National Library of Energy BETA

Sample records for indium tin oxide

  1. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect (OSTI)

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro; PRESTO, Japan Science and Technology Agency , Honcho Kawaguchi, 3320012 Saitama

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436?V, short-circuit current of 24.8?mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5?G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  2. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect (OSTI)

    Yang, Chan-Shan; Tang, Tsung-Ta; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-07

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding ?/2 at 1.0 THz was achieved in a ?517??m-thick cell. The phase shifter exhibits high transmittance (?78%). The driving voltage required for quarter-wave operation is as low as 5.66?V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  3. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  4. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect (OSTI)

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30?V to 0.55?V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  5. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    SciTech Connect (OSTI)

    Doggart, P.; Bristow, N.; Kettle, J.

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (?{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and ?{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  6. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect (OSTI)

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  7. Phosphonic Acid Functionalized Asymmetric Phthalocyanines: Synthesis, Modification of Indium Tin Oxide (ITO), and Charge Transfer

    SciTech Connect (OSTI)

    Polaske, Nathan W.; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayank; Oquendo, Luis E.; Green, John; Ratcliff, Erin L.; Armstrong, Neal R.; Saavedra, S. Scott; McGrath, Dominic V.

    2011-12-20

    Metalated and free-base A?B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  8. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150?nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150?nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  9. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    SciTech Connect (OSTI)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung-Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Noh, Yong-Jin; Na, Seok-In [Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14, Deokjin-dong, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of)

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8?nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55??10{sup ?5} ? cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54??10{sup ?3} ?{sup ?1}, comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10?nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.

  10. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  11. Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Geyer, Ulf; Hauss, Julian; Riedel, Boris; Gleiss, Sebastian; Lemmer, Uli; Gerken, Martina

    2008-11-01

    We describe a cost-efficient and large area scalable production process of organic light-emitting diodes (OLEDs) with photonic crystals (PCs) as extraction elements for guided modes. Using laser interference lithography and physical plasma etching, we texture the indium tin oxide (ITO) electrode layer of an OLED with one- and two-dimensional PC gratings. By optical transmission measurements, the resonant mode of the grating is shown to have a drift of only 0.4% over the 5 mm length of the ITO grating. By changing the lattice constant between 300 and 600 nm, the OLED emission angle of enhanced light outcoupling is tailored from -24.25 deg. to 37 deg. At these angles, the TE emission is enhanced up to a factor of 2.14.

  12. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?

  13. Hydrogen Sensor Based on Yttria-Stabilized Zirconia Electrolyte and Tin-Doped Indium Oxide Sensing Electrode

    SciTech Connect (OSTI)

    Martin, L P; Glass, R S

    2004-03-26

    A solid state electrochemical sensor has been developed for hydrogen leak detection in ambient air. The sensor uses an yttria-stabilized electrolyte with a tin-doped indium oxide sensing electrode and a Pt reference electrode. Excellent sensitivity, and response time of one second or less, are reported for hydrogen gas over the concentration range of 0.03 to 5.5% in air. Cross-sensitivity to relative humidity and to CO{sub 2} are shown to be low. The response to methane, a potentially significant source of interference for such a sensor, is significantly less than that for hydrogen. The sensor shows good reproducibility and was unaffected by thermal cycling over the course of this investigation. The effects of sensing electrode thickness and thermal aging are also reported, and the sensing mechanism is discussed. The sensor is intended for use in vehicles powered by hydrogen fuel cells and hydrogen internal combustion engines. Those vehicles will use and/or store significant quantities of hydrogen, and will require safety sensor for monitoring potential hydrogen leakage in order to ensure passenger safety.

  14. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  15. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup }1{sup }) GaN substrates

    SciTech Connect (OSTI)

    Pourhashemi, A. Farrell, R. M.; Cohen, D. A.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup }1{sup }) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451?nm at room temperature, an output power of 2.52?W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34?A. The measured differential quantum efficiency was 50%.

  16. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect (OSTI)

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25?nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850?C for 10?min under atmospheric conditions, the resistivity of the ITO film was 5.2?m??cm. The fabricated LED up to 3?mm square surface emitted red light when the on-voltage was exceeded.

  17. Indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  18. Amorphous tin-cadmium oxide films and the production thereof

    DOE Patents [OSTI]

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  19. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  20. Macro- and microscopic properties of strontium doped indium oxide

    SciTech Connect (OSTI)

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T?=?20300?C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x?=?10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x?=?10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100200?C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3??10{sup ?13}?cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  1. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOE Patents [OSTI]

    Seager, Carleton H. (1304 Onava Ct., NE., Albuquerque, NM 87112); Evans, Jr., Joseph Tate (13609 Verbena Pl., NE., Albuquerque, NM 87112)

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  2. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOE Patents [OSTI]

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  3. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  4. Synthesis and Raman spectrum of crystalline indium oxide micro-rods with rectangular cross-section

    SciTech Connect (OSTI)

    Yadav, Kavita Mehta, B. R. Singh, J. P.

    2014-04-24

    Indium oxide (IO) micro-rods with rectangular cross section were synthesized without catalyst in chemical vapor deposition (CVD) system by carbothermal reduction of indium oxide at 900 C. The rectangular micro-rods (RMRs) were grown on Si substrate in presence of water vapors and Ar atmosphere. Water was used as oxidizing reagent which controls the In/O stoichiometry in RMRs. The IO RMRs have dimensions of about 20 ?m in length and about 1 ?m width. The growth process involved in formation of RMRs is vapor-solid (VS) mechanism. Raman analysis was performed to obtain the phonon modes of the RMRs and the peaks of Raman spectrum were indexed to the modes being associated with bcc?In{sub 2}O{sub 3}.

  5. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W.

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are reached concerning the factors affecting the growth rate in on-line APCVD reactors. In addition, a substantial body of data was generated that can be used to model many different industrial tin oxide coating processes. These data include the most extensive compilation of thermochemistry for gas-phase tin-containing species as well as kinetic expressions describing tin oxide growth rates over a wide range of temperatures, pressures, and reactant concentrations.

  6. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone

    SciTech Connect (OSTI)

    Kannan Selvaraj, Sathees; Feinerman, Alan; Takoudis, Christos G.

    2014-01-15

    In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac){sub 2}], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1??0.01?nm/cycle within the wide ALD temperature window of 175300?C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure, refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnO{sub x}Si interface. The resistivity of the SnO{sub x} films was calculated to be 0.3?? cm. Results of this work demonstrate the possibility of introducing Sn(acac){sub 2} as tin precursor to deposit conducting ALD SnO{sub x} thin films on a silicon surface, with clean interface and no formation of undesired SiO{sub 2} or other interfacial reaction products, for transparent conducting oxide applications.

  7. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; Gajdardziska-Josifovska, Marija; Chen, Junhong

    2006-01-01

    Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less

  8. Method of forming electrical pathways in indium-tin-oxide coatings

    DOE Patents [OSTI]

    Haynes, T.E.

    1996-12-03

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.

  9. Method of forming electrical pathways in indium-tin-oxide coatings

    DOE Patents [OSTI]

    Haynes, T.E.

    1997-03-04

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.

  10. Method of forming electrical pathways in indium-tin-oxide coatings

    DOE Patents [OSTI]

    Haynes, Tony E. (Knoxville, TN)

    1996-01-01

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.

  11. Method of forming electrical pathways in indium-tin-oxide coatings

    DOE Patents [OSTI]

    Haynes, Tony E. (Knoxville, TN)

    1997-01-01

    An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.

  12. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  13. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    SciTech Connect (OSTI)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-15

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 {epsilon}/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10{sup -3} {Omega}{sup -1} on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  14. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    SciTech Connect (OSTI)

    Zhang, Yan; Yu, Jianqiang; Sun, Kai; Zhu, Yukun; Bu, Yuyu; Chen, Zhuoyuan

    2014-05-01

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: Indium oxide performed novel application under visible light. Indium oxide by solgel method behaved better photoelectrochemical properties. Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel by In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both solgel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.

  15. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, Andr

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 ?cm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  16. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect (OSTI)

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  17. Sensing behaviour of nanosized zinc-tin composite oxide towards liquefied petroleum gas and ethanol

    SciTech Connect (OSTI)

    Singh, Ravi Chand; Singh, Onkar; Singh, Manmeet Pal; Chandi, Paramdeep Singh; Thangaraj, R.

    2010-09-15

    A chemical route has been used to synthesize composite oxides of zinc and tin. An ammonia solution was added to equal amounts of zinc and tin chloride solutions of same molarities to obtain precipitates. Three portions of these precipitates were annealed at 400, 600 and 800 {sup o}C, respectively. Results of X-ray diffraction and transmission electron microscopy clearly depicted coexistence of phases of nano-sized SnO{sub 2}, ZnO, Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}. The effect of annealing on structure, morphology and sensing has been observed as well. It has been observed that annealing promoted growth of Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3} at the expense of zinc. The sensing response of fabricated sensors from these materials to 250 ppm LPG and ethanol has been investigated. The sensor fabricated from powder annealed at 400 {sup o}C responded better to LPG than ethanol.

  18. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nmmore » (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less

  19. Advanced materials for solid oxide fuel cells: Hafnium-Praseodymium-Indium Oxide System

    SciTech Connect (OSTI)

    Bates, J.L.; Griffin, C.W.; Weber, W.J.

    1988-06-01

    The HfO/sub 2/-PrO/sub 1.83/-In/sub 2/O/sub 3/ system has been studied at the Pacific Northwest Laboratory to develop alternative, highly electrically conducting oxides as electrode and interconnection materials for solid oxide fuel cells. A coprecipitation process was developed for synthesizing single-phase, mixed oxide powders necessary to fabricate powders and dense oxides. A ternary phase diagram was developed, and the phases and structures were related to electrical transport properties. Two new phases, an orthorhombic PrInO/sub 3/ and a rhombohedral Hf/sub 2/In/sub 2/O/sub 7/ phase, were identified. The highest electronic conductivity is related to the presence of a bcc, In/sub 2/O/sub 3/ solid solution (ss) containing HfO/sub 2/ and PrO/sub 1.83/. Compositions containing more than 35 mol % of the In/sub 2/O/sub 3/ ss have electrical conductivities greater than 10/sup /minus/1/ (ohm-cm)/sup /minus/1/, and the two or three phase structures that contain this phase appear to exhibit mixed electronic-ionic conduction. The high electrical conductivities and structures similar to the Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/(HfO/sub 2/) electrolyte give these oxides potential for use as cathodes in solid oxide fuel cells. 21 refs.

  20. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes : synthesis and optical and electrical properties.

    SciTech Connect (OSTI)

    Yang, Z.; Gao, S.; Li, W.; Vlasko-Vlasov, V.; Welp, U.; Kwok, W.-K.; Xu, T.

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO{sub 2} layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO{sub 2}-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  1. Tailoring of absorption edge by thermal annealing in tin oxide thin films

    SciTech Connect (OSTI)

    Thakur, Anup; Gautam, Sanjeev; Kumar, Virender; Chae, K. H.; Lee, Ik-Jae; Shin, Hyun Joon

    2015-05-15

    Tin oxide (SnO{sub 2}) thin films were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates in different oxygen-to-argon gas-flow ratio (O{sub 2}-to-Ar = 0%, 10%, 50%). All films were deposited at room temperature and fixed working pressures, 10 mTorr. The X-ray diffraction (XRD) measurement suggests that all films were crystalline in nature except film deposited in argon environment. Thin films were annealed in air at 200 C, 400 C and 600 C for two hours. All films were highly transparent except the film deposited only in the argon environment. It was also observed that transparency was improved with annealing due to decrease in oxygen vacancies. Atomic force microscopy (AFM), results showed that the surface of all the films were highly flat and smooth. Blue shift was observed in the absorption edge with annealing temperature. It was also observed that there was not big change in the absorption edge with annealing for films deposited in 10% and 50% oxygen-to-argon gas-flow ratio.

  2. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    SciTech Connect (OSTI)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-04-09

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H{sub 2} in N{sub 2}. The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  3. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO{sub 3}/Pt heterostructure

    SciTech Connect (OSTI)

    Fan, Zhen; Yao, Kui E-mail: msewangj@nus.edu.sg; Wang, John E-mail: msewangj@nus.edu.sg

    2014-10-20

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In{sub 2}O{sub 3}-SnO{sub 2}/ZnO/BiFeO{sub 3}/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (J{sub sc}) of 340??A/cm{sup 2} and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n{sup +}-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  4. Recovery from ultraviolet-induced threshold voltage shift in indium gallium zinc oxide thin film transistors by positive gate bias

    SciTech Connect (OSTI)

    Liu, P.; Chen, T. P.; Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2013-11-11

    The effect of short-duration ultraviolet (UV) exposure on the threshold voltage (V{sub th}) of amorphous indium gallium zinc oxide thin film transistors (TFTs) and its recovery characteristics were investigated. The V{sub th} exhibited a significant negative shift after UV exposure. The V{sub th} instability caused by UV illumination is attributed to the positive charge trapping in the dielectric layer and/or at the channel/dielectric interface. The illuminated devices showed a slow recovery in threshold voltage without external bias. However, an instant recovery can be achieved by the application of positive gate pulses, which is due to the elimination of the positive trapped charges as a result of the presence of a large amount of field-induced electrons in the interface region.

  5. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect (OSTI)

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  6. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    SciTech Connect (OSTI)

    Yang, Seong-Uk; Jung, Woo-Shik; Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho; Park, Jin-Hong

    2014-02-01

    Highlights: We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. InAs and InGaAs formed by this process decrease an electron barrier height. Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, JV measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  7. One-pot synthesis of highly mesoporous antimony-doped tin oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide from interpenetrating inorganicorganic networks Source: Journal of Materials Chemistry Year: 2011 Volume: 21 Pages: 13232-13240 ABSTRACT: Highly mesoporous antimony-doped...

  8. Copper Indium Gallium Diselenide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Copper Indium Gallium Diselenide Copper Indium Gallium Diselenide Graphic showing the five layers of a CIGS PV cell: glass (or metal foil or plastics), Mo, CIGS, CdS, and transparent conductive oxide. DOE supports innovative research focused on overcoming the current technological and commercial barreirs for copper indium gallium diselenide [Cu(InxGa1-x)Se2], or CIGS, solar cells. A list of current projects, summary of the benefits, and discussion on the production and manufacturing of this

  9. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect (OSTI)

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500?nm in thickness were single crystalline in the ?-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent ??=?0.72??0.02 and a dynamic growth roughness exponent ??=?0.22??0.02 were determined. The value of ? and ? are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 3001100?nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  10. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    SciTech Connect (OSTI)

    Liu, P. Chen, T. P. Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2?V is ?10{sup 9} ? for a device with the radius of 50??m) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2?V is ?10{sup 3} ? for the radius of 50??m) by applying a voltage pulse (e.g., 10?V/1??s). The WORM device has good data-retention and reading-endurance capabilities.

  11. Effects of low-temperature (120?C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    SciTech Connect (OSTI)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae; Oh, Byung Su; Joo, Min-Kyu; Ahn, Seung-Eon

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120?C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  12. Synthesis of transparent conducting oxide coatings

    DOE Patents [OSTI]

    Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

    2010-05-04

    A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

  13. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended...

  14. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (SXRD) studies revealed that the indium microstructure is typical...

  15. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stresses, defects, and dislocations. In addition, the small as-deposited indium grains grow into large crystals at ambient conditions. Indium and its compounds have many...

  16. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale

  17. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    SciTech Connect (OSTI)

    Mesquita, Anderson Fuzer; Porto, Arilza de Oliveira; Magela de Lima, Geraldo; Paniago, Roberto; Ardisson, Jos Domingos

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ? Synthesis of cadmium and tin telluride. ? Chemical route to obtain pure crystalline cadmium and tin telluride. ? Effect of the annealing temperature on the crystalline phases. ? Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mssbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 C has proven to be useful to reduce the amount of oxide produced as side product.

  18. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOE Patents [OSTI]

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  19. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  20. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  1. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  2. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  3. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  4. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  5. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  6. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have a significant impact on the commercial success of these novel devices. Scanning electron microscopy image of an indium pillar characterized by scanning x-ray...

  7. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical...

  8. Polaron absorption in amorphous tungsten oxide films

    SciTech Connect (OSTI)

    Berggren, Lars; Azens, Andris; Niklasson, Gunnar A.

    2001-08-15

    Amorphous thin films of tungsten oxide were deposited by sputtering onto glass substrates covered by conductive indium--tin oxide. The density and stoichiometry were determined by Rutherford backscattering spectrometry. Lithium ions were intercalated electrochemically into the films. The optical reflectance and transmittance were measured in the wavelength range from 0.3 to 2.5 {mu}m, at a number of intercalation levels. The polaron absorption peak becomes more symmetric and shifts to higher energies until an intercalation level of 0.25 to 0.3 Li{sup +}/W, where a saturation occurs. The shape of the polaron peak is in very good agreement with the theory of Bryksin [Fiz. Tverd. Tela 24, 1110 (1982)]. Within this model, the shift of the absorption peak is interpreted as an increase in the Fermi level of the material as more Li ions are inserted. {copyright} 2001 American Institute of Physics.

  9. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical...

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties of colloidal indium tin oxide (ITO) nanocrystals. Significance and Impact Understanding the connection between the structural and optoelectronic properties...

  11. Multifunctional oxides for integrated manufacturing of efficient graphene electrodes for organic electronics

    SciTech Connect (OSTI)

    Kidambi, Piran R.; Robertson, John; Hofmann, Stephan; Weijtens, Christ; Meyer, Jens

    2015-02-09

    Using multi-functional oxide films, we report on the development of an integration strategy for scalable manufacturing of graphene-based transparent conducting electrodes (TCEs) for organic electronics. A number of fundamental and process challenges exists for efficient graphene-based TCEs, in particular, environmentally and thermally stable doping, interfacial band engineering for efficient charge injection/extraction, effective wetting, and process compatibility including masking and patterning. Here, we show that all of these challenges can be effectively addressed at once by coating graphene with a thin (>10?nm) metal oxide (MoO{sub 3} or WO{sub 3}) layer. We demonstrate graphene electrode patterning without the need for conventional lithography and thereby achieve organic light emitting diodes with efficiencies exceeding those of standard indium tin oxide reference devices.

  12. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOE Patents [OSTI]

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  13. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  14. Enhanced electron collection in TiO{sub 2} nanoparticle-based dye-sensitized solar cells by an array of metal micropillars on a planar fluorinated tin oxide anode.

    SciTech Connect (OSTI)

    Yang, Z.; Xu, T.; Gao, S.; Welp, U.; Kwok, W.-K.; Materials Science Division; Northern Illinois Univ.

    2010-01-01

    Charge collection efficiency exhibits a strong influence on the overall efficiency of nanocrystalline dye-sensitized solar cells. It highly depends on the quality of the TiO{sub 2} nanoparticulate layer in the photoanode, and hence most efforts have been directed on the improvement and deliberate optimization of the quality the TiO{sub 2} nanocrystalline layer. In this work, we aim to reduce the electron collection distance between the place of origin in the TiO{sub 2} layer to the electron-collecting TCO anode as an alternative way to enhance the charge collection efficiency. We use an array of metal micropillars on fluorine-doped tin oxide (FTO) as the collecting anode. Under the same conditions, the Ni micropillar-on-FTO-based dye-sensitized solar cells (DSSCs) exhibit a remarkably enhanced current density, which is approximately 1.8 times greater compared with the bare FTO-based DSSCs. Electron transport was investigated using the electrochemical impedance spectroscopy technique. Our results reveal that the electron collection time in Ni micropillar-on-FTO-based DSSCs is much shorter than that of bare FTO-based DSSCs, indicating faster electron collection due to the Ni micropillars buried in TiO{sub 2} nanoparticulate layer that serve as electron transport shortcuts. As a result, the charge collection efficiency was enhanced by 15?20% with respect to that of the bare FTO-based DSSCs. Consequently, the overall energy conversion efficiency was found to increase from 2.6% in bare FTO-based DSSCs to 4.8% in Ni micropillar-on-FTO-based DSSCs for a 6 {micro}m-thick TiO{sub 2} NP film.

  15. Immobilization of azurin with retention of its native electrochemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties at alkylsilane self-assembled monolayer modified indium tin oxide Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide Authors: Ashur, I. and Jones, A. K. Title: Immobilization of azurin with retention of its native electrochemical properties at alkylsilane self-assembled monolayer modified indium tin oxide Source: Electrochimica Acta Year: 2012 Volume: 85 Pages: 169-174 ABSTRACT: Indium

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smarter Nanocrystals of indium tin oxide (shown here in blue) embedded in a glassy matrix of niobium oxide (green) form a composite material that can switch between...

  17. Method of preparing doped oxide catalysts for lean NOx exhaust

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-09

    The lean NOx catalyst includes a substrate, an oxide support material, preferably .gamma.-alumina deposited on the substrate and a metal or metal oxide promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium cerium, and vanadium, and oxides thereof, and any combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between 80 and 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to about 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  18. ?-tin?Imma?sh Phase Transitions of Germanium (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Publisher's Accepted Manuscript: -tinImmash Phase Transitions of Germanium Prev Next Title: -tinImmash Phase Transitions of Germanium...

  19. Consolidation of tin sulfide chalcogels and xerogels with and...

    Office of Scientific and Technical Information (OSTI)

    Consolidation of tin sulfide chalcogels and xerogels with and without adsorbed iodine Citation Details In-Document Search Title: Consolidation of tin sulfide chalcogels and ...

  20. Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems

    DOE Patents [OSTI]

    Park, Paul W.

    2004-03-16

    A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably .gamma.-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The .gamma.-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m.sup.2 /g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the .gamma.-alumina is prepared by a sol-gel method, with the metal doping of the .gamma.-alumina preferably accomplished using an incipient wetness impregnation technique.

  1. Copper-silver-titanium-tin filler metal for direct brazing of structural ceramics

    DOE Patents [OSTI]

    Moorhead, Arthur J. (Knoxville, TN)

    1988-04-05

    A method of joining ceramics and metals to themselves and to one another at about 800.degree. C. is described using a brazing filler metal consisting essentially of 35 to 50 at. % copper, 40 to 50 at. % silver, 1 to 15 at. % titanium, and 2 to 8 at. % tin. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  2. Therapeutic tin-117m compositions

    DOE Patents [OSTI]

    Srivastava, Suresh C.; Meinken, George E.; Mausner, Leonard F.; Atkins, Harold L.

    2003-01-01

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients.

  3. Platelet composite coatings for tin whisker mitigation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rohwer, Lauren E. S.; Martin, James E.

    2015-09-14

    In this study, reliable methods for tin whisker mitigation are needed for applications that utilize tin-plated commercial components. Tin can grow whiskers that can lead to electrical shorting, possibly causing critical systems to fail catastrophically. The mechanisms of tin whisker growth are unclear and this makes prediction of the lifetimes of critical components uncertain. The development of robust methods for tin whisker mitigation is currently the best approach to eliminating the risk of shorting. Current mitigation methods are based on unfilled polymer coatings that are not impenetrable to tin whiskers. In this paper we report tin whisker mitigation results formore » several filled polymer coatings. The whisker-penetration resistance of the coatings was evaluated at elevated temperature and high humidity and under temperature cycling conditions. The composite coatings comprised Ni and MgF2-coated Al/Ni/Al platelets in epoxy resin or silicone rubber. In addition to improved whisker mitigation, these platelet composites have enhanced thermal conductivity and dielectric constant compared with unfilled polymers.« less

  4. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

  5. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sren; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  6. Oxide

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Oxide is a modular framework for feature extraction and analysis of executable files. Oxide is useful in a variety of reverse engineering and categorization tasks relating to executable content.

  7. Sputtering of neutral and ionic indium clusters

    SciTech Connect (OSTI)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-10-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident {approximately}4 keV Ar{sup +} ions. In the secondary neutral mass spectra, indium clusters as large as In{sub 32} were observed. In the secondary ion mass spectra, indium clusters up to In{sub 18}{sup +} were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be {minus}5.6 and {minus}4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions.

  8. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freakley, Simon J.; He, Qian; Harrhy, Jonathan H.; Lu, Li; Crole, David A.; Morgan, David J.; Ntainjua, Edwin N.; Edwards, Jennifer K.; Carley, Albert F.; Borisevich, Albina Y.; et al

    2016-02-25

    The direct synthesis of hydrogen peroxide (H2O2 ) from H2 and O2 represents a potentially atom-efficient alternative to the current industrial indirect process. We show that the addition of tin to palladium catalysts coupled with an appropriate heat treatment cycle switches off the sequential hydrogenation and decomposition reactions, enabling selectivities of >95% toward H2O2 . This effect arises from a tin oxide surface layer that encapsulates small Pd-rich particles while leaving larger Pd-Sn alloy particles exposed. In conclusion, we show that this effect is a general feature for oxide-supported Pd catalysts containing an appropriate second metal oxide component, and wemore » set out the design principles for producing high-selectivity Pd-based catalysts for direct H2O2 production that do not contain gold.« less

  9. Reduction And Stabilization (Immobilization) Of Pertechnetate To An Immobile Reduced Technetium Species Using Tin(II) Apatite

    SciTech Connect (OSTI)

    Duncan, J. B.

    2012-11-02

    Synthetic tin(II)apatite reduces pertechnetate from the mobile +7 to a non-mobile oxidation state and sequesters the technetium, preventing re-oxidization to mobile +7 state under acidic or oxygenated conditions. Previous work indicated technetium reacted Sn(II)apatite can achieve an ANSI leachability index of 12.8 in Cast Stone. An effect by pH is observed on the distribution coefficient, the highest distribution coefficient being l70,900 observed at pH levels of 2.5 to 10.2. The tin apatite was resistant to releasing technetium under test conditions.

  10. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect (OSTI)

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  11. 99M-Technetium labeled tin colloid radiopharmaceuticals

    DOE Patents [OSTI]

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1976-07-06

    An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.

  12. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    SciTech Connect (OSTI)

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.

  13. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.« less

  14. Microwave plasma CVD of NANO structured tin/carbon composites

    DOE Patents [OSTI]

    Marcinek, Marek (Warszawa, PL); Kostecki, Robert (Lafayette, CA)

    2012-07-17

    A method for forming a graphitic tin-carbon composite at low temperatures is described. The method involves using microwave radiation to produce a neutral gas plasma in a reactor cell. At least one organo tin precursor material in the reactor cell forms a tin-carbon film on a supporting substrate disposed in the cell under influence of the plasma. The three dimensional carbon matrix material with embedded tin nanoparticles can be used as an electrode in lithium-ion batteries.

  15. Low frequency pressure modulation of indium antimonide

    SciTech Connect (OSTI)

    Hallock, Gary A.; Meier, Mark A.

    2012-07-15

    A lumped parameter resonator capable of generating megapascal pressures at low frequency (kilohertz) is described. Accelerometers are used to determine the applied pressure, and are calibrated with a piezoelectric sample. A laser diagnostic was also developed to measure the pressure in semiconductor samples through the band gap pressure dependence. In addition, the laser diagnostic has been used to measure the attenuation coefficient {alpha} of commercially available indium antimonide (InSb) wafers. The resonator and laser diagnostic have been used with InSb samples to verify the pressure response.

  16. Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol

    SciTech Connect (OSTI)

    Mahapure, Sonali A.; Ambekar, Jalindar D.; Nikam, Latesh K.; Marimuthu, R.; Kulkarni, Milind V.

    2011-05-15

    Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV) by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.

  17. NMR studies of metallic tin confined within porous matrices

    SciTech Connect (OSTI)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  18. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, David L.; Nemeth, William; Grover, Sachit; Norman, Andrew; Yuan, Hao-Chih; Lee, Benjamin G.; LaSalvia, Vincenzo; Stradins, Paul

    2014-01-01

    We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0,contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0,contact) and the specificmore » contact resistivity (ρcontact) using a TLM pattern. The best ITO/SiO2 passivated contact in this study has J0,contact = 92.5 fA/cm2 and ρcontact = 11.5 mOhm-cm2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0,contact, ρcontact) values. The ITO/SiO2 contacts are found to have a higher J0,contact, but a similar ρcontact compared to the best reported passivated contacts.« less

  19. NREL: Process Development and Integration Laboratory - Copper Indium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallium Diselenide Cluster Tool Capabilities Copper Indium Gallium Diselenide Cluster Tool Capabilities The Copper Indium Gallium Diselenide (CIGS) cluster tool in the Process Development and Integration Laboratory offers powerful capabilities with integrated chambers for depositing, processing, measuring, and characterizing photovoltaic materials and devices. You can read more on the rationale for developing this cluster tool and its capabilities, and check out the National Solar Technology

  20. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zheng, M., Yu, Z., Seok, T.J., Chen, Y-Z., Kapadia, R., Takei, K., Aloni, S., Ager, J.W., Wu, M., Chueh, Y-L., Javey, A. "High optical quality polycrystalline indium phosphide grown on metal substrates by

  1. Picture of the Week: Bismuth and tin on the rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory are using state-of-the-art experimental techniques to see and understand how microstructures evolve during materials processing. February 15, 2016 Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory are using state-of-the-art experimental techniques to see and understand how microstructures evolve during materials processing. Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory

  2. Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryAn approach developed by Robert Kostecki and Marek Marcinek of Berkeley Lab has given rise to a new generation of nanostructured carbon-tin films that can be produced quickly, efficiently, and inexpensively. These binderless carbon/tin thin-film anodes provide enhanced charge capacity and excellent cycleability in

  3. Structure Evolution and Pulverization of Tin Nanoparticles during...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Structure Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling. Citation Details In-Document Search Title: Structure Evolution ...

  4. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  5. Pioneer Materials Inc PMI | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 90505 Product: US-based manufacturer of non-silicon feedstock material for thin-film PV products such as zinc-oxide and indium-tin-oxide. Coordinates:...

  6. Molten tin reprocessing of spent nuclear fuel elements

    DOE Patents [OSTI]

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  7. Microporous SiO{sub 2} with huge electric-double-layer capacitance for

    Office of Scientific and Technical Information (OSTI)

    low-voltage indium tin oxide thin-film transistors (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Microporous SiO{sub 2} with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors Citation Details In-Document Search Title: Microporous SiO{sub 2} with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors Electric-double-layer (EDL) effect is observed in microporous SiO{sub 2}

  8. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOE Patents [OSTI]

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  9. Tin-silver-bismuth solders for electronics assembly

    DOE Patents [OSTI]

    Vianco, Paul T. (Albuquerque, NM); Rejent, Jerome A. (Albuquerque, NM)

    1995-01-01

    A lead-free solder alloy for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0tin effective to depress the melting point of the tin-silver composition to a desired level. Melting point ranges from about 218.degree. C. down to about 205.degree. C. depending an the amount of bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10.degree. C./min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight).

  10. Tin-silver-bismuth solders for electronics assembly

    DOE Patents [OSTI]

    Vianco, P.T.; Rejent, J.A.

    1995-08-08

    A lead-free solder alloy is disclosed for electronic assemblies composed of a eutectic alloy of tin and silver with a bismuth addition, x, of 0tin effective to depress the melting point of the tin-silver composition to a desired level. Melting point ranges from about 218 C down to about 205 C depending an the amount of bismuth added to the eutectic tin-silver alloy as determined by DSC analysis, 10 C/min. A preferred alloy composition is 91.84Sn-3.33Ag-4.83Bi (weight percent based on total alloy weight). 4 figs.

  11. Structure Evolution and Pulverization of Tin Nanoparticles during

    Office of Scientific and Technical Information (OSTI)

    Lithiation-Delithiation Cycling. (Journal Article) | SciTech Connect Journal Article: Structure Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling. Citation Details In-Document Search Title: Structure Evolution and Pulverization of Tin Nanoparticles during Lithiation-Delithiation Cycling. Abstract not provided. Authors: Jungjohann, Katherine Leigh ; Liu, Yang ; Wang, Jiangwei ; Fan, Feifei ; Mao, Scott ; Liu, Xiaohua ; Zhu, Ting Publication Date:

  12. Template-free electrochemical synthesis of tin nanostructures. (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Template-free electrochemical synthesis of tin nanostructures. Citation Details In-Document Search Title: Template-free electrochemical synthesis of tin nanostructures. Abstract not provided. Authors: Mackay, David T. ; Janish, Matthew T. ; Sahaym, Uttara ; Kotula, Paul Gabriel ; Jungjohann, Katherine Leigh ; Carter, Clive Barry ; Norton, M. Grant Publication Date: 2014-12-01 OSTI Identifier: 1185003 Report Number(s): SAND2014-20374J Journal ID: ISSN 0022--2461;

  13. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  14. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    SciTech Connect (OSTI)

    Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.; Griego, Jeffrey Randall; Reinovsky, Robert Emil; Turchi, Peter John

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.

  15. Method for enhancing the solubility of boron and indium in silicon

    DOE Patents [OSTI]

    Sadigh, Babak (Oakland, CA); Lenosky, Thomas J. (Pleasanton, CA); Diaz de la Rubia, Tomas (Danville, CA); Giles, Martin (Hillsborough, OR); Caturla, Maria-Jose (Livermore, CA); Ozolins, Vidvuds (Pleasanton, CA); Asta, Mark (Evanston, IL); Theiss, Silva (St. Paul, MN); Foad, Majeed (Santa Clara, CA); Quong, Andrew (Livermore, CA)

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  16. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOE Patents [OSTI]

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  17. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  18. Multifunctional Platelet Composites for Tin Whisker Mitigation - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Multifunctional Platelet Composites for Tin Whisker Mitigation Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (555 KB) <br type="_moz" /> SEM image showing in-plane orientation of platelets in Sandia&#39;s multifunctional platelet composite SEM image showing in-plane orientation of platelets in Sandia's

  19. Surface and interfacial reaction study of InAs(100)-crystalline oxide interface

    SciTech Connect (OSTI)

    Zhernokletov, D. M.; Laukkanen, P.; Dong, H.; Brennan, B.; Kim, J.; Galatage, R. V.; Yakimov, M.; Tokranov, V.; Oktyabrsky, S.; Wallace, R. M.; Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080

    2013-05-27

    A crystalline oxide film on InAs(100) is investigated with in situ monochromatic x-ray photoelectron spectroscopy and low energy electron diffraction before and after in situ deposition of Al{sub 2}O{sub 3} by atomic layer deposition (ALD) as well as upon air exposure. The oxidation process leads to arsenic and indium trivalent oxidation state formation. The grown epitaxial oxide-InAs interface is stable upon ALD reactor exposure; however, trimethyl aluminum decreases oxidation states resulting in an unreconstructed surface. An increase in oxide concentration is also observed upon air exposure suggesting the crystalline oxide surface is unstable.

  20. Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries Argonne National Laboratory Contact ANL About This Technology TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right)<br /> TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right) Technology

  1. Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3 with Tin |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3 with Tin Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3 with Tin Application to practical p-type thermoelectric tin alloys for heat pumps. PDF icon heremans.pdf More Documents & Publications The tin impurity in Bi0.5Sb1.5Te3 alloys Strategies for High Thermoelectric zT in Bulk Materials Strategies for High Thermoelectric zT in Bulk Materials

  2. Coating power RF components with TiN

    SciTech Connect (OSTI)

    Kuchnir, M.; Hahn, E.

    1995-03-01

    A facility for coating RF power components with thin films of Ti and/or TiN has been in operation for some time at Fermilab supporting the Accelerator Division RF development work and the TESLA program. It has been experimentally verified that such coatings improve the performance of these components as far as withstanding higher electric fields. This is attributed to a reduction in the secondary electron emission coefficient of the surfaces when coated with a thin film containing titanium. The purpose of this Technical Memorandum is to describe the facility and the procedure used.

  3. Hydrogenation of palladium rich compounds of aluminium, gallium and indium

    SciTech Connect (OSTI)

    Kohlmann, H.

    2010-02-15

    Palladium rich intermetallic compounds of aluminium, gallium and indium have been studied before and after hydrogenation by powder X-ray diffraction and during hydrogenation by in situ thermal analysis (DSC) at hydrogen gas pressures up to 39 MPa and temperatures up to 700 K. Very weak DSC signals and small unit cell increases of below 1% for AlPd{sub 2}, AlPd{sub 3}, GaPd{sub 2}, Ga{sub 5}Pd{sub 13}, In{sub 3}Pd{sub 5}, and InPd{sub 2} suggest negligible hydrogen uptake. In contrast, for both tetragonal modifications of InPd{sub 3} (ZrAl{sub 3} and TiAl{sub 3} type), heating to 523 K at 2 MPa hydrogen pressure leads to a rearrangement of the intermetallic structure to a cubic AuCu{sub 3} type with an increase in unit cell volume per formula unit by 3.6-3.9%. Gravimetric analysis suggests a composition InPd{sub 3}H{sub a}pprox{sub 0.8} for the hydrogenation product. Very similar behaviour is found for the deuteration of InPd{sub 3}. - Graphical abstract: In situ differential scanning calorimetry of the hydrogenation of tetragonal InPd{sub 3} (ZrAl{sub 3} type) at 1.3 MPa hydrogen pressure.

  4. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  5. Couplings between dipole and quadrupole vibrations in tin isotopes

    SciTech Connect (OSTI)

    Simenel, C.; Chomaz, Ph.

    2009-12-15

    We study the couplings between collective vibrations such as the isovector giant dipole and isoscalar giant quadrupole resonances in tin isotopes in the framework of the time-dependent Hartree-Fock theory with a Skyrme energy density functional. These couplings are a source of anharmonicity in the multiphonon spectrum. In particular, the residual interaction is known to couple the isovector giant dipole resonance with the isoscalar giant quadrupole resonance built on top of it, inducing a nonlinear evolution of the quadrupole moment after a dipole boost. This coupling also affects the dipole motion in a nucleus with a static or dynamical deformation induced by a quadrupole constraint or boost, respectively. Three methods associated with these different manifestations of the coupling are proposed to extract the corresponding matrix elements of the residual interaction. Numerical applications of the different methods to {sup 132}Sn are in good agreement with each other. Finally, several tin isotopes are considered to investigate the role of isospin and mass number on this coupling. A simple 1/A dependence of the residual matrix elements is found with no noticeable contribution from the isospin. This result is interpreted within the Goldhaber-Teller model.

  6. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOE Patents [OSTI]

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  7. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  8. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  9. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  10. Germanium Oxide Nanoparticlesfor Superior Battery Electrodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Germanium Oxide Nanoparticlesfor Superior Battery Electrodes Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Compared to the graphite found in some batteries, similar elements such as tin, silicon, and germanium have much higher theoretical capacities for lithium ions, making them strong candidates for electrode materials. These new amorphous germanium

  11. Preparation and characterization of indium zinc oxide thin films by electron beam evaporation technique

    SciTech Connect (OSTI)

    Keshavarzi, Reza [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of) [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Nanotechnology Engineering, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Fallah, Hamid Reza; Dastjerdi, Mohammad Javad Vahid; Modayemzadeh, Hamed Reza [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-04-15

    In this work, the preparation of In{sub 2}O{sub 3}-ZnO thin films by electron beam evaporation technique on glass substrates is reported. Optical and electrical properties of these films were investigated. The effect of dopant amount and annealing temperature on the optical and electrical properties of In{sub 2}O{sub 3}-ZnO thin films was also studied. Different amount of ZnO was used as dopant and the films were annealed at different temperature. The results showed that the most crystalline, transparent and uniform films with lowest resistivity were obtained using 25 wt% of ZnO annealed at 500 {sup o}C.

  12. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    SciTech Connect (OSTI)

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia; Tok, Eng Soon

    2015-06-14

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal ?100? azimuths are formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41?eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to cellular precipitation. This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.

  13. Spectroscopic properties of colloidal indium phosphide quantum wires

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  14. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOE Patents [OSTI]

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  15. Tin induced a-Si crystallization in thin films of Si-Sn alloys

    SciTech Connect (OSTI)

    Neimash, V. E-mail: oleks.goushcha@nuportsoft.com; Poroshin, V.; Goushcha, A. O. E-mail: oleks.goushcha@nuportsoft.com; Shepeliavyi, P.; Yukhymchuk, V.; Melnyk, V.; Kuzmich, A.; Makara, V.

    2013-12-07

    Effects of tin doping on crystallization of amorphous silicon were studied using Raman scattering, Auger spectroscopy, scanning electron microscopy, and X-ray fluorescence techniques. Formation of silicon nanocrystals (24?nm in size) in the amorphous matrix of Si{sub 1?x}Sn{sub x}, obtained by physical vapor deposition of the components in vacuum, was observed at temperatures around 300?C. The aggregate volume of nanocrystals in the deposited film of Si{sub 1?x}Sn{sub x} exceeded 60% of the total film volume and correlated well with the tin content. Formation of structures with ?80% partial volume of the nanocrystalline phase was also demonstrated. Tin-induced crystallization of amorphous silicon occurred only around the clusters of metallic tin, which suggested the crystallization mechanism involving an interfacial molten Si:Sn layer.

  16. New agreement for Y-12, novel approach to solve tin-whiskers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dilemma Posted: August 6, 2015 - 11:12am Y-12's Rusty Hallman (right) and Dennis Miller (center) discuss Y-12's tin-whisker-mitigation technology with Michael Dunn and Bret...

  17. Testing our solution: Setting up a lab for Tin Whiskers CRADA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRADA Posted: December 17, 2015 - 4:39pm Y-12's Rusty Hallman (right) and Dennis Miller (center) discuss Y-12's tin-whisker-mitigation technology with Michael Dunn and Bret...

  18. Suppression of Tin Whiskers in Lead-Free Solder - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suppression of Tin Whiskers in Lead-Free Solder Improved electronics reliability by ... Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: ...

  19. In situ study of e-beam Al and Hf metal deposition on native oxide InP (100)

    SciTech Connect (OSTI)

    Dong, H.; KC, Santosh; Azcatl, A.; Cabrera, W.; Qin, X.; Brennan, B.; Cho, K.; Wallace, R. M.; Zhernokletov, D.

    2013-11-28

    The interfacial chemistry of thin Al (∼3 nm) and Hf (∼2 nm) metal films deposited by electron beam (e-beam) evaporation on native oxide InP (100) samples at room temperature and after annealing has been studied by in situ angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The In-oxides are completely scavenged forming In-In/In-(Al/Hf) bonding after Al and Hf metal deposition. The P-oxide concentration is significantly decreased, and the P-oxide chemical states have been changed to more P-rich oxides upon metal deposition. Indium diffusion through these metals before and after annealing at 250 °C has also been characterized. First principles calculation shows that In has lower surface formation energy compared with Al and Hf metals, which is consistent with the observed indium diffusion behavior.

  20. TEM in situ lithiation of tin nanoneedles for battery applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janish, Matthew T.; Mackay, David T.; Liu, Yang; Jungjohann, Katherine L.; Carter, C. Barry; Norton, M. Grant

    2015-08-12

    Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature withmore » no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.« less

  1. TEM in situ lithiation of tin nanoneedles for battery applications

    SciTech Connect (OSTI)

    Janish, Matthew T.; Mackay, David T.; Liu, Yang; Jungjohann, Katherine L.; Carter, C. Barry; Norton, M. Grant

    2015-08-12

    Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn nanoneedles at low temperature with no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline SnLi and back to single-crystal Sn.

  2. The tin impurity in Bi0.5Sb1.5Te3 alloys | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The tin impurity in Bi0.5Sb1.5Te3 alloys The tin impurity in Bi0.5Sb1.5Te3 alloys Extends work on tin to p-type thermoelectric alloys of formula Bi(2-x)Sb(x)Te(3) doped with Sn. Both single crystals and polycrystals prepared using powder metallurgical techniques are studied and properties reported. PDF icon jaworski.pdf More Documents & Publications Resonant Level Enhancement of the Thermoelectric Power of Bi2Te3 with Tin DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy

  3. High-performance, transparent conducting oxides based on cadmium stannate

    SciTech Connect (OSTI)

    Coutts, T.J.; Wu, X.; Mulligan, W.P.; Webb, J.M.

    1996-06-01

    We discuss the modeling of thin films of transparent conducting oxides and we compare the predictions with the observed properties of cadmium stannate. Thin films of this material were deposited using radio-frequency magnetron sputtering. The Drude free-carrier model is used to model the optical and electrical properties. The model demonstrates the need for high mobilities. The free-carrier absorbance in the visible spectrum is used as a comparative figure-of-merit for cadmium stannate and tin oxide. This shows that free-carrier absorbance is much less in cadmium stannate than in tin oxide. X-ray diffraction shows that annealed films consist of a single-phase spinel structure. The post-deposition annealing sequence is shown to be crucial to forming a single phase, which is vital for optimal optical and electrical properties. The films are typically high mobility (up to 65 cm{sup 2}V{sup -1}s{sup -1}) and have carrier concentrations as high as 10{sup 21} cm{sup -3}. Resistivities are as low as 1.3 10{sup -4} {Omega} cm, the lowest values reported for cadmium stannate. Atomic force microscopy indicates that the root-mean-square surface roughness is approximately {+-}15A. Cadmium stannate etches readily in both hydrofluoric and hydrochloric acid, which is a commanding advantage over tin oxide. 11 refs., 15 figs.

  4. Basic properties of a liquidt in anode solid oxide fuel cell

    SciTech Connect (OSTI)

    Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

    2010-12-17

    An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.310?5 cm2 s?1 at 800 ?C and 8.910?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

  5. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  6. Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium

    SciTech Connect (OSTI)

    Reyes-Vera, Erick Gmez-Cardona, Nelson D.; Chesini, Giancarlo; Cordeiro, Cristiano M. B.; Torres, Pedro

    2014-11-17

    We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive index within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.

  7. Indium diffusion through high-k dielectrics in high-k/InP stacks

    SciTech Connect (OSTI)

    Dong, H.; Cabrera, W.; Santosh KC,; Brennan, B.; Qin, X.; McDonnell, S.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Galatage, R. V.; Zhernokletov, D.; Wallace, R. M.; Department of Physics, University of Texas at Dallas, Richardson, Texas 75080

    2013-08-05

    Evidence of indium diffusion through high-k dielectric (Al{sub 2}O{sub 3} and HfO{sub 2}) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a PO{sub x} rich interface.

  8. Tin(II) alkoxide hydrolysis products for use as base catalysts

    DOE Patents [OSTI]

    Boyle, Timothy J.

    2002-01-01

    Tin alkoxide compounds are provided with accessible electrons. The compounds are a polymeric tin alkoxide, [Sn(OCH.sub.2 C(CH.sub.3).sub.3).sub.2 ].sub.n, and the hydrolysis products Sn.sub.6 O.sub.4 (OCH.sub.2 C(CH.sub.3).sub.3).sub.4 and Sn.sub.5 O.sub.2 (OCH.sub.2 C(CH.sub.3).sub.3).sub.6. The hydrolysis products are formed by hydrolyzing the [Sn(OCH.sub.2 C(CH.sub.3).sub.3).sub.2 ].sub.n in a solvent with controlled amounts of water, between 0.1 and 2 moles of water per mole of the polymeric tin alkoxide.

  9. Tin-117m-labeled stannic (Sn.sup.4+) chelates

    DOE Patents [OSTI]

    Srivastava, Suresh C. (Setauket, NY); Meinken, George E. (Middle Island, NY); Richards, Powell (Bayport, NY)

    1985-01-01

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  10. Shock-ramp loading of tin and aluminum. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Shock-ramp loading of tin and aluminum. Citation Details In-Document Search Title: Shock-ramp loading of tin and aluminum. Abstract not provided. Authors: Seagle, Christopher T Publication Date: 2013-07-01 OSTI Identifier: 1115231 Report Number(s): SAND2013-5377C 478690 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: SCCM/AIRAPT held July 8-12, 2013 in Seattle, WA.; Related Information: Proposed for presentation at the SCCM/AIRAPT held July 8-12, 2013

  11. Should muffin tin radius vary in different structures of a material?: A case study

    SciTech Connect (OSTI)

    Nayak, Vikas Banger, Suman Verma, U. P.

    2014-04-24

    Quantum mechanical calculations based on density functional theory and a generalized gradient approximation (GGA) have been used to study the structural properties of YbN. Its predicted unit cell lattice parameter in NaCl (B1) structure is 4.7810 and in CsCl (B2) structure it is 2.8685. In the determination of lattice parameter the muffin tin radius (R{sub MT}) of constituent atoms play important role. In both the structures the muffin tin radius for Yb and N converges to 2.3 and 1.4 a.u., respectively.

  12. Tridentate ligated heteronuclear tin(II) alkoxides for use as base catalysts

    DOE Patents [OSTI]

    Boyle, Timothy J. (Albuquerque, NM)

    2001-01-01

    Tin alkoxide compounds are provided with accessible electrons. The tin alkoxide compound have the general formula (THME).sub.2 Sn.sub.3 (M(L).sub.x).sub.y, where THME is (O--CH.sub.2).sub.3 C(CH.sub.3), M is a metal atom selected from Sn and Ti, L is an organic/inorganic ligand selected from an alkoxide, a phenoxide or an amide, x is selected from 2 and 4 and y is selected from 0 and 1. These compounds have applicability as base catalysts in reactions and in metal-organic chemical vapor depositions processes.

  13. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  14. Real-time x-ray studies of indium island growth kinetics

    SciTech Connect (OSTI)

    Demasi, Alexander; Rainville, Meliha G.; Ludwig, Karl F.

    2015-03-15

    The authors have investigated the early stages of indium island formation and growth by vapor phase deposition on room temperature sapphire using real-time grazing incidence small angle x-ray scattering (GISAXS), followed by ex-situ atomic force microscopy and scanning electron microscopy. The results are consistent with the formation and coalescence of hemispherical islands, as described by Family and Meakin. Monte Carlo simulations of systems of coalescing islands were used to supplement and quantify the results of GISAXS, and a good agreement is seen between the data and the simulations.

  15. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect (OSTI)

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  16. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    SciTech Connect (OSTI)

    Rudin, Sven Peter

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  17. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  18. Solder for oxide layer-building metals and alloys

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  19. Transparent Conductive Nano-Composites - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Transparent Conductive Nano-Composites Nanomaterials for Applications Ranging From Photovoltaic Cells to Display Technologies Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Indium Tin Oxide, the most widely used commercial transparent conducting coating, has severe limitations such

  20. Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets

    DOE Patents [OSTI]

    Lapshina, Elena V.; Zhuikov, Boris L.; Srivastava, Suresh C.; Ermolaev, Stanislav V.; Togaeva, Natalia R.

    2012-01-17

    The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  1. The Dependence of the Oxidation Enhancement of InP(100) Surface on the Coverage of the Adsorbed Cs

    SciTech Connect (OSTI)

    Sun, Yun

    2010-06-07

    We report the oxidation of the InP(100) surface promoted by adsorbed Cs by synchrotron radiation photoemission. Oxygen exposure causes reduction of the charge transferred to the InP substrate from Cs and the growth of indium oxide and phosphorous oxide. The oxide growth displays a clear dependence on the Cs coverage. The oxidation of phosphorous is negligible up to 1000 L of O{sub 2} exposure when the Cs coverage is less than half a monolayer (ML), but the formation of the second half monolayer of Cs greatly accelerates the oxidation. This different enhancement of the InP oxidation by the first and the second half monolayer of Cs is due to the double layer structure of the adsorbed Cs atoms, and consequently the higher 6s electron density in the Cs atoms when Cs coverage is larger than 0.5 ML.

  2. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOE Patents [OSTI]

    Shelnutt, John A. (Tijeras, NM)

    1990-01-01

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  3. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    SciTech Connect (OSTI)

    Kyle, Erin C. H. Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  4. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  5. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-15

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached ?225?kV bias voltage while generating less than 100?pA of field emission (<10?pA) using a 40?mm cathode/anode gap, corresponding to field strength of 13.7?MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ?22.5 MV/m with field emission less than 100?pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  6. TiN coated aluminum electrodes for DC high voltage electron guns

    SciTech Connect (OSTI)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.

  7. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  8. Photoemission spectroscopy study of the lanthanum lutetium oxide/silicon interface

    SciTech Connect (OSTI)

    Nichau, A.; Schnee, M.; Schubert, J.; Bernardy, P.; Hollaender, B.; Buca, D.; Mantl, S.; Besmehn, A.; Breuer, U.; Rubio-Zuazo, J.; Castro, G. R.; Muecklich, A.; Borany, J. von

    2013-04-21

    Rare earth oxides are promising candidates for future integration into nano-electronics. A key property of these oxides is their ability to form silicates in order to replace the interfacial layer in Si-based complementary metal-oxide field effect transistors. In this work a detailed study of lanthanum lutetium oxide based gate stacks is presented. Special attention is given to the silicate formation at temperatures typical for CMOS processing. The experimental analysis is based on hard x-ray photoemission spectroscopy complemented by standard laboratory experiments as Rutherford backscattering spectrometry and high-resolution transmission electron microscopy. Homogenously distributed La silicate and Lu silicate at the Si interface are proven to form already during gate oxide deposition. During the thermal treatment Si atoms diffuse through the oxide layer towards the TiN metal gate. This mechanism is identified to be promoted via Lu-O bonds, whereby the diffusion of La was found to be less important.

  9. LABORATORY REPORT ON THE REDUCTION AND STABILIZATION (IMMOBILIZATION) OF PERTECHNETATE TO TECHNETIUM DIOXIDE USING TIN(II)APATITE

    SciTech Connect (OSTI)

    DUNCAN JB; HAGERTY K; MOORE WP; RHODES RN; JOHNSON JM; MOORE RC

    2012-06-01

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mo bile +7 state under acidic or oxygenated conditions within the tested period oftime (6 weeks). Previous work (RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine) indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table A shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit. The loaded sample (200 mg of Sn(II)apatite loaded with O.311 mg of Tc-99) was subjected to different molarities of nitric acid to determine if the Sn(II)apatite would release the sequestered technetium. The acid was allowed to contact for 1 minute with gentle shaking ('1st wash'); the aqueous solution was then filtered, and the filtrate was analyzed for Tc-99. Table B shows the results ofthe nitric acid exposure. Another portion of acid was added, shaken for a minute, and filtered ('2nd wash'). The technetium-loaded Sn(II)apatite was also subjected to water leach tests. The loaded sample (0.2 g of Sn(II)apatite was loaded with 0.342 mg of Tc-99) was placed in a 200-mL distilled water column and sparged with air. Samples were taken weekly over a 6-week period, and the dissolved oxygen ranged from 8.4 to 8.7 mg/L (average 8.5 mg/L); all samples recorded less than the detection limit of 0.01 mg/L Tc-99. The mechanism by which TcO{sub 2} is sequestered and hence protected from re-oxidation appears to be an exchange with phosphate in the apatite lattice, as the phosphorus that appeared in solution after reaction with technetium was essentially the same moles of technetium that were taken up by the Sn(II)apatite (Table 6). Overall, the reduction of the mobile pertechnetate (+7) to the less mobile technetium dioxide (+4) by Sn(II)apatite and subsequent sequestration of the technetium in the material indicates that Sn(II)apatite is an excellent candidate for long-term immobilization of technetium. The indications are that the Sn(II)apatite will lend itself to sequestering and inhibiting the reoxidation to the mobile pertechnetate species, thus keeping the radionuclide out of the environment.

  10. Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran

    SciTech Connect (OSTI)

    Oudbashi, Omid; Davami, Parviz

    2014-11-15

    Archaeological excavations in western Iran have recently revealed a significant Luristan Bronzes collection from Sangtarashan archaeological site. The site and its bronze collection are dated to Iron Age II/III of western Iran (10th7th century BC) according to archaeological research. Alloy composition, microstructure and manufacturing technique of some sheet metal vessels are determined to reveal metallurgical processes in western Iran in the first millennium BC. Experimental analyses were carried out using Scanning Electron MicroscopyEnergy Dispersive X-ray Spectroscopy and Optical Microscopy/Metallography methods. The results allowed reconstructing the manufacturing process of bronze vessels in Luristan. It proved that the samples have been manufactured with a binary coppertin alloy with a variable tin content that may relates to the application of an uncontrolled procedure to make bronze alloy (e.g. co-smelting or cementation). The presence of elongated copper sulphide inclusions showed probable use of copper sulphide ores for metal production and smelting. Based on metallographic studies, a cycle of cold working and annealing was used to shape the bronze vessels. - Highlights: Sangtarashan vessels are made by variable Cu-Sn alloys with some impurities. Various compositions occurred due to applying uncontrolled smelting methods. The microstructure represents thermo-mechanical process to shape bronze vessels. In one case, the annealing didnt remove the eutectoid remaining from casting. The characteristics of the bronzes are similar to other Iron Age Luristan Bronzes.

  11. Temperature measurements of partially-melted tin as a function of shock pressure

    SciTech Connect (OSTI)

    Seifter, Achim; Furlanetto, Michael R; Holtkamp, David B; Obst, Andrew W; Payton, J R; Stone, J B; Tabaka, L J; Grover, M; Macrum, G; Stevens, G D; Swift, D C; Turley, W D; Veeser, L R

    2009-01-01

    Equilibrium equation of state theory predicts that the free surface release temperature of shock loaded tin will show a plateau of 505 K in the pressure range from 19.5 to 33.0 GPa, corresponding to the solid-liquid mixed-phase region. In this paper we report free surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multi-wavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with the sample. The pressure in the sample was determined by free surface velocity measurements using Photon Doppler Velocimetry. The emitted thermal radiance was measured at four wavelength bands in the near IR region from 1.5 to 5.0 {micro}m. The samples in most of the experiments had diamond-turned surface finishes, with a few samples being polished or ball rolled. At pressures higher than 25 GPa the measured free surface temperatures were higher than the predicted 505 K and increased with increasing pressure. This deviation could be explained by hot spots and/or variations in surface emissivity and requires a further investigation.

  12. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    SciTech Connect (OSTI)

    Murali, K.V., E-mail: kvmuralikv@gmail.com [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Ragina, A.J. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Preetha, K.C. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Sree Narayana College, Kannur, Kerala 670007 (India); Deepa, K.; Remadevi, T.L. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala 670702 (India)

    2013-09-01

    Graphical abstract: - Highlights: Quantum confined SnO{sub 2} thin films were synthesized at 80 C by SILAR technique. Film formation mechanism is discussed. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap confirmed the quantum confinement effect. Present synthesis has advantages low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 58 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.12.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}10{sup ?1} ? cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surfacevolume ratio, and high crystallinity SnO{sub 2} films.

  13. Hugoniot Measurements at Low Pressures in Tin Using 800 MeV proton Radiography

    SciTech Connect (OSTI)

    Schwartz, Cynthia; Hogan, Gary E; King, Nicholas S. P.; Kwiathowski, Kris K.; Mariam, Fesseha G.; Marr-Lyon, Mark; McNeil, Wendy Vogan; Merrill, Frank E.; Morris, Christopher; Rightley, Paul; Saunders, Alexander

    2009-08-05

    A 2cm long 8 mm diameter cylindrical tin target has been shocked to a pressure in the region of the {beta} {yields} {gamma} phase change using a small, low density PETN charge mounted on the opposite side of a stainless steel diaphragm. The density jump and shock velocity were measured radiographically as the shock wave moved through the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record of the equations of state along the Hugoniot for the P1 wave from a shock velocity of 3.25 km/sec down to near the sound speed. Edge release effects were removed from the data using tomographic techniques. The data show evidence for a phase transition that extends over a broad pressure range. The data and analysis will be presented.

  14. HUGONIOT MEASUREMENTS AT LOW PRESSURES IN TIN USING 800 MeV PROTON RADIOGRAPHY

    SciTech Connect (OSTI)

    Schwartz, C. L.; Hogan, G. E.; King, N. S. P.; Kwiatkowski, K.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.; Marr-Lyon, M.; Rightley, P. M.; McNeil, W. V.

    2009-12-28

    A 20 mm long 8 mm diameter cylindrical tin target has been shocked to a pressure just below the beta->gamma phase change, using a small, low density PETN charge mounted on the opposite side of a thin stainless steel diaphragm. The density jump and shock velocity were measured radiographically at multiple points as the shock wave moved though the sample and the pressure dropped, using the proton radiography facility at LANL. This provided a quasi-continuous record along the principal Hugoniot from a peak shock velocity of 3.27 km/sec to a minimum of 3.09 km/sec. Edge release effects were removed from the data using simple tomographic reconstruction techniques. The data and analysis are presented.

  15. Method for palliation of pain in human bone cancer using therapeutic tin-117m compositions

    DOE Patents [OSTI]

    Srivastava, S.C.; Meinken, G.E.; Mausner, L.F.; Atkins, H.L.

    1998-12-29

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients. 5 figs.

  16. Method for palliation of pain in human bone cancer using therapeutic tin-117m compositions

    DOE Patents [OSTI]

    Srivastava, Suresh C.; Meinken, George E.; Mausner, Leonard F.; Atkins, Harold L.

    1998-12-29

    The invention provides a method for the palliation of bone pain due to cancer by the administration of a unique dosage of a tin-117m (Sn-117m) stannic chelate complex in a pharmaceutically acceptable composition. In addition, the invention provides a method for simultaneous palliation of bone pain and radiotherapy in cancer patients using compositions containing Sn-117m chelates. The invention also provides a method for palliating bone pain in cancer patients using Sn-117m-containing compositions and monitoring patient status by imaging the distribution of the Sn-117m in the patients. Also provided are pharmaceutically acceptable compositions containing Sn-117m chelate complexes for the palliation of bone pain in cancer patients.

  17. Contributions of stress and oxidation on the formation of whiskers in Pb-free solders

    SciTech Connect (OSTI)

    Duncan, A. J.; Hoffman, E. N.

    2016-01-01

    Understanding the environmental factors influencing formation of tin whiskers on electrodeposited lead free, tin coatings over copper (or copper containing) substrates is the topic of this study . An interim report* summarized initial observations as to the role of stress and oxide formation on whisker growth. From the initial results, two main areas were chosen to be the focus of additional research: the demonstration of effects of elastic stress state in the nucleation of whiskers and the confirmation of the effect of oxygen content in the formation of whiskers. Different levels of elastic stress were induced with the incorporation of a custom designed fixture that loaded the sample in a four-point bending configuration and were maintained in an environmental chamber under conditions deemed favorable for whisker growth. The effects of oxygen content were studied by aging substrates in gas vials of varying absolute pressure and different oxygen partial pressure.

  18. Oxidation catalyst

    DOE Patents [OSTI]

    Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  19. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    DOE Patents [OSTI]

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  20. Calculation of room temperature conductivity and mobility in tin-based topological insulator nanoribbons

    SciTech Connect (OSTI)

    Vandenberghe, William G. Fischetti, Massimo V.

    2014-11-07

    Monolayers of tin (stannanane) functionalized with halogens have been shown to be topological insulators. Using density functional theory (DFT), we study the electronic properties and room-temperature transport of nanoribbons of iodine-functionalized stannanane showing that the overlap integral between the wavefunctions associated to edge-states at opposite ends of the ribbons decreases with increasing width of the ribbons. Obtaining the phonon spectra and the deformation potentials also from DFT, we calculate the conductivity of the ribbons using the Kubo-Greenwood formalism and show that their mobility is limited by inter-edge phonon backscattering. We show that wide stannanane ribbons have a mobility exceeding 10{sup 6} cm{sup 2}/Vs. Contrary to ordinary semiconductors, two-dimensional topological insulators exhibit a high conductivity at low charge density, decreasing with increasing carrier density. Furthermore, the conductivity of iodine-functionalized stannanane ribbons can be modulated over a range of three orders of magnitude, thus rendering this material extremely interesting for classical computing applications.

  1. Magnetization and critical currents of tin-core multifilamentary Nb sub 3 Sn conductors

    SciTech Connect (OSTI)

    Ghosh, A.K.; Suenaga, M.

    1990-01-01

    This paper presents critical current and magnetization data for some multifilamentary Nb{sub 3}Sn wires that have been produced by the internal-tin method. A comparison of magnetization and transport critical current measurements show that filament bridging during heat treatment is a common occurrence leading to effective filament diameters that are sometimes an order of magnitude larger than the geometrical filament size. At present, J{sub c}'s (in the non-copper region) greater than 1300 A/mm{sup 2} at 10T have been achieved in some conductors, which also exhibit high losses. Low losses have only been seen in conductors with a high local ratio of niobium to copper. Also the use of (Nb-1%Ti) alloy instead of pure Nb helps to reduce low field loss and increase high field J{sub c}. Measurements of the temperature dependence of hysteretic loss to 5T indicate that loss decreases linearly with increasing temperature. 22 refs., 6 figs., 2 tabs.

  2. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; et al

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generallymore » consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.« less

  3. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    SciTech Connect (OSTI)

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; Pain, S. D.; Stone, N. J.; Varner, R. L.; Yu, C. -H.

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.

  4. Catalytic propane dehydrogenation over In?O?Ga?O? mixed oxides

    SciTech Connect (OSTI)

    Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal; Sholl, David S.; Nair, Sankar; Jones, Christopher W.; Moore, Jason S.; Liu, Yujun; Dixit, Ravindra S.; Pendergast, John G.

    2015-08-26

    We have investigated the catalytic performance of novel In?O?Ga?O? mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In?O?Ga?O? catalysts are 13-fold (on an active metal basis) and 1228-fold (on a surface area basis) higher than an In?O?Al?O? catalyst in terms of C?H? conversion. The structure, composition, and surface properties of the In?O?Ga?O? catalysts are thoroughly characterized. NH?-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading to higher C?H? selectivity. Lower reaction temperature also leads to higher C?H? selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In?O? clusters are formed on the catalyst surface during the reaction. The agglomeration of In?O? domains and formation of a metallic indium phase are found to be irreversible under O? or H? treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.

  5. Effects of high-temperature thermal annealing on the electronic properties of In-Ga-Zn oxide thin films

    SciTech Connect (OSTI)

    Li, Qin; Song, Zhong Xiao; Ma, Fei E-mail: liyhemail@gmail.com; Li, Yan Huai E-mail: liyhemail@gmail.com; Xu, Ke Wei

    2015-03-15

    Indium gallium zinc oxide (IGZO) thin films were deposited by radio-frequency magnetron sputtering at room-temperature. Then, thermal annealing was conducted to improve the structural ordering. X-ray diffraction and high-resolution transmission electron microscopy demonstrated that the as-deposited IGZO thin films were amorphous and crystallization occurred at 800 and 950?C. As a result of crystallization at high temperature, the carrier concentration and the Hall mobility of IGZO thin films were sharply increased, which could be ascribed to the increased oxygen vacancies and improved structural ordering of the thin films.

  6. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO{sub 2}/TiN cells

    SciTech Connect (OSTI)

    Sowinska, Malgorzata Bertaud, Thomas; Walczyk, Damian; Calka, Pauline; Walczyk, Christian; Thiess, Sebastian; Alff, Lambert; Schroeder, Thomas

    2014-05-28

    In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO{sub 2} interface chemistry and physics of resistive switching Ti/HfO{sub 2}/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in the conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO{sub 2} interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO{sub 2} interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.

  7. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  8. Radial electron collection in dye-sensitized solar cells.

    SciTech Connect (OSTI)

    Martinson, A. B. B.; Elam, J. W.; Liu, J.; Pellin, M. J.; Marks, T. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

    2008-01-01

    We introduce a new photoelectrode architecture consisting of concentric conducting and semiconducting nanotubes for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is employed to grow indium tin oxide (ITO) within a porous template and subsequently coat the high area photoelectrode with amorphous TiO2. Compared with control devices lacking a current collector within the pores, the new photoelectrode geometry exhibits dramatically higher current densities, an effect attributed to the radial collection of electrons.

  9. Disorder-free sputtering method on graphene

    SciTech Connect (OSTI)

    Qiu Xue Peng; Shin Young Jun; Niu Jing; Kulothungasagaran, Narayanapillai; Kalon, Gopinadhan; Yang, Hyunsoo; Qiu Caiyu; Yu Ting

    2012-09-15

    Deposition of various materials onto graphene without causing any disorder is highly desirable for graphene applications. Especially, sputtering is a versatile technique to deposit various metals and insulators for spintronics, and indium tin oxide to make transparent devices. However, the sputtering process causes damage to graphene because of high energy sputtered atoms. By flipping the substrate and using a high Ar pressure, we demonstrate that the level of damage to graphene can be reduced or eliminated in dc, rf, and reactive sputtering processes.

  10. Reducing the In2O3(111) Surface Results in Ordered Indium Adatoms

    SciTech Connect (OSTI)

    Wagner, Margareta; Seiler, Steffen; Meyer, Bernd; Boatner, Lynn A; Schmid, M.; Diebold, U.

    2014-01-01

    The In2O3(111) surface can be transformed from an oxidized bulk termination to one that is covered by single In adatoms. As each adatom sits at one specific site within the surface unit cell they form a well-ordered (1 1) superstructure. Annealing at 500 C in O2 or in ultrahigh vacuum results in a fully reversible conversion between these two surface terminations; this transformation and intermediate stages were followed with Scanning Tunneling Microscopy (STM). Formation of this novel surface structure under reducing conditions is corroborated by Density Functional Theory (DFT). The reduced adatom-covered and the oxidized In2O3(111) surfaces are expected to exhibit different chemical and electronic properties, which can easily be exploited by the facile and reversible switching between the two terminations.

  11. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    SciTech Connect (OSTI)

    Leppniemi, J. Ojanper, K.; Kololuoma, T.; Huttunen, O.-H.; Majumdar, H.; Alastalo, A.; Dahl, J.; Tuominen, M.; Laukkanen, P.

    2014-09-15

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In{sub 2}O{sub 3}) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100?C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250?C with FUV for 5?min yield enhancement-mode TFTs with saturation mobility of ?1?cm{sup 2}/(Vs). Amorphous In{sub 2}O{sub 3} films annealed for 15?min with FUV at temperatures of 180?C and 200?C yield TFTs with low-hysteresis and saturation mobility of 3.2?cm{sup 2}/(Vs) and 7.5?cm{sup 2}/(Vs), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160?nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  12. Tin removal from extreme ultraviolet collector optics by inductively coupled plasma reactive ion etching

    SciTech Connect (OSTI)

    Shin, H.; Srivastava, S. N.; Ruzic, D. N. [Center for Plasma Material Interactions, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2008-05-15

    Tin (Sn) has the advantage of delivering higher conversion efficiency compared to other fuel materials (e.g., Xe or Li) in an extreme ultraviolet (EUV) source, a necessary component for the leading next generation lithography. However, the use of a condensable fuel in a lithography system leads to some additional challenges for maintaining a satisfactory lifetime of the collector optics. A critical issue leading to decreased mirror lifetime is the buildup of debris on the surface of the primary mirror that comes from the use of Sn in either gas discharge produced plasma (GDPP) or laser produced plasma (LPP). This leads to a decreased reflectivity from the added material thickness and increased surface roughness that contributes to scattering. Inductively coupled plasma reactive ion etching with halide ions is one potential solution to this problem. This article presents results for etch rate and selectivity of Sn over SiO{sub 2} and Ru. The Sn etch rate in a chlorine plasma is found to be much higher (of the order of hundreds of nm/min) than the etch rate of other materials. A thermally evaporated Sn on Ru sample was prepared and cleaned using an inductively coupled plasma etching method. Cleaning was confirmed using several material characterization techniques. Furthermore, a collector mock-up shell was then constructed and etching was performed on Sn samples prepared in a Sn EUV source using an optimized etching recipe. The sample surface before and after cleaning was analyzed by atomic force microscopy, x-ray photoelectron spectroscopy, and Auger electron spectroscopy. The results show the dependence of etch rate on the location of Sn samples placed on the collector mock-up shell.

  13. Temperature threshold for nanorod structuring of metal and oxide films grown by glancing angle deposition

    SciTech Connect (OSTI)

    Deniz, Derya; Lad, Robert J.

    2011-01-15

    Thin films of tin (Sn), aluminum (Al), gold (Au), ruthenium (Ru), tungsten (W), ruthenium dioxide (RuO{sub 2}), tin dioxide (SnO{sub 2}), and tungsten trioxide (WO{sub 3}) were grown by glancing angle deposition (GLAD) to determine the nanostructuring temperature threshold, {Theta}{sub T}, above which adatom surface diffusion becomes large enough such that nanorod morphology is no longer formed during growth. The threshold was found to be lower in metals compared to oxides. Films were grown using both dc and pulsed dc magnetron sputtering with continuous substrate rotation over the temperature range from 291 to 866 K. Film morphologies, structures, and compositions were characterized by high resolution scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. Films were also grown in a conventional configuration for comparison. For elemental metals, nanorod structuring occurs for films with melting points higher than that of Al (933 K) when grown at room temperature with a rotation rate of {approx}5 rpm, corresponding to a value of {Theta}{sub T}{approx_equal}0.33{+-}0.01. For the oxide films, a value of {Theta}{sub T}{approx_equal}0.5 was found, above which GLAD nanorod structuring does not occur. The existence of a nanostructuring temperature threshold in both metal and oxide GLAD films can be attributed to greater adatom mobilities as temperature is increased resulting in nonkinetically limited film nucleation and growth processes.

  14. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  15. Tin-117m-labeled stannic (Sn/sup 4 +/) chelate of diethylenetriamine pentaacetic acid (DTPA) for application in diagnosis and therapy

    DOE Patents [OSTI]

    Srivastava, S.C.; Meinken, G.E.; Richards, P.

    1983-08-25

    The radiopharmaceutical reagents of this invention and the class of Tin-117m radiopharmaceuticals are therapeutic and diagnostic agents that incorporate gamma-emitting nuclides that localize in bone after intravenous injection in mammals (mice, rats, dogs, and rabbits). Images reflecting bone structure or function can then be obtained by a scintillation camera that detects the distribution of ionizing radiation emitted by the radioactive agent. Tin-117m-labeled chelates of stannic tin localize almost exclusively in cortical bone. Upon intravenous injection of the reagent, the preferred chelates are phosphonate compounds, preferable, PYP, MDP, EHDP, and DTPA. This class of reagents is therapeutically and diagnostically useful in skeletal scintigraphy and for the radiotherapy of bone tumors and other disorders.

  16. Kondo behavior, ferromagnetic correlations, and crystal fields...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; CERIUM ALLOYS; INDIUM ALLOYS; TIN ALLOYS; CRYSTAL FIELD; ENTROPY; FERMIONS; GROUND STATES; KONDO EFFECT; MAGNETIC SUSCEPTIBILITY; NEUTRON ...

  17. Adhesion evaluation of TiN and (Ti, Al)N coatings on titanium 6Al-4V

    SciTech Connect (OSTI)

    James, R.D.; Gruss, K.A.; Horie, Y.; Davis, R.F.; Paisley, D.L.; Parthasarthi, S.; Tittmann, B.R.

    1996-12-31

    The metallic components of gas turbine engines are continually subjected to hostile atmospheres. Nitride coatings improve the performance of the metallic compressor blades in these engines. To assess the adhesion of nitride coatings on metals, titanium 6% aluminum 4% vanadium substrates were coated with titanium nitride (TiN) using both cathodic arc and electron beam evaporation. Titanium aluminum nitride ((Ti, Al)N) was also deposited using cathodic arc evaporation. The interfaces of the coated samples were loaded in tension using a high speed shock wave which caused spallation either at the interface, in the coating or in the metal. Scanning acoustic microscopy analysis of the spalled samples detected delaminations at the interface in the samples deposited by cathodic arc evaporation. DYNA2D modeling of plate impact spallation experiments revealed the tensile adhesion strength for TiN deposited by both techniques was {approx} 2.0 GPa. The tensile adhesion strength for (Ti, Al)N was less than 1.5 GPa.

  18. Band gap narrowing in zinc oxide-based semiconductor thin films...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  19. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect (OSTI)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  20. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  1. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOE Patents [OSTI]

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  2. Effects of H{sub 2} plasma treatment on the electrical properties of titanium-doped indium oxide films prepared by polymer-assisted deposition

    SciTech Connect (OSTI)

    Hwang, Joo-Sang; Lee, Ji-Myon; Vishwanath, Sujaya Kumar; Kim, Jihoon

    2015-07-15

    The effects of hydrogen (H{sub 2}) plasma on the optical and electrical properties of titanium-doped InO (TIO) grown on glass substrates using polymer-assisted deposition are reported. Samples were exposed to H{sub 2} plasma formed by inductively coupled plasma (ICP). After plasma treatment at a power of 100?W, the sheet resistance of the TIO films decreased from 11?000 to 285??/sq. Additionally, the Hall mobility and sheet carrier concentration of the films increased as the ICP source power was increased to 100?W, without affecting the optical transmittance of the films, due to the removal of the polymer residues and the formation of oxygen vacancies.

  3. Photo-oxidation catalysts

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  4. EFFECT OF THERMAL PROCESSES ON COPPER-TIN ALLOYS FOR ZINC GETTERING

    SciTech Connect (OSTI)

    Korinko, P.; Golyski, M.

    2013-11-01

    A contamination mitigation plan was initiated to address the discovery of radioactive zinc‐65 in a glovebox. A near term solution was developed, installation of heated filters in the glovebox piping. This solution is effective at retaining the zinc in the currently contaminated area, but the gamma emitting contaminant is still present in a system designed for tritium beta. A project was initiated to develop a solution to contain the {sup 65}Zn in the furnace module. Copper and bronze (a Cu/Sn alloy) were found to be candidate materials to combine with zinc‐65 vapor, using thermodynamic calculations. A series of binary Cu/Sn alloys were developed (after determining that commercial alloys were unacceptable), that were found to be effective traps of zinc vapor. The task described in this report was undertaken to determine if the bronze substrates would retain their zinc gettering capability after being exposed to simulated extraction conditions with oxidizing and reducing gases. Pure copper and three bronze alloys were prepared, exposed to varying oxidation conditions from 250 to 450{degree}C, then exposed to varying reduction conditions in He-H{sub 2} from 250-450{degree}C, and finally exposed to zinc vapor at 350{degree}C for four hours. The samples were characterized using scanning electron microscopy, X-ray diffraction, differential thermal analysis, mass change, and visual observation. It was observed that the as fabricated samples and the reduced samples all retained their zinc gettering capacity while samples in the "as-oxidized" condition exhibited losses in zinc gettering capacity. Over the range of conditions tested, i.e., composition, oxidation temperature, and reduction temperature, no particular sample composition appeared better. Samples reduced at 350{degree}C exhibited the greatest zinc capacity, although there were some testing anomalies associated with these samples. This work clearly demonstrated that the zinc gettering was not adversely affected by exposure to simulated process conditions and a full scale lithium and zinc trap should be fabricated for testing in the Tritium Extraction Facility.

  5. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect (OSTI)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  6. Phase Discrimination through Oxidant Selection for Iron Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron...

  7. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors

    SciTech Connect (OSTI)

    Liu, Yang Hui; Wan, Qing; Qiang Zhu, Li; Shi, Yi

    2014-03-31

    Solution-processed sodium alginate electrolyte film shows a high proton conductivity of ?5.5??10{sup ?3} S/cm and a high lateral electric-double-layer (EDL) capacitance of ?2.0??F/cm{sup 2} at room temperature with a relative humidity of 57%. Low-voltage in-plane-gate indium-zinc-oxide-based EDL transistors laterally gated by sodium alginate electrolytes are fabricated on glass substrates. The field-effect mobility, current ON/OFF ratio, and subthreshold swing of such EDL transistors are estimated to be 4.2 cm{sup 2} V{sup ?1} s{sup ?1}, 2.8??10{sup 6}, and 130?mV/decade, respectively. At last, a low-voltage driven resistor-load inverter is also demonstrated. Such in-plane-gate EDL transistors have potential applications in portable electronics and low-cost biosensors.

  8. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    SciTech Connect (OSTI)

    Ha, Tae-Jun

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (?3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  9. Transparent electrical conducting films by activated reactive evaporation

    DOE Patents [OSTI]

    Bunshah, Rointan (Los Angeles, CA); Nath, Prem (Troy, MI)

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  10. Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Films | ANSER Center | Argonne-Northwestern National Laboratory Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films Home > Research > ANSER Research Highlights > Phase Discrimination through Oxidant Selection for Iron Oxide Ultrathin Films

  11. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOE Patents [OSTI]

    Aardahl, Christopher L. (Richland, WA); Balmer-Miller, Mari Lou (West Richland, WA); Chanda, Ashok (Peoria, IL); Habeger, Craig F. (West Richland, WA); Koshkarian, Kent A. (Peoria, IL); Park, Paul W. (Peoria, IL)

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  12. Investigation of Mixed Oxide Catalysts for NO Oxidation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mixed Oxide Catalysts for NO Oxidation Investigation of Mixed Oxide Catalysts for NO Oxidation 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace078_muntean_2012_o.pdf More Documents & Publications Investigation of Mixed Oxide Catalysts for NO Oxidation Vehicle Technologies Office Merit Review 2014: Investigation of Mixed Oxide Catalysts for NO Oxidation Vehicle Technologies Office Merit Review

  13. Ternary Pt/Rh/SnO2 Electrocatalysts for Oxidizing Ethanol to CO2

    SciTech Connect (OSTI)

    Kowal, A.; Li, M; Shao, M; Sasaki, K; Vukmirovic, M; Zhang, J; Marinkovic, N; Liu, P; Frenkel, A; Adzic, R

    2009-01-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts1, 2. We synthesized a ternary PtRhSnO2/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO2, which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  14. Ternary Pt/Rh/SnO2 Electrocatalysts for Oxidizing Ethanol to CO2

    SciTech Connect (OSTI)

    Adzic, R.R.; Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M.B.; Zhang, J.; Marinkovic, N.S. Liu, P.; Frenkel, A.I.

    2009-04-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We synthesized a ternary PtRhSnO{sub 2}/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO{sub 2}, which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  15. Partial oxidation catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  16. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect (OSTI)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  17. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOE Patents [OSTI]

    Tench, D. Morgan (Camarillo, CA); Cunningham, Michael A. (Thousand Oaks, CA); Kobrin, Paul H. (Newbury Park, CA)

    2008-01-08

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  18. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L.

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  19. Oxidation Resistant Graphite Studies

    SciTech Connect (OSTI)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  20. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  1. METAL OXIDE NANOPARTICLES

    SciTech Connect (OSTI)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  2. Superconductive ceramic oxide combination

    SciTech Connect (OSTI)

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  3. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxides of Nitrogen Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oxides of Nitrogen Oxides of nitrogen, chlorofluorocarbons (CFCs), and ozone have a lesser effect on the atmosphere than carbon dioxide and methane, but as you will see they are important contributors to the greenhouse

  4. OXIDATION OF TRANSURANIC ELEMENTS

    DOE Patents [OSTI]

    Moore, R.L.

    1959-02-17

    A method is reported for oxidizing neptunium or plutonium in the presence of cerous values without also oxidizing the cerous values. The method consists in treating an aqueous 1N nitric acid solution, containing such cerous values together with the trivalent transuranic elements, with a quantity of hydrogen peroxide stoichiometrically sufficient to oxidize the transuranic values to the hexavalent state, and digesting the solution at room temperature.

  5. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  6. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect (OSTI)

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  7. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOE Patents [OSTI]

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  8. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  9. Stabilized chromium oxide film

    DOE Patents [OSTI]

    Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  10. Reducible oxide based catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  11. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect (OSTI)

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  12. NEPTUNIUM OXIDE PROCESSING

    SciTech Connect (OSTI)

    Jordan, J; Watkins, R; Hensel, S

    2009-05-27

    The Savannah River Site's HB-Line Facility completed a campaign in which fifty nine cans of neptunium oxide were produced and shipped to the Idaho National Laboratory in the 9975 shipping container. The neptunium campaign was divided into two parts: Part 1 which consisted of oxide made from H-Canyon neptunium solution which did not require any processing prior to conversion into an oxide, and Part 2 which consisted of oxide made from additional H-Canyon neptunium solutions which required processing to purify the solution prior to conversion into an oxide. The neptunium was received as a nitrate solution and converted to oxide through ion-exchange column extraction, precipitation, and calcination. Numerous processing challenges were encountered in order make a final neptunium oxide product that could be shipped in a 9975 shipping container. Among the challenges overcome was the issue of scale: translating lab scale production into full facility production. The balance between processing efficiency and product quality assurance was addressed during this campaign. Lessons learned from these challenges are applicable to other processing projects.

  13. Mixed Oxide Fuel Fabrication Facility

    National Nuclear Security Administration (NNSA)

    0%2A en Mixed Oxide (MOX) Fuel Fabrication Facility http:nnsa.energy.govfieldofficessavannah-river-field-officemixed-oxide-mox-fuel-fabrication-facility

  14. Oxidative Tritium Decontamination System

    DOE Patents [OSTI]

    Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  15. Project Profile: High Performance Reduction/Oxidation Metal Oxides for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage | Department of Energy Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Project Profile: High Performance Reduction/Oxidation Metal Oxides for Thermochemical Energy Storage Sandia National Laboratory Logo Sandia National Lab (Sandia), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is systematically

  16. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  17. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  18. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  19. Reversible Solid Oxide Electrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Efficient, Reliable Power Reversible Solid Oxide Electrolysis Randy Petri Director Product Development & Federal Programs Electrolytic Hydrogen Production Workshop DOE Fuel Cell Technologies Office Hosted by: National Renewable Energy Laboratory, Golden, Colorado February 27th and 28th, 2014 FCE Acquires VPS * FuelCell Energy fully acquired the shares of Versa Power Systems on December 20, 2012. Prior to this, FuelCell Energy owned approximately 39% of Versa "We view solid oxide

  20. REDUCTION AND SEQUESTRATION OF PERTECHNETATE TO TECHNETIUM DIOXIDE AND PROTECTION FROM RE-OXIDATION

    SciTech Connect (OSTI)

    DUNCAN JB; JOHNSON JM; MOORE WP; HAGERTY KJ; RHODES RN; MOORE RC

    2012-07-11

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(II)apatite (Sn(II)apatite) against double-shell tank 241-AN-I0S simulant spiked with pertechnetate (TcO{sub 4}{sup -}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(II)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II)apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(II)apatite exhibits a direct correlation with the pH of the contaminated media. Table 1 shows Sn(II)apatite distribution coefficients as a function of pH. The asterisked numbers indicate that the lower detection limit of the analytical instrument was used to calculate the distribution coefficient as the concentration of technetium left in solution was less than the detection limit.

  1. Growth kinetics for the precipitation of zirconium hydroxide from aqueous zirconium and tin bearing solutions by the addition of ammonium hydroxide

    SciTech Connect (OSTI)

    Carleson, T.E.; Chipman, N.A.

    1989-09-11

    The precipitation of zirconium hydroxide from an aqueous solution of ammonium hexafluorozirconate occurs rapidly upon addition of ammonium hydroxide. Experimental data indicate growth and nucleation rates between 0.06 and 0.28 microns/minute and around 10 {times} 107 number/L-min, respectively. Experiments with a mixed suspension mixed product removal crystallizer for concentrations of reactants of about 0.05 M ammonium hexafluorozirconate precipitating with 0.002 M ammonium hydroxide showed apparent nonlinear growth rates in some cases but not others. Batch studies indicated that growth rate dispersion is probably not present. When the AFL nonlinear model was used to fit the data, the power coefficient obtained was greater than 1, in disagreement with theory. In addition, for some of the data ``S`` shaped curves of the logarithm of the cumulative number greater than versus size were obtained. These curves can not be fit by the AFL model. A program developed at the University of Arizona was used to simulate the crystallization runs. The program results indicated that some of the nonlinear behavior may be attributed to transient conditions. Experimental data also illustrated this behavior. The effect of trace amounts of tin fluoride (0.008 M) on the nucleation and growth kinetics was also evaluated. For some residence times, the presence of tin resulted in reduced median particle diameters, higher growth rates, and lower number counts.

  2. Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics

    SciTech Connect (OSTI)

    Reilly III, T. H.; van de Lagemaat, J.; Tenent, R. C.; Morfa, A. J.; Rowlen, K. L.

    2008-01-01

    Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92 nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

  3. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA)

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  4. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph (Ames, IA); Swanson, Leland S. (Ames, IA); Lu, Feng (Ames, IA); Ding, Yiwei (Ames, IA); Barton, Thomas J. (Ames, IA); Vardeny, Zeev V. (Salt Lake City, UT)

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  5. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  6. Poly (p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  7. Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells

    SciTech Connect (OSTI)

    Williams, B. L.; Phillips, L.; Major, J. D.; Durose, K.; Taylor, A. A.; Mendis, B. G.; Bowen, L.

    2014-02-03

    Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was ??=?2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (?{sub B}?=?0.52?eV) and low shunt resistances (R{sub SH}?

  8. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    SciTech Connect (OSTI)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgstrm, Magnus T.; Hessman, Dan; Samuelson, Lars

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  9. Influence of sputtering power on the optical properties of ITO thin films

    SciTech Connect (OSTI)

    K, Aijo John; M, Deepak T, Manju; Kumar, Vineetha V.

    2014-10-15

    Tin doped indium oxide films are widely used in transparent conducting coatings such as flat panel displays, crystal displays and in optical devices such as solar cells and organic light emitting diodes due to the high electrical resistivity and optical transparency in the visible region of solar spectrum. The deposition parameters have a commendable influence on the optical and electrical properties of the thin films. In this study, ITO thin films were prepared by RF magnetron sputtering. The properties of the films prepared under varying sputtering power were compared using UV- visible spectrophotometry. Effect of sputtering power on the energy band gap, absorption coefficient and refractive index are investigated.

  10. Efficient Schottky-like junction GaAs nanowire photodetector with 9?GHz modulation bandwidth with large active area

    SciTech Connect (OSTI)

    Seyedi, M. A. Yao, M.; O'Brien, J.; Wang, S. Y.; Dapkus, P. D.

    2014-07-28

    Efficient, low capacitance density GaAs/Indium-Tin-Oxide Schottky-like junction photodetectors with a 50??m square active are fabricated for operation in the gigahertz range. Modulation bandwidth is experimentally measured up to 10?GHz at various applied reverse biases and optical intensities to explore the effects of photo-generated carrier screening on modulation bandwidth. Last, the bandwidth dependence on applied reverse bias and optical intensity is simulated as a means to quantify average carrier velocities in nanowire material systems.

  11. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    SciTech Connect (OSTI)

    Ostfeld, Aminy E.; Arias, Ana Claudia; Catheline, Amlie; Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Sin; Chen, Zhihua; Facchetti, Antonio

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  12. Investigation of some new hydro(solvo)thermal synthesis routes to nanostructured mixed-metal oxides

    SciTech Connect (OSTI)

    Burnett, David L.; Harunsani, Mohammad H.; Kashtiban, Reza J.; Playford, Helen Y.; Sloan, Jeremy; Hannon, Alex C.; Walton, Richard I.

    2014-06-01

    We present a study of two new solvothermal synthesis approaches to mixed-metal oxide materials and structural characterisation of the products formed. The solvothermal oxidation of metallic gallium by a diethanolamine solution of iron(II) chloride at 240 °C produces a crystalline sample of a spinel-structured material, made up of nano-scale particles typically 20 nm in dimension. XANES spectroscopy at the K-edge shows that the material contains predominantly Fe{sup 2+} in an octahedral environment, but that a small amount of Fe{sup 3+} is also present. Careful analysis using transmission electron microscopy and powder neutron diffraction shows that the sample is actually a mixture of two spinel materials: predominantly (>97%) an Fe{sup 2+} phase Ga{sub 1.8}Fe{sub 1.2}O{sub 3.9}, but with a minor impurity phase that is iron-rich. In contrast, the hydrothermal reaction of titanium bis(ammonium lactato)dihydroxide in water with increasing amounts of Sn(IV) acetate allows nanocrystalline samples of the SnO{sub 2}–TiO{sub 2} solid solution to be prepared directly, as proved by powder XRD and Raman spectroscopy. - Graphical abstract: New solvothermal synthesis approaches to spinel and rutile mixed-metal oxides are reported. - Highlights: • Solvothermal oxidation of gallium metal in organic iron(II) solution gives a novel iron gallate spinel. • Hydrothermal reaction of titanium(IV) complex and tin(IV) acetate produces the complete SnO{sub 2}–TiO{sub 2} solid solution. • Nanostructured mixed-metal oxide phases are produced directly from solution.

  13. Methanol partial oxidation reformer

    SciTech Connect (OSTI)

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  14. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  15. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  16. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  17. Thermally Oxidized Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the

  18. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E.; Lyons, James E.; Myers, Jr., Harry K.; Shaikh, Shahid N.

    1998-01-01

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  19. Tetraalklylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

    1998-10-06

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  20. Tetraalykylammonium polyoxoanionic oxidation catalysts

    DOE Patents [OSTI]

    Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

    1998-01-01

    Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z (n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

  1. Molecular water oxidation catalyst

    DOE Patents [OSTI]

    Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  2. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect (OSTI)

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10?mA to (0.351, 0.322) at 30?mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  3. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morales-Masis, Monica; Martin De Nicolas, Silvia; Holovsky, Jakub; De Wolf, Stefaan; Ballif, Christophe

    2015-07-13

    Parasitic absorption in the transparent conductive oxide (TCO) front electrode is one of the limitations of silicon heterojunction (SHJ) solar cells efficiency. To avoid such absorption while retaining high conductivity, TCOs with high electron mobility are preferred over those with high carrier density. Here, we demonstrate improved SHJ solar cell efficiencies by applying high-mobility amorphous indium zinc oxide (a-IZO) as the front TCO. We sputtered a-IZO at low substrate temperature and low power density and investigated the optical and electrical properties, as well as subband tail formation-quantified by the Urbach energy (EU)-as a function of the sputtering oxygen partial pressure.more » We obtain an EU as low as 128 meV for films with the highest Hall mobility of 60 cm2/Vs. When comparing the performance of a-IZO films with indium tin oxide (ITO) and hydrogenated indium oxide (IO:H), we find that IO:H (115 cm2/Vs) exhibits a similar EU of 130 meV, while ITO (25 cm2/Vs) presents a much larger EU of up to 270 meV. The high film quality, indicated by the low EU, the high mobility, and low free carrier absorption of the developed a-IZO electrodes, result in a significant current improvement, achieving conversion efficiencies over 21.5%, outperforming those with standard ITO.« less

  4. Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures

    SciTech Connect (OSTI)

    Fakhri, M.; Goerrn, P.; Riedl, T. [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-St. 21, 42119 Wuppertal (Germany); Weimann, T.; Hinze, P. [Physikalisch-Technische Bundesanstalt Braunschweig, Bundesallee 100, 38116 Braunschweig (Germany)

    2011-09-19

    Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 deg. C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 deg. C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organic light emitting diode displays.

  5. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  6. Doped zinc oxide microspheres

    DOE Patents [OSTI]

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  7. Conformations of organophosphine oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore » field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  8. Highly oxidized superconductors

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  9. Highly oxidized superconductors

    DOE Patents [OSTI]

    Morris, D.E.

    1994-09-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  10. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOE Patents [OSTI]

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  11. Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, N.; Yadav, S. K.; Liu, X. -Y.; Wang, J.; Hoagland, R. G.; Mara, N.; Misra, A.

    2015-11-05

    Using the in situ indentation of TiN in a high-resolution transmission electron microscope, the nucleation of full as well as partial dislocations has been observed from {001} and {111} surfaces, respectively. The critical elastic strains associated with the nucleation of the dislocations were analyzed from the recorded atomic displacements, and the nucleation stresses corresponding to the measured critical strains were computed using density functional theory. The resolved shear stress was estimated to be 13.8 GPa for the partial dislocation 1/6 {111} and 6.7 GPa for the full dislocation {110}. Moreover, such an approach of quantifying nucleation stressesmorefor defects via in situ high-resolution experiment coupled with density functional theory calculation may be applied to other unit processes.less

  12. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  13. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  14. Staged membrane oxidation reactor system

    DOE Patents [OSTI]

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  15. A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst Authors: Sherman, B. D., Pillai, S., Kodis, G., Bergkamp, J., Mallouk, T. E., Gust, D., Moore, T. A., and Moore, A. L. Title: A Porphyrin-Stabilized Iridium Oxide Water Oxidation Catalyst Source: Canadian Journal of Chemistry Year: 2011 Volume: 89 Pages: 152-157 ABSTRACT: Colloidal solutions of iridium oxide hydrate (IrO2*nH2O) were formed using porphyrin stabilizers bearing malonate-like functional groups at each of the four meso

  16. Doped palladium containing oxidation catalysts

    DOE Patents [OSTI]

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  17. Enzymatic Oxidation of Methane

    SciTech Connect (OSTI)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  18. Controlled CO preferential oxidation

    DOE Patents [OSTI]

    Meltser, Mark A. (Pittsford, NY); Hoch, Martin M. (Webster, NY)

    1997-01-01

    Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.

  19. Millisecond Oxidation of Alkanes

    Broader source: Energy.gov [DOE]

    This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

  20. lithium cobalt oxide cathode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium cobalt oxide cathode - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. Nonisostructural complex oxide heteroepitaxy

    SciTech Connect (OSTI)

    Wong, Franklin J. Ramanathan, Shriram

    2014-07-01

    The authors present an overview of the fundamentals and representative examples of the growth of epitaxial complex oxide thin films on structurally dissimilar substrates. The authors will delineate how the details of particular crystal structures and symmetry of different oxide surfaces can be employed for a rational approach to the synthesis of nonisostructural epitaxial heterostructures. The concept of oxygen eutaxy can be widely applied. Materials combinations will be split into three categories, and in all cases the films and substrates occur in different crystal structures: (1) common translational and rotational symmetry between the film and substrate planes; (2) translational symmetry mismatch between the substrates and films that is distinct from a simple mismatch in lattice parameters; and (3) rotational symmetry mismatch. In case (1), in principle single-crystalline thin films can be attained despite the films and substrates possessing different crystal structures. In case (2), antiphase boundaries will be prevalent in the thin films. In case (3), thin-film rotational variants that are joined by tilt boundaries will be present. Diffraction techniques to determine crystallographic alignment and epitaxial variants are discussed, and transmission electron microscopy studies to investigate extended defects in the thin films will also be reviewed. The authors end with open problems in this field regarding the structure of oxide interfaces that can be topics for future research.

  2. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect (OSTI)

    Srhammar, Erik, E-mail: erik.sarhammar@angstrom.uu.se; Berg, Sren; Nyberg, Tomas [Department of Solid State Electronics, The ngstrm Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.510 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  3. PLATES WITH OXIDE INSERTS

    DOE Patents [OSTI]

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  4. Electrolytic oxide reduction system

    DOE Patents [OSTI]

    Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L; Berger, John F

    2015-04-28

    An electrolytic oxide reduction system according to a non-limiting embodiment of the present invention may include a plurality of anode assemblies, a plurality of cathode assemblies, and a lift system configured to engage the anode and cathode assemblies. The cathode assemblies may be alternately arranged with the anode assemblies such that each cathode assembly is flanked by two anode assemblies. The lift system may be configured to selectively engage the anode and cathode assemblies so as to allow the simultaneous lifting of any combination of the anode and cathode assemblies (whether adjacent or non-adjacent).

  5. Selective Oxidation of Organic Substrates to Partially Oxidized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Brief (243 KB) Technology Marketing Summary Rapid and controlled rate of catalysis, utilizing ozone for oxidation of alcohols to ketones or aldehydes, is made possible...

  6. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S. (Corvallis, OR); Alman, David E. (Salem, OR)

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  7. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOE Patents [OSTI]

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  8. Growth control of the oxidation state in vanadium oxide thin...

    Office of Scientific and Technical Information (OSTI)

    ... 36 MATERIALS SCIENCE; ANNEALING; ENERGY BEAM DEPOSITION; EPITAXY; LASER RADIATION; OXIDATION; PARTIAL PRESSURE; PULSED IRRADIATION; TEMPERATURE RANGE 0273-0400 K; THIN FILMS; ...

  9. A novel inorganic-organic compound: Synthesis and structural characterization of tin(II) phenylbis(phosphonate), Sn{sub 2}(PO{sub 3}C{sub 6}H{sub 4}PO{sub 3})

    SciTech Connect (OSTI)

    Subbiah, Ayyappan; Bhuvanesh, Nattamai; Clearfield, Abraham . E-mail: clearfield@mail.chem.tamu.edu

    2005-04-15

    A novel tin(II) phenylbis(phosphonate) compound has been synthesized hydrothermally and its structure has been determined by single crystal X-ray diffraction. The structure is monoclinic, space group P2{sub 1}/c (no. 14), a=4.8094(4), b=16.2871(13), c=6.9107(6)A; {beta}=106.292(6){sup o}, V=519.59(7)A{sup 3}, Z=2. The three-dimensional structure consists of 3-coordinated tin and 4-coordinated phosphorus double layers separated (pillared) by phenyl rings. These phenyl rings are placed 4.8A apart along the a-axis in the structure resulting in lower surface area ({approx}14m{sup 2}/g). The porosity has been increased by replacing phenyl groups by methyl groups ({approx}31m{sup 2}/g)

  10. Zinc oxide varistors and/or resistors

    DOE Patents [OSTI]

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  11. Zinc oxide varistors and/or resistors

    DOE Patents [OSTI]

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  12. Buried oxide layer in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  13. Continuous lengths of oxide superconductors

    DOE Patents [OSTI]

    Kroeger, Donald M. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN)

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  14. Effects of Oxidation on Oxidation-Resistant Graphite

    SciTech Connect (OSTI)

    Windes, William; Smith, Rebecca; Carroll, Mark

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  15. Operation of staged membrane oxidation reactor systems

    DOE Patents [OSTI]

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  16. Ultra Supercritical Steamside Oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  17. Final Report for "Boron and Tin in Nuclear Medicien: The Development of Reactive Solid-State Reagents for PET and SPECT

    SciTech Connect (OSTI)

    George W. Kabalka

    2006-01-13

    The research program was directed at the use of functionalized organometallic reagents that would rapidly react with radiolabeled agents generated by a medical cyclotron or reactor. The radioisotopes included fluorine-18, oxgygen-15, nitrogen-13, carbon-11 and iodine-123; all short lived nuclides of importantce in nuclear medicine imaging studies utilizing emission tomography techniques. The early studies led to the development of extensive new isotope incorporation chemistry. These studies validated the feasibility of using reactive intermediates, such as the organoboranes, and acted as a catalyst for others to investigate organometallic agents based on mercury, tin, and silicon. A large number of radiolabeling techniques and radiopharmaceuticals were developed. These included agents for use in oncology, neurology, and metabolism. The research resulted in the generation of one hundred and one journal articles, eighty seven refereed published abstracts and forty one invited lectures. Thirteen postdoctoral students, fourteen graduate students, and twenty eight undergraduate students were trained in the scientific aspects of nuclear medicine imaging under the asupices of this grant.

  18. Ceramic oxide powders and the formation thereof

    DOE Patents [OSTI]

    Katz, Joseph L. (Baltimore, MD); Hung, Cheng-Hung (Baltimore, MD)

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  19. Ceramic oxide powders and the formation thereof

    DOE Patents [OSTI]

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  20. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  1. Metal oxide films on metal

    DOE Patents [OSTI]

    Wu, Xin D. (Los Alamos, NM); Tiwari, Prabhat (Los Alamos, NM)

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  2. CO oxidation on gold-supported iron oxides: New insights into...

    Office of Scientific and Technical Information (OSTI)

    CO oxidation on gold-supported iron oxides: New insights into strong oxide-metal ... This content will become publicly available on July 14, 2016 Title: CO oxidation on gold-s...

  3. Development of a Zirconia-Based Electrochemical Sensor for the Detection of Hydrogen in Air

    SciTech Connect (OSTI)

    Brosha, E; Mukundan, R; Lujan, R; Garzon, F; Woo, L; Worsley, M; Glass, B

    2008-07-16

    Mixed potential sensors utilizing a machined, dense indium-tin oxide working electrode (In{sub 2}O{sub 3}:SnO{sub 2}; 90%:10%), a Pt wire counter electrode, and porous YSZ electrolyte were prepared using ceramic tape casting methods. The response of these devices to hydrogen concentrations up to 2% in air were studied from 600 to 740 C. The sensor response exhibited a reversible behavior and a fast response time with sensitivity increasing with decreasing temperature. GC analysis confirmed significant heterogeneous oxidation of the H{sub 2} on heated furnace tube wall surfaces thus driving sensor response at H{sub 2} concentrations greater than a few hundred ppm. The transition to a cold wall, miniature platform heater significantly reduced hydrogen oxidation although some flow rate dependence remains.

  4. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect (OSTI)

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

  5. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of GNDs. The initial density of GNDs in this grain was estimated to be 3.35 x 109 cm-2 (Cahn-Nye analysis), which translates into about 4.2 total dislocations in a 250-nm-diameter...

  6. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication about this research: G. Lee, J.Y. Kim, A.S. Budiman, N. Tamura, M. Kunz, K. Chen, M.J. Burek, J.R. Greer, and T.Y. Tsui, "Fabrication, structure and mechanical...

  7. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Solid Oxide Fuel Cells Project Portfolio Solid Oxide Fuel Cells are energy conversion devices that produce electric power through an electrochemical reaction rather than by...

  8. Selective deposition of nanostructured ruthenium oxide using...

    Office of Scientific and Technical Information (OSTI)

    ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion ... Title: Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus ...

  9. New manganese catalyst for light alkane oxidation

    DOE Patents [OSTI]

    Durante, Vincent A.; Lyons, James E.; Walker, Darrell W.; Marcus, Bonita K.

    1994-01-01

    Aluminophosphates containing manganese in the structural framework are employed for the oxidation of alkanes, for example the vapor phase oxidation of methane to methanol.

  10. Chemically homogeneous and thermally reversible oxidation of...

    Office of Scientific and Technical Information (OSTI)

    Chemically homogeneous and thermally reversible oxidation of epitaxial graphene Citation Details In-Document Search Title: Chemically homogeneous and thermally reversible oxidation ...

  11. Investigation of Mixed Oxide Catalysts for NO Oxidation

    SciTech Connect (OSTI)

    Szanyi, Janos; Karim, Ayman M.; Pederson, Larry R.; Kwak, Ja Hun; Mei, Donghai; Tran, Diana N.; Herling, Darrell R.; Muntean, George G.; Peden, Charles HF; Howden, Ken; Qi, Gongshin; Li, Wei

    2014-12-09

    The oxidation of engine-generated NO to NO2 is an important step in the reduction of NOx in lean engine exhaust because NO2 is required for the performance of the LNT technology [2], and it enhances the activities of ammonia selective catalytic reduction (SCR) catalysts [1]. In particular, for SCR catalysts an NO:NO2 ratio of 1:1 is most effective for NOx reduction, whereas for LNT catalysts, NO must be oxidized to NO2 before adsorption on the storage components. However, NO2 typically constitutes less than 10% of NOx in lean exhaust, so catalytic oxidation of NO is essential. Platinum has been found to be especially active for NO oxidation, and is widely used in DOC and LNT catalysts. However, because of the high cost and poor thermal durability of Pt-based catalysts, there is substantial interest in the development of alternatives. The objective of this project, in collaboration with partner General Motors, is to develop mixed metal oxide catalysts for NO oxidation, enabling lower precious metal usage in emission control systems. [1] M. Koebel, G. Madia, and M. Elsener, Catalysis Today 73, 239 (2002). [2] C. H. Kim, G. S. Qi, K. Dahlberg, and W. Li, Science 327, 1624 (2010).

  12. Solid Oxide Fuel Cells FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    further information, see: - Fuel Cell Handbook (Seventh Edition) SOLID OXIDE FUEL CELLS - ENVIRONMENT Q: How are fuel cells used? A: Fuel cells may be used to power anything that...

  13. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  14. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  15. Millisecond Oxidation of Alkanes

    SciTech Connect (OSTI)

    Scott Han

    2011-09-30

    This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

  16. The Controller Synthesis of Metastable Oxides Utilizing Epitaxy and Epitaxial Stabilization

    SciTech Connect (OSTI)

    Schlom, Darrell

    2003-12-02

    Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the nanometer. These advances were made through the use of epitaxy, epitaxial stabilization, and a combination of composition-control techniques including adsorption-controlled growth and RHEED-based composition control that we have developed, understood, and utilized for the growth of oxides. Also key was extensive characterization (utilizing RHEED, four-circle x-ray diffraction, AFM, TEM, and electrical characterization techniques) in order to study growth modes, optimize growth conditions, and probe the structural, dielectric, and ferroelectric properties of the materials grown. The materials that we have successfully engineered include titanates (PbTiO3, Bi4Ti3O12), tantalates (SrBi2Ta2O9), and niobates (SrBi2Nb2O9); layered combinations of these perovskite-related materials (Bi4Ti3O12-SrTiO3 and Bi4Ti3O12-PbTiO3 Aurivillius phases and metastable PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices), and new metastable phases (Srn+1TinO3n+1 Ruddlesden-Popper phases). The films were grown by reactive MBE and pulsed laser deposition (PLD). Many of these materials are either new or have been synthesized with the highest perfection ever reported. The controlled synthesis of such layered oxide heterostructures offers great potential for tailoring the superconducting, ferroelectric, and dielectric properties of these materials. These properties are important for energy technologies.

  17. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  18. Metal oxide nanostructures with hierarchical morphology

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lao, Jing Yu (Saline, MI); Banerjee, Debasish (Ann Arbor, MI)

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  19. CO oxidation on gold-supported iron oxides: New insights into strong oxidemetal interactions

    SciTech Connect (OSTI)

    Yu, Liang; Liu, Yun; Yang, Fan; Evans, Jaime; Rodriguez, Jos A.; Liu, Ping

    2015-07-14

    Very active FeOxAu catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate. Neither FeO nor Fe2O3 is stable under the reaction conditions. Under an environment of CO/O2, they undergo oxidation (FeO) or reduction (Fe2O3) to yield nanoparticles of Fe3O4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxidemetal interaction (SOMI) between Fe3O4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of an active phase, and provides a unique interface to facilitate a catalytic reaction. This work highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metaloxide catalysts.

  20. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  1. Method for plating with metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  2. Electrochromic window with high reflectivity modulation

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  3. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  4. Patterning by area selective oxidation

    DOE Patents [OSTI]

    Nam, Chang-Yong; Kamcev, Jovan; Black, Charles T.; Grubbs, Robert

    2015-12-29

    Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.

  5. PREPARATION OF REFRACTORY OXIDE CRYSTALS

    DOE Patents [OSTI]

    Grimes, W.R.; Shaffer, J.H.; Watson, G.M.

    1962-11-13

    A method is given for preparing uranium dioxide, thorium oxide, and beryllium oxide in the form of enlarged individual crystals. The surface of a fused alkali metal halide melt containing dissolved uranium, thorium, or beryllium values is contacted with a water-vapor-bearing inert gas stream at a rate of 5 to 10 cubic centimeters per minute per square centimeter of melt surface area. Growth of individual crystals is obtained by prolonged contact. Beryllium oxide-coated uranium dioxide crystals are prepared by disposing uranium dioxide crystals 5 to 20 microns in diameter in a beryllium-containing melt and contacting the melt with a water-vapor-bearing inert gas stream in the same manner. (AEC)

  6. Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe)3]2+/+ (dmpe = 1,2-bis(dimethylphosphino)ethane) within a Charge-Selective Polymer Film

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Del Negro, Andrew S.; Edwards, Matthew K.; Bryan, Samuel A.; Kaval, Necati; Pantelic, Nebojsa; Morris, Laura K.; Heineman, W. R.; Seliskar, Carl J.

    2011-03-01

    A spectroelectrochemical sensor consisting of an indium tin oxide (ITO) optically transparent electrode (OTE) coated with a thin film of sulfonated polystyrene-blockpoly(ethylene-ran-butylene)-block-polystyrene (SSEBS) was developed for [Tc(dmpe)3]+.. [Tc(dmpe)3]+ preconcentrated by ion-exchange into the SSEBS film after 20 min exposure to aqueous [Tc(dmpe)3]+ solution, resulting in a 14-fold increase in cathodic peak current compared to a bare OTE. Colorless [Tc(dmpe)3]+ was reversibly oxidized to colored [Tc(dmpe)3]2+ by cyclic voltammetry. Detection of [Tc(dmpe)3]2+ was accomplished by electrochemically cycling the complex between non-emissive [Tc(dmpe)3]+ and emissive [Tc(dmpe)3]2+ and monitoring the modulated emission (?exc = 532 nm; ?em = 660 nm). The sensor gave a linear response over the range of 0.16 to 340.0 M.

  7. Method for hot pressing beryllium oxide articles

    DOE Patents [OSTI]

    Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  8. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  9. CO oxidation on gold-supported iron oxides: New insights into strong

    Office of Scientific and Technical Information (OSTI)

    oxide-metal interactions (Journal Article) | SciTech Connect CO oxidation on gold-supported iron oxides: New insights into strong oxide-metal interactions Citation Details In-Document Search This content will become publicly available on July 14, 2016 Title: CO oxidation on gold-supported iron oxides: New insights into strong oxide-metal interactions Very active FeOx-Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate.

  10. Thin film cadmium telluride and zinc phosphide solar cells

    SciTech Connect (OSTI)

    Chu, T.

    1984-10-01

    This report describes research performed from June 1982 to October 1983 on the deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films have been prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMl efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrates by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10/sup 6/ ohm-cm, and this resistivity may be reduced to about 5 x 10/sup 4/ ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films were deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts were directed to the deposition of low-resistivity zinc selenide in order to prepare ZnSe/An/sub 3/P/sub 2/ heterojunction thin-film solar cells. However, zinc selenide films deposited by vacuum evaporation and chemical vapor deposition techniques were all of high resistivity.

  11. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  12. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  13. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  14. Ferroelectricity in undoped hafnium oxide

    SciTech Connect (OSTI)

    Polakowski, Patrick; Mller, Johannes

    2015-06-08

    We report the observation of ferroelectric characteristics in undoped hafnium oxide thin films in a thickness range of 420?nm. The undoped films were fabricated using atomic layer deposition (ALD) and embedded into titanium nitride based metal-insulator-metal (MIM) capacitors for electrical evaluation. Structural as well as electrical evidence for the appearance of a ferroelectric phase in pure hafnium oxide was collected with respect to film thickness and thermal budget applied during titanium nitride electrode formation. Using grazing incidence X-Ray diffraction (GIXRD) analysis, we observed an enhanced suppression of the monoclinic phase fraction in favor of an orthorhombic, potentially, ferroelectric phase with decreasing thickness/grain size and for a titanium nitride electrode formation below crystallization temperature. The electrical presence of ferroelectricity was confirmed using polarization measurements. A remanent polarization P{sub r} of up to 10??C?cm{sup ?2} as well as a read/write endurance of 1.6??10{sup 5} cycles was measured for the pure oxide. The experimental results reported here strongly support the intrinsic nature of the ferroelectric phase in hafnium oxide and expand its applicability beyond the doped systems.

  15. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  16. Formulations for iron oxides dissolution

    DOE Patents [OSTI]

    Horwitz, Earl P. (Argonne, IL); Chiarizia, Renato (Argonne, IL)

    1992-01-01

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  17. Complex oxides useful for thermoelectric energy conversion

    DOE Patents [OSTI]

    Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  18. Electronic structure of graphene oxide and reduced graphene oxide monolayers

    SciTech Connect (OSTI)

    Sutar, D. S.; Singh, Gulbagh; Divakar Botcha, V.

    2012-09-03

    Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

  19. High quality oxide films on substrates

    DOE Patents [OSTI]

    Ruckman, Mark W. (Middle Island, NY); Strongin, Myron (Center Moriches, NY); Gao, Yong L. (Henrietta, NY)

    1994-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  20. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  1. High quality oxide films on substrates

    DOE Patents [OSTI]

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1994-02-01

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  2. NETL: Solid Oxide Fuel Cells Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Oxide Fuel Cells Publications This page provides links to SOFC Program related documents and reference materials. Solid Oxide Fuel Cells Program 2015 Project Portfolio The Solid Oxide Fuel Cells (SOFC) Project Portfolio provides an overview of the SOFC Program, including a description of key technology areas, information on projects, location map, and contact information for personnel supporting the SOFC Program. Recent Solid Oxide Fuel Cell Cathode Studies May 2013 In 2007, the SECA

  3. Dense high temperature ceramic oxide superconductors

    DOE Patents [OSTI]

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  4. Dense high temperature ceramic oxide superconductors

    DOE Patents [OSTI]

    Landingham, Richard L. (Livermore, CA)

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  5. Final Technical Report CONDUCTIVE COATINGS FOR SOLAR CELLS USING CARBON NANOTUBES

    SciTech Connect (OSTI)

    Paul J Glatkowski; Jorma Peltola; Christopher Weeks; Mike Trottier; David Britz

    2007-09-30

    US Department of Energy (DOE) awarded a grant for Eikos Inc. to investigate the feasibility of developing and utilizing Transparent Conducting Coatings (TCCs) based on carbon nanotubes (CNT) for solar cell applications. Conventional solar cells today employ metal oxide based TCCs with both Electrical Resistivity (R) and Optical Transparency (T), commonly referred to as optoelectronic (RT) performance significantly higher than with those possible with CNT based TCCs available today. Transparent metal oxide based coatings are also inherently brittle requiring high temperature in vacuum processing and are thus expensive to manufacture. One such material is indium tin oxide (ITO). Global demand for indium has recently increased rapidly while supply has diminished causing substantial spikes in raw material cost and availability. In contrast, the raw material, carbon, needed for CNT fabrication is abundantly available. Transparent Conducting Coatings based on CNTs can overcome not only cost and availability constraints while also offering the ability to be applied by existing, low cost process technologies under ambient conditions. Processes thus can readily be designed both for rigid and flexible PV technology platforms based on mature spray or dip coatings for silicon based solar cells and continuous roll to roll coating processes for polymer solar applications.

  6. Low-temperature high-mobility amorphous IZO for silicon heterojunction solar cells

    SciTech Connect (OSTI)

    Morales-Masis, Monica; Martin De Nicolas, Silvia; Holovsky, Jakub; De Wolf, Stefaan; Ballif, Christophe

    2015-07-13

    Parasitic absorption in the transparent conductive oxide (TCO) front electrode is one of the limitations of silicon heterojunction (SHJ) solar cells efficiency. To avoid such absorption while retaining high conductivity, TCOs with high electron mobility are preferred over those with high carrier density. Here, we demonstrate improved SHJ solar cell efficiencies by applying high-mobility amorphous indium zinc oxide (a-IZO) as the front TCO. We sputtered a-IZO at low substrate temperature and low power density and investigated the optical and electrical properties, as well as subband tail formation-quantified by the Urbach energy (EU)-as a function of the sputtering oxygen partial pressure. We obtain an EU as low as 128 meV for films with the highest Hall mobility of 60 cm2/Vs. When comparing the performance of a-IZO films with indium tin oxide (ITO) and hydrogenated indium oxide (IO:H), we find that IO:H (115 cm2/Vs) exhibits a similar EU of 130 meV, while ITO (25 cm2/Vs) presents a much larger EU of up to 270 meV. The high film quality, indicated by the low EU, the high mobility, and low free carrier absorption of the developed a-IZO electrodes, result in a significant current improvement, achieving conversion efficiencies over 21.5%, outperforming those with standard ITO.

  7. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 1 Corrosion, Interfacial Contact Resistance, and Surface Structure

    SciTech Connect (OSTI)

    Brady, Michael P; Wang, Heli; Turner, John; Meyer III, Harry M; More, Karren Leslie; Tortorelli, Peter F; McCarthy, Brian D

    2010-01-01

    Thermal (gas) nitridation of stainless steels can yield low interfacial contact resistance (ICR), electrically-conductive and corrosion-resistant nitride containing surfaces (Cr2N, CrN, TiN, V2N, VN, etc) of interest for fuel cells, batteries, and sensors. This paper presents the results of scale up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. A major emphasis was placed on selection of alloy foil composition and nitidation conditions potentially capable of meeting the stringent cost goals for automotive PEMFC applications. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. Promising behavior was observed under simulated aggressive anode- and cathode- side bipolar plate conditions for both materials. Variation in ICR values were observed for treated 2205 foil, with lower (better) values generally observed for the treated Fe-20Cr-4V. This behavior was linked to the nature of the pre-oxidized and nitrided surface structure, which contained through surface layer thickness V-nitride particles in the case of Fe-20Cr-4V but near continuous chromia in the case of 2205 stainless steel. The implications of these findings for stamped bipolar plate foils are discussed.

  8. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  9. Catalytic oxidizers and Title V requirements

    SciTech Connect (OSTI)

    Uberoi, M.; Rach, S.E.

    1999-07-01

    Catalytic oxidizers have been used to reduce VOC emissions from various industries including printing, chemical, paint, coatings, etc. A catalytic oxidizer uses a catalyst to reduce the operating temperature for combustion to approximately 600 F, which is substantially lower than thermal oxidation unit. Title V requirements have renewed the debate on the best methods to assure compliance of catalytic oxidizers, with some suggesting the need for continuous emission monitoring equipment. This paper will discuss the various aspects of catalytic oxidation and consider options such as monitoring inlet/outlet temperatures, delta T across the catalyst, periodic laboratory testing of catalyst samples, and preventive maintenance procedures as means of assuring continuous compliance.

  10. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect (OSTI)

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due to the potential of achieving higher actinide recoveries from refractory materials. In this experiment, nominally 10 g of a graphite-containing residue generated during plutonium casting operations was initially calcined to remove the graphite. Removal of combustible material prior to a large-scale fusion with Na2O2 is needed due to the large amount of heat liberated during oxidation. Two successive fusions using the residue from the calcination and the residue generated from the initial dissolution allowed recovery of 98 percent of the plutonium. The fusion of the residue following the first dissolution was performed at a higher temperature (600 degrees Celsius versus 450 degrees Celsius during the first fusion). The ability to recover most of the remaining plutonium from the residue suggest the oxidation efficiency of the Na2O2 fusion improves with higher temperatures similar to results observed with NpO2 fusion.

  11. Poly(ethylene oxide) functionalization

    DOE Patents [OSTI]

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  12. Tape casting of magnesium oxide.

    SciTech Connect (OSTI)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.; Bencoe, Denise Nora; Reiterer, Markus; Shah, Raja A.

    2008-02-01

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder, plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.

  13. Structural Determination of Marine Bacteriogenic Manganese Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Marine Bacteriogenic Manganese Oxides John R. Bargar1, Samuel M. Webb2, and Bradley M. Tebo2 1Stanford Synchrotron Radiation Laboratory 2Oregon Health and Sciences University Figure 1. Top: Half of the Earth's annual photosynthetic CO2 fixation budget is attributable to oceanic phytoplankton. Mangan-ese required for this photo-synthetic activity is derived largely from bacteriogenic man-ganese oxides. Bottom: man-ganese oxides precipitated around a spore (cell) of the marine

  14. Solid-oxide fuel cell electrolyte

    DOE Patents [OSTI]

    Bloom, Ira D. (Bolingbrook, IL); Hash, Mark C. (Joliet, IL); Krumpelt, Michael (Naperville, IL)

    1993-01-01

    A solid-oxide electrolyte operable at between 600.degree. C. and 800.degree. C. and a method of producing the solid-oxide electrolyte are provided. The solid-oxide electrolyte comprises a combination of a compound having weak metal-oxygen interactions with a compound having stronger metal-oxygen interactions whereby the resulting combination has both strong and weak metal-oxygen interaction properties.

  15. Oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  16. Metal oxide composite dosimeter method and material

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  17. Nanostructured Water Oxidation Catalysts - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Nanostructured Water Oxidation Catalysts Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryHeinz Frei and Feng Jiao of Berkeley Lab have developed a visible light driven catalytic system for oxidizing water. Efficient catalytic water oxidation is a critical step for any artificial sunlight-to-fuel conversion system.

  18. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  19. New THz opportunities based on graphene

    SciTech Connect (OSTI)

    Hartnagel, Hans

    2015-04-24

    Graphene is a new material of a single or multiple layer carbon structure with impressive properties. A brief introduction is initially presented. Graphene does not have a bandwidth and is a semimetal with charge carriers of zero mass. A bandgap can be formed by confining the graphene width in nanoribbon or nanoconstricition structures. For example, the induced bandgap by a 20?nm wide nanoribbon is about 50 meV. The charge carrier mass then increases, but is still very small. This material can especially be employed for various Terahertz applications. Here several examples are to be described, namely a) a THz transistor, b) the opportunities of ballistic electron resonances for THz signal generation, c) the simultaneous optical transmission and electrical conduction up to THz frequencies and d) Cascaded THz emitters. The optical advantages of multilayer graphene can be compared to ITO (Indium Tin Oxide)

  20. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  1. Digital microfluidic hub for automated nucleic acid sample preparation.

    SciTech Connect (OSTI)

    He, Jim; Bartsch, Michael S.; Patel, Kamlesh D.; Kittlaus, Eric A.; Remillared, Erin M.; Pezzola, Genevieve L.; Renzi, Ronald F.; Kim, Hanyoup

    2010-07-01

    We have designed, fabricated, and characterized a digital microfluidic (DMF) platform to function as a central hub for interfacing multiple lab-on-a-chip sample processing modules towards automating the preparation of clinically-derived DNA samples for ultrahigh throughput sequencing (UHTS). The platform enables plug-and-play installation of a two-plate DMF device with consistent spacing, offers flexible connectivity for transferring samples between modules, and uses an intuitive programmable interface to control droplet/electrode actuations. Additionally, the hub platform uses transparent indium-tin oxide (ITO) electrodes to allow complete top and bottom optical access to the droplets on the DMF array, providing additional flexibility for various detection schemes.

  2. Light Trapping for High Efficiency Heterojunction Crystalline Si Solar Cells: Preprint

    SciTech Connect (OSTI)

    Wang, Q.; Xu, Y.; Iwaniczko, E.; Page, M.

    2011-04-01

    Light trapping plays an important role to achieve high short circuit current density (Jsc) and high efficiency for amorphous/crystalline Si heterojunction solar cells. Si heterojunction uses hydrogenated amorphous Si for emitter and back contact. This structure of solar cell posses highest open circuit voltage of 0.747 V at one sun for c-Si based solar cells. It also suggests that over 25% record-high efficiency is possible with further improvement of Jsc. Light trapping has two important tasks. The first one is to reduce the surface reflectance of light to zero for the solar spectrum that Si has a response. The second one is to increase the effective absorption length to capture all the photon. For Si heterojunction solar cell, surface texturing, anti-reflectance indium tin oxides (ITO) layer at the front and back are the key area to improve the light trapping.

  3. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    SciTech Connect (OSTI)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv, E-mail: rprakash.mst@itbhu.ac.in [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)] [School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)

    2013-12-15

    We report formation of polycarbazole (PCz)graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current densityvoltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device.

  4. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect (OSTI)

    Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  5. High blue-near ultraviolet photodiode response of vertically stacked graphene-MoS{sub 2}-metal heterostructures

    SciTech Connect (OSTI)

    Wi, Sungjin; Chen, Mikai; Nam, Hongsuk; Liu, Amy C.; Meyhofer, Edgar; Liang, Xiaogan

    2014-06-09

    We present a study on the photodiode response of vertically stacked graphene/MoS{sub 2}/metal heterostructures in which MoS{sub 2} layers are doped with various plasma species. In comparison with undoped heterostructures, such doped ones exhibit significantly improved quantum efficiencies in both photovoltaic and photoconductive modes. This indicates that plasma-doping-induced built-in potentials play an important role in photocurrent generation. As compared to indium-tin-oxide/ MoS{sub 2}/metal structures, the presented graphene/MoS{sub 2}/metal heterostructures exhibit greatly enhanced quantum efficiencies in the blue-near ultraviolet region, which is attributed to the low density of recombination centers at graphene/MoS{sub 2} heterojunctions. This work advances the knowledge for making photo-response devices based on layered materials.

  6. Multi-layer micro/nanofluid devices with bio-nanovalves

    DOE Patents [OSTI]

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  7. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

    SciTech Connect (OSTI)

    Seyedi, M. A. Yao, M.; O'Brien, J.; Dapkus, P. D.; Wang, S. Y.; Nanostructured Energy Conversion Technology and Research , Advanced Studies Laboratories, University of California, Santa Cruz, California 95064, USA and NASA Ames Research Center, Moffett Field, California 94035

    2013-12-16

    We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7?dB for 2?V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields <5?nF/cm{sup 2}, which shows a strong possibility for high-speed applications with a broad area device.

  8. Combustion-process derived comparable performances of Zn-(In:Sn)-O thin-film transistors with a complete miscibility

    SciTech Connect (OSTI)

    Jiang, Qingjun; Lu, Jianguo Cheng, Jipeng; Sun, Rujie; Feng, Lisha; Dai, Wen; Yan, Weichao; Ye, Zhizhen; Li, Xifeng

    2014-09-29

    Amorphous zinc-indium-tin oxide (a-ZITO) thin-film transistors (TFTs) have been prepared using a low-temperature combustion process, with an emphasis on complete miscibility of In and Sn contents. The a-ZITO TFTs were comparatively studied in detail, especially for the working stability. The a-ZITO TFTs all exhibited acceptable and excellent behaviors from Sn-free TFTs to In-free TFTs. The obtained a-ZTO TFTs presented a field-effect mobility of 1.20?cm{sup 2} V{sup ?1} s{sup ?1}, an on/off current ratio of 4.89??10{sup 6}, and a long-term stability under positive bias stress, which are comparable with those of the a-ZIO TFTs. The In-free a-ZTO TFTs are very potential for electrical applications with a low cost.

  9. Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells

    SciTech Connect (OSTI)

    Kopach, V. R.; Kirichenko, M. V. Khrypunov, G. S.; Zaitsev, R. V.

    2010-06-15

    It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 {mu}m thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 {mu}m thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

  10. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    SciTech Connect (OSTI)

    Meerheim, Rico Krner, Christian; Leo, Karl

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  11. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  12. ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Events Return to Search ELECTROCHROMIC NICKEL OXIDE SIMULTANEOUSLY DOPED WITH LITHIUM AND A METAL DOPANT United States Patent Application *** PATENT GRANTED ***...

  13. Double perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Alkali metal doped double perovskites containing manganese and at least one of cobalt, iron and nickel are useful in the oxidative coupling of alkane to higher hydrocarbons.

  14. Oxidation of ultrathin GaSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  15. Lanthanide doped barium phosphorous oxide scintillators

    DOE Patents [OSTI]

    Borade, Ramesh B; Bourret-Courchesne, Edith; Denzo, Stephen E

    2013-02-26

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped barium phosphorous oxide useful for detecting nuclear material.

  16. Oxidation of ultrathin GaSe

    SciTech Connect (OSTI)

    Thomas Edwin Beechem; McDonald, Anthony E.; Ohta, Taisuke; Howell, Stephen W.; Kalugin, Nikolai G.; Kowalski, Brian M.; Brumbach, Michael T.; Spataru, Catalin D.; Pask, Jesse A.

    2015-10-26

    Oxidation of exfoliated gallium selenide (GaSe) is investigated through Raman, photoluminescence, Auger, and X-ray photoelectron spectroscopies. Photoluminescence and Raman intensity reductions associated with spectral features of GaSe are shown to coincide with the emergence of signatures emanating from the by-products of the oxidation reaction, namely, Ga2Se3 and amorphous Se. Furthermore, photoinduced oxidation is initiated over a portion of a flake highlighting the potential for laser based patterning of two-dimensional heterostructures via selective oxidation.

  17. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen

    Office of Scientific and Technical Information (OSTI)

    fugacity buffers (Journal Article) | SciTech Connect High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers Citation Details In-Document Search Title: High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high

  18. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fugacity buffers (Journal Article) | SciTech Connect High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers Citation Details In-Document Search Title: High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high

  19. Evaporative oxidation treatability test report

    SciTech Connect (OSTI)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  20. Apparatus and method for oxidizing organic materials

    DOE Patents [OSTI]

    Surma, Jeffrey E. (Kennewick, WA); Bryan, Garry H. (Kennewick, WA); Geeting, John G. H. (West Richland, WA); Butner, R. Scott (Port Orchard, WA)

    1998-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell.

  1. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  2. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  3. Plutonium Oxide Process Capability Work Plan

    SciTech Connect (OSTI)

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  4. Apparatus and method for oxidizing organic materials

    DOE Patents [OSTI]

    Surma, J.E.; Bryan, G.H.; Geeting, J.G.H.; Butner, R.S.

    1998-01-13

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. 6 figs.

  5. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  6. Nanocomposite of graphene and metal oxide materials

    DOE Patents [OSTI]

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  7. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, Gary L. (Centerville, OH); Martin, Frank S. (Farmersville, OH)

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  8. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  9. Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation Citation Details In-Document Search This content will become publicly available on September 21, 2016 Title: Complex catalytic behaviors of CuTiOx mixed-oxide during CO oxidation Mixed metal oxides have attracted considerable attention in heterogeneous catalysis due to the unique stability, reactivity, and selectivity. Here, the activity and stability of the CuTiOx monolayer film

  10. Packaging and Transportation of Additional Neptunium Oxide

    SciTech Connect (OSTI)

    Watkins, R.; Jordan, J.; Hensel, S.

    2010-05-05

    The Savannah River Site's HB-Line Facility completed a second neptunium oxide production campaign in which nine (9) additional cans of neptunium oxide were produced and shipped to the Idaho National Laboratory and Oak Ridge National Laboratory in the 9975 shipping container. These additional cans were from a different feed solution than the first fifty (50) cans of neptunium oxide that were previously produced and shipped via a Letter of Amendment to the 9975 Safety Analysis Report for Packaging (SARP) content table. This paper will address the challenges associated with demonstrating the neptunium oxide produced from the additional feed solution was equivalent to the original neptunium oxide and within the content description of the Letter of Amendment.

  11. Two Dimensional Polymer That Generates Nitric Oxide.

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI)

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  12. Electro-deposition of superconductor oxide films

    DOE Patents [OSTI]

    Bhattacharya, Raghu N. (Littleton, CO)

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  13. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells

    SciTech Connect (OSTI)

    Kumar, Akshay; Madaria, Anuj R.; Zhou, Chongwu

    2010-05-06

    TiO{sub 2} is a wide band gap semiconductor with important applications in photovoltaic cells and photocatalysis. In this paper, we report synthesis of single-crystalline rutile phase TiO{sub 2} nanowires on arbitrary substrates, including fluorine-doped tin oxide (FTO), glass slides, tin-doped indium oxide (ITO), Si/SiO{sub 2}, Si(100), Si(111), and glass rods. By controlling the growth parameters such as growth temperature, precursor concentrations, and so forth, we demonstrate that anisotropic growth of TiO{sub 2} is possible leading to various morphologies of nanowires. Optimization of the growth recipe leads to well-aligned vertical array of TiO{sub 2} nanowires on both FTO and glass substrates. Effects of various titanium precursors on the growth kinetics, especially on the growth rate of nanowires, are also studied. Finally, application of vertical array of TiO{sub 2} nanowires on FTO as the photoanode is demonstrated in dye-sensitized solar cell with an efficiency of 2.9 0.2%.

  14. Oxidized film structure and method of making epitaxial metal oxide structure

    DOE Patents [OSTI]

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  15. Catalytic oxidation of hydrocarbons and alcohols by carbon dioxide on oxide catalysts

    SciTech Connect (OSTI)

    Krylov, O.V. . N.N. Semenov Inst. of Chemical Physics); Mamedov, A.Kh.; Mirzabekova, S.R. . Yu.G. Mamedaliev Inst. of Petrochemical Processes)

    1995-02-01

    The great interest displayed lately in heterogeneous catalytic reactions of carbon dioxide is caused by two reasons: (1) the necessity to fight the greenhouse effect and (2) the exhaust of carbon raw material sources. Reactions of oxidative transformation of organic compounds of different classes (alkanes, alkenes, and alcohols) with a nontraditional oxidant, carbon dioxide, were studied on oxide catalysts Fe-O, Cr-O, Mn-O and on multicomponent systems based on manganese oxide. The supported manganese oxide catalysts are active, selective, and stable in conversion of the CH[sub 4] + CO[sub 2] mixture into synthesis gas and in oxidative dehydrogenation of C[sub 2] [minus] C[sub 7] hydrocarbons and the lower alcohols. Unlike metal catalysts manganese oxide based catalysts do not form a carbon layer during the reaction.

  16. AP-XPS Measures MIEC Oxides in Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AP-XPS Measures MIEC Oxides in Action Print Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad...

  17. Looking at Transistor Gate Oxide Formation in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at Transistor Gate Oxide Formation in Real Time Print The oxide gate layer is ... Now, for the first time, a group of researchers has obtained real-time oxidation results ...

  18. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  19. Rational Catalyst Design Applied to Development of Advanced Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation ...

  20. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & ...

  1. Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: Advanced Oxidation & Stabilization of PAN-Based Carbon Precursor Fibers Advanced Oxidation & Stabilization of PAN-Based Carbon ...

  2. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOE Patents [OSTI]

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  3. Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Presents...

  4. Effects of Iron Oxides on the Rheological Properties of Cementitious...

    Office of Scientific and Technical Information (OSTI)

    Title: Effects of Iron Oxides on the Rheological Properties of Cementitious Slurry Iron oxide has been considered a promising host for immobilizing and encapsulating radioactive ...

  5. Graphene Oxide Catalyzed C-H Bond Activation: The Importance...

    Office of Scientific and Technical Information (OSTI)

    Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction Citation Details In-Document Search Title: Graphene Oxide Catalyzed ...

  6. Low-Temperature Hydrocarbon/CO Oxidation Catalysis in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Temperature HydrocarbonCO Oxidation Catalysis in Support of HCCI Emission Control Low-Temperature HydrocarbonCO Oxidation Catalysis in Support ...

  7. A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol-Gel Process Employing Heterometallic Alkoxides A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol-Gel ...

  8. Oxide-based SOFC Anode Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    offered in traditional metal oxides. Technology Marketing SummaryIn a solid-oxide fuel cell (SOFC), the anode facilitates the reaction between hydrogen, carbon monoxide and...

  9. Patent: Microbial-mediated method for metal oxide nanoparticle formation |

    Office of Scientific and Technical Information (OSTI)

    DOEpatents Microbial-mediated method for metal oxide nanoparticle formation Citation Details Title: Microbial-mediated method for metal oxide nanoparticle formation

  10. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  11. High surface area, electrically conductive nanocarbon-supported metal oxide

    DOE Patents [OSTI]

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  12. AP-XPS Measures MIEC Oxides in Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and...

  13. Center for Nanophase Materials Sciences (CNMS) - STM for Oxide Surfaces,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Assemblies and Electrical Transport STM for Oxide Surfaces, Molecular Assemblies and Electrical Transport STM for Oxide Surfaces, Molecular Assemblies and Electrical Transport

  14. Diesel Particulate Oxidation Model: Combined Effects of Fixed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Model: Combined Effects of Fixed & Volatile Carbon Diesel Particulate Oxidation Model: Combined Effects of Fixed & Volatile Carbon Poster presented at the 16th Directions ...

  15. Taking snapshots of different redox states of the water oxidation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    natural photosynthetic water oxidation mechanism empowers designers of artificial photosynthesis with knowledge to construct better water oxidation catalysts for solar fuel...

  16. Nanoscale friction properties of graphene and graphene oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale friction properties of graphene and graphene oxide Title Nanoscale friction properties of graphene and graphene oxide Publication Type Journal Article Year of Publication...

  17. Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with Rational Catalyst Design Approach Overcoming Hydrocarbon Inhibition on Pd-based Diesel Oxidation Catalysts with...

  18. LANL disassembles "pits," makes mixed-oxide fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL disassembles "pits," makes mixed-oxide fuel LANL has successfully disassembled nuclear weapons "pits" and converted them into more than 240 kilograms of plutonium oxide. ...

  19. Method for producing metal oxide nanoparticles

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Mendoza, Daniel (Santa Fe, NM); Chen, Chun-Ku (Albuquerque, NM)

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Electrocatalyst for alcohol oxidation in fuel cells

    DOE Patents [OSTI]

    Adzic, Radoslav R. (Setauket, NY); Marinkovic, Nebojsa S. (Coram, NY)

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  1. Kinetic study of the oxidation of n-butane on vanadium oxide supported on Al/Mg mixed oxide

    SciTech Connect (OSTI)

    Dejoz, A.; Vazquez, I.; Nieto, J.M.L.; Melo, F.

    1997-07-01

    The reaction kinetics of the oxidative dehydrogenation (ODH) of n-butane over vanadia supported on a heat-treated Mg/Al hydrotalcite (37.3 wt % of V{sub 2}O{sub 5}) was investigated by both linear and nonlinear regression techniques. A reaction network including the formation of butenes (1-, 2-cis-, and 2-trans-butene), butadiene, and carbon oxides by parallel and consecutive reactions, at low and high n-butane conversions, has been proposed. Langmuir-Hinshelwood (LH) models can be used as suitable models which allows reproduction of the global kinetic behavior, although differences between oxydehydrogenation and deep oxidation reactions have been observed. Thus, the formation of oxydehydrogenation products can be described by a LH equation considering a dissociative adsorption of oxygen while the formation of carbon oxides is described by a LH equation with a nondissociative adsorption of oxygen. Two different mechanisms operate on the catalyst: (i) a redox mechanism responsible of the formation of olefins and diolefins and associated to vanadium species, which is initiated by a hydrogen abstraction; (ii) a radical mechanism responsible of the formation of carbon oxides from n-butane and butenes and associated to vanadium-free sites of the support. On the other hand, the selectivity to oxydehydrogenation products increases with the reaction temperature. This catalytic performance can be explained taking into account the low reducibility of V{sup 5+}-sites and the higher apparent activation energies of the oxydehydrogenation reactions with respect to deep oxidation reactions.

  2. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, Wei (Cambridge, MA); Flytzani-Stephanopoulos, Maria (Winchester, MA)

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  3. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOE Patents [OSTI]

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  4. Structure and Reactivity of Surface Oxides on Pt(110) during Catalytic CO Oxidation

    SciTech Connect (OSTI)

    Ackermann, M.D.; Pedersen, T.M.; Hammer, B.; Hendriksen, B.L.M.; Bobaru, S.C.; Frenken, J.W.M.; Robach, O.; Quiros, C.

    2005-12-16

    We present the first structure determination by surface x-ray diffraction during the restructuring of a model catalyst under reaction conditions, i.e., at high pressure and high temperature, and correlate the restructuring with a change in catalytic activity. We have analyzed the Pt(110) surface during CO oxidation at pressures up to 0.5 bar and temperatures up to 625 K. Depending on the O{sub 2}/CO pressure ratio, we find three well-defined structures: namely, (i) the bulk-terminated Pt(110) surface, (ii) a thin, commensurate oxide, and (iii) a thin, incommensurate oxide. The commensurate oxide only appears under reaction conditions, i.e., when both O{sub 2} and CO are present and at sufficiently high temperatures. Density functional theory calculations indicate that the commensurate oxide is stabilized by carbonate ions (CO{sub 3}{sup 2-}). Both oxides have a substantially higher catalytic activity than the bulk-terminated Pt surface.

  5. Interfacial material for solid oxide fuel cell

    DOE Patents [OSTI]

    Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

    1999-01-01

    Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

  6. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  7. Extracting metals directly from metal oxides

    DOE Patents [OSTI]

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  8. Electrochromic nickel oxide simultaneously doped with lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Like This Return to Search Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant United States Patent Patent Number: 8,687,261 Issued: April 1,...

  9. Removing sulphur oxides from a fluid stream

    DOE Patents [OSTI]

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  10. Iridium material for hydrothermal oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T. (Tewksbury, MA); Zilberstein, Vladimir A. (Brookline, MA)

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  11. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect (OSTI)

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D) 2.4; similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  12. Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts

    SciTech Connect (OSTI)

    Argyle, Morris; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-12-10

    Kinetic and isotopic tracer and exchange measurements were used to determine the identity and reversibility of elementary steps involved in ethane oxidative dehydrogenation (ODH) on VOx/Al2O3 and VOx/ZrO2. C2H6-C2D6-O2 and C2H6-D2O-O2 react to form alkenes and COx without concurrent formation of C2H6-xDx orC2H4-xDx isotopomers, suggesting that C-H bond cleavage in ethane and ethene is an irreversible and kinetically relevant step in ODH and combustion reactions. Primary ethane ODH reactions show normal kinetic isotopic effects (kC-H/kC-D 2.4); similar values were measured for ethane and ethene combustion(1.9 and 2.8, respectively). 16O2-18O2-C2H6 reactions on supported V16Ox domains led to the initial appearance of 16O from the lattice in H2O, CO, and CO2, consistent with the involvement of lattice oxygen in C-H bond activation steps. Isotopic contents are similar in H2O, CO, and CO2, suggesting that ODH and combustion reactions use similar lattice oxygen sites. No 16O-18O isotopomer s were detected during reactions of 16O2-18O2-C2H6 mixtures, as expected if dissociative O2 chemisorption steps were irreversible. The alkyl species formed in these steps desorb irreversibly as ethene and the resulting O-H groups recombine to form H2O and reduced V centers in reversible desorption steps. These reduced V centers reoxidize by irreversible dissociative chemisorption of O2. A pseudo-steady state analysis of these elementary steps together with these reversibility assumptions led to a rate expression that accurately describes the observed inhibition of ODH rates by water and the measured kinetic dependence of ODH rates on C2H6 and O2 pressures. This kinetic analysis suggests that surface oxygen, OH groups, and oxygen vacancies are the most abundant reactive intermediates during ethane ODH on active VOx domains.

  13. Transparent Conducting Oxide - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Transparent Conducting Oxide National Renewable Energy Laboratory Contact NREL About This Technology <em>Transparent Conducting Oxides (TCOs) have varying optical and electrical qualities. The optimal TCO for photovoltaic applications is one that maximizes both optical transparency and electrical conductivity as both of these attributes contribute to greater

  14. High quality transparent conducting oxide thin films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

    2012-08-28

    A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

  15. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  16. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  17. Process for etching mixed metal oxides

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM); Ginley, David S. (Evergreen, CO)

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  18. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOE Patents [OSTI]

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  19. Reduction of metal oxides through mechanochemical processing

    DOE Patents [OSTI]

    Froes, Francis H. (Moscow, ID); Eranezhuth, Baburaj G. (Moscow, ID); Senkov, Oleg N. (Moscow, ID)

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  20. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOE Patents [OSTI]

    Kung, Harold H. (Wilmette, IL); Chaar, Mohamed A. (Homs, SY)

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  1. Directed spatial organization of zinc oxide nanostructures

    DOE Patents [OSTI]

    Hsu, Julia; Liu, Jun

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  2. Synthesis and processing of monosized oxide powders

    DOE Patents [OSTI]

    Barringer, Eric A. (Waltham, MA); Fegley, Jr., M. Bruce (Waban, MA); Bowen, H. Kent (Belmont, MA)

    1985-01-01

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

  3. Method for making monolithic metal oxide aerogels

    DOE Patents [OSTI]

    Droege, Michael W. (Livermore, CA); Coronado, Paul R. (Livermore, CA); Hair, Lucy M. (Livermore, CA)

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  4. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, Xin D. (Greenbelt, MD); Muenchausen, Ross E. (Espanola, NM)

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  5. Mixed oxide nanoparticles and method of making

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Phelps, Tommy J. (Knoxville, TN); Zhang, Chuanlun (Columbia, MO); Roh, Yul (Oak Ridge, TN)

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  6. Synthesis and processing of monosized oxide powders

    DOE Patents [OSTI]

    Barringer, E.A.; Fegley, M.B. Jr.; Bowen, H.K.

    1985-09-24

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 microns can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed. 6 figs.

  7. Three-Electrode Metal Oxide Reduction Cell

    DOE Patents [OSTI]

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  8. Three-electrode metal oxide reduction cell

    DOE Patents [OSTI]

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  9. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  10. Aerosol Oxidation Speeds Up in Smoggy Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Oxidation Speeds Up in Smoggy Air Aerosol Oxidation Speeds Up in Smoggy Air Print Wednesday, 17 February 2016 11:37 Organic aerosols (nanometer-sized liquid or solid particles suspended in air) are important constituents of the troposphere, and their chemistry has large-scale impacts on climate, pollution, and health. Accurate predictions of these aerosol impacts require a robust microphysical understanding of all relevant chemical reaction mechanisms and time scales, including those

  11. Lead phosphate glass compositions for optical components

    DOE Patents [OSTI]

    Sales, Brian C. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1987-01-01

    A lead phosphate glass to which has been added indium oxide or scandium oe to improve chemical durability and provide a lead phosphate glass with good optical properties.

  12. Unionmet Singapore Limited | Open Energy Information

    Open Energy Info (EERE)

    Place: Singapore Zip: 68805 Product: A manufacturer and recycler of indium - a raw material for CIGS PV and also for most transparent conducting oxides. References: Unionmet...

  13. B. Y. Ahn, D. J. Lorang, E. B. Duoss and J. A. Lewis Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    displays, and other optoelectronic devices. Sn-doped indium oxide (ITO)-based sol-gel ink was developed for patterning planar, spanning, and three- dimensional TCO...

  14. Solid oxide fuel cell with monolithic core

    DOE Patents [OSTI]

    McPheeters, Charles C. (Plainfield, IL); Mrazek, Franklin C. (Hickory Hills, IL)

    1988-01-01

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700.degree. C. and 1100.degree. C.

  15. Solid oxide fuel cell with monolithic core

    DOE Patents [OSTI]

    McPheeters, C.C.; Mrazek, F.C.

    1988-08-02

    A solid oxide fuel cell in which fuel and oxidant gases undergo an electrochemical reaction to produce an electrical output includes a monolithic core comprised of a corrugated conductive sheet disposed between upper and lower generally flat sheets. The corrugated sheet includes a plurality of spaced, parallel, elongated slots which form a series of closed, linear, first upper and second lower gas flow channels with the upper and lower sheets within which a fuel gas and an oxidant gas respectively flow. Facing ends of the fuel cell are generally V-shaped and provide for fuel and oxidant gas inlet and outlet flow, respectively, and include inlet and outlet gas flow channels which are continuous with the aforementioned upper fuel gas and lower oxidant gas flow channels. The upper and lower flat sheets and the intermediate corrugated sheet are preferably comprised of ceramic materials and are securely coupled together such as by assembly in the green state and sintering together during firing at high temperatures. A potential difference across the fuel cell, or across a stacked array of similar fuel cells, is generated when an oxidant gas such as air and a fuel such as hydrogen gas is directed through the fuel cell at high temperatures, e.g., between 700 C and 1,100 C. 8 figs.

  16. Oxidative particle mixtures for groundwater treatment

    DOE Patents [OSTI]

    Siegrist, Robert L. (Boulder, CO); Murdoch, Lawrence C. (Clemson, SC)

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  17. Catalytic oxidation of light alkanes in presence of a base

    DOE Patents [OSTI]

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  18. Catalytic oxidation of light alkanes in presence of a base

    DOE Patents [OSTI]

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  19. High carrier concentration p-type transparent conducting oxide films

    DOE Patents [OSTI]

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  20. Manganese Oxide Composite Electrodes for Lithium Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials costs reduced with use of manganese Improves "layered-layered" lithium metal oxide electrode spinel has higher voltage, increased stability, minimized voltage fade PDF icon manganese_oxide_electrodes

  1. IBA on functional polymers

    SciTech Connect (OSTI)

    Jong, M. P. de; Simons, D. P. L.; Ijzendoorn, L. J. van; Voigt, M. J. A. de; Reijme, M. A.; Denier van der Gon, A. W.; Brongersma, H. H.

    1999-06-10

    The analysis of element distributions in polymer-based structures using IBA techniques offers the possibility to study a variety of interesting problems, in particular diffusion and reaction phenomena. Indium diffusion in model polymer light emitting diodes (p-LEDs) consisting of a stack Al/poly-(phenylenevinylene)/indium-tin-oxide/glass has been studied with Rutherford backscattering spectrometry (RBS), particle induced X-ray emission (PIXE), X-ray photoelectron spectroscopy (XPS), and low energy ion scattering (LEIS). A second example is provided by the analysis of organic optical gratings, in which the diffusion of labeled monomers during holographic photo-polymerization of photo-reactive monomer mixtures has been studied with {mu}PIXE using a scanning proton microprobe. Since polymers are sensitive to ion irradiation, a new RBS/ERDA set-up has been constructed that is equipped with a sample holder mounted on a closed cycle helium refrigerator, which enables the cooling of samples to cryogenic temperatures to suppress damage under ion bombardment.

  2. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOE Patents [OSTI]

    Li, Qi (Marlborough, MA); Thompson, Elliott D. (Coventry, RI); Riley, Jr., Gilbert N. (Marlborough, MA); Hellstrom, Eric E. (Madison, WI); Larbalestier, David C. (Madison, WI); DeMoranville, Kenneth L. (Jefferson, MA); Parrell, Jeffrey A. (Roselle Park, NJ); Reeves, Jodi L. (Madison, WI)

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  3. Methods of producing adsorption media including a metal oxide

    DOE Patents [OSTI]

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  4. AP-XPS Measures MIEC Oxides in Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AP-XPS Measures MIEC Oxides in Action AP-XPS Measures MIEC Oxides in Action Print Wednesday, 25 May 2011 00:00 Oxide materials with mixed ionic-electronic conductivity (MIEC) can conduct both electrons and oxygen ions. MIEC oxides have broad applications, including use in solid-oxide fuel cells, high-temperature electrolysis for synthetic fuel production, and oxygen-separating membranes for chemical processes or NOx-free combustion; however, their surface activity under reaction conditions has

  5. Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Iron Catalysis in Oxidations by Ozone Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ozone is used commercially for treatment of potable and non-potable water, and as an industrial oxidant. ISU and Ames Laboratory researchers have developed a method for using iron in ozone oxidation that significantly improves the speed of oxidation reactions. Description Ozone is recognized as potent and effective oxidizing agent, and has a

  6. Method for facilitating catalyzed oxidation reactions, device for facilitating catalyzed oxidation reactions

    DOE Patents [OSTI]

    Beuhler, Robert J. (East Moriches, NY); White, Michael G. (Blue Point, NY); Hrbek, Jan (Rocky Point, NY)

    2006-08-15

    A catalytic process for the oxidation of organic. Oxygen is loaded into a metal foil by heating the foil while in contact with an oxygen-containing fluid. After cooling the oxygen-activated foil to room temperature, oxygen diffuses through the foil and oxidizes reactants exposed to the other side of the foil.

  7. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    SciTech Connect (OSTI)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  8. Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-07-01

    In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

  9. Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets

    SciTech Connect (OSTI)

    Venkanna, M. Chakraborty, Amit K.

    2014-04-24

    Interest in graphene on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. Chemical reduction of graphene oxide is one of the main routes of preparation for large quantities of graphenes. Hydrazine hydrate used as reducing agent to prepare for the reduced graphene oxide (RGO). There are a number of methods for generating graphene and chemically modified graphene from natural graphite flakes, graphite derivative (such as graphite oxide) and graphite interaction compounds (i.e. expandable graphite). Here we review the use of colloidal suspensions of reduced graphene oxide (RGO) with large scalable, and is adaptable to a wide variety of applications. The graphene oxide (GO) and the reduced material (RGO) were characterized by XRD, UV-Vis spectroscopy, Thermo-gravimetric analysis (TGA), Raman spectroscopy and Field emission Scanning electron microscopy (FESEM) etc.

  10. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  11. Cr(OH)?(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect (OSTI)

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)?(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 ?M) was reacted with or without synthesized Cr(OH)?(s) (1.0 g/L) at pH 7 9 under oxic or anoxic conditions. In the absence of Cr(OH)?(s), homogeneous Mn(II) oxidation by dissolved O? was not observed at pH ? 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)?(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ? 8.0 under oxic conditions. Our results suggest that Cr(OH)?(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)?(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)?(s) and 204 ?M Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)?(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)?(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  12. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, Alison (Fremont, CA); Michel, Richard P. (Bloomington, MN)

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  13. Water Clustering on Nanostructured Iron Oxide Films

    SciTech Connect (OSTI)

    Merte, L. R.; Bechstein, Ralf; Peng, Guowen; Rieboldt, Felix; Farberow, Carrie A.; Zeuthen, Helene; Knudsen, Jan; Laegsgaard, E.; Wendt, Stefen; Mavrikakis, Manos; Besenbacher, Fleming

    2014-06-30

    The adhesion of water to solid surfaces is characterized by the tendency to balance competing moleculemolecule and moleculesurface interactions. Hydroxyl groups form strong hydrogen bonds to water molecules and are known to substantially influence the wetting behaviour of oxide surfaces, but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer islands form on the are film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous water are found to coexist at adjacent hydroxylated and hydroxyl-free domains of the moire structure.

  14. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  15. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  16. Ceramic coating system or water oxidation environments

    DOE Patents [OSTI]

    Hong, Glenn T. (Tewksbury, MA)

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  17. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    SciTech Connect (OSTI)

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activity 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.

  18. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  19. Silver manganese oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  20. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  1. In situ oxidation of subsurface formations

    DOE Patents [OSTI]

    Beer, Gary Lee (Houston, TX); Mo, Weijian (Sugar Land, TX); Li, Busheng (Houston, TX); Shen, Chonghui (Calgary, CA)

    2011-01-11

    Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.

  2. Reference electrode for strong oxidizing acid solutions

    DOE Patents [OSTI]

    Rigdon, Lester P. (Livermore, CA); Harrar, Jackson E. (Castro Valley, CA); Bullock, Sr., Jack C. (Pleasanton, CA); McGuire, Raymond R. (Brentwood, CA)

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  3. Method for preparing hydrous zirconium oxide gels and spherules

    DOE Patents [OSTI]

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  4. Direct electrochemical reduction of metal-oxides

    DOE Patents [OSTI]

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  5. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  6. Aromatics oxidation and soot formation in flames

    SciTech Connect (OSTI)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  7. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  8. Supercritical water oxidation of ammonium picrate

    SciTech Connect (OSTI)

    LaJeunesse, C.A.; Mills, B.E.; Brown, B.G.

    1994-11-01

    This study demonstrates the feasibility of using supercritical water oxidation to destroy ammonium picrate. Analyses of reactor effluent composition at various temperatures, residence times, and oxidant concentrations were used to design an improved reactor configuration for achieving destruction with minimum corrosion. The engineering evaluation reactor, a room-sized laboratory scale reactor, was reconfigured to incorporate this design change. Destruction of ammonium picrate with minimized corrosion was demonstrated on this reconfigured reactor. Factors that must be considered in scaling up to pilot plant size are discussed.

  9. Solid Oxide Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cells Solid Oxide Fuel Cells FE researchers at NETL have developed a unique test platform, called the multi-cell array, to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. FE researchers at NETL have developed a unique test platform, called the multi-cell array, to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the

  10. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOE Patents [OSTI]

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  11. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  12. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  13. Resonant tunnelling in a quantum oxide superlattice

    SciTech Connect (OSTI)

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typically observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.

  14. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOE Patents [OSTI]

    Mizuno, Noritaka (Sapporo, JP); Lyon, David K. (Bend, OR); Finke, Richard G. (Eugene, OR)

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  15. Resonant tunnelling in a quantum oxide superlattice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; Lee, Suyoun; Lee, Ho Nyung

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switching typicallymore » observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~105) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.« less

  16. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  17. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  18. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOE Patents [OSTI]

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  19. Molybdenum oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1989-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  20. Metal current collect protected by oxide film

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.