewable Energy Laboratory (NREL) have invented a deep green light-emitting diode (LED) that can lead to higher efficiency white light, which is of prime value in the indoor lighting world. LEDs are fundamentally solar cells operating in reverse-that is, when an electrical current is applied to a thin-film semiconductor, the result is the emission of light. These devices are a key technology for producing a new generation of efficient lighting, in which the amount of light generated far outweighs the amount of heat produced. But at the moment, LEDs that emit white light are produced using an inefficient process known as phosphor conversion. In this process, light from a blue- or ultraviolet-emitting LED energizes

118

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Technologies: Dimmable Advanced Lighting Tech nologies -- Electronic Fluorescent, High-Intensity Discharge, and Light-Emitting Diode  

Science Conference Proceedings (OSTI)

This EPRI Technical Report is a compilation of four technical updates that address the basic dimming performance of advanced lighting sources: EPRI report 1018476 for linear fluorescent ballasts, 1018477 for hot and cold cathode compact fluorescent lamps, 1018479 for electronic high-intensity discharge (HID) ballasts, and 1018480 for light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting con...

2008-12-22T23:59:59.000Z

119

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include:

120

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

LBNL-62440 Appliances, Lighting, Electronics, andUniversity of California. Appliances, Lighting, Electronics,The “Other” end-uses (appliances, lighting, electronics, and

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electric Technologies for Light-duty Vehicles in the United States Abstract  

E-Print Network (OSTI)

This paper is concerned with the present status and future projections for emerging technologies that can be utilized in light-duty vehicles in the next five to ten years to significantly reduce their CO2 emissions. The emerging technologies considered are modern clean diesel engines and hybrid-electric powertrains using batteries and/or ultracapacitors for energy storage. Throughout the study, six classes of vehicles –compact passenger cars to large SUVs-were considered. For each vehicle class, computer simulations (Advisor 2002) and cost analyses were performed for conventional ICE and mild and full parallel hybrids using port-fuel injected and lean burn gasoline engines and direct-injection turbo-charged diesel engines to determine the fuel economy and differential costs for the various vehicle designs using the conventional gasoline PFI engine vehicle as the baseline. CO2 emissions (gmCO2/mi) for each driveline and vehicle case were calculated from the fuel economy values. On a percentage or ratio basis, the analyses indicated that the fuel economy gains, CO2 emissions reductions, and cost/price increases due to the use of the advanced engines and hybrid-electric drivelines were essentially independent of vehicle class. This means that a regulation specifying the same fractional

United States; Andrew Burke; Ethan Abeles; Andrew Burke; Ethan Abeles

2004-01-01T23:59:59.000Z

122

Abstract--It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of  

E-Print Network (OSTI)

,000) could be replaced by electrical car by the year 2025 [8]. It is predicted that EVs will make 641 Abstract-- It is expected that a lot of the new light vehicles in the future will be electrical into account. Index Terms-- Electrical vehicle, smart charging, spot electricity price. I. INTRODUCTION HE

Mahat, Pukar

123

Design, Control and Evaluation of a Prototype Three Phase Inverter in a BLDC Drive System for an Ultra-Light Electric Vehicle.  

E-Print Network (OSTI)

??With an evolving vehicle industry there has been an increase in the demand for light electric vehicles. This thesis was conducted in order to gain… (more)

Larsson, Philip

2013-01-01T23:59:59.000Z

124

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

Performance of Occupancy-Based Lighting Control Systems: AReview. ” Lighting Residential Technology 42:415-431. Itron,Information Template – Indoor Lighting Controls. Pacific Gas

Williams, Alison

2013-01-01T23:59:59.000Z

125

Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

126

LED Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied....

127

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

online: www.eia.doe.gov/cneaf/electricity/esr/esr_sum.html.Miscellaneous Equipment Electricity Use in New Homes RichardMiscellaneous Equipment Electricity Use in New Homes Richard

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

128

Intelligent street lighting application for electric power distribution systems the business case for smartgrid technology.  

E-Print Network (OSTI)

??This research project builds upon previous work related to intelligent and energy efficient lighting in modern street and outdoor lighting systems. The concept of implementing… (more)

Davis, Wesley O'Brian Sr.

2011-01-01T23:59:59.000Z

129

Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Program (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy) offers a number of energy efficiency rebates for Minnesota residential customers which implement HVAC, lighting, appliance, window, insulation and water...

130

Alliant Energy Interstate Power and Light (Electric)- Business Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for high efficiency lighting equipment, occupancy...

131

Indoor Sampler Siting  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Sampler Siting Indoor Sampler Siting Title Indoor Sampler Siting Publication Type Conference Proceedings Year of Publication 2009 Authors Sohn, Michael D., and David M. Lorenzetti Conference Name 11th International Conference on Air Distribution in Rooms Conference Location Busan, Korea Abstract Contaminant releases in or near a building can lead to significant human exposures unless prompt response is taken. U.S. Federal and local agencies are implementing programs to place air-monitoring samplers in buildings to quickly detect biological agents. We describe a probabilistic algorithm for siting samplers in order to detect accidental or intentional releases of biological material. The algorithm maximizes the probability of detecting a release from among a suite of realistic scenarios. The scenarios may differ in any unknown, for example the release size or location, weather, mode of building operation, etc. The algorithm also can optimize sampler placement in the face of modeling uncertainties, for example the airflow leakage characteristics of the building, and the detection capabilities of the samplers. In anillustrative example, we apply the algorithm to a hypothetical 24-room commercial building, finding optimal networks for a variety of assumed sampler types and performance characteristics. We also discuss extensions of this work for detecting ambient pollutants in buildings, and for understanding building-wide airflow, pollutant dispersion, and exposures

132

California customer load reductions during the electricity crisis: Did they help to keep the lights on?  

E-Print Network (OSTI)

solar PV systems or virtually eliminating their electricity usage through dramatic changes in their energy-

Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

2002-01-01T23:59:59.000Z

133

Lighting Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design Lighting Design July 29, 2012 - 6:28pm Addthis Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. How does it work? Buy ENERGY STAR-rated lighting for the highest quality, energy-efficient lighting. Use timers and other controls to turn lights on and off. Use outdoor solar lighting. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. If you're constructing a new house, consider lighting as part of your whole-house design -- an

134

Solutions for Indoor Light Energy Harvesting.  

E-Print Network (OSTI)

?? Energy harvesting (EH) was born few decades ago and evolved during the years, however only recently has found more applications thanks to the advent… (more)

Vignati, Stefano

2012-01-01T23:59:59.000Z

135

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

solar-assisted gas-fired boiler heating, a thermal wall assembly, high performance lighting, and high-efficiency

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

136

Hydrocarbon and Electrical Requirements in the Plasma During Treatment of NOx in Light-Duty Diesel Engine Exhaust  

DOE Green Energy (OSTI)

This paper examines the hydrocarbon (C{sub 1}/NO{sub x} ratio) and electrical energy density (ratio of power to exhaust flow rate) requirements in the plasma during plasma-assisted catalytic reduction of NO{sub x}. The requirements for treatment of NO{sub x} in heavy-duty and light-duty diesel engines are compared. It is shown that, for light-duty applications, the plasma can significantly enhance the catalytic reduction of NO{sub x} with little fuel penalty incurred in the plasma process.

Penetrante, B.; Brusasco,R.M.; Merritt, B.T.; Vogtlin, G.E.

1999-10-28T23:59:59.000Z

137

FM-based indoor localization  

Science Conference Proceedings (OSTI)

The major challenge for accurate fingerprint-based indoor localization is the design of robust and discriminative wireless signatures. Even though WiFi RSSI signatures are widely available indoors, they vary significantly over time and are susceptible ... Keywords: fingerprinting, fm, localization, mobile systems, wireless

Yin Chen; Dimitrios Lymberopoulos; Jie Liu; Bodhi Priyantha

2012-06-01T23:59:59.000Z

138

RAPOSI: rapidly installable positioning system for indoor environments  

Science Conference Proceedings (OSTI)

RAPOSI is a radio-signal-strength based positioning system for indoor environments. Independent self-localization as well as centralized tracking of light-weight mobile devices is enabled. By omitting typically required a-priori scene analysis, set-up ...

Florian Schreiner; Holger Ziemek

2005-10-01T23:59:59.000Z

139

An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration  

SciTech Connect

As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

Simon, A J

2009-08-21T23:59:59.000Z

140

DOE AVTA: The EV Project and Other Light-Duty Electric Drive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee on Overcoming Barriers to Electric Vehicle Deployment The National Academies, Washington, DC , g , October 29, 2012 This presentation does not contain any proprietary...

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

California customer load reductions during the electricity crisis: Did they help to keep the lights on?  

E-Print Network (OSTI)

Gas Residential Electricity Residential Gas Rate ($/therm)Residential customers were on an inverted block rate for electricityelectricity rates by customer (CPUC, 2001a). For residential

Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

2002-01-01T23:59:59.000Z

142

Energy efficient electric lighting for buildings in developed and developing countries.  

E-Print Network (OSTI)

??As energy is a fundamental service for human development and economic growth, the demand for it is constantly on the rise worldwide. Lighting energy use… (more)

Bhusal, Pramod

2009-01-01T23:59:59.000Z

143

Alliant Energy Interstate Power and Light (Electric)- Residential Energy Efficiency Rebate Program (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates and incentives for Iowa customers for a variety of technologies. Rebates are available for certain HVAC...

144

Workshop on indoor air quality research needs  

Science Conference Proceedings (OSTI)

Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

Not Available

1980-01-01T23:59:59.000Z

145

California customer load reductions during the electricity crisis: Did they help to keep the lights on?  

SciTech Connect

During summer 2001, Californians reduced electricity usage by 6 percent and average monthly peak demand by 8 percent, compared to summer 2000. These load reductions played an important role in avoiding the hundreds of hours of rotating power outages predicted several months prior. Many factors affected electricity use and peak demand in summer 2001, including weather, changes in the State's economy, and deliberate consumer responses to a variety of stimuli associated with the crisis. This paper assesses the roles played by these contributing factors, with a special focus on the extraordinary efforts made by Californians to reduce electricity consumption. We review the role of media coverage and informational campaigns on public awareness and the impact of rate increases and a variety of publicly funded programs in reducing electricity consumption. We also draw lessons for other regions that may be faced with the prospect of electricity shortages.

Goldman, Charles A.; Barbose Galen L.; Eto, Joseph H.

2002-05-01T23:59:59.000Z

146

Indoor Environment Program. 1992 Annual Report  

SciTech Connect

This paper reports progress during the year 1992 in the Indoor Environment Program in the Energy and Environment Division of Lawrence Berkeley Laboratory. Studies in the following areas are reported: energy performance and ventilation in buildings; physical and chemical characterization of indoor air pollutants; indoor radon; indoor air quality; exposure to indoor air pollutants and risk analysis. Pollutants of particular interest include: radon; volatile, semi-volatile and particulate organic compounds; and combustion emissions including environmental tobacco smoke, carbon monoxide, and nitrogen oxides.

Daisey, J.M.

1993-06-01T23:59:59.000Z

147

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network (OSTI)

monitoring or device-level metering. Whole-house and “major”study involves long-term metering of electrical consumptionwhole-house level and sub-metering of select “major” end-

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

148

California customer load reductions during the electricity crisis: Did they help to keep the lights on?  

E-Print Network (OSTI)

state-led initiatives, such as updating appliance and building energy efficiency standards and financial incentivesState agencies, especially the California Energy Commission, also undertook initiatives designed to reduce electricity demand over the longer term, which included financial incentives

Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

2002-01-01T23:59:59.000Z

149

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

150

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy (Interstate Power and Light - IP&L) offers low-interest financing program for the installation of energy efficient improvements. Businesses, Residences, farms or ag-related...

151

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

152

California customer load reductions during the electricity crisis: Did they help to keep the lights on?  

SciTech Connect

Recurring electricity shortages and rolling blackouts were widely forecasted for summer 2001 in California. Despite these predictions, blackouts were never ordered - in large part, due to the dramatic reductions in electricity use throughout the state. Compared to summer 2000, Californians reduced electricity usage by 6 percent and average monthly peak demand by 8 percent. Our analysis suggests that these reductions were not caused by either the weather or the downturn in the state's economy; rather, they were the result of extraordinary efforts by Californians to reduce electricity consumption. Based on the California Independent System Operator's (CAISO) available operating reserve margin during summer 2001, we estimate that the peak load reductions, which ranged between 3,200 and 5,600 MW in the four summer months, potentially avoided between 50 and 160 hours of rolling blackouts. This extraordinary response by Californians can be attributed to several factors including media coverage and informational campaigns that affected public awareness and understanding, real and/or perceived increases in electricity rates, and various policies and programs deployed by state policymakers and regulators to facilitate customer load reductions. Among these programs, we review the state's 20/20 rebate program, the utilities' energy efficiency programs, programs or initiatives implemented by the California Energy Commission and other state agencies, and load management and demand response programs offered by the state's investor-owned electric utilities and the CAISO. We estimate that energy efficiency and onsite generation projects that were initiated in 2001 will account for about 1,100 MW of customer load reductions, once all projects are installed. These savings represent about 25-30 percent of the observed load reductions and are likely to persist for many years. The persistence of the remaining savings, which were due to changes that customers made in their conservation behavior and energy management operations, will be heavily influenced by customers' perception of continuing electricity crises or significant energy problems and price sensitivity to retail rate trends. The State's current demand response (DR) capability enrolled in utility or CAISO programs is somewhat lower than prior to the crisis. However, in the long run, enabling technologies for demand response deployed through the CEC's Demand Responsive Buildings and Real-time Metering programs have the potential to significantly increase demand response capability. While unique factors led to the electricity crisis in California, we believe the lessons learned from electricity customers' response may be useful for other regions faced with the prospect of electricity shortages. During a short-term crisis, a comprehensive set of load reduction programs and policies can make a significant contribution towards maintaining electric system reliability and can be an effective alternative to strategies that rely solely on rationing demand (e.g. rolling blackouts) or dramatic price increases. Information from various media sources contributed to very high customer awareness of the electricity crisis and helped spur customers to take actions to reduce their electricity usage. Customers viewed the media as an important, and in many cases, trusted information source, which appears to have increased their receptivity to participating in various State and utility initiatives. A commitment to ratepayer-funded energy efficiency programs and energy efficiency standards for appliances and buildings are critical elements of a long-term strategy to dampen growth in electricity demand. California's energy efficiency services delivery infrastructure, which was strengthened by years of ratepayer and State-funded programs, represents a significant resource that was ramped up quickly to respond to a short-term energy emergency.

Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

2002-05-01T23:59:59.000Z

153

Office worker response to an automated venetian blind and electric lighting system: A pilot study  

SciTech Connect

A prototype integrated, dynamic building envelope and lighting system designed to optimize daylight admission and solar heat gain rejection on a real-time basis in a commercial office building is evaluated. Office worker response to the system and occupant-based modifications to the control system are investigated to determine if the design and operation of the prototype system can be improved. Key findings from the study are: (1) the prototype integrated envelope and lighting system is ready for field testing, (2) most office workers (N=14) were satisfied with the system, and (3) there were few complaints. Additional studies are needed to explain how illuminance distribution, lighting quality, and room design can affect workplans illuminance preferences.

Vine, E.; Lee, E.; Clear, R.; DiBartolomeo, D.; Selkowitz, S.

1998-03-01T23:59:59.000Z

154

“Computers Everywhere” Experts in Team 2007 TEAM: [Selfish] Supplementing Electric Lighting For Improving  

E-Print Network (OSTI)

Preface................................................................................................................................. 5 1. Background to the problem............................................................................................. 6 2. Our Solution................................................................................................................... 6 3. Purpose and Product...................................................................................................... 9 The study of the hybrid lighting system has 3 parts....................................................... 9 Why “black box ” concept?........................................................................................... 10 Possible System Applications:...................................................................................... 10 Office spaces:............................................................................................................ 11 Housing:.................................................................................................................... 11 Larger buildings:....................................................................................................... 12

Glenn Bakke; Ryan Bright; Michael Byaruhang; Anna Rongen

2007-01-01T23:59:59.000Z

155

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

156

Indoor air radon  

SciTech Connect

This review concerns primarily the health effects that result from indoor air exposure to radon gas and its progeny. Radon enters homes mainly from the soil through cracks in the foundation and other holes to the geologic deposits beneath these structures. Once inside the home the gas decays (half-life 3.8 d) and the ionized atoms adsorb to dust particles and are inhaled. These particles lodge in the lung and can cause lung cancer. The introduction to this review gives some background properties of radon and its progeny that are important to understanding this public health problem as well as a discussion of the units used to describe its concentrations. The data describing the health effects of inhaled radon and its progeny come both from epidemiological and animal studies. The estimates of risk from these two data bases are consistent within a factor of two. The epidemiological studies are primarily for hard rock miners, although some data exist for environmental exposures. The most complete studies are those of the US, Canadian, and Czechoslovakian uranium miners. Although all studies have some deficiencies, those of major importance include uranium miners in Saskatchewan, Canada, Swedish iron miners, and Newfoundland fluorspar miners. These six studies provide varying degrees of detail in the form of dose-response curves. Other epidemiological studies that do not provide quantitative dose-response information, but are useful in describing the health effects, include coal, iron ore and tin miners in the UK, iron ore miners in the Grangesburg and Kiruna, Sweden, metal miners in the US, Navajo uranium miners in the US, Norwegian niobian and magnitite miners, South African gold and uranium miners, French uranium miners, zinc-lead miners in Sweden and a variety of small studies of environmental exposure. An analysis of the epidemiological studies reveals a variety of interpretation problem areas.172 references.

Cothern, C.R.

1990-01-01T23:59:59.000Z

157

Indoor Scene Recognition Through Object Detection  

E-Print Network (OSTI)

Scene recognition is a highly valuable perceptual ability for an indoor mobile robot, however, current approaches for scene recognition present a significant drop in performance for the case of indoor scenes. We believe ...

Espinace, P.

158

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic High-Intensity Discharge Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of electronic high-intensity discharge (HID) ballasts. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and light-emit...

2008-12-18T23:59:59.000Z

159

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic (Hot and Cold Cathode) Compact Fluorescent Lamps and Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update (EPRI report 1018477) is one of four in a series that addresses basic dimming performance of advanced lighting sourceselectronic (hot and cold cathode) compact fluorescent lamps and ballasts Chapter 1 discusses basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth dimming methods used in advanced lighting sources and co...

2008-12-19T23:59:59.000Z

160

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

to produce clean, quiet electrical power for purposes otherHEVWG), led by the Electrical Power Research Institute (section), as well as if electrical power, flowing along the

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

162

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

163

The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices  

SciTech Connect

Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either {alpha}-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

Kwang-Ohk Cheon

2003-08-05T23:59:59.000Z

164

Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet), NREL Highlights, Science, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists at the National Renewable Energy Laboratory (NREL) Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills. The white light light-emitting diode (LED) that promises to revolutionize indoor lighting while dramatically lowering electricity costs had been confounded by the so-called "green gap:" the inability to develop light in the green spectrum that can be combined with red and blue to produce white light. NREL researchers conceptualized a green emission by taking a different look at how the laboratory's solar cell researchers had set a world efficiency record and by changing a key process that had created a red LED. A good green color of light is between 530 and 570 nanometers (nm) on the Color

165

Hybrid lighting: Illuminating our future  

SciTech Connect

Hybrid lighting is a combination of natural and artificial illumination to be used indoors for all lighting needs. Ideally, hybrid lighting is effectively indistinguishable from standard artificial lighting except in quality and cost, where it will likely be an improvement. Hybrid lighting systems are produced by a combination of four technologies: collecting natural light, generating artificial light, transporting and distributing light to where it is needed, and controlling the amounts of both natural and artificial light continuously during usage. Lighting demands a large fraction of our energy needs. If we can control or decrease this demand, we are able to accommodate societal growth without energy demand growth.

Cates, M.R.

1996-12-31T23:59:59.000Z

166

AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Ohio Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Homes Program: Contact AEP In-home Energy Audit: $100 Pin Based CFL Indoor Fixture: $20 Pin Based CFL-Outdoor Fixture: $35 CFL Torchieres: $20 Wall Insulation: $200 Air Sealing: $200 ENERGY STAR Window Replacement: $200 Attic Insulation: $200 Shower Start/Stop: $25

167

Reducing indoor residential exposures to outdoor pollutants  

SciTech Connect

The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

Sherman, Max H.; Matson, Nance E.

2003-07-01T23:59:59.000Z

168

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC cdrtrokArJclaeT 3 I+ &i, y I &OF I*- j< t j,fci..- ir )(yiT E-li, ( -,v? Cl -p4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson...

169

"1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "1. Labadie","Coal","Union Electric Co",2407 "2. Iatan","Coal","Kansas City Power & Light Co",1555 "3. Rush Island","Coal","Union Electric Co",1204 "4. Callaway","Nuclear","Union Electric Co",1190 "5. New Madrid","Coal","Associated Electric Coop, Inc",1160 "6. Thomas Hill","Coal","Associated Electric Coop, Inc",1125 "7. Sioux","Coal","Union Electric Co",986 "8. Hawthorn","Coal","Kansas City Power & Light Co",979 "9. Meramec","Coal","Union Electric Co",951 "10. Aries Power Project","Gas","Dogwood Energy LLC",614

170

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

171

Reducing Indoor Residential Exposures to Outdoor Pollutants  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Indoor Residential Exposures to Outdoor Pollutants Reducing Indoor Residential Exposures to Outdoor Pollutants Title Reducing Indoor Residential Exposures to Outdoor Pollutants Publication Type Journal Article LBNL Report Number LBNL-51758 Year of Publication 2003 Authors Sherman, Max H., and Nance Matson Start Page Chapter Abstract Basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks

172

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Early Markets for Hybrid Electric Vehicles," University ofof Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

173

Barron Electric Cooperative - Energy Star Appliance & Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Energy Star Appliance & Energy Efficient Lighting Rebate Program Barron Electric Cooperative - Energy Star Appliance & Energy Efficient Lighting...

174

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

175

Residential Indoor Air Background Data  

Science Conference Proceedings (OSTI)

Soil vapor intrusion, the migration of volatile chemicals from contaminated soil or groundwater into overlying buildings, has become one of the primary exposure pathways of concern for state and federal environmental agencies regulating contaminated sites in the USA. Regulators are requesting comprehensive evaluation of the subsurface vapor-to-indoor air pathway for currently occupied buildings, areas which may be developed in the future, and closed sites for which this pathway was not previously evaluat...

2007-03-16T23:59:59.000Z

176

University of Colorado Indoor Air Quality Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Image Courtesy of Ohio Image Courtesy of Ohio State University INDOOR AIR QUALITY Design Goals Design Goals Design Goals Design Goals Integrate technologically and economically innovative, low-energy strategies Minimize occupant distraction User-friendly controls Minimize pollutant sources Bio Bio Bio Bio- - - -S S S S ( ( ( (h h h h) ) ) ) ip ip ip ip indoor air quality features indoor air quality features indoor air quality features indoor air quality features Mechanical Systems Energy Recovery Ventilator Exhaust Fans Heating And Cooling Systems Passive Ventilation Low VOC materials Each of these features is described in more detail below. Mechanical Systems Energy Recovery Ventilator Knowing that our home has a tight envelope, due to our Bio-SIP construction, we needed to use mechanical ventilation to ensure suitable indoor air

177

Optical interference produced by artificial light  

Science Conference Proceedings (OSTI)

Wireless infrared transmission systems for indoor use are affected by noise and interference induced by natural and artificial ambient light. This paper presents a characterisation (through extensive measurements) of the interference produced by artificial ...

Adriano J. C. Moreira; Rui T. Valadas; A. M. de Oliveira Duarte

1997-05-01T23:59:59.000Z

178

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

Hollowell, C.D.

2011-01-01T23:59:59.000Z

179

Indoor Air Quality and Volatile Organic Compounds  

Science Conference Proceedings (OSTI)

... The unit was sized to comply with the outdoor air requirements in ASHRAE Standard 62.2 Ventilation and Acceptable Indoor Air Quality in Low ...

2013-03-12T23:59:59.000Z

180

Cornell University Indoor Air Quality Report  

NLE Websites -- All DOE Office Websites (Extended Search)

construction, and testing. The HVL is a large, interior space, previously used for plasma research. By building the house and storing materials indoors, we greatly reduced the...

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

182

Indoor to Outdoor Channel Measurements & Models  

Science Conference Proceedings (OSTI)

... delay dispersion statistics for outdoor-indoor average PDPs (all values in ns). Band RMS Delay Spread Delay Window 90% Energy Delay Interval ...

2012-10-31T23:59:59.000Z

183

Integrated System Of White Led Visible-Light Communication And Power-Line Communication  

E-Print Network (OSTI)

White LEDs offer advantageous properties such as high brightness, reliability, lower power consumption and long lifetime. The biggest potential application for white LEDs will be general illumination and lighting. Indoor wireless optical communication systems employing white LED lighting have been proposed. This system will enable high QoS by the high power from this lighting equipment. But, it is difficult for existing offices communication using existing power-line is proposed. This system is emitted as visible-light from LED lighting according to the transmitted signal waveform without demodulating the signal from the power-line. This system is expected to be applicable from the existing illuminant easily like exchanging electric bulbs. This integrated system will surely have a big impact as a new signal transmission system and its economical effect will be great. The basic performance of this system is analyzed. The actual system is built and its feasibility is shown through experiments.

Toshihiko Komine; Masao Nakagawa

2002-01-01T23:59:59.000Z

184

Indoor environment quality and energy retrofits in low-income...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environment quality and energy retrofits in low-income apartments: retrofit selection protocol Title Indoor environment quality and energy retrofits in low-income...

185

Energy-efficient indoor volatile organic compound air cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficient indoor volatile organic compound air cleaning using activated carbon fiber media with nightly regeneration Title Energy-efficient indoor volatile organic compound...

186

Joint Urban 2003: Indoor Measurements Final Data Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Urban 2003: Indoor Measurements Final Data Report Title Joint Urban 2003: Indoor Measurements Final Data Report Publication Type Report Year of Publication 2004 Authors...

187

Energy efficient indoor VOC air cleaning with activated carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Title Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters...

188

Environmental Protection Agency Indoor Air Quality Tools for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Protection Agency Indoor Air Quality Tools for Schools Webinar Environmental Protection Agency Indoor Air Quality Tools for Schools Webinar December 9, 2013 1:00PM...

189

Modeling indoor exposures to VOCs and SVOCs as ventilation rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Title Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Publication Type Conference Paper...

190

Factors affecting the indoor concentrations of carbonaceous aerosols...  

NLE Websites -- All DOE Office Websites (Extended Search)

Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin Title Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin...

191

Rapid Data Assimilation in the Indoor Environment: Theory and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rapid Data Assimilation in the Indoor Environment: Theory and Examples from Real-Time Interpretation of Indoor Plumes of Airborne Chemical Title Rapid Data Assimilation in the...

192

Rapid Data Assimilation in the Indoor Environment: theory and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rapid Data Assimilation in the Indoor Environment: theory and examples from real-time interpretation of indoor plumes of airborne chemicals Title Rapid Data Assimilation in the...

193

Building Energy Software Tools Directory: Indoor Humidity Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools Listed Alphabetically Tools by Platform Tools by Country Related Links Indoor Humidity Tools Indoor Humidity Tools logo. Integrated computer program intended to assist in...

194

Building Energy Software Tools Directory: Indoor Humidity Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Africa Spain Sweden Switzerland United Kingdom United States Related Links Indoor Humidity Tools Indoor Humidity Tools logo. Integrated computer program intended to assist in...

195

Building Energy Software Tools Directory: Indoor Humidity Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools by Platform PC Mac UNIX Internet Tools by Country Related Links Indoor Humidity Tools Indoor Humidity Tools logo. Integrated computer program intended to assist in...

196

Active and passive methods for indoor formaldehyde elimination  

NLE Websites -- All DOE Office Websites (Extended Search)

and passive methods for indoor formaldehyde elimination Title Active and passive methods for indoor formaldehyde elimination Publication Type Conference Paper Year of Publication...

197

Influence of indoor transport and mixing times scales on the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Influence of indoor transport and mixing times scales on the performance of sensor systems for characterizing contaminant releases Title Influence of indoor transport and mixing...

198

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

Electrical 16. "Highway Lighting by So­ dium Vapor Lamps,"Possibilities of Street: Lighting Improve­ ments," TheLaunches Broad Street Lighting Promotion Campaign," The

Holden, Alfred

1992-01-01T23:59:59.000Z

199

Exploring indoor white spaces in metropolises  

Science Conference Proceedings (OSTI)

It is a promising vision to utilize white spaces, i.e., vacant VHF and UHF TV channels, to satisfy skyrocketing wireless data demand in both outdoor and indoor scenarios. While most prior works have focused on exploring outdoor white spaces, the indoor ... Keywords: TV white spaces, clustering algorithms, sensor placement

Xuhang Ying, Jincheng Zhang, Lichao Yan, Guanglin Zhang, Minghua Chen, Ranveer Chandra

2013-09-01T23:59:59.000Z

200

Zone based indoor mobile air pollution monitoring  

Science Conference Proceedings (OSTI)

Pollution is one of the main problems that humans are suffering from. Moreover air pollution is one of the hardest to escape. Although human spend most of their time indoor, most of the previous pollution monitoring studies focused on outdoor air monitoring. ... Keywords: indoor pollution, mobile sensing, nfc

Noura Alhakbani, Eiman Kanjo

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Dynamic Model of the Indoor Channel  

Science Conference Proceedings (OSTI)

This paper proposes a new approach to modeling the radio channel experienced by transceivers moving in an indoor environment. For modeling the time-varying impulse response (IR) a randomly time-varying power-delay profile (PDP) is used, which ... Keywords: channel measurements, indoor channel modeling, ray clustering, time-varying PDP, wide band model

Jesper Ødum Nielsen; Valentine Afanassiev; Jørgen Bach Andersen

2001-11-01T23:59:59.000Z

202

UWB channel measurements for accurate indoor localization  

Science Conference Proceedings (OSTI)

Recently, indoor localization has attracted considerable attention. More importantly, indoor channel measurements and models are very essential to accurate characterization of the ranging error for military applications. This paper provides the results ... Keywords: channel measurement, geolocation, path loss, ranging, ultra-wideband

Bardia Alavi; Nayef Alsindi; Kaveh Pahlavan

2006-10-01T23:59:59.000Z

203

Characterizing the source of radon indoors  

Science Conference Proceedings (OSTI)

Average indoor radon concentrations range over more than two orders of magnitude, largely because of variability in the rate at which radon enters from building materials, soil, and water supplies. Determining the indoor source magnitude requires knowledge of the generation of radon in source materials, its movement within materials by diffusion and convection, and the means of its entry into buildings. This paper reviews the state of understanding of indoor radon sources and transport. Our understanding of generation rates in and movement through building materials is relatively complete and indicates that, except for materials with unusually high radionuclide contents, these sources can account for observed indoor radon concentrations only at the low end of the range observed. Our understanding of how radon enters buildings from surrounding soil is poorer, however recent experimental and theoretical studies suggest that soil may be the predominant source in many cases where the indoor radon concentration is high. 73 references, 3 figures, 1 table.

Nero, A.V.; Nazaroff, W.W.

1983-09-01T23:59:59.000Z

204

Removal of Indoor Ozone by Green Building Materials Clement Cros1  

E-Print Network (OSTI)

. The rooms covered a wide range of indoor environments in both residential and institutional buildings rates were calculated. Light carbonyls (C1 through C5 n- aldehydes and acetone) were sampled on DNPH-tolualdehyde, benzaldehyde) were sampled on Tenax tubes and analyzed using thermal desorption and gas chromatography

Siegel, Jeffrey

205

Indoor measurements of environmental tobacco smoke  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor measurements of environmental tobacco smoke Indoor measurements of environmental tobacco smoke Title Indoor measurements of environmental tobacco smoke Publication Type Report Year of Publication 2004 Authors Apte, Michael G., Lara A. Gundel, S. Katharine Hammond, Raymond L. Dod, Marion L. Russell, Brett C. Singer, Michael D. Sohn, Douglas P. Sullivan, Gee-Minn Chang, and Richard G. Sextro Publisher Lawrence Berkeley National Laboratory Abstract The objective of this research project was to improve the basis for estimating environmental tobacco smoke (ETS) exposures in a variety of indoor environments. The research utilized experiments conducted in both laboratory and 'real-world' buildings to 1) study the transport of ETS species from room to room, 2) examine the viability of using various chemical markers as tracers for ETS, and 3) to evaluate to what extent re-emission of ETS components from indoor surfaces might add to the ETS exposure estimates. A three-room environmental chamber was used to examine multi-zone transport and behavior of ETS and its tracers. One room (simulating a smoker's living room) was extensively conditioned with ETS, while a corridor and a second room (simulating a child's bedroom) remained smoking-free. A series of 5 sets of replicate experiments were conducted under different door opening and flow configurations: sealed, leaky, slightly ajar, wide open, and under forced air-flow conditions. When the doors between the rooms were slightly ajar the particles dispersed into the other rooms, eventually reaching the same concentration. The particle size distribution took the same form in each room, although the total numbers of particles in each room depended on the door configurations. The particle number size distribution moved towards somewhat larger particles as the ETS aged. We also successfully modeled the inter-room transport of ETS particles from first principles - using size fractionated particle emission factors, predicted deposition rates, and thermal temperature gradient driven inter-room flows, This validation improved our understanding of bulk inter-room ETS particle transport. Four chemical tracers were examined: ultraviolet-absorbing particulate matter (UVPM), fluorescent particulate matter (FPM), nicotine and solanesol. Both (UVPM) and (FPM) traced the transport of ETS particles into the non-smoking areas. Nicotine, on the other hand, quickly adsorbed on unconditioned surfaces so that nicotine concentrations in these rooms remained very low, even during smoking episodes. These findings suggest that using nicotine as a tracer of ETS particle concentrations may yield misleading concentration and/or exposure estimates. The results of the solanesol analyses were compromised, apparently by exposure to light during collection (lights in the chambers were always on during the experiments). This may mean that the use of solanesol as a tracer is impractical in 'real-world' conditions. In the final phase of the project we conducted measurements of ETS particles and tracers in three residences occupied by smokers who had joined a smoking cessation program. As a pilot study, its objective was to improve our understanding of how ETS aerosols are transported in a small number of homes (and thus, whether limiting smoking to certain areas has an effect on ETS exposures in other parts of the building). As with the chamber studies, we examined whether measurements of various chemical tracers, such as nicotine, solanesol, FPM and UVPM, could be used to accurately predict ETS concentrations and potential exposures in 'real-world' settings, as has been suggested by several authors. The ultimate goal of these efforts, and a future larger multiple house study, is to improve the basis for estimating ETS exposures to the general public. Because we only studied three houses no firm conclusions can be developed from our data. However, the results for the ETS tracers are essentially the same as those for the chamber experiments. The use of nicotine was problematic as a marker for ETS exposure. In the smoking areas of the homes, nicotine appeared to be a suitable indicator; however in the non-smoking regions, nicotine behavior was very inconsistent. The other tracers, UVPM and FPM, provided a better basis for estimating ETS exposures in the 'real world'. The use of solanesol was compromised - as it had been in the chamber experiments.

206

Generating semantic-based trajectories for indoor moving objects  

Science Conference Proceedings (OSTI)

This paper presents a novel method to generate semantic-based trajectories for indoor moving objects. Indoor moving objects management has been a research focus in recent years. In order to get the trajectory data of indoor moving objects, we have to ... Keywords: indoor space, moving objects, simulation, trajectory data

Huaishuai Wang; Peiquan Jin; Lei Zhao; Lanlan Zhang; Lihua Yue

2011-09-01T23:59:59.000Z

207

Review: A survey of active and passive indoor localisation systems  

Science Conference Proceedings (OSTI)

In recent years the need for indoor localisation has increased. Earlier systems have been deployed in order to demonstrate that indoor localisation can be done. Many researchers are referring to location estimation as a crucial component in numerous ... Keywords: Indoor active localisation, Indoor passive localisation, Location estimation techniques

Gabriel Deak; Kevin Curran; Joan Condell

2012-09-01T23:59:59.000Z

208

Indoor air quality environmental information handbook: radon  

SciTech Connect

The Department of Energy has a long-standing interest in investigating the impact of energy conservation measures on indoor air quality. The Office of Environmental Analysis has prepared this handbook in an effort to bring together available information on the impact of radon and its decay products on residential indoor air quality and on human health. The handbook is designed to enhance the understanding of the current state-of-knowledge regarding indoor radon for both homeowners and technical persons with an interest in indoor air quality issues. It provides the technical reader with a comprehensive review and reference source on the sources of radon and its transport mechanisms; reported indoor concentrations; building, and meteorological effects on radon concentration; models for predicting indoor concentrations; health effects and standards; and control technologies. The major questions and concerns of homeowners regarding the issue of indoor radon are addressed in a separate section entitled Radon in the Home: A Primer for Homeowners. This section also provides a starting point for readers desiring a general overview of the subject.

1986-01-01T23:59:59.000Z

209

Building Energy Software Tools Directory: Indoor Humidity Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Humidity Tools Indoor Humidity Tools Indoor Humidity Tools logo. Integrated computer program intended to assist in diagnosing and solving problems of indoor air humidity and dryness. Indoor Humidity Tools is comprised of two sections: - Calculations provide humidity calculations. - Reference provides background information on humidity in convenient lookup formats, such as recommended indoor humidity levels for different types of spaces, against which calculations may be compared. Keywords indoor air humidity, dryness, condensation Validation/Testing N/A Expertise Required No special expertise required. Users first released in July 1997. Audience engineers, industrial hygienists and safety professionals, architects, building scientists, contractors, government air quality specialists, and

210

Energy Capture with Optimized Photovoltaic Cells under Low Lighting Conditions  

Science Conference Proceedings (OSTI)

The optimization of photovoltaic devices for versatile conditions is necessary to improve the energy capture for indoor applications, such as self sufficient sensors. However, the design rules of standard outdoor solar cells are not applicable for cells ... Keywords: energy harvesting, indoor photovoltaics, low lighting conditions, photovoltaic cells

Karola Ruhle, Leonhard M. Reindl, Martin Kasemann

2012-11-01T23:59:59.000Z

211

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

212

Light-stripe-projection-based target position designation for intelligent parking-assist system  

Science Conference Proceedings (OSTI)

This paper proposes a novel light-stripe-projection-based target position-designation method for an intelligent parking assist system, providing an economical free-space-based target position-designation method for poorly lit indoor parking spaces without ... Keywords: driver-assistant system (DAS), free-space-based target position designation, indoor parking space, light stripe projection (LSP), parking-assist system

Ho Gi Jung; Dong Seok Kim; Jaihie Kim

2010-12-01T23:59:59.000Z

213

Indoor Air Quality Observations in Public Schools  

E-Print Network (OSTI)

Investigations of indoor air qmlity or indoor environment problems were accomplished in seven different Texas schools. The schools were located in hot and humid climates. Comfort and mildew were the most frequent complaints. In all cases, the air-conditioning system maintenance and operation was a primary factor in the problem cause and solution. The significance of problems investigated cculd have been minimized had the symptoms been addressed when they were reported the first time. Preventive maintenance and better housekeeping of air-conditioning systems in Texas schools will improve the indoor environment. Schools are encouraged to be more aggressive in preventive maintenance and plan for indoor air quality and energy efficiency in school air-conditioning retrofits.

McClure, J. D.; Estes, J. M.

1990-01-01T23:59:59.000Z

214

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network (OSTI)

x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

Hollowell, C.D.

2010-01-01T23:59:59.000Z

215

Energy Efficiency and Improved Indoor Environmental Quality:...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Improved Indoor Environmental Quality: No-Regrets Climate Change Insurance for the Insurance Industry Speaker(s): Evan Mills Date: December 19, 1996 - 12:00pm Location: 90-3148...

216

Indoor robot gardening: design and implementation  

E-Print Network (OSTI)

This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening ...

Correll, Nikolaus

217

Simplified methodology for indoor environment designs  

E-Print Network (OSTI)

Current design of the building indoor environment uses averaged single parameters such as air velocity, air temperature or contaminant concentration. This approach gives only general information about thermal comfort and ...

Srebric, Jelena, 1970-

2000-01-01T23:59:59.000Z

218

Indoor environment program. 1994 annual report  

Science Conference Proceedings (OSTI)

Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

Daisey, J.M.

1995-04-01T23:59:59.000Z

219

Indoor environment program - 1995 annual report  

SciTech Connect

Buildings use approximately one-third of the energy consumed in the United States. The potential energy savings derived from reduced infiltration and ventilation in buildings are substantial, since energy use associated with conditioning and distributing ventilation air is about 5.5 EJ per year. However, since ventilation is the dominant mechanism for removing pollutants from indoor sources, reduction of ventilation can have adverse effects on indoor air quality, and on the health, comfort, and productivity of building occupants. The Indoor Environment Program in LBL`s Energy and Environment Division was established in 1977 to conduct integrated research on ventilation, indoor air quality, and energy use and efficiency in buildings for the purpose of reducing energy liabilities associated with airflows into, within, and out of buildings while maintaining or improving occupant health and comfort. The Program is part of LBL`s Center for Building Science. Research is conducted on building energy use and efficiency, ventilation and infiltration, and thermal distribution systems; on the nature, sources, transport, transformation, and deposition of indoor air pollutants; and on exposure and health risks associated with indoor air pollutants. Pollutants of particular interest include radon; volatile, semivolatile, and particulate organic compounds; and combustion emissions, including environmental tobacco smoke, CO, and NO{sub x}.

Daisey, J.M.

1996-06-01T23:59:59.000Z

220

Research review: Indoor air quality control techniques  

Science Conference Proceedings (OSTI)

Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

Fisk, W.J.

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Appliances, Lighting, Electronics, and Miscellaneous Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes Title Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in...

222

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

and Russell, A. , Electric Vehicles and the Environment:Roadway Powered Electric Vehicle ---An All-Electric Hybrid8th International Electric Vehicle Symposium, Washington,

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

223

Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris*  

E-Print Network (OSTI)

Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris* , Kerry A and Environmental Engineering * Corresponding email: Fedenoris@mail.utexas.edu SUMMARY HVAC filters are long heavy metal (Pb, Cd and As) concentrations. HVAC filter microbial concentrations appear to be consistent

Siegel, Jeffrey

224

Table HC10.13 Lighting Usage Indicators by U.S. Census Region ...  

U.S. Energy Information Administration (EIA)

Total U.S. Housing Units..... 111.1 20.6 25.6 40.7 24.2 Indoor Lights Turned On During Summer Number of Lights Turned On

225

RECS Lighting: Use and Potential Savings - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

According to the 1993 Residential Energy Consumption Survey, U.S. Households have on average, 5.4 indoor lights that are on one or more hours per day, and 8.9 lights ...

226

Mobile lighting apparatus  

DOE Patents (OSTI)

A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

2013-05-14T23:59:59.000Z

227

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

228

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

229

Public policy model for the indoor radon problem  

Science Conference Proceedings (OSTI)

A model is developed that predicts the shift in distributions of indoor radon concentrations and potential risk reduction resulting from a program of homeowner sampling and remediation in a region. Indoor radon concentrations for a region are represented ...

M. J. Small; C. A. Peters

1988-05-01T23:59:59.000Z

230

Human Occupancy as a Source of Indoor Airborne Bacteria  

E-Print Network (OSTI)

Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study ...

Hospodsky, Denina

231

A novel positioning system for accurate tracking in indoor environments  

E-Print Network (OSTI)

Precise positioning is crucial to many applications involving autonomous robots in indoor environments. Current solutions to the indoor localization problem are either both highly unreliable and inaccurate (like GPS based ...

Linga, Srujan

2007-01-01T23:59:59.000Z

232

A Survey: Indoor Air Quality in Schools  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 A Survey: Indoor Air Quality in Schools We recently undertook a survey and critical review of the published literature on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, particularly those in the state of California. The survey's objectives included identifying the most commonly reported building-related health symptoms involving schools, and assembling and evaluating existing measurement data on key indoor air pollutants most likely to be related to these symptoms. The review also summarizes existing measurements of ventilation rates in schools and information on the causes of IAQ and health problems in schools. Most of the literature we reviewed (more than 450 articles and reports) dealt with complaint or problem schools. Among the papers were

233

Indoor air pollution: a new concern  

SciTech Connect

Radon, asbestos, and formaldehyde are emerging as major health hazards because home-winterization efforts are trapping toxic agents indoors. Other pollution sources, such as tobacco smoke and unvented heating units, also lower indoor air quality. Radon decay products present in the structural materials of well-insulated homes are linked to lung-cancer deaths. Exposure to asbestos fibers has been identified as a problem in many school buildings, while physical discomfort caused by urea-formaldehyde foam insulation has affected the health of many homeowners. The Environmental Protection Agency is collecting and disseminating information to help local officials and homeowners understand the risks and is urging building auditors to inform clients about indoor air pollution. (DCK)

1980-10-01T23:59:59.000Z

234

Project: Ventilation and Indoor Air Quality in Low-Energy ...  

Science Conference Proceedings (OSTI)

Ventilation and Indoor Air Quality in Low-Energy Buildings Project. Summary: NIST is developing tools and metrics to both ...

2012-12-27T23:59:59.000Z

235

Indoor Air Quality Impacts of Residential HVAC Systems ...  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 5559 Indoor Air Quality Impacts of Residential HVAC Systems Phase 11.AReport: Baseline and Preliminary Simulations ...

1997-09-03T23:59:59.000Z

236

Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations.  

E-Print Network (OSTI)

??The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of… (more)

Royal, Emily

2012-01-01T23:59:59.000Z

237

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

to produce clean, quiet electrical power for purposes otherHEVWG), led by the Electrical Power Research Institute (section), as well as if electrical power, flowing along the

Williams, Brett D

2010-01-01T23:59:59.000Z

238

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

to produce clean, quiet electrical power for purposes otherHEVWG), led by the Electrical Power Research Institute (section), as well as if electrical power, flowing along the

Williams, Brett D

2007-01-01T23:59:59.000Z

239

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

Hybrid-electric vehicles Hybrid -Electric Vehicles ..11 Figure 3 Sales of Hybrid Electric Vehicles in the U.S. to

Burke, Andy

2004-01-01T23:59:59.000Z

240

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

Williams, Brett D

2010-01-01T23:59:59.000Z

242

Indoor air and human health: major indoor air pollutants and their health implications  

SciTech Connect

This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

1984-01-01T23:59:59.000Z

243

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

C.J. , The Future of Hybrid- Electric Vehicles and FuelsWith the emergence of hybrid-electric vehicles from JapaneseTechnologies 2.1 Hybrid-electric vehicles Hybrid-electric

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

244

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

C.J. , The Future of Hybrid- Electric Vehicles and FuelsWith the emergence of hybrid-electric vehicles from JapaneseTechnologies 2.1 Hybrid-electric vehicles Hybrid-electric

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

245

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

Philip E. MacDonald

2003-09-01T23:59:59.000Z

246

Windows and lighting program  

SciTech Connect

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

1990-06-01T23:59:59.000Z

247

M/e update: lighting fixtures, ballasts  

SciTech Connect

A review of the factors influencing the selection of a lighting system is presented and the components that each type requires are considered. The energy conservation in lighting systems through the proper choice of fixtures and energy-efficient ballasts is explained. Actual retrofit installations are given as examples of the cost savings and reduced energy consumption realized when a proper indoor lighting system has been specified.

Plankenhorn, J.H.

1981-12-01T23:59:59.000Z

248

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network (OSTI)

Light Electric Vehicle Conference: Battery Safety (Taipei,Light Electric Vehicle Conference: Battery Safety (Taipei,and Safety by Li-ion Battery for Pedelec. Light Electric Vehicle

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

249

Gas ranges: latest indoor pollution target  

Science Conference Proceedings (OSTI)

Although a National Research Council study claims that unvented gas cooking and heating appliance are probably responsible for a large portions of the nitrogen dioxide exposures in the population, the data base for gas-stove emissions is actually too limited to be conclusive. The problem of indoor pollution more likely rests with the increased airtightness of houses rather than with gas combustion. In the last 5 years, the normal air flow in new houses has been reduced 80% through new insulation and building techniques designed to lower heating and cooling costs. Other elements contributing to indoor pollution are much more hazardous than gas combustion products: radon gas from the soil, formaldehyde for insulation and construction materials, and toxic chemicals from household aerosols and solvents.

O'Sullivan, S.

1981-12-01T23:59:59.000Z

250

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

251

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

Williams, Brett D

2007-01-01T23:59:59.000Z

252

Achieving Healthy Indoor Environments via Improved Understanding of  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Healthy Indoor Environments via Improved Understanding of Achieving Healthy Indoor Environments via Improved Understanding of Surface-associated Chemical and Biological Processes Speaker(s): Ellison M. Carter Date: February 26, 2013 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Diane Douglas Indoor air pollution in the workplace, public buildings, and residential dwellings has the potential to adversely impact human health. Within these diverse indoor environments, chemical and biological processes that occur at surfaces and interfaces strongly influence the fate, transport, and generation of indoor pollutants. A molecular-level understanding of the physical and chemical properties and processes characteristic of indoor surfaces is key to developing resilient building materials that strengthen building integrity and safeguard human health by reducing human exposure to

253

Ubiquitous Indoor Localization and Worldwide Automatic Construction of Floor Plans  

E-Print Network (OSTI)

Although GPS has been considered a ubiquitous outdoor localization technology, we are still far from a similar technology for indoor environments. While a number of technologies have been proposed for indoor localization, they are isolated efforts that are way from a true ubiquitous localization system. A ubiquitous indoor positioning system is envisioned to be deployed on a large scale worldwide, with minimum overhead, to work with heterogeneous devices, and to allow users to roam seamlessly from indoor to outdoor environments. Such a system will enable a wide set of applications including worldwide seamless direction finding between indoor locations, enhancing first responders' safety by providing anywhere localization and floor plans, and providing a richer environment for location-aware social networking applications. We describe an architecture for the ubiquitous indoor positioning system (IPS) and the challenges that have to be addressed to materialize it. We then focus on the feasibility of automating ...

Youssef, Moustafa; Elkhouly, Reem; Lotfy, Amal

2012-01-01T23:59:59.000Z

254

Lowering Color Temperature of Y3Al5O12:Ce3+ White Light  

E-Print Network (OSTI)

to light bulbs, which require high durability and low energy consumption. How- ever, for warm white indoorLowering Color Temperature of Y3Al5O12:Ce3+ White Light Emitting Diodes Using Reddish Light light emitting diodes LEDs coated with a single phosphor is realized by employing a tunable short wave

Lee, Yong-Hee

255

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

256

Quality in Relation to Indoor Climate & Energy Efficiency: An...  

NLE Websites -- All DOE Office Websites (Extended Search)

Quality in Relation to Indoor Climate & Energy Efficiency: An Analysis of Trends, Achievements & Remaining Challenges Speaker(s): Peter Wouters Date: July 6, 2001 - 12:00pm...

257

Measurements of Indoor Pollutant Emissions From EPA Phase ...  

Science Conference Proceedings (OSTI)

... of wood consumed starting with the load before the ... for the rate of wood consumption during each ... Indoor Air for Health and Energy Conservation. ...

1997-09-03T23:59:59.000Z

258

Indoor Residential Chemical Emissions as Risk Factors for Children...  

NLE Websites -- All DOE Office Websites (Extended Search)

The identified risk factors include specific organic compounds such as formaldehyde, benzene, and phthalates, as well as indoor materials or finishes such as vinyl flooring,...

259

Indoor air quality and the emissions of VOCs from interior ...  

U.S. Energy Information Administration (EIA)

How to Cite. Tshudy, J. A. (1995), Indoor air quality and the emissions of VOCs from interior products. J Vinyl Addit Technol, 1: 155–158. doi: ...

260

Indoor airPLUS Construction Specifications Version 1 (Rev. 01...  

NLE Websites -- All DOE Office Websites (Extended Search)

STAR checklists now satisfies the following Indoor airPLUS requirements: * Finish all masonry and concrete walls (e.g., poured concrete, concrete masonry, insulated concrete...

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Improving Ventilation and Saving Energy: Final Report on Indoor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Title Improving Ventilation and Saving...

262

Estimating Environmental Exposures to Indoor Contaminants using Residential-Dust Samples  

E-Print Network (OSTI)

indoor combustion sources, including cigarette smoke, wood-combustion and there are a variety of indoor PAH sources including cigarette smoke, wood-combustion. Humans are exposed to PAHs from a variety of indoor sources including cigarette smoke, wood-

Whitehead, Todd Patrick

2011-01-01T23:59:59.000Z

263

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

In 2008, the Tennessee Valley Authority (TVA) and Benton County Electric System partnered with the Electric Power Research Institute (EPRI) to launch an investigation into the use of LED technology for area lighting. The goal of the project—called the LED Street and Area Lighting Demonstration—was to discover a better light bulb, one that not only meets the outdoor lighting requirements of consumers, but also uses less electricity in doing so. This case study discusses the results of ...

2012-09-28T23:59:59.000Z

264

OTEC- Commercial Lighting Retrofit Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

265

Electrical engineering Electricity  

E-Print Network (OSTI)

generation Transmission Distribution · Electrical generators · Electric motors · High voltage engineering associated with the systems Electrical engineering · Electric power generation Transmission Distribution The electricity transported to load locations from a power station transmission subsystem The transmission system

Ã?nay, Devrim

266

InAir: sharing indoor air quality measurements and visualizations  

Science Conference Proceedings (OSTI)

This paper describes inAir, a tool for sharing measurements and visualizations of indoor air quality within one's social network. Poor indoor air quality is difficult for humans to detect through sight and smell alone and can contribute to the development ... Keywords: air quality, domestic technology, environment, health, iphone, persuasive technology, sensors, sustainability

Sunyoung Kim; Eric Paulos

2010-04-01T23:59:59.000Z

267

Handover Performance of HVAC Duct Based Indoor Wireless Networks  

E-Print Network (OSTI)

Handover Performance of HVAC Duct Based Indoor Wireless Networks A. E. Xhafa, P. Sonthikorn, and O in indoor wireless net- works (IWN) that use heating, ventilation, and air conditioning (HVAC) ducts.e., new call blocking and handover dropping probabilities, of an IWN that uses HVAC ducts are up to 6

Stancil, Daniel D.

268

Residential HVAC Indoor Air Quality(ASHRAE 62.2)  

E-Print Network (OSTI)

Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

269

Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS  

E-Print Network (OSTI)

Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

Siegel, Jeffrey

270

Advanced support vector machines for 802.11 indoor location  

Science Conference Proceedings (OSTI)

Due to the proliferation of ubiquitous computing services, locating a device in indoor scenarios has received special attention during recent years. A variety of algorithms are based on Wi-Fi measurements of the received signal strength and estimate ... Keywords: Autocorrelation kernel, Complex support vector machines, Fingerprinting, IEEE 802.11, Indoor location, Support vector machines

Carlos Figuera; José Luis Rojo-Álvarez; Mark Wilby; Inmaculada Mora-Jiménez; Antonio J. Caamaño

2012-09-01T23:59:59.000Z

271

PP-94 Central Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Central Power & Light Company PP-94 Central Power & Light Company Presidental Permit authorizing Central Power & Light Company to construct, operate, and maintain electric...

272

PP-78 Minnesota Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Minnesota Power & Light Company PP-78 Minnesota Power & Light Company Presidential Permit authorizing Minnesota Power & Light Company to construct, operate, and maintain electric...

273

Reducing indoor residential exposures to outdoor pollutants  

E-Print Network (OSTI)

combustion in motor vehicles, electricity generation and industrial processes, as well as residential fireplaces and wood

Sherman, Max H.; Matson, Nance E.

2003-01-01T23:59:59.000Z

274

Indoor Residential Chemical Emissions as Risk Factors for Children's  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Residential Chemical Emissions as Risk Factors for Children's Indoor Residential Chemical Emissions as Risk Factors for Children's Respiratory Health Speaker(s): Mark Mendell Date: February 23, 2007 - 12:00pm Location: 90-3122 Most research into the effects of residential indoor air exposures on asthma and allergies has focused on exposures to biologic allergens, moisture and mold, endotoxin, or combustion byproducts. A growing body of research suggests that chemical emissions from common indoor materials and finishes have adverse effects, including increased risk of asthma, allergies, and pulmonary infections. The identified risk factors include specific organic compounds such as formaldehyde, benzene, and phthalates, as well as indoor materials or finishes such as vinyl flooring, carpet, paint, and plastics. This presentation presents a brief review of studies

275

5 Questions for Indoor Environment Group's William Fisk  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Questions for Indoor Environment Group's William Fisk 5 Questions for Indoor Environment Group's William Fisk William Fisk January 2014 Quantifying the Economic Implications of Indoor Air on Energy Efficiency, Performance, and Health William Fisk is a senior scientist, mechanical engineer, and leader of the Indoor Environment Group at Lawrence Berkeley National Laboratory (LBNL). During his 33 years at the lab, he has researched the interrelated issues of building energy performance, ventilation, indoor environmental quality (IEQ), and occupant health and performance. His research focuses primarily on energy efficient methods of maintaining and improving ventilation and IEQ in buildings and on quantifying the impacts of building ventilation and IEQ on health and performance. He is a fellow of ASHRAE, a member of the

276

California Demonstration Energy Efficiency-Indoor Environmental Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

California Demonstration Energy Efficiency-Indoor Environmental Quality California Demonstration Energy Efficiency-Indoor Environmental Quality Project: Predicted Relocatable Classroom Indoor Air Quality due to Low-Emitting Interior Materials and Enhanced Ventilation Title California Demonstration Energy Efficiency-Indoor Environmental Quality Project: Predicted Relocatable Classroom Indoor Air Quality due to Low-Emitting Interior Materials and Enhanced Ventilation Publication Type Conference Proceedings Year of Publication 2001 Authors Apte, Michael G., William J. Fisk, Alfred T. Hodgson, Marion L. Russell, and Derek G. Shendell Conference Name Proceedings of the 11th Annual Meeting of the International Society of Exposure Analysis, Charleston, SC Date Published November 4-8, 20 Publisher International Society for Exposure Analysis, Boston, MA

277

Amicalola Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Amicalola Electric Member Corp Amicalola Electric Member Corp Jump to: navigation, search Name Amicalola Electric Member Corp Place Georgia Utility Id 562 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Lights Acorn 100 W Lighting Security Lights Acorn 150 W Lighting Security Lights Cobra 100 W Lighting Security Lights Cobra 150 W Lighting Security Lights Cobra 250 W Lighting Security Lights Cobra 400 W Lighting Security Lights Cobra MH 250 W Lighting Security Lights Cobra MH 400 W Lighting Security Lights Flood 250 W Lighting

278

Advances in Lighting  

E-Print Network (OSTI)

Increasing electricity costs have made a significant impact on lighting. The Illuminating Engineering society (I.E.S.) and the lighting industry are producing new standards, procedures and products to make lighting more appropriate and energy efficient. This paper will describe the factors which affect the performance of lighting systems, introduce the new I.E.S. procedures for selecting illuminance values and lighting power limits, and illustrate some of the recent developments in the lighting industry. The importance of efficient lighting may be measured by the potential reduction in the electrical demand, and energy consumed. Since it also represents a visible use (or misuse) of energy, it may also reflect on other aspects of a company's energy management program.

Tumber, A. J.

1981-01-01T23:59:59.000Z

279

Knowledge-Based Multi-Criteria Optimization to Support Indoor Positioning  

E-Print Network (OSTI)

University of Potsdam, Germany Abstract Indoor position estimation constitutes a central task in home-based

Schaub, Torsten

280

Office of radiation and indoor air: Program description  

Science Conference Proceedings (OSTI)

The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

Not Available

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimating the impact on fuel tax revenues from a changing light vehicle fleet with increased advanced internal combustion engine vehicles and electric vehicles.  

E-Print Network (OSTI)

??Advanced fuel economies in both traditional internal combustion engine vehicles (ICEs) and electric vehicles (EVs) have a strong influence on transportation revenue by reducing fuel… (more)

Hall, Andrea Lynn

2013-01-01T23:59:59.000Z

282

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Transition: Designing a Fuel- Cell Hypercar. ” 8th Annual

Williams, Brett D

2010-01-01T23:59:59.000Z

283

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

284

Photodetector with enhanced light absorption  

DOE Patents (OSTI)

A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

Kane, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

285

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report  

SciTech Connect

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

Philip E. MacDonald

2005-01-01T23:59:59.000Z

286

Indoor radon and decay products: Concentrations, causes, and control strategies  

SciTech Connect

This report is another in the on going technical report series that addresses various aspects of the DOE Radon Research Program. It provides an overview of what is known about the behavior of radon and its decay products in the indoor environment and examines the manner in which several important classes of factors -- structural, geological, and meteorological -- affect indoor radon concentrations. Information on US indoor radon concentrations, currently available monitoring methods and novel radon control strategies are also explored. 238 refs., 22 figs., 9 tabs.

Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

1990-11-01T23:59:59.000Z

287

York Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name York Electric Coop Inc Place South Carolina Utility Id 21002 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Backyard Lighting Outdoor Lighting Baxter Lighting Outdoor Lighting Shoebox 1 Light Lighting Outdoor Lighting Shoebox 2 Lights Lighting Outdoor Lighting Traditional Lighting Outdoor Lighting Ultra-Flood HPS/ MH 400 W 2 Lights Wood Pole Lighting Outdoor Lighting Ultra-Flood HPS/MH 1000 W Fiberglass Pole Lighting

288

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

Manufacturing advances have now made the use of light-emitting diode (LED) technology practical for street and area lighting. To better understand the application, the Electric Power Research Institute (EPRI) teamed with Southern Company and Gulf Power to install LED street lights at a demonstration site and measure their performance. The data showed several disadvantages for the LED lights, such as a lower efficacy compared to traditional technology and lower immunity to electrical disturbances, but an ...

2012-04-06T23:59:59.000Z

289

LABORATORY IV ELECTRIC CIRCUITS  

E-Print Network (OSTI)

familiar electric curren ts are inside materials such as wires or light bulbs. Even though the interactions your track lighting uses. You decide to build models of circuits with two bulbs connected across, bulbs, and batteries. Use the accompanying legend to build the circuits. Legend: light bulb ba

Minnesota, University of

290

Basic Electrical Safety - Sandia National Laboratories  

What is Electricity? Electricity is a source of energy to power devices (e.g., lights, ... current (VAC) There is a switch controlling the source, a l ...

291

Transient Response of Cadmium Telluride Modules to Light Exposure: Preprint  

DOE Green Energy (OSTI)

Commercial cadmium telluride (CdTe) photovoltaic (PV) modules from three different manufacturers were monitored for performance changes during indoor and outdoor light-exposure. Short-term transients in Voc were recorded on some modules, with characteristic times of ~1.1 hours. Outdoor performance data shows a similar drop in Voc after early morning light exposure. Preliminary analysis of FF changes show light-induced changes on multiple time scales, including a long time scale.

Deline, C.; del Cueto, J.; Albin, D. S.; Petersen, C.; Tyler, L.; TamizhMani, G.

2011-07-01T23:59:59.000Z

292

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

293

NREL: Performance and Reliability R&D - Indoor Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Testing Indoor Testing Photo of a distant summer view of SERF, FTLB, and OTF/array field. Our indoor testing and R&D equipment can be found in several laboratories across the permanent NREL site, including the Outdoor Test Facility (OTF), the Field Test Laboratory Building (FTLB), and the Solar Energy Research Facility (SERF). We use an assortment of indoor equipment to test modules and systems under simulated and accelerated conditions, as well as to perform module packaging R&D. Our equipment is housed in several laboratories in buildings across NREL: High-Bay Accelerated Testing Laboratory (OTF) Failure Analysis (OTF) Data Acquisition and Calibration (OTF) Optical Mechanical Characterization Laboratory (FTLB/153-01) Thin-Film Deposition and Sample Preparation Laboratory (FTLB/158-02)

294

Indoor Environment and Energy Consumption of Urban Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Environment and Energy Consumption of Urban Residential Buildings in China Speaker(s): Hiroshi Yoshino Date: September 18, 2009 - 12:00pm Location: 90-3122 In China, the...

295

Energy Use and Indoor Thermal Environment of Residential Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Indoor Thermal Environment of Residential Buildings in China Speaker(s): Hiroshi Yoshino Date: December 16, 2003 - 12:00pm Location: 90-3122 The first part of this...

296

Indoor Surface Chemistry: Ozone Reaction with Nicotine Sorbed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Surface Chemistry: Ozone Reaction with Nicotine Sorbed to Model Materials Speaker(s): Hugo Destaillats Date: May 19, 2005 - 12:00pm Location: Bldg. 90 During this seminar,...

297

Indoor CO2 and Communicable Disease Transmission in Offices and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor CO2 and Communicable Disease Transmission in Offices and Non-Industrial Environments Speaker(s): Don Milton Date: October 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host...

298

Airflow and Pollutant Transport Modeling In Indoor and Built...  

NLE Websites -- All DOE Office Websites (Extended Search)

Airflow and Pollutant Transport Modeling In Indoor and Built Environment Speaker(s): Teshome Edae Jiru Date: October 12, 2009 - 12:12pm Location: 90-3122 Computer simulation is...

299

Automobile proximity and indoor residential concentrations of BTEX and MTBE  

Science Conference Proceedings (OSTI)

Attached garages have been identified as important sources of indoor residential air pollution. However, the literature lacks information on how the proximity of cars to the living area affects indoor concentrations of gasoline-related compounds, and the origin of these pollutants. We analyzed data from the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study and evaluated 114 residences with cars in an attached garage, detached garage or carport, or without cars. Results indicate that homes with cars in attached garages were affected the most. Concentrations in homes with cars in detached garages and residences without cars were similar. The contribution from gasoline-related sources to indoor benzene and MTBE concentrations appeared to be dominated by car exhaust, or a combination of tailpipe and gasoline vapor emissions. Residing in a home with an attached garage could lead to benzene exposures ten times higher than exposures from commuting in heavy traffic.

Corsi, Dr. Richard [University of Texas, Austin; Morandi, Dr. Maria [University of Texas Health Science Center, Houston; Siegel, Dr. Jeffrey [University of Texas, Austin; Hun, Diana E [ORNL

2011-01-01T23:59:59.000Z

300

Indoor Air Quality Primer for HVAC System Design  

Science Conference Proceedings (OSTI)

Heating, ventilating, and air conditioning (HVAC) systems are major energy users in commercial and institutional buildings. Increased ventilation for acceptable indoor air quality (IAQ), besides increasing energy use, may result in unacceptably high indoor humidity, particularly in humid climates and/or applications requiring high ventilation rates. This report analyzes how increased ventilation affects the dehumidification capabilities of air conditioning systems in three applications -- offices, retail...

2002-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Light Sources  

Science Conference Proceedings (OSTI)

In the generation of artificial light using electric lamps, photometric and color performance have been paramount in lamp design, manufacturing, measurement, lighting design, and visual perception. Many designers and researchers have strived to understand how light and color are generated, related, and to improve them. This has stemmed from the development of incandescent lamps, halogen lamps, linear fluorescent lamps, high-intensity discharge (HID) lamps, and compact fluorescent lamps (CFLs) among other...

2008-03-31T23:59:59.000Z

302

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Kanda, Naohiro

2011-01-01T23:59:59.000Z

303

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Naohiro Kanda

2011-06-03T23:59:59.000Z

304

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

economy and emissions of the Toyota and Honda Hybrid Cars (of the Toyota and Honda Hybrid Cars (2003) Vehicle Trans. /is uncertain. Hybrid-electric passenger cars are currently

Burke, Andy

2004-01-01T23:59:59.000Z

305

Condition Controlling and Monitoring of Indoor Swimming Pools  

E-Print Network (OSTI)

VTT has executed a lot of research work concerning the usage, functionality and refurbishment of indoor swimming pools and spas lately. This work includes for instance detailed condition surveys, energy audits, cost analysis and maintenance planning tools. The prevailing conditions make special demands for planning, constructing, repairing and maintaining the indoor swimming pools. Main topics are usually connected with shortening of the service lives of the building parts and technical installations and the indoor air quality. Also the yearly running costs can be remarkable high. VTT has created the technical risk map for indoor swimming pool repairs. This risk map presents the most significant factors that must be taken into account in order to repair facilities successfully. Due to optimizing the operation and maintenance VTT has developed operation and maintenance manual software that is specially targeted for indoor swimming facilities. This paper presents the technical risk map, the condition survey procedure, the energy saving methods and the maintenance record book for indoor swimming facilities to secure the success of a refurbishment project.

Nissinen, K.; Kauppinen, T.; Hekkanen, M.

2004-01-01T23:59:59.000Z

306

Baseline vs. Replacement High Bay Lighting Evaluation  

Science Conference Proceedings (OSTI)

Energy efficient lighting has been a means to significant energy savings for many facilities around the world. New developments in fluorescent, induction, LED (light-emitting diode), and plasma lighting technologies have spurred various building managers to replace or retrofit existing lighting fixtures. These advances in lighting sources often allow conservation of electricity, better quality of light, and more flexibility in the control of light. However, these new lighting sources still have ...

2013-11-06T23:59:59.000Z

307

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Duke Power d FirstEnergy Georgia Power Niagara Mohawk Pacific Gas & Electric Pennsylvania Power & Light Progress Energy

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

308

TEAMS: Indoor Air Quality (IAR) Program  

E-Print Network (OSTI)

The Carrollton-Farmers Branch Independent School District (“CFBISD”) found the need to reduce air quality concerns and complaints, and find an effective and efficient method to reduce the rising cost of utilities. An Indoor Air Quality (IAQ) program was required to embrace the two needs with the overall objective to educate all—teachers, administrators, various departments, and students. The educational outreach program chosen is TEAMS, which is the IAQ program designed to attain these goals. The CFBISD prides itself in acting quickly to resolve IAQ issues. Our belief is problems defined and recognized, create trust, and enable the District to maximize potential for performance improvements via reduced concerns by staff. We’ve had our IAQ program in place since April of 2002. Recognizing the need to expand the program in depth and breadth, we designed TEAMS. We were able to do this by assistance from Mike Miller and the EPA, who gave the District six “Tools for Schools” test kits (TfS Kit). The information from these kits gave us a guideline to build TEAMS to meet our objectives of reaching a larger audience with additional material, and adding to the goals of TEAMS increased efficiency, reduced cost, and educated consumers.

Melton, V.

2008-12-01T23:59:59.000Z

309

Indoor Thermal Comfort, an Evolutionary Biology Perspective  

Science Conference Proceedings (OSTI)

As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?

Stoops, John L.

2006-04-15T23:59:59.000Z

311

Activity: How Much Does it Cost to Light Your School? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the electricity used for one hour of light in their classroom. Activity: How Much Does It Cost to Light Your School? More Documents & Publications Conserving Electric Energy...

312

Indoor environmental quality benefits of apartment energy retrofits  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environmental quality benefits of apartment energy retrofits Indoor environmental quality benefits of apartment energy retrofits Title Indoor environmental quality benefits of apartment energy retrofits Publication Type Journal Article LBNL Report Number LBNL-6373E Year of Publication 2013 Authors Noris, Federico, Gary Adamkiewicz, William W. Delp, Toshifumi Hotchi, Marion L. Russell, Brett C. Singer, Michael Spears, Kimberly Vermeer, and William J. Fisk Journal Building Environment Volume 68 Pagination 170-178 Date Published 10/2013 Keywords Apartments; Energy; Indoor environmental quality; Retrofit; Selection Abstract Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

313

Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel  

SciTech Connect

Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

Eley, C.; Tolen, T. (Eley (Charles) Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

314

Photonic crystal light source  

DOE Patents (OSTI)

A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Bur, James A. (Corrales, NM)

2004-07-27T23:59:59.000Z

315

Industrial lighting handbook  

SciTech Connect

Technological advances in industrial lighting system components now make it possible to reduce lighting system consumption by up to 50% or more without loss of the benefits inherent in good quality electric illumination. Management involvement in decisions about industrial lighting is essential, however, and this document provides generalized information in lay terms to help decision-makers become familiar with the concerns that affect industrial environment and the financial well-being of their companies. The five sections (1) discuss the benefits of good lighting, (2) review certain major lighting issues and terms, (3) identify procedures for developing a lighting energy management plan, (4) identify lighting energy management options (LEMOs), and (5) discuss sources of assistance. 19 figures, 8 tables.

1985-01-01T23:59:59.000Z

316

Evolution in lighting  

SciTech Connect

Lights consume 20-25% of the nation's electricity, establishing strong incentives to develop more efficient lighting strategies. Attention is turning to where, when, and how we light our environment, and the potential savings add up to half the lighting load nationwide. Some types of lamp are more efficient than others, but characteristics other than energy consumption may dictate where they can be used. Current lighting strategies consider task requirements, light quality, and the potential for daylighting. Energy management systems that control the timing and intensity of light and new types of energy-efficient bulbs and fixtures are increasingly attractive to consumers. The effort will require continued research and the awareness of decision makers. 4 references, 8 figures.

Lihach, N.; Pertusiello, S.

1984-06-01T23:59:59.000Z

317

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING ENERGY AUDITS A/C & HEATING INSULATION LIGHTING  

E-Print Network (OSTI)

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING for homeowners, businesses, and government entities that assist them in lowering utility bills, reducing a unique solutions approach based on the RE3 concept, which includes: · Review ­ current energy usage

Colorado at Boulder, University of

318

Commercial Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Commercial Lighting At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and algorithms, researchers at the National Renewable Energy Lab developed an occupancy sensor can recognize the presence of human occupants more than 90 percent of the time -- an advancement that could lead to enormous energy savings in commercial buildings. At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and

319

Louisville Electric System | Open Energy Information  

Open Energy Info (EERE)

Louisville Electric System Louisville Electric System Jump to: navigation, search Name Louisville Electric System Place Mississippi Utility Id 11247 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power 2 Commercial General Power 3 Commercial General Power- 1 Commercial Lighting- 1000W HPS Lighting Lighting- 1000W Metal Halide Lighting Lighting- 100W HPS Lighting Lighting- 175W Mercury Vapor Lighting Lighting- 200W HPS Lighting Lighting- 250W HPS Lighting Lighting- 250W Metal Halide Lighting

320

IAQ in Hospitals - Better Health through Indoor Air Quality Awareness  

E-Print Network (OSTI)

Quality air is fundamental to people's health and well-being. Indoor air quality is an important issue from both a social and economic point of view. Continual advances in medicine and technology necessitate constant reevaluation of the air-conditioning needs of hospital and medical facilities. The application of air conditioning to health facilities presents many problems not encountered in the usual comfort air conditioning design. Hospital air conditioning assumes a more important role than just the promotion of comfort. Studies show that patients in controlled environment generally have more rapid physical improvement than do those in uncontrolled environment. Air quality at hospitals needs special precautions during design and maintenance stage to prevent infections from spreading. 50% of all illnesses are either caused by, or aggravated by, polluted indoor air. The main objective of this paper is to critically review and summarize the available information about IAQ particularly in health care industries. Symptoms of poor IAQ in a building, contaminants causing poor IAQ, features of HVAC systems for a hospital for better IAQ are briefly discussed in this paper. Strategies to improve indoor air quality in hospitals and the current international research to improve indoor air quality are reported in this paper. Based on the extensive interactions with different stake holders of a hospital it is concluded that maintenance of proper indoor quality in a hospital needs meticulous team work among the various members of the hospital at various stages .

Al-Rajhi, S.; Ramaswamy, M.; Al-Jahwari, F.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Protocol for maximizing energy savings and indoor environmental quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Protocol for maximizing energy savings and indoor environmental quality Protocol for maximizing energy savings and indoor environmental quality improvements when retrofitting apartments Title Protocol for maximizing energy savings and indoor environmental quality improvements when retrofitting apartments Publication Type Journal Article LBNL Report Number LBNL-6147E Year of Publication 2013 Authors Noris, Federico, William W. Delp, Kimberly Vermeer, Gary Adamkiewicz, Brett C. Singer, and William J. Fisk Journal Energy and Buildings Volume 61 Pagination 378-386 Date Published 06/2013 Keywords apartments, buildings, costs, energy, indoor environmental quality, Protocol, retrofits, Selection Abstract The current focus on building energy retrofit provides an opportunity to simultaneously improve indoor environmental quality (IEQ). Toward this end, we developed a protocol for selecting packages of retrofits that both save energy and improve IEQ in apartments. The protocol specifies the methodology for selecting retrofits from a candidate list while addressing expected energy savings, IEQ impacts, and costs in an integrated manner. Interviews, inspections and measurements are specified to collect the needed input information. The protocol was applied to 17 apartments in three buildings in two different climates within California. Diagnostic measurements and surveys conducted before and after retrofit implementation indicate enhanced apartment performance.

322

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

Manufacturing advances have now made the use of light-emitting diode (LED) technology practical for street and area lighting. To better understand the application, the Electric Power Research Institute (EPRI) teamed with Southern Company and Alabama Power to install LED street lights at a demonstration site and measure the performance. The data showed several disadvantages such as a lower efficacy compared to traditional technology and lower immunity to electrical disturbances, but advantages in energy s...

2012-04-20T23:59:59.000Z

323

Solar lighting | Open Energy Information  

Open Energy Info (EERE)

lighting lighting Jump to: navigation, search Introductory Facts About Solar Lights It is not just a normal light bulb.The solar light consists of a LED or Light Emitting Diode, which draw little power. Coupled with constantly recharging batteries, you will never run out of light! They will save the customer money. By Replacing all outdoor lighting with solar lights there is no need to plug in to the electrical system. The lights will automatically turn on at dusk and will be charged during the day. They help out the environment.Not only does not plugging in to the power system save money but also energy, therefore protecting the Earth. Easy to Install No wires necessary, just pop in the battery. They come in all designs Just because they are solar lights doesn't

324

Socioeconomic and Outdoor Meteorological Determinants of Indoor Temperature and Humidity in New York City Dwellings  

Science Conference Proceedings (OSTI)

Numerous mechanisms link outdoor weather and climate conditions to human health. It is likely that many health conditions are more directly affected by indoor rather than outdoor conditions. Yet, the relationship between indoor temperature and ...

J. D. Tamerius; M. S. Perzanowski; L. M. Acosta; J. S. Jacobson; I. F. Goldstein; J. W. Quinn; A. G. Rundle; J. Shaman

2013-04-01T23:59:59.000Z

325

Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish...  

NLE Websites -- All DOE Office Websites (Extended Search)

Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish Decision Making Performance Title Is CO2 an Indoor Pollutant? Higher Levels of CO2 May Diminish Decision Making...

326

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Title Is CO2 an Indoor Pollutant? Direct Effects of...

327

ARIEL: automatic wi-fi based room fingerprinting for indoor localization  

Science Conference Proceedings (OSTI)

People spend the majority of their time indoors, and human indoor activities are strongly correlated with the rooms they are in. Room localization, which identifies the room a person or mobile phone is in, provides a powerful tool for characterizing ...

Yifei Jiang; Xin Pan; Kun Li; Qin Lv; Robert P. Dick; Michael Hannigan; Li Shang

2012-09-01T23:59:59.000Z

328

Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint  

DOE Green Energy (OSTI)

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

2012-08-01T23:59:59.000Z

329

Impacts of contaminant storage on indoor air quality: Model development  

NLE Websites -- All DOE Office Websites (Extended Search)

of of contaminant storage on indoor air quality: Model development Max H. Sherman, Erin L. Hult * Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 90R3083, Berkeley, CA 94720-8133, USA h i g h l i g h t s < A lumped parameter model is applied to describe emission and storage buffering of contaminants. < Model is used to assess impact of ventilation on indoor formaldehyde exposure. < Observations of depletion of stored contaminants can be described by model. a r t i c l e i n f o Article history: Received 8 November 2012 Received in revised form 7 February 2013 Accepted 11 February 2013 Keywords: Buffering capacity Formaldehyde Moisture a b s t r a c t A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde

330

Hawaii Department of Health Indoor and Radiological Health Branch | Open  

Open Energy Info (EERE)

Indoor and Radiological Health Branch Indoor and Radiological Health Branch Jump to: navigation, search Name Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address 591 Ala Moana Blvd. Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/health/envir Coordinates 21.300314°, -157.864542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.300314,"lon":-157.864542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Improved Productivity and Health from Better Indoor Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Improved Productivity and Health from Better Indoor Environments Recently completed analyses suggest that improving buildings and indoor environments could reduce health-care costs and sick leave and increase worker performance, resulting in an estimated productivity gain of $30 to $150 billion annually. The research literature provides strong evidence that characteristics of buildings and their indoor environments influence the prevalence of several adverse health effects. These include communicable respiratory disease (e.g., common colds and influenza), allergy and asthma symptoms, and acute sick building syndrome (SBS) symptoms such as headaches, and irritation of the eyes, nose, throat, and skin. For example, in six studies, the number of respiratory illnesses in building occupants varied by a factor of 1.2 to

332

Impacts of Contaminant Storage on Indoor Air Quality: Model Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Contaminant Storage on Indoor Air Impacts of Contaminant Storage on Indoor Air Quality: Model Development Max H. Sherman and Erin L. Hult Environmental Energy Technologies Division January 2013 In Press as Sherman, M.H., Hult, E.L. 2013. Impacts of contaminant storage on indoor air quality: Model development. Atmospheric Environment. LBNL-6114E 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

333

Increase energy efficiency in systems and buildings and improve indoor  

NLE Websites -- All DOE Office Websites (Extended Search)

Increase energy efficiency in systems and buildings and improve indoor Increase energy efficiency in systems and buildings and improve indoor environment: How to validate comfort and energy reduction Speaker(s): Wouter Borsboom Date: December 8, 2009 - 12:00pm Location: 90-3122 TNO is a research institute which is active in the energy saving and indoor environment. We like to present our research, our goals and discuss the challenges and the opportunities for cooperation. Therefore we like to give a presentation about the following topic and we are also interested in a presentation of LBL and UC Berkeley. An important topic in the building industry is near zero energy buildings. Most countries in Europe implemented programs to advance this goal in one way or another. In near-zero energy buildings, the interaction between building and systems

334

Indoor Air Quality in New Energy-Efficient Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Indoor Air Quality in New Energy-Efficient Houses Figure 1: Measurements of total volatile organic compounds in five new houses in Pennsylvania, Michigan, and Florida and median concentration in U.S. EPA study. In 1993, the Indoor Environment Program began investigating indoor air quality in new energy-efficient houses. Five new houses have been included in the study, all in the eastern U.S. Two had nearly identical floor plans and were part of a demonstration project near Pittsburgh, PA; one was built conventionally, while the other incorporated a number of energy-efficient features. The conventional house was studied for one year following construction, and the energy-efficient house was sampled on three occasions over a two-year period. The other three demonstration houses were in

335

Cheap Fixes for Beating the Heat Indoors | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheap Fixes for Beating the Heat Indoors Cheap Fixes for Beating the Heat Indoors Cheap Fixes for Beating the Heat Indoors July 25, 2013 - 11:20am Addthis Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Blinds are a great option for cooling your home in the summer. | Photo courtesy of ©iStockphoto/nycshooter Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy How can I participate? Instead of turning on the air conditioning, consider window treatments and fans to cool down your home. If your internal thermostat is melting like the rest of the U.S. right now, you probably could use some fanning, ice, or air conditioning. With that in mind, we are providing a rundown of the cheapest ways to keep your home

336

Participant evaluation results for two indoor air quality studies  

SciTech Connect

After two surveys for indoor air pollutants (radon and other chemicals) the homeowners were surveyed for their reactions. The results of these participant evaluation surveys, assuming that the participants that responded to the survey were representative, indicate that homeowners will accept a significant level of monitoring activity as part of an indoor air quality field study. Those participants completing surveys overwhelmingly enjoyed being in the studies and would do it again. We believe that the emphasis placed on positive homeowner interactions and efforts made to inform participants throughout our studies were positive factors in this result. There was no substantial differences noted in the responses between the 70-house study, which included a homeowner compensation payment of $100, and the 300-house study, which did not include a compensation payment. These results provide encouragement to conduct future complex, multipollutant indoor air quality studies when they are scientifically sound and cost effective.

Hawthorne, A.R.; Dudney, C.S.; Cohen, M.A.; Spengler, J.D.

1987-01-01T23:59:59.000Z

337

Improving Indoor Environmental Quality and Energy Performance of Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Environmental Quality and Energy Performance of Modular Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Title Improving Indoor Environmental Quality and Energy Performance of Modular Classroom HVAC Systems Publication Type Conference Proceedings Year of Publication 2005 Authors Apte, Michael G., Michael Spears, Chi-Ming Lai, and Derek G. Shendell Conference Name Proceedings of Sustainable Buildings 2005 Conference Pagination 1432-1437 Conference Location Tokyo, Japan, September 27-29, 2005 Abstract The factory-built relocatable classroom (RC) is a dominant force in the school facility construction industry in the United States (U.S.) and elsewhere. It is estimated that there are approximately 650,000 RCs currently occupied in the U.S., housing about 16 million students. RCs receive public attention due to complaints about poor indoor environmental quality (IEQ). Both measured data and anecdotal evidence in California have suggested excessive acoustical noise from heating, ventilation, and air conditioning (HVAC) equipment as a central factor leading to degraded IEQ. In the U.S., RCs are typically equipped with unitary exterior wall-mount HVAC systems, and interior acoustical noise due to structural and airborne transmission can reach levels of about 58dB(A) with compressor cycling, under unoccupied conditions. Due to these noise levels teachers often simply choose to turn off the HVAC, leading to inadequate ventilation, as well as poor thermal conditioning, and thus to poor indoor air quality. Elevated levels of carbon dioxide and volatile organic compounds including formaldehyde are common. We discuss the acoustic component of our efforts to develop and test energy efficient HVAC systems that address the ventilation, controls, and acoustic requirements necessary to ensure high quality indoor environments in RCs

338

Indirect health effects of relative humidity in indoor environments  

SciTech Connect

A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versus low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens.

Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D.

1986-03-01T23:59:59.000Z

339

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

340

DOE Solar Decathlon: 2005 Contests and Scoring - Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

of natural daylighting in their 2002 Solar Decathlon house. Solar Decathlon 2005 Lighting (100 Points) Electric lighting is the third largest consumer of energy in buildings....

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Section 5.4 Lighting: Greening Federal Facilities; Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

can be provided with luminaires that deliver some of their light upward, wall-wash sconces, and daylighting. Lighting accounts for 25% of the electricity used in the...

342

Concord Municipal Light Plant - Solar Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Plant Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical...

343

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Electricity Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. We rely on electricity to power our lights, appliances, and electronics in our homes. Many of us also use electricity to provide our homes with hot water, heat, and air conditioning. As we use more electricity in our homes,

344

inAir: Measuring and Visualizing Indoor Air Quality Sunyoung Kim & Eric Paulos  

E-Print Network (OSTI)

, air quality, domestic computing, health ACM Classification Keywords H.m. Information interfacesinAir: Measuring and Visualizing Indoor Air Quality Sunyoung Kim & Eric Paulos Human}@cs.cmu.edu ABSTRACT Good indoor air quality is a vital part of human health. Poor indoor air quality can contribute

Paulos, Eric

345

Colorado Springs School District 11 - Achieving Healthy Indoor Learning  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Springs School District 11 - Achieving Healthy Indoor Colorado Springs School District 11 - Achieving Healthy Indoor Learning Environments Through Energy Efficiency Upgrades Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition

346

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

347

Market transformation opportunities for emerging dynamic facade and dimmable lighting control systems  

E-Print Network (OSTI)

Dynamic Façade and Dimmable Lighting Control Systems Eleanorand integrated façade and lighting system that operatesof these cases, electric lighting should be controlled to

Lee, Eleanor S.; Selkowitz, Stephen E.; Hughes, Glenn D.; Thurm, David A.

2004-01-01T23:59:59.000Z

348

Light intensity compressor  

DOE Patents (OSTI)

In a system for recording images having vastly differing light intensities over the face of the image, a light intensity compressor is provided that utilizes the properties of twisted nematic liquid crystals to compress the image intensity. A photoconductor or photodiode material that is responsive to the wavelength of radiation being recorded is placed adjacent a layer of twisted nematic liquid crystal material. An electric potential applied to a pair of electrodes that are disposed outside of the liquid crystal/photoconductor arrangement to provide an electric field in the vicinity of the liquid crystal material. The electrodes are substantially transparent to the form of radiation being recorded. A pair of crossed polarizers are provided on opposite sides of the liquid crystal. The front polarizer linearly polarizes the light, while the back polarizer cooperates with the front polarizer and the liquid crystal material to compress the intensity of a viewed scene. Light incident upon the intensity compressor activates the photoconductor in proportion to the intensity of the light, thereby varying the field applied to the liquid crystal. The increased field causes the liquid crystal to have less of a twisting effect on the incident linearly polarized light, which will cause an increased percentage of the light to be absorbed by the back polarizer. The intensity of an image may be compressed by forming an image on the light intensity compressor.

Rushford, Michael C. (Livermore, CA)

1990-01-01T23:59:59.000Z

349

Attributes of Indoor Environmental Quality to Earth-sheltered Building Design  

E-Print Network (OSTI)

This paper discusses the environmental attributes to underground building shape and configuration, materials, structures, use, maintenance, lighting, occupancy, and management. These criteria are hypothesized to be of more influences on the building environment in the cases of underground spaces than in the aboveground. The aim is to approach and link together the many recent architectural and engineering factors that affect indoor environmental quality (IEQ) as a contribution to the affordability and sustainability of present earth sheltered building design and development. To attain its goals, the study develops a conceptual micro-framework of healthy buildings' parameters and economic aspects for evaluating links between sustainable construction and outcomes of health, productivity, and affordability. The conclusion indicates the importance of integrating appropriate technologies into earth sheltered space design, while the recommendations conform with environmental organizations and policies' directives in both their short and long-term development plans to provide affordable and healthy earth sheltered interiors.

Sheta, S.

2010-01-01T23:59:59.000Z

350

Electric transportation and the impact on local electricity management: a case study of electric public and private transport in Christchurch, New Zealand.  

E-Print Network (OSTI)

??Electric transport such as a light rail transit (LRT) system and private electric vehicles (EV) are power intensive systems and are likely to add significant… (more)

Grenier, Agathe

351

HVAC System Design Strategies to Address Indoor Air Quality Standards  

Science Conference Proceedings (OSTI)

This report describes strategies that can be employed in the design and operation of heating, ventilating, and air conditioning (HVAC) systems to address the ASHRAE Standard 62 "Ventilation for Acceptable Indoor Air Quality" requirements. The report examines a wide variety of approaches to meeting the standard and their impact on energy consumption, occupant comfort, and other factors.

1999-12-09T23:59:59.000Z

352

High indoor radon variations and the thermal behavior of eskers  

Science Conference Proceedings (OSTI)

Measurements of indoor radon concentrations in houses built on the Pispala esker in the city of Tampere were taken. The objective was to find connections between indoor radon concentrations, esker topography, and meteorological factors. The results show that not only the permeable soil but also subterranean air-flows in the esker strongly affect the indoor radon concentrations. The difference in temperature between the soil air inside the esker and the outdoor air compels the subterranean air to stream between the upper and lower esker areas. In winter, the radon concentrations are amplified in the upper esker areas where air flows out from the esker. In summer, concentrations are amplified in certain slope zones. In addition, wind direction affects the soil air and indoor radon concentrations when hitting the slopes at right angles. Winter-summer concentration ratios are typically in the range of 3-20 in areas with amplified winter concentration, and 0.1-0.5 in areas with amplified summer concentrations. A combination of winter and summer measurements provides the best basis for making mitigation decisions. On eskers special attention must be paid to building technology because of radon. 9 refs., 7 figs., 1 tab.

Arvela, H.; Voutilainen, A.; Honkamaa, T.; Rosenberg, A. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

1994-09-01T23:59:59.000Z

353

Evaluation of Passive Monitors for Measuring Indoor Radon and Formaldehyde  

Science Conference Proceedings (OSTI)

Passive monitors for indoor air pollutants can furnish a cost-effective alternative to larger, more sophisticated, active monitors. In this study, three passive radon monitors provided sufficient accuracy and precision to support their use in utility measurement programs. However, the marginal performance of a passive formaldehyde monitor indicated the need for a vigorous quality assurance program to quantify its performance.

1988-12-01T23:59:59.000Z

354

Indoor air quality measurements in energy efficient buildings  

DOE Green Energy (OSTI)

The Energy Efficient Buildings Program of the Lawrence Berkeley Laboratory (LBL) has designed and fabricated a mobile laboratory for research and development studies of ventilation requirements and energy utilization in residential and commercial buildings. The Energy Efficient Buildings (EEB) Mobile Laboratory is used in studies of indoor air quality in buildings before and after energy conservation retrofits and in new buildings incorporating energy efficient designs. Indoor air quality measurements have been conducted in residential buildings and work in progress includes indoor air quality monitoring in schools, hospitals, and energy efficient residential buildings. The monitoring program includes measurement of CO, CO/sub 2/, SO/sub 2/, NO, NO/sub 2/, O/sub 3/, infiltration rate (tracer gas technique), and aerosol size distribution on a continuous basis. Total and respirable-fraction particulate samples are collected on membrane filter media for analysis by x-ray fluorescence (XRFA), photoelectron spectroscopy (ESCA), proton activation analysis (PAA), combustion, and wet-chemistry techniques for the determination of particulate elemental composition (S, N, C, etc.) and ionic species such as SO/sub 4//sup 2 -/, NO/sub 3//sup -/, and NH/sub 4//sup +/. Results of the initial phases of this program indicate that the concentrations of some gaseous and respirable particulate air pollutants in specific indoor environments exceed those levels commonly found in the outdoor urban air environment.

Hollowell, C.D.; Berk, J.V.; Traynor, G.W.

1978-04-01T23:59:59.000Z

355

The solution of smart home indoor positioning based on wifi  

Science Conference Proceedings (OSTI)

LAN gradually to the wireless technology in the direction of multi-play development in the multi-play in the process of rapid development, driven by a wide range of applications for a variety of wireless technologies, WIFI is one of them. WiFi the most ... Keywords: WiFi, indoor positioning, smart home

Songjuan Zhang; Lilei Qi

2012-10-01T23:59:59.000Z

356

Directional Handoff using Geomagnetic Sensor in Indoor WLANs Sangyup Han  

E-Print Network (OSTI)

Directional Handoff using Geomagnetic Sensor in Indoor WLANs Sangyup Han , Myungchul Kim , Ben Lee a geomagnetic sensor (or a digital compass) embedded in mobile devices. The proposed scheme predicts; Directional handoff; Geomagnetic sensor; Digital compass; AP Table I. INTRODUCTION With the popularity

Lee, Ben

357

An adaptive location estimator using tracking algorithms for indoor WLANs  

Science Conference Proceedings (OSTI)

This paper presents adaptive algorithms for estimating the location of a mobile terminal (MT) based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assisting for indoor wireless local area networks ... Keywords: Calibration, Kalman filtering, Location estimation, Neural network, Radio-frequency identification, Tracking, Wireless local area network

Yih-Shyh Chiou; Chin-Liang Wang; Sheng-Cheng Yeh

2010-10-01T23:59:59.000Z

358

Choptank Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Choptank Electric Coop, Inc Choptank Electric Coop, Inc Jump to: navigation, search Name Choptank Electric Coop, Inc Place Maryland Utility Id 3503 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Service - Medium Industrial General Service - Small Industrial LIGHTING SERVICE - HPS 100W Lighting LIGHTING SERVICE - HPS 150W Lighting LIGHTING SERVICE - HPS 250W Lighting LIGHTING SERVICE - HPS 400W Lighting LIGHTING SERVICE - HPS 70W Lighting LIGHTING SERVICE - MV 100W Lighting

359

Santee Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Santee Electric Coop, Inc Santee Electric Coop, Inc Jump to: navigation, search Name Santee Electric Coop, Inc Place South Carolina Utility Id 16606 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 1000w Metal Halide Flood Lighting Area Lighting Service 100w HPS Enclosed Lighting Area Lighting Service 100w HPS Flood Lighting Area Lighting Service 100w HPS Semi-Enclosed Lighting Area Lighting Service 100w HPS Shoebox Lighting Area Lighting Service 175w Mercury Vapor Semi-Enclosed Lighting

360

Indoor airPLUS Construction Specifications Version 1 (Rev. 01) EPA 402/K-13/001, February 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indoor Air Quality (IAQ) Indoor Air Quality (IAQ) Indoor airPLUS CONSTRUCTION SPECIFICATIONS VERSION 1 (REV. 01) www.epa.gov/indoorairplus Contents About the Indoor airPLUS Construction Specifications ................................................................................................................. i What's New in Version 1 (Rev. 01)? ........................................................................................................................................... i Eligibility and Verification Requirements ................................................................................................................................... i Terms Used in This Document ..................................................................................................................................................

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Impacts of Mixing on Acceptable Indoor Air Quality in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Mixing on Acceptable Indoor Air Quality in Homes Impacts of Mixing on Acceptable Indoor Air Quality in Homes Title Impacts of Mixing on Acceptable Indoor Air Quality in Homes Publication Type Journal Article LBNL Report Number LBNL-3048E Year of Publication 2010 Authors Sherman, Max H., and Iain S. Walker Journal HVAC & Research Journal Keywords air distribution, indoor air quality, mechanical ventilation, mixing, other, resave, residential ventilation, ventilation effectiveness Abstract Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing already, but that new, high-performance homes may require additional mixing. Also our results suggest that some differentiation should be made in policies and standards for systems that provide continuous exhaust, thereby reducing relative dose for occupants overall

362

Energy resource alternatives competition. Progress report for the period February 1, 1975--December 31, 1975. [Space heating and cooling, hot water, and electricity for homes, farms, and light industry  

DOE Green Energy (OSTI)

This progress report describes the objectives and results of the intercollegiate Energy Resource Alternatives competition. The one-year program concluded in August 1975, with a final testing program of forty student-built alternative energy projects at the Sandia Laboratories in Albuquerque, New Mexico. The goal of the competition was to design and build prototype hardware which could provide space heating and cooling, hot water, and electricity at a level appropriate to the needs of homes, farms, and light industry. The hardware projects were powered by such nonconventional energy sources as solar energy, wind, biologically produced gas, coal, and ocean waves. The competition rules emphasized design innovation, economic feasibility, practicality, and marketability. (auth)

Matzke, D.J.; Osowski, D.M.; Radtke, M.L.

1976-01-01T23:59:59.000Z

363

Lighting Techniques  

Science Conference Proceedings (OSTI)

...Lighting is very critical in photography. The specimen should be placed on a background which will not detract from the resolution of the fracture surface. For basic lighting, one spotlight is suggested. The light is then raised or lowered, and

364

High-Intensity Discharge Industrial Lighting Design Strategies for the Minimization of Energy Usage and Life-Cycle Cost.  

E-Print Network (OSTI)

??Worldwide, the electrical energy consumed by artificial lighting is second only to the amount consumed by electric machinery. Of the energy usage attributed to lighting… (more)

Flory IV, Isaac L.

2008-01-01T23:59:59.000Z

365

Electrical Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Renovations Electrical Renovations Electrical Renovations October 16, 2013 - 4:51pm Addthis Renewable Energy Options for Electrical Renovations Daylighting Photovoltaics (PV) Renovations to the electric wiring and system in a Federal facility offer several renewable energy options. The primary renewable energy technologies related to electrical design are daylighting and photovoltaics (PV) as well as the overall design of the electrical system to allow for renewable energy integration. However, energy efficiency measures can also play an important role in electrical renovations. Daylighting If electrical upgrades allow for more advanced controls in the facility, daylighting may become a feasible option in the renovation. Particularly, the ability to control artificial lighting based on ambient light

366

Investigative Tools and Techniques for Indoor Air Quality Studies  

E-Print Network (OSTI)

Indoor air quality problems are diverse and often complex. Adverse indoor air quality problems can exist which create symptomatic conditions for building occupants. Often, the exact cause, or causes, of the substandard indoor air quality are unknown. Therefore, an investigative approach must usually be taken to identify the source(s) of the air quality problem, and if present, air contaminant concentrations. As the general public becomes more aware of the problems associated with poor indoor air quality conditions, an associated increase in air quality evaluation requests can be expected. This paper discusses some of the various investigative tools and techniques that can be utilized to identify air quality contaminants when performing an indoor air quality evaluation. These investigative tools and techniques can be used to develop a site specific list of possible contaminants and their sources, and can then be used to determine which contaminants are, in fact, present in adverse concentrations. Some of the investigative tools and techniques to be discussed in this paper include the following: visual inspections and site observations, information searches, review of building construction, review of ventilation systems, interviews, low and high volume sampling pumps, flow and oxygen meters, portable photoionization and flame ionization detectors (PID & FID), various types of vapor detector tubes, and gas chromatograph/mass spectrophotometer (GC/MS) analysis. This paper will be an introductory overview of the above listed investigative tools and techniques. The paper's attempt is to acquaint the reader with these investigative tools and techniques, and how they can assist the reader in an air quality evaluation.

Kennedy, S. R.; Quinn, C. B.; Henderson, J. E.; Vickery, R. G.

1994-01-01T23:59:59.000Z

367

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network (OSTI)

light sources have wasted emission and energy as can be seenor in other words, wasted electrical energy). Extraction

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

368

BIM-Based Digital Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

industry has been slow to embrace new technologies and concepts, and electrical installers are largely unfamiliar with digital control technologies. For a lighting controls...

369

Inland Power & Light Company - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumps (Installed in homes with Electric Zonal Heating): 1,500 Window Replacement: 3 per square foot Inland Power & Light offers a variety of rebates through the Conservation...

370

Going at Light Speed: Optical Communications and ...  

Science Conference Proceedings (OSTI)

... better utilize capacity and address changing demands. ... and redirect traffic to match demand; and. ... transmit light instead of electricity, enabling the ...

2010-10-05T23:59:59.000Z

371

Industry Group Learns About Light Source Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

industry over the past 50 years. General Electric's "Durathon" sodium metal halide battery breakthrough required the use of light sources allowing them to understand the...

372

Outdoor Solar Lighting | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of iStockphoto.comndejan Outdoor solar lights use solar cells,...

373

SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering ...  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "Light and Nanotechnology- Engineering & So Much More" Professor Claire Gmachl Department of Electrical...

374

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

375

Incandescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lighting Incandescent Lighting Incandescent Lighting October 17, 2013 - 6:15pm Addthis Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lighting is the most common, and least energy efficient, type of lighting used in homes. | Photo courtesy of ©iStockphoto/TokenPhoto. Incandescent lamps are often considered the least energy efficient type of electric lighting commonly found in residential buildings. Although inefficient, incandescent lamps possess a number of key advantages--they are inexpensive to buy, turn on instantly, are available in a huge array of sizes and shapes and provide a pleasant, warm light with excellent color rendition. However, because of their relative inefficiency and short life spans, they

376

Total Light Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Management Light Management Why is saving Energy Important World Electricity Consumption (2007) Top 20 Countries 0 500 1000 1500 2000 2500 3000 3500 4000 4500 U n i t e d S t a t e s C h i n a J a p a n R u s s i a I n d i a G e r m a n y C a n a d a A f r i c a F r a n c e B r a z i l K o r e a , S o u t h U n i t e d K i n g d o m I t a l y S p a i n A u s t r a l i a T a i w a n S o u t h A f r i c a M e x i c o S a u d i A r a b i a I r a n Billion kWh Source: US DOE Energy Information Administration Lighting Control Strategies 4 5 6 Occupancy/Vacancy Sensing * The greatest energy savings achieved with any lighting fixture is when the lights are shut off * Minimize wasted light by providing occupancy sensing or vacancy sensing 7 8 Daylight Harvesting * Most commercial space has enough natural light flowing into it, and the amount of artificial light being generated can be unnecessary * Cut back on the production of artificial lighting by

377

Grand Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Grand Electric Coop, Inc Place South Dakota Utility Id 7484 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Heat Rate Commercial Farm and Residential Electric Heat Rate Residential Metered Security Light - 100 HPS Lighting Metered Security Light - 175 MV Lighting Metered Security Light - 250 HPS Lighting Metered Security Light - 400 MV Lighting Schedule A - Farm and Residential Residential Schedule ADF -Du al Fuel Service Residential

378

Lighting Group: Light Distribution Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Alternatives to Incandescent Downlights Hotel and Institutional Bathroom Lighting Portable Office Lighting Systems Low Glare Outdoor Retrofit Luminaire LED Luminaires...

379

Lighting Research Center Lighting Products  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

380

Choctaw Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Choctaw Electric Coop Inc Place Oklahoma Utility Id 3527 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt HPS, Metered Lighting 100 Watt HPS, Unmetered Lighting 1000 Watt HPS, Metered Lighting 1000 Watt HPS, Unmetered Lighting 175 Watt MV ,Metered Lighting 175 Watt MV ,Unmetered Lighting 250 Watt HPS, Metered Lighting 250 Watt HPS, Unmetered Lighting 400 Watt HPS ,Metered Lighting 400 Watt HPS ,Unmetered Lighting 400 Watt MV,Metered Lighting

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Outlaw lighting  

SciTech Connect

Demand-side management programs by utilities and the federal government`s Green Lights program have made significant inroads in promoting energy-efficient lighting. But the Energy Policy Act now prohibits certain types of lighting. This article provides analysis to help architects determine new lamp performance compared with older lighting products.

Bryan, H.

1994-12-01T23:59:59.000Z

382

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

383

Baltimore Gas and Electric Company (Electric) - Commercial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Gas and Electric Company (Electric) - Commercial Energy Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $1,000,000/corporate tax ID/year Commercial Rebates: Contact BGE Retro-Commissioning, Operations, and Maintenance: $15,000 Program Info State Maryland Program Type Utility Rebate Program Rebate Amount New Construction Performance Lighting: $0.40 - $0.80/watt reduced New Construction Green Building Incentive: $0.25 - $0.40/kWh saved first

384

Automatic Mechetronic Wheel Light Device  

DOE Patents (OSTI)

A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

Khan, Mohammed John Fitzgerald (Silver Spring, MD)

2004-09-14T23:59:59.000Z

385

Automatic Mechetronic Wheel Light Device  

SciTech Connect

A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

Khan, Mohammed John Fitzgerald (Silver Spring, MD)

2004-09-14T23:59:59.000Z

386

The Rise of Electric Two-wheelers in China: Factors for their Success and Implications for the Future  

E-Print Network (OSTI)

of Taiwan Light Electric Vehicle Industry. International LEVelectric vehicles, leading to “Seminar for E2W Development in Light Industry

Weinert, Jonathan X.

2007-01-01T23:59:59.000Z

387

Airflow and Pollutant Transport Modeling In Indoor and Built Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Airflow and Pollutant Transport Modeling In Indoor and Built Environment Airflow and Pollutant Transport Modeling In Indoor and Built Environment Speaker(s): Teshome Edae Jiru Date: October 12, 2009 - 12:12pm Location: 90-3122 Computer simulation is based on mathematical models developed mostly from theoretical science and helps for studying and prediction of the behavior of engineered systems. The advantages of computer simulation are the ease of varying the desired parameters to investigate various possible design scenarios, explore new theories, and design new experiments to test these theories. It also provides detailed information and serves as a powerful alternative to experimental science and observation when phenomena are not observable or when measurements are impractical or too expensive. This seminar presents the different types of mechanistic modeling approaches

388

Subsurface Gasoline Contamination: An Indoor Air Quality Field Study  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Subsurface Gasoline Contamination: An Indoor Air Quality Field Study Schematic of soil-gas and contaminant transport into a slab-on-grade building at a former service station site. Three effects are illustrated that can contribute to reducing the amount of contaminant available for entry into the building: biodegradation by soil microorganisms; a layer of soil that limits diffusive movement of the contaminant; and wind-driven ventilation of the soil below the building. Not illustrated are the effects of ventilation on contaminant concentrations inside the building. The transport of soil-gas-borne contaminants into buildings has been documented as a significant source of human exposure to some pollutants indoors; one example is radon, which has received widespread public

389

Indoor-outdoor air leakage of apartments and commercial buildings.  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor-outdoor air leakage of apartments and commercial buildings. Indoor-outdoor air leakage of apartments and commercial buildings. Title Indoor-outdoor air leakage of apartments and commercial buildings. Publication Type Report Year of Publication 2006 Authors Price, Phillip N., Arman Shehabi, Wanyu R. Chan, and Ashok J. Gadgil Publisher Lawrence Berkeley National Laboratory Abstract We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

390

The model electric restaurant  

SciTech Connect

Restaurants are the most intensive users of energy of all types of commercial buildings. As a result, they have some of the highest energy costs. New and existing restaurants are important customers to electric utilities. Many opportunities exist to use electricity to improve restaurant energy performance. This report discusses a project in which computer simulations were used to investigate restaurant energy subsystem performance and to assess the potential for electric equipment to reduce energy consumption, reduce peak demand improve load factors, and reduce energy cost in new all-electric restaurants. The project investigated typical restaurant designs for all-electric and gas/electric facilities and compared them to high efficiency electric options in all-electric restaurants. This analysis determined which investiments in high-efficiency electric equipment are attractive for restaurant operators. Improved equipment for food preparation, heating and cooling, ventilation, sanitation, and lighting subsystem was studied in cafeteria, full menu, fast food, and pizza restaurants in Atlanta, Cleveland, Los Angeles, and Phoenix. In addition to the actual rate structures, four synthetic rate structures were used to calculate energy costs, so that the results can be applied to other locations. The results indicate that high efficiency and improved all-electric equipment have the potential for significantly reducing energy consumption, peak demand, and operating costs in almost all restaurants in all locations. The all-electric restaurants, with a combination of improved equipment, also offer the customer a competitive choice in fuels in most locations. 12 refs., 26 figs., 55 tabs.

Frey, D.J.; Oatman, P.A. (Architectural Energy Corp., Boulder, CO (USA)); Claar, C.N. (Pennsylvania State Univ., University Park, PA (USA))

1989-12-01T23:59:59.000Z

391

Salem Electric | Open Energy Information  

Open Energy Info (EERE)

Electric Electric Jump to: navigation, search Name Salem Electric Place Oregon Utility Id 16555 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business service- With Demand Meter(V2) Commercial Business service-No Demand Meter Commercial Outdoor Field Lighting Lighting Residential Overhead Service Residential Residential Underground Service Residential Security Lighting Schedule 5A 175 MV Lighting Security Lighting Schedule 5A 250 MV Lighting

392

Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA  

SciTech Connect

At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

Shonder, J.A.; Hughes, P.J.

1997-06-01T23:59:59.000Z

393

The Airborne Metagenome in an Indoor Urban Environment  

SciTech Connect

The indoor atmosphere is an ecological unit that impacts on public health. To investigate the composition of organisms in this space, we applied culture-independent approaches to microbes harvested from the air of two densely populated urban buildings, from which we analyzed 80 megabases genomic DNA sequence and 6000 16S rDNA clones. The air microbiota is primarily bacteria, including potential opportunistic pathogens commonly isolated from human-inhabited environments such as hospitals, but none of the data contain matches to virulent pathogens or bioterror agents. Comparison of air samples with each other and nearby environments suggested that the indoor air microbes are not random transients from surrounding outdoor environments, but rather originate from indoor niches. Sequence annotation by gene function revealed specific adaptive capabilities enriched in the air environment, including genes potentially involved in resistance to desiccation and oxidative damage. This baseline index of air microbiota will be valuable for improving designs of surveillance for natural or man-made release of virulent pathogens.

Tringe, Susannah; Zhang, Tao; Liu, Xuguo; Yu, Yiting; Lee, Wah Heng; Yap, Jennifer; Yao, Fei; Suan, Sim Tiow; Ing, Seah Keng; Haynes, Matthew; Rohwer, Forest; Wei, Chia Lin; Tan, Patrick; Bristow, James; Rubin, Edward M.; Ruan, Yijun

2008-02-12T23:59:59.000Z

394

LED Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting Basics LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied. Applying electrical current causes electrons to flow from the positive side of a diode to the negative side. Then, at the positive/negative junction of the diode, the electrons slow down to orbit at a lower energy level. The electrons emit the excess energy as photons of light. LEDs are often used as small indicator lights on various electronic devices. Because of their long life, durability, and efficiency, LEDs are becoming more common in residential, commercial, and outdoor area lighting

395

Fergus Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Fergus Electric Coop, Inc Place Montana Utility Id 21513 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Green Power Residential Irrigation Industrial Security Light - 100 watt HPS Lighting Security Light - 150 watt HPS Lighting Security Light - 175 watt MV Lighting Security Light - 250 watt MV Lighting Security Light - 400 watt MV Lighting

396

Grady Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Grady Electric Membership Corp Grady Electric Membership Corp Jump to: navigation, search Name Grady Electric Membership Corp Place Georgia Utility Id 7450 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Net Metering Outdoor Lighting Service - High Pressure Sodium 100w Lighting Outdoor Lighting Service - High Pressure Sodium 100w decorative Lighting Outdoor Lighting Service - High Pressure Sodium 250w Lighting Outdoor Lighting Service - High Pressure Sodium 400w Lighting Outdoor Lighting Service - Mercury Vapor 175w Lighting

397

Pea River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pea River Electric Coop Pea River Electric Coop Jump to: navigation, search Name Pea River Electric Coop Place Alabama Utility Id 14602 Utility Location Yes Ownership C NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light: 100 watt high pressure sodium Lighting Security Light: 1000 watt metal halide Lighting Security Light: 250 watt high pressure sodium (flood) Lighting Security Light: 250 watt high pressure sodium (street) Lighting Security Light: 400 watt high pressure sodium Lighting Average Rates Residential: $0.1150/kWh Commercial: $0.1200/kWh

398

Optimal Indoor Air Temperature Considering Energy Savings and Thermal Comfort in the Shanghai Area  

E-Print Network (OSTI)

Indoor air temperature is the most important control parameter in air conditioning systems. It not only impacts the thermal comfort of occupants, but also also greatly affects the energy consumption in air conditioning systems. The lower the indoor air temperature is in summer or the higher the indoor temperature is in winter, the more energy the air conditioning system will consume. For the sake of energy conservation, the indoor air should be set as high as possible in summer and as low as possible in winter. Meanwhile, indoor thermal comfort should be considered. This paper will establish the optimal indoor air temperature for an air-conditioning system aiming at both energy savings and thermal comfort in the Shanghai area, based on the PMV equation and extensive field investigation.

Yao, Y.; Lian, Z.; Hou, Z.; Liu, W.

2006-01-01T23:59:59.000Z

399

Medina Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Medina Electric Coop, Inc Medina Electric Coop, Inc Place Texas Utility Id 12268 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City of Laredo Street Lighting- 150W HPS Lighting City of Laredo Street Lighting- 150W MH Lighting City of Laredo Street Lighting-250 W HPS Lighting City of Laredo Street Lighting-250 W MH Lighting City of Laredo Street Lighting-400 W HPS Lighting City of Laredo Street Lighting-400 W MH Lighting Commercial General Service (Primary Metered & Primary Voltage) Commercial

400

Umatilla Electric Coop Assn | Open Energy Information  

Open Energy Info (EERE)

Umatilla Electric Coop Assn Umatilla Electric Coop Assn Place Oregon Utility Id 19325 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100w high pressure sodium Lighting Area Lighting 150w high pressure sodium Lighting Area Lighting 200w high pressure sodium Lighting Area Lighting 250w high pressure sodium Lighting Area Lighting 400w high pressure sodium Lighting Area Lighting 400w mercury vapor Lighting

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Flint Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

Flint Electric Membership Corp Flint Electric Membership Corp Place Georgia Utility Id 6411 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting GOS Cobrahead HPS 150 W Lighting Outdoor Lighting GOS Cobrahead HPS 250 W Lighting Outdoor Lighting GOS Cobrahead HPS 400 W Lighting Outdoor Lighting GOS Cobrahead/ Interstate MV 400 W Lighting Outdoor Lighting GOS Cobrahead/ Open Bottom MV 174 W Lighting Outdoor Lighting GOS Cobrahead/Open Bottom HPS 100 W Lighting

402

Central Alabama Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Central Alabama Electric Coop Central Alabama Electric Coop Place Alabama Utility Id 3222 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Service Residential Security Lights Service: 100 W/HPS with 1 pole set Lighting Security Lights Service: 100 W/HPS with 2 poles set Lighting Security Lights Service: 1000 W/MH Lighting Security Lights Service: 1000 W/MH with 1 pole set Lighting Security Lights Service: 1000 W/MH with 2 poles set Lighting Security Lights Service: 100W/HPS (on existing pole) Lighting

403

Socorro Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Socorro Electric Coop, Inc Socorro Electric Coop, Inc Place New Mexico Utility Id 17492 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Energy Thermal Storage Units Commercial GENERAL SERVICE - SCHEDULE GS Residential Irrigation Service Large Commercial Commercial Private Lighting 400 W HPS Lighting Private Lighting-100 W HPS Lighting Private Lighting-150 W HPS Lighting Private Lighting-175 W MV (metered service) Lighting Private Lighting-175 W MV (non-metered service) Lighting Private Lighting-250 W HPS Lighting

404

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

405

When to Turn Off Your Lights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

406

Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

corridors. The overall range of savings was six to 80 percent. The Advanced Lighting Guidelines On-Line Edition New Buildings Institute 2011 presents a table of lighting energy...

407

Energy Saving System to Remove Volatile Organic Compounds (VOCs) from Indoor Air  

Scientists at Berkeley Lab have developed a catalyst and deployment devices to improve indoor air quality and reduce ventilation energy needs.

408

Casablanca Carlos American Electric Power Transmission Owner  

E-Print Network (OSTI)

(Facilitator) Chantal PJM Interconnection Not Applicable Horstmann John Dayton Power & Light Company (The) Transmission Owner Issermoyer John PPL Electric Utilities Corp. dba PPL Utilities Transmission Owner

Pjm Interconnection Llc; Teleconference Webex Participants; Firstenergy Solutions; Corp Transmission Owner; Boltz Jeff; Firstenergy Solutions; Corp Transmission Owner; Fecho Thomas; Indiana Michigan; Power Company; Transmission Owner; Patten Kevin; Company Transmission Owner

2012-01-01T23:59:59.000Z

409

Barron Electric Cooperative - Commercial and Industry Energy...  

Open Energy Info (EERE)

icon Barron Electric Cooperative - Commercial and Industry Energy Efficiency Lighting Rebates (Wisconsin) This is the approved revision of this page, as well as being the...

410

Linn County Rural Electric Cooperative - Agricultural Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat lamps and pads, equipment controls, recovery ventilators, circulation fans, motors, variable speed drives, lighting equipment, electric water heaters, and various...

411

Shape the light, light the shape - lighting installation in performance.  

E-Print Network (OSTI)

??This thesis investigates the lighting design theory Light Inside Out, which is the technique of shaping light toward a creation of lighting installation in performance… (more)

Yu, Lih-Hwa, 1972-

2010-01-01T23:59:59.000Z

412

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

413

Radioluminescent lighting for Alaskan runway lighting and marking  

SciTech Connect

Alaska and other far northern areas have special logistical, environmental, and economic problems that make radioluminescent (RL) lighting applications, especially in the area of airport lighting, an attractive alternative to electrical systems and flare pots. Tests and demonstrations of prototype systems conducted in Alaska over the past two years have proved the basic technological worth of RL airport lighting systems for civilian and military use. If regulatory issues and other factors identified during these tests can be favorably resolved and if the system and its components can be refined through production engineering, attractive applications for RL airfield lighting systems in Alaska and other remote locations could result.

Jensen, G.A.; Leonard, L.E.

1985-03-01T23:59:59.000Z

414

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Walton Electric Member Corp Walton Electric Member Corp (Redirected from Walton EMC) Jump to: navigation, search Name Walton Electric Member Corp Place Georgia Utility Id 20065 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 14' Aluminum Lighting 20' F/G Lighting 30' F/G Lighting 30-6 Wood Lighting Cobrahead- HPS 100 Watt Bronze (UG) Lighting Cobrahead- HPS 100 Watt Gray Lighting Cobrahead- HPS 100 Watt Gray (UG) Lighting Cobrahead- HPS 150 Bronze Watt (UG) Lighting Cobrahead- HPS 150 Watt Gray Lighting

415

Outdoor Solar Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor Solar Lighting Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan What does this mean for me? Outdoor solar lights are easy to install and virtually maintenance free They work in most areas of the United States Find out if replacement bulbs or batteries are available before you buy them Outdoor solar lights are easy to install and virtually maintenance free. Best of all, using them won't increase your electric bill. Popular home

416

Integrated simulation environment for lighting design  

SciTech Connect

Lighting design involves the consideration of multiple performance criteria, from the earliest stages of conceptual design, through various stages of controls and operation in a project's life cycle. These criteria include: (1) the quantitative analysis of illuminance and luminance distribution due to daylighting and electric lighting; (2) qualitative analysis of the lighting design with photometrically accurate renderings of the designed environment; (3) analysis of energy implications of daylighting and electric lighting design and operation;, and (4) analysis of control strategies and sensor placement for maximizing energy savings from lighting control while providing visual comfort. In this paper we describe the development of an integrated decision-making environment that brings together several different tools, and provides the data management and process control required for a multi-criterion support of the design and operation of daylighting and electric lighting systems. The result is a powerful design and decision-making environment to meet the diverse and evolving needs of lighting designers and operators.

Pal, Vineeta; Papamichael, Konstantinos

2001-05-24T23:59:59.000Z

417

Outdoor Solar Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outdoor Solar Lighting Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan What does this mean for me? Outdoor solar lights are easy to install and virtually maintenance free They work in most areas of the United States Find out if replacement bulbs or batteries are available before you buy them Outdoor solar lights are easy to install and virtually maintenance free. Best of all, using them won't increase your electric bill. Popular home

418

Energy Conversion: Solid-State Lighting  

E-Print Network (OSTI)

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

419

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-02-01T23:59:59.000Z

420

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and on affiliate in Rhode Island, responded to a DOE request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. This report discusses the demonstration of ETS equipment at four member light departments.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-02-01T23:59:59.000Z

422

Electric thermal storage demonstration program  

DOE Green Energy (OSTI)

In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

Not Available

1992-01-01T23:59:59.000Z

423

Delta Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Delta Electric Power Assn Delta Electric Power Assn Place Mississippi Utility Id 22815 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 01 Farm and Residential Electric Service Residential 09 Residential Electric Service Water Heater Residential 10 All Electric Residential Service Residential 12 Small Commercial Service Commercial 13 Street Lighting High Pressure Sodium 100 Watt Lighting 13 Street Lighting High Pressure Sodium 400 Watt Lighting 13 Street Lighting Mercury Vapor 175 Watt enclosed Lighting

424

New Lighting Technologies  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update continues the technical assessment of advanced lighting technologies in the following product areas—linear LED T8 fluorescent replacements, Edison-based dimmable LED lamps, commercial replacement side-lit LED fixtures, Edison-based reduced-consumption halogen lamps designed to replace 100W incandescent lamps, high bay induction LED lamps, and architectural LED lamps. Many of the products in this year’s report are designed as ...

2012-10-08T23:59:59.000Z

425

ELECTRIC POWER & LIGHT MAGAZINE TRANS-WARP™ ...  

Science Conference Proceedings (OSTI)

... rotors. The design has each rotor direct drive a generator, thereby eliminating the need for step-up gearboxes. These same ...

2011-08-02T23:59:59.000Z

426

Chicopee Electric Light - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

requirements and terms. Appliances: ENERGY STAR rated Ductless Mini-SplitCentral AC: SEER 14.5, EER 12, HSPF 8.2 Air Source Heat Pumps: SEER 14.5, EER 12, HSPF 8.2 Insulation:...

427

Valley Rural Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Valley Rural Electric Coop Inc Valley Rural Electric Coop Inc Place Pennsylvania Utility Id 40222 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lights 100w HPS Lighting Area Lights 100w Mercury Vapor Lighting Area Lights 150w HPS Lighting Area Lights 175w Mercury Vapor Lighting Area Lights 250w HPS Lighting Area Lights 250w Mercury Vapor Lighting Area Lights 400w HPS Lighting Area Lights 400w Mercury Vapor Lighting Residential Residential Average Rates Residential: $0.1080/kWh Commercial: $0.1020/kWh

428

Commercial Lighting and LED Lighting Incentives  

Energy.gov (U.S. Department of Energy (DOE))

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

429

Mindful navigation with guiding light : design considerations for projector based indoor navigation assistance system  

E-Print Network (OSTI)

People can easily become mindless in their decision-making and become disengaged from their surroundings when their actions depend on information and guidance from an assistive technology. Research has shown how automated ...

Chung, Jaewoo

2012-01-01T23:59:59.000Z

430

Baltimore Gas and Electric Company (Electric) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Gas and Electric Company (Electric) - Residential Energy Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Contact BGE Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Central A/C: $150 - $500 Air Source Heat Pump: $200 - $500 Ductless Mini-Split Heat Pump: $300 Geothermal Heat Pump (Closed Loop): $500 Duct Sealing: $250 Tune-ups: $100 Heat Pump Water Heater: $350 Room A/C: $25

431

Indoor Secondary Pollutants from Household Product Emissions in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Secondary Pollutants from Household Product Emissions in the Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Title Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Publication Type Journal Article LBNL Report Number LBNL-58785 Year of Publication 2006 Authors Destaillats, Hugo, Melissa M. Lunden, Brett C. Singer, Beverly K. Coleman, Alfred T. Hodgson, Charles J. Weschler, and William W. Nazaroff Journal Environmental Science and Technology Volume 40 Start Page Chapter Pagination 4421-4428 Abstract Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 × 105 molecules cm-3 were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1 - 25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products

432

Impact of clustering in indoor MIMO propagation using a hybrid channel model  

Science Conference Proceedings (OSTI)

The clustering of propagating signals in indoor environments can influence the performance of multiple-input multiple-output (MIMO) systems that employ multiple-element antennas at the transmitter and receiver. In order to clarify the effect of clustering ... Keywords: MIMO, Ricean K factor, angle sensitivity, channel efficiency, indoor propagation, ray tracing, signal clusters

Zhongwei Tang; Ananda Sanagavarapu Mohan

2005-01-01T23:59:59.000Z

433

Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment  

SciTech Connect

Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

2008-12-21T23:59:59.000Z

434

Influence of local geology on the concentration of indoor radon in Maryland  

Science Conference Proceedings (OSTI)

Approximately 58,000 indoor radon measurements are available for homes in Maryland. A comparative study between compilations of activated-charcoal and alpha-track measurements of indoor radon in zip-code-size geographic areas indicated that both of these methods are useful and are equally able to estimate regional indoor radon. Indoor radon measurements compiled according to zip code areas can be used to create state-size radon hazard maps. In Maryland the area with the highest indoor radon (mostly composed of zip code areas that average over 8 pCi/L) is the western half of the Piedmont Province and the eastern side of the Coastal Plain Province. The eastern half of the Piedmont and the eastern half of the Valley and Ridge mostly have intermediate and high indoor radon levels (4--8 and >8 pCi/L). The Blue Ridge, western side of the Valley and Ridge, and Plateau Province each has relatively few zip code areas, but the data suggest a range from low to high indoor radon levels. The western side of the Coastal Plain has the lowest indoor radon (most of the zip code areas average less than 4 pCi/L).

Mose, D.G.; Mushrush, G.W. [George Mason Univ., Fairfax, VA (United States). Chemistry Dept.

1999-10-01T23:59:59.000Z

435

A Coupled Airflow-and-Energy Simulation Program for Indoor Thermal Environment Studies (RP-927)  

E-Print Network (OSTI)

) Jelena Srebric* Qingyan Chen; Ph.D. Leon R. Glicksman; Ph.D. ASHRAE Student Member ASHRAE Member ASHRAE for thermal comfort (ASHRAE 1992). In an indoor space with radiative, convective, and hybrid heating-and-energy simulation program for indoor thermal environment studies," ASHRAE Transactions, 106(1), 465-476. #12

Chen, Qingyan "Yan"

436

Poster: INPRESS: indoor climate prediction and evaluation system for energy efficiency using sensor networks  

Science Conference Proceedings (OSTI)

Modern buildings include an indoor climate control system, installed and operated to maintain a comfortable environment for the building occupants. However, these climate control systems consume a significant amount of energy due to an inefficient control ... Keywords: energy efficiency, indoor climate, sensor network

Jae Yoon Chong; Jinwook Baek; Sukun Kim

2011-11-01T23:59:59.000Z

437

MAQS: a personalized mobile sensing system for indoor air quality monitoring  

Science Conference Proceedings (OSTI)

Most people spend more than 90% of their time indoors; indoor air quality (IAQ) influences human health, safety, productivity, and comfort. This paper describes MAQS, a personalized mobile sensing system for IAQ monitoring. In contrast with existing ... Keywords: air quality sensing, location based service, smartphone

Yifei Jiang; Kun Li; Lei Tian; Ricardo Piedrahita; Xiang Yun; Omkar Mansata; Qin Lv; Robert P. Dick; Michael Hannigan; Li Shang

2011-09-01T23:59:59.000Z

438

Landmarke: an ad hoc deployable ubicomp infrastructure to support indoor navigation of firefighters  

Science Conference Proceedings (OSTI)

Indoor navigation plays a central role for the safety of firefighters. The circumstances in which a firefighting intervention occurs represent a rather complex challenge for the design of supporting technology. In this paper, we present the results of ... Keywords: Ad hoc deployment, Firefighting, Human---computer interaction, Indoor navigation, Mobile ad hoc network, Navigation, Orientation, Sensor networks, Ubiquitous computing, Wearable computing

Leonardo Ramirez; Tobias Dyrks; Jan Gerwinski; Matthias Betz; Markus Scholz; Volker Wulf

2012-12-01T23:59:59.000Z

439

Matchstick: A Room-to-Room Thermal Model for Predicting Indoor Temperature from Wireless Sensor Data  

E-Print Network (OSTI)

Matchstick: A Room-to-Room Thermal Model for Predicting Indoor Temperature from Wireless Sensor present a room-to-room thermal model used to accurately predict temperatures in residential buildings. We that our model can predict future indoor temperature trends with a 90th percentile aggregate error between

Hazas, Mike

440

Optical antenna design for indoor optical wireless communication systems: Research Articles  

Science Conference Proceedings (OSTI)

In the present paper, the design of the non-imaging totally internally reflecting concentrator family denominated optical antennas (OAs) is discussed, and its use for indoor optical wireless communication systems is explained. The lenses presented here ... Keywords: antenna, communications, indoor, infrared, optical, wireless

R. Ramirez-Iniguez; R. J. Green

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Headio: zero-configured heading acquisition for indoor mobile devices through multimodal context sensing  

Science Conference Proceedings (OSTI)

Heading information becomes widely used in ubiquitous computing applications for mobile devices. Digital magnetometers, also known as geomagnetic field sensors, provide absolute device headings relative to the earth's magnetic north. However, magnetometer ... Keywords: ceiling pictures, digital compass, geolocation, heading, indoor locationing, indoor navigation, mobile sensing, orientation, perspective transformation, task scheduling

Zheng Sun, Shijia Pan, Yu-Chi Su, Pei Zhang

2013-09-01T23:59:59.000Z

442

Light harvesting arrays  

DOE Patents (OSTI)

A light harvesting array useful for the manufacture of devices such as solar cells comprises: (a) a first substrate comprising a first electrode; and (b) a layer of light harvesting rods electrically coupled to the first electrode, each of the light harvesting rods comprising a polymer of Formula I: X.sup.1.paren open-st.X.sup.m+1).sub.m (I) wherein m is at least 1, and may be from two, three or four to 20 or more; X.sup.1 is a charge separation group (and preferably a porphyrinic macrocycle, which may be one ligand of a double-decker sandwich compound) having an excited-state of energy equal to or lower than that of X.sup.2, and X.sup.2 through X.sup.m+1 are chromophores (and again are preferably porphyrinic macrocycles).

Lindsey, Jonathan S. (Raleigh, NC)

2002-01-01T23:59:59.000Z

443

Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

government incentives or subsidies in the near future. Companies active in the electric automobile area There are no companies directly active in the electric automobile...

444

Electricity Reliability  

NLE Websites -- All DOE Office Websites (Extended Search)

lines and bar graph Electricity Reliability The Consortium for Electric Reliability Technology Solutions (CERTS) conducts research, develops, and disseminates new methods, tools,...

445

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Title Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6196E Year of Publication 2012 Authors Satish, Usha, Mark J. Mendell, Krishnamurthy Shekhar, Toshifumi Hotchi, Douglas P. Sullivan, Siegfried Streufert, and William J. Fisk Journal Environmental Health Perspectives Volume 120 Issue 12 Pagination 1671-1677 Date Published 09/20/2012 Keywords carbon dioxide, cognition, Decision Making, human performance, indoor environmental quality, ventilation Abstract Background - Associations of higher indoor carbon dioxide (CO2) concentrations with impaired

446

Energy Use and Indoor Thermal Environment of Residential Buildings in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use and Indoor Thermal Environment of Residential Buildings in China Energy Use and Indoor Thermal Environment of Residential Buildings in China Speaker(s): Hiroshi Yoshino Date: December 16, 2003 - 12:00pm Location: 90-3122 The first part of this talk will deal with the project on Energy Consumption and Indoor Environment Problems of Residential Buildings in China, organized by the Architectural Institute of Japan. Prof. Yoshino will discuss the results of project elements, including: 1) Literature survey and field investigation on energy consumption and indoor environment of residential buildings, 2) Compilation of weather data for building design based on observed data in China, 3) Literature survey and field investigation on energy consumption and indoor environment of residential buildings, 4) Estimation and verification of the effects of various

447

Indoor Radon and Its Decay Products: Concentrations, Causes, and Control Strategies  

SciTech Connect

This report is an introduction to the behavior of radon 222 and its decay products in indoor air. This includes review of basic characteristics of radon and its decay products and of features of the indoor environment itself, all of which factors affect behavior in indoor air. The experimental and theoretical evidence on behavior of radon and its decay products is examined, providing a basis for understanding the influence of geological, structural, and meteorological factors on indoor concentrations, as well as the effectiveness of control techniques. We go on to examine three important issues concerning indoor radon. We thus include (1) an appraisal of the concentration distribution in homes, (2) an examination of the utility and limitations of popular monitoring techniques and protocols, and (3) an assessment of the key elements of strategies for controlling radon levels in homes.

Nero, A.V.; Gadgil, A.J.; Nazaroff, W.W.; Revzan, K.L.

1990-01-01T23:59:59.000Z

448

Estimation of Channel Impulse Response Using Modified Ceiling Bounce Model in Non-Directed Indoor Optical Wireless Systems  

Science Conference Proceedings (OSTI)

In this paper a modification to the traditional Ceiling bounce model is proposed for use with non-directed indoor optical wireless systems which takes into account the transceiver separation distances as well as their actual positions while computing ... Keywords: Diffuse indoor optical systems, Indoor channel impulse response, Modified Ceiling bounce model

K. Smitha; Arumugam Sivabalan; Joseph John

2008-04-01T23:59:59.000Z

449

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

effects of growth of population around power plant These arenuclear power plants (3000 MWt electrical). of growth in

Nero, A.V.

2010-01-01T23:59:59.000Z

450

Tippah Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Tippah Electric Power Assn Tippah Electric Power Assn Place Mississippi Utility Id 18943 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA 1 General Power Rate 1 Commercial GSA 2 General Power Rate 2 Commercial GSA 3 General Power Rate 3 Commercial LS Lighting High Pressure Sodium 100 Watts Lighting LS Lighting Mercury Vapor 175 Watts Lighting LS Lighting Mercury Vapor 400 Watts Lighting LS Lighting Metal Halide Cobrahead 400 Watts Lighting LS Lighting Metal Halide Floodlight 1000 Watts Lighting

451

Halifax Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Halifax Electric Member Corp Halifax Electric Member Corp Place North Carolina Utility Id 7978 Utility Location Yes Ownership C NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png MEDIUM GENERAL SERVICE Commercial NC GREENPOWER PROGRAM voluntary RENEWABLE ENERGY GENERATION-Solar RENEWABLE ENERGY GENERATION-Wind RESIDENTIAL SERVICE Residential SECURITY LIGHTING 100-watt high-pressure sodium Lighting SECURITY LIGHTING 140-watt LED Light Commercial SECURITY LIGHTING 175-watt mercury vapor Lighting SECURITY LIGHTING 175-watt metal halide Lighting SECURITY LIGHTING 250-watt high-pressure sodium Lighting

452

Fort Loudoun Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Fort Loudoun Electric Coop Fort Loudoun Electric Coop Place Tennessee Utility Id 6608 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate-Schedule GSA 1 Commercial General Power Rate-Schedule GSA 2 Commercial General Power Rate-Schedule GSA 3 Commercial OUTDOOR LIGHTING RATE ( 150 Watt Metal Halide) Lighting OUTDOOR LIGHTING RATE ( 250 Watt HPS) Lighting OUTDOOR LIGHTING RATE ( 400 Watt HPS) Lighting OUTDOOR LIGHTING RATE ( 400 Watt Metal Halide) Lighting OUTDOOR LIGHTING RATE( 100 Watt HPS) Lighting

453

Radioluminescent (RL) airfield lighting system program  

Science Conference Proceedings (OSTI)

In 1980, the US Air Force Engineering and Services Center (AFESC) at Tyndall Air Force Base, Florida, requested that the Radioisotope Technology Group of Oak Ridge National Laboratory (ORNL) develop large-scale, tritium-powered, radioluminescent (RL) airfield lighting systems. The RL lighting systems possess the advantages of being portable, requiring no electrical power source, having a long shelf life, and being unaffected by environmental extremes. These characteristics make the RL system well-suited for harsh environments where the cost of electrical power production is high and traditional incandescent airfield lighting systems are difficult to maintain. RL lighting is typically a large-surface-area, low-intensity light source that operates 100% of the time. The RL light sources gradually decrease in brightness over time, so periodic replacement (every 6 to 8 years) is necessary. RL lighting functions best in low ambient light, which provides the high contrast ratios necessary for successful use of these devices. 12 figs., 8 tabs.

Tompkins, J.A. (Westinghouse Electric Corp., Las Vegas, NV (USA)); Haff, K.W.; Schultz, F.J. (Oak Ridge National Lab., TN (USA))

1990-09-01T23:59:59.000Z

454

Oconee Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Oconee Electric Member Corp Oconee Electric Member Corp Jump to: navigation, search Name Oconee Electric Member Corp Place Georgia Utility Id 13962 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Large Power Service Commercial Large Power Service* Industrial Outdoor Lighting MV 175 W Overhead Lighting Outdoor Lighting MV 175 W Underground Lighting Outdoor Lighting S 100 W Overhead Lighting Outdoor Lighting S 100 W Underground Lighting Residential and Farm Service Residential

455

Sequachee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Sequachee Valley Electric Coop Sequachee Valley Electric Coop Jump to: navigation, search Name Sequachee Valley Electric Coop Place Tennessee Utility Id 16930 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial GSA1 Commercial Green Power Switch Residential Industrial GSA1 Industrial Light- 100w High Pressure Sodium Lighting Light- 250w High Pressure Sodium Lighting Light- 250w Metal Halide Lighting Light- 400w Metal Halide Lighting Residential Residential Average Rates Residential: $0.0962/kWh Commercial: $0.1020/kWh

456

Oahe Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Oahe Electric Coop Inc Oahe Electric Coop Inc Jump to: navigation, search Name Oahe Electric Coop Inc Place South Dakota Utility Id 13853 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm & Residential Residential Industrial - Irrigation Industrial Large Power - Industrial Industrial Large Power-Commercial Commercial Outdoor Lighting 100 W HPS:Metered Lighting Outdoor Lighting 100 W HPS:Unmetered Lighting Outdoor Lighting 175 W MV: Metered Lighting Outdoor Lighting 175 W MV:Unmetered Lighting

457

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

458

Kootenai Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Kootenai Electric Cooperative Kootenai Electric Cooperative Jump to: navigation, search Name Kootenai Electric Cooperative Place Idaho Service Territory Idaho Website www.kec.com Green Button Committed Yes Utility Id 10454 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Irrigation Service Commercial Large Commercial Service Commercial Large Commercial Service* Commercial Large Commercial Service-Primary Voltage* Commercial Net Metering Residential Service Residential Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 400 W Lighting Outdoor Lighting HPSSL 100 W Lighting Outdoor Lighting HPSSL 100 W Fiber . Pole Lighting

459

Pontotoc Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

Pontotoc Electric Power Assn Pontotoc Electric Power Assn Jump to: navigation, search Name Pontotoc Electric Power Assn Place Mississippi Utility Id 15211 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Flood Light MH 400 W Lighting Flood Light MH 400 W 30' pole Lighting Flood Light MH 400 W 35' pole Lighting Flood Light MH 400 W 40' pole Lighting General Power Service GSA (1001 kW - 5000 kW) Industrial General Power Service GSA (51 kW -1000 kW) Multi-Phase Commercial General Power Service GSA (51 kW -1000 kW) Single-Phase Commercial

460

Claiborne Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Claiborne Electric Coop, Inc Claiborne Electric Coop, Inc Jump to: navigation, search Name Claiborne Electric Coop, Inc Place Louisiana Utility Id 3641 Utility Location Yes Ownership C NERC Location SERC NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Security Lights - 1000W Lighting Security Lights - 175W Lighting Security Lights - 250W Lighting Security Lights - 400W Lighting Average Rates Residential: $0.0732/kWh Commercial: $0.0726/kWh Industrial: $0.0573/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

462

O&M First! Maintaining Effective and Efficient Lighting Can Help...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet Maintaining Effective and Efficient Lighting Can Help Save Energy and Reduce Costs Over 20 percent of the nation's electricity is consumed by various lighting products...

463

Table AP4. Total Expenditures for Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

and Lighting Table AP4. Total Expenditures for Home Appliances and Lighting by Fuels Used, 2005 Billion Dollars U.S. Households (millions) Electricity

464

Research on the Best Market Applications for LightLab Energy-Saving Lamps.  

E-Print Network (OSTI)

?? Nowadays, lighting represents 20% of the global electricity consumption. Light can be produced using different technologies but more than 100 years after its invention,… (more)

Vilalta Cea, Raul

2010-01-01T23:59:59.000Z

465

WORLD TRADE CENTER INDOOR DUST TEST AND CLEAN PROGRAM PLAN  

E-Print Network (OSTI)

Background: This Test and Clean Program plan is the result of ongoing efforts to monitor the current environmental conditions for residents and workers impacted by the collapse of the World Trade Center (WTC) towers. In March 2004, EPA convened an expert technical review panel to provide individual guidance and assistance to the Agency in its use of available exposure and health surveillance databases and registries to characterize any remaining exposures and risks, identify unmet public health needs, and to individually recommend steps to further minimize the risks associated with the aftermath of the WTC attack. The WTC Expert Technical Review Panel (WTC Panel) members met periodically in open meetings to interact with EPA and the public about plans to monitor for the presence of WTC dust in indoor environments and to individually suggest additional measures that could be undertaken by EPA and others to evaluate the dispersion of the plume and the geographic extent of environmental impact from the collapse of the WTC towers. The WTC Panel members were charged, in part, with reviewing data from post-cleaning verification sampling to be done by EPA in the residential areas included in EPA Region 2's 2002-3 Indoor Air Residential Assistance Program to verify that recontamination has not

unknown authors

2005-01-01T23:59:59.000Z

466

LOWER MANHATTAN INDOOR DUST TEST AND CLEAN PROGRAM PLAN  

E-Print Network (OSTI)

Background: This Test and Clean Program plan is the result of ongoing efforts to respond to concerns of residents and workers impacted by the collapse of the World Trade Center (WTC) towers. In March 2004, EPA convened an expert technical review panel to provide individual guidance and assistance to the Agency in its use of available exposure and health surveillance databases and registries to characterize any remaining exposures and risks, identify unmet public health needs, and individually recommend steps to further minimize the risks associated with the aftermath of the WTC attack. The WTC Expert Technical Review Panel (WTC Panel) members met periodically in open meetings to interact with EPA and the public about plans to monitor for the presence of WTC dust in indoor environments and to individually suggest additional measures that could be undertaken by EPA and others to evaluate the dispersion of the plume and the geographic extent of environmental impact from the collapse of the WTC towers. The WTC Panel members were charged, in part, with reviewing data from post-cleaning verification sampling to be done by EPA in the residential areas included in EPA Region 2's 2002-2003 Indoor Air Residential Assistance Program to verify that recontamination has not

unknown authors

2006-01-01T23:59:59.000Z

467

Advanced lighting guidelines, 1993: Revision 1  

SciTech Connect

The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten- Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers' representatives, and other lighting professionals.

Eley, C.; Tolen, T.M. (Eley Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States)); Rubinstein, F.; Verderber, R. (Lawrence Berkeley Lab., CA (United States))

1993-05-01T23:59:59.000Z

468

Advanced lighting guidelines: 1993. Final report  

Science Conference Proceedings (OSTI)

The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

1993-12-31T23:59:59.000Z

469

LED Street and Area Lighting Technologies  

Science Conference Proceedings (OSTI)

Light emitting diodes (LEDs) are being used for applications beyond just indicator lights. One of those applications, street and area lighting, is of considerable interest. This interest is generated by potential reductions that can be achieved in operating costs resulting from lower maintenance costs as well as potentially lower electricity costs that result from the higher efficiency of LED lamps in the systems, the capability to dim and control LED systems, and better light quality. This white paper l...

2008-07-09T23:59:59.000Z

470

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates Ameren Illinois (Electric) - Residential Energy Efficiency Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Lighting: Purchases limited to 20 CFLs per customer per year Refrigerator/Freezer Recycling: $70 (limit of 2 per customer per program year) Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) State Illinois Program Type Utility Rebate Program Rebate Amount New Construction Builder Incentives: Contact ComEd Lighting: In-store discount

471

Energy-saving lighting systems. [Includes glossary  

SciTech Connect

Artificial lighting accounts for 20% of electrical energy, 7.6% of total energy, and 3.8% of total fuel in the US. Because conserving lighting energy can reduce operating costs as well as save energy, this book explores several practical ways to do that. The book first describes the complete range of light sources and their accessories, then goes on to cover photometric reports, techniques of lighting design, fluorescent luminaires, industrial lighting systems, manual and automatic lighting controls, the impact of air-conditioning on lighting systems, and exterior lighting. A glossary of lighting terminology, conversion tables, and recommended illumination levels appear in the appendix. The book is designed for students and practicity lighting engineers and designers. 56 references, 169 figures, 45 tables. (DCK)

Sorcar, P.C.

1982-01-01T23:59:59.000Z

472

Light Organizing/Organizing Light [Light in Place  

E-Print Network (OSTI)

a street through alter­ nating areas of dark and light, welandscapes, streets and squares. Light summons our spiritfor changing light, both outside rooms (such as streets and

Schwartz, Martin

1992-01-01T23:59:59.000Z

473

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

Plata Electric Assn, Inc Plata Electric Assn, Inc (Redirected from LPEA) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

474

Deaf Smith Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop, Inc Electric Coop, Inc Jump to: navigation, search Name Deaf Smith Electric Coop, Inc Place Texas Utility Id 4939 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm & Home - Rate 01 Residential Industrial- Rate 08 Industrial Irrigation- Rate 03 Commercial Large Power- Rate 07 Commercial Lighting 100 HP sodium Lighting Lighting 1000 HP sodium Lighting Lighting 1000 MV Lighting Lighting 175 MV Lighting Lighting 250 HP sodium Lighting Lighting 400 HP sodium Lighting

475

La Plata Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

(Redirected from La Plata Electric Association) (Redirected from La Plata Electric Association) Jump to: navigation, search Name La Plata Electric Assn, Inc Address 45 Stewart St. P.O. Box 2750 Place Durango, Colorado Website www.lpea.com/ Utility Id 10539 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LPEA Contact[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting 100 watt Lighting Area Lighting 1000 watt Lighting Area Lighting 150 watt Lighting Area Lighting 175 watt Lighting Area Lighting 250 watt Lighting Area Lighting 400 watt Lighting Irrigation Commercial

476

Prairie Land Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Coop Inc Electric Coop Inc Jump to: navigation, search Name Prairie Land Electric Coop Inc Place Kansas Utility Id 13799 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED PRIVATE AREA LIGHTING: HPS 150 W Lighting CONTROLLED PRIVATE AREA LIGHTING: HPS 175W Lighting CONTROLLED PRIVATE AREA LIGHTING: HPS 200 W Lighting CONTROLLED PRIVATE AREA LIGHTING: HPS 400W Lighting CONTROLLED PRIVATE AREA LIGHTING: MV 1000W Flood Lighting CONTROLLED PRIVATE AREA LIGHTING: MV 175W Lighting

477

Black River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Black River Electric Coop Place Missouri Utility Id 1775 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting MV 175 W Lighting Outdoor Lighting MV 250 W Lighting Outdoor Lighting MV 400 W Lighting Outdoor Lighting SLV 400 W Direct Lighting Outdoor Lighting SLV 400 W Flood Lighting Outdoor Lighting SVL 100 W Lighting Residential Residential Single Phase General Service Commercial Standard Single-Phase Commercial/Industrial Service Industrial

478

Transportation and Electricity Convergence Session 2: National Lab Perspective (Sub-metering Hardware and Protocols)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation and Electricity Convergence Session 2: National Lab Perspective (Sub-metering Hardware and Protocols) 1912 2012 Theodore Bohn Argonne National Laboratory 4 th Annual Workshop Evs- Transportation and Electricity Convergence Houston, TX Nov 2, 2011 ANL Perspective: Standards are the common thread that enables interoperability of new technologies Detroit was the first American city to use electric taxi cabs, in 1914. Are Indoor/Outdoor Charge Ports New? Detroit's first electric taxi accumulated >46,000 miles first two years. 2 Outdoor Curb-Side Charging Port Indoor charging stations 3 Charging Levels/ Recharge Times (it depends)  AC Level 1 - 120 v/20A outlet (~1600W) - In most garages - Outlet capacity? - Dedicated outlet usually required

479

Lighting and utilities - planning for the future: proceedings  

SciTech Connect

This volume contains selected proceedings of a seminar entitled, Lighting and Utilities: Planning for the Future, held on May 21-22, 1984 in San Francisco, California, and June 5-6, 1984 in Hunt Valley, Maryland to help utility marketing, lighting and customer service executives to understand better the technological changes that affect their lighting loads. The seminar was sponsored by EPRI in cooperation with Baltimore Gas and Electric Company, Pacific Gas and Electric Company, Potomac Electric Power Company, and Public Service Company of Colorado. The seminar addressed the following issues: lighting design, light sources, lighting equipment, lighting maintenance, and utility perspectives. With many changes being proposed to lighting regulations on the national and state level, this publication offers an opportunity for utility executives and others in the lighting community to obtain information on the future direction of lighting technology. Four papers have been entered individually into EDB and ERA; one had been entered previously from other sources. (LTN)

1985-01-01T23:59:59.000Z

480

Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Rebate Program (Colorado) Commercial Lighting Rebate Program (Colorado) Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Retrofit: 50% of equipment cost, $20,000 LED Street Lighting/Induction Street Lighting: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount LED Refrigerated Case Lighting (Top Lighting): $60 per ln ft LED Refrigerated Case Lighting (Case Lighting): $60 per door LED Street Lighting: $44 - $475 per fixture Induction Street Lighting: $33 - $355 per fixture Commercial Lighting Retrofit: $250 per kW saved Provider Poudre Valley REA Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy

Note: This page contains sample records for the topic "indoor electric lights" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

482

Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Residential Efficiency Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program Farmers Electric Cooperative (Kalona) - Residential Efficiency Matching Grant Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Commercial Heating & Cooling Program Info State Iowa Program Type Utility Grant Program Rebate Amount 50% of cost, up to $100 Provider Farmers Electric Cooperative Farmers Electric Cooperative (FEC) offers a grant program which splits the cost of simple energy efficient improvements to the home. The utility will cover 50% of the cost of eligible improvements made by the participating member. Grants are limited to $100 per year. A variety of measures and

483

Electric Efficiency Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Efficiency Standard Electric Efficiency Standard Electric Efficiency Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Program Info State Indiana Program Type Energy Efficiency Resource Standard Provider Indiana Utility Regulatory Commission In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sales by the year 2019. Utilities under IURC jurisdiction must file three-year DSM plans, beginning in July of 2010, which indicate progress and plans for reaching

484

Electricity Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

485

Electric Metering | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Electric Metering Electric Metering Saving Money by Saving Energy The Department of Energy has installed meters in the James Forrestal Building that will enable DOE to measure electricity use and costs in its headquarters facility. You may explore this data further by visiting our Forrestal Metering Dashboard at the following website: http://forrestal.nrel.gov The Forrestal electric meters provide daily read-outs and comparison of data on electricity consumption for overhead lighting and power outlets. The purpose is to measure the electricity used by equipment that building occupants can control. Data is collected and reported by zones throughout Forrestal's north, south and west buildings. See the Forrestal metering zone map, below, for details on the zones.

486

DRAFT 12-5-10 To be submitted to Indoor Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficient Indoor VOC Air Cleaning with Activated Carbon Fiber (ACF) Filters Meera A. Sidheswaran 1 , Hugo Destaillats 1,2, , Douglas P. Sullivan 1 , Sebastian Cohn 1 , and William J. Fisk 1 1 Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory 2 Arizona State University School of Sustainable Engineering and the Built Environment Phoenix, AZ April 2011 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-5176E 2 Energy Efficient Indoor VOC Air Cleaning with

487

Pennyrile Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Pennyrile Rural Electric Coop Pennyrile Rural Electric Coop Jump to: navigation, search Name Pennyrile Rural Electric Coop Place Kentucky Utility Id 14724 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt Metal Halide With Pole Lighting 100 Watt Metal Halide Without Pole Lighting 100 Watt Sodium With Pole Lighting 100 Watt Sodium Without Pole Lighting 175 Watt Metal Halide With Pole Lighting 175 Watt Metal Halide Without Pole Lighting 200 Watt Sodium With Pole Lighting

488

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

489

Search of medical literature for indoor carbon monoxide exposure  

SciTech Connect

This report documents a literature search on carbon monoxide. The search was limited to the medical and toxicological databases at the National Library of Medicine (MEDLARS). The databases searched were Medline, Toxline and TOXNET. Searches were performed using a variety of strategies. Combinations of the following keywords were used: carbon, monoxide, accidental, residential, occult, diagnosis, misdiagnosis, heating, furnace, and indoor. The literature was searched from 1966 to the present. Over 1000 references were identified and summarized using the following abbreviations: The major findings of the search are: (1) Acute and subacute carbon monoxide exposures result in a large number of symptoms affecting the brain, kidneys, respiratory system, retina, and motor functions. (2) Acute and subacute carbon monoxide (CO) poisonings have been misdiagnosed on many occasions. (3) Very few systematic investigations have been made into the frequency and consequences of carbon monoxide poisonings.

Brennan, T.; Ivanovich, M.

1995-12-01T23:59:59.000Z

490

GE Lighting Solutions: Order (2013-SE-4901) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order (2013-SE-4901) GE Lighting Solutions: Order (2013-SE-4901) April 4, 2013 DOE ordered General Electric Lighting Solutions, LLC to pay a 5,360 civil penalty after finding GE...

491

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

2 Value of Electric Lighting Fixture Shipments (Million) Lighting Fixture Type 1985 1990 1995 2000 2001 Residential 786.8 827.6 983.8 983.9 CommercialInstitutional (except...

492

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

Science Conference Proceedings (OSTI)

An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang; Apte, Michael; Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

2008-04-04T23:59:59.000Z

493

Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, effici