National Library of Energy BETA

Sample records for indium gallium nitride

  1. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect (OSTI)

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  2. Gallium nitride nanotube lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; Wright, Jeremy Benjamin; Xu, Huiwen; Luk, Ting Shan; Figiel, Jeffrey J.; Brener, Igal; Brueck, Steven R. J.; Wang, George T.

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  3. Copper Indium Gallium Diselenide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Copper Indium Gallium Diselenide Copper Indium Gallium Diselenide Graphic showing the five layers of a CIGS PV cell: glass (or metal foil or plastics), Mo, CIGS, CdS, and transparent conductive oxide. DOE supports innovative research focused on overcoming the current technological and commercial barreirs for copper indium gallium diselenide [Cu(InxGa1-x)Se2], or CIGS, solar cells. A list of current projects, summary of the benefits, and discussion on the production and manufacturing of this

  4. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  5. P-type gallium nitride

    DOE Patents [OSTI]

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  6. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Presenter: Arpan Chakraborty, Soraa Inc. This ...

  7. Traps identification in Copper-Indium-Gallium-Sulfur-Selenide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Traps identification in Copper-Indium-Gallium-Sulfur-Selenide Solar Cells Completed with Various Buffer Layers by Deep Level Transient Spectroscopy Citation ...

  8. Solar cell with a gallium nitride electrode

    DOE Patents [OSTI]

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  9. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  10. Gallium nitride junction field-effect transistor

    DOE Patents [OSTI]

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  11. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  12. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOE Patents [OSTI]

    Curtis, Calvin J.; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S.; Nekuda, Jennifer A.

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  13. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  14. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOE Patents [OSTI]

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  15. Electrochemical Solution Growth: Gallium Nitride Crystal Growth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID Number Title and Abstract Primary Lab Date Patent 7,435,297 Patent 7,435,297 Molten-salt-based growth of group III nitrides A method for growing Group III nitride...

  16. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTROCHEMICAL SOLUTION GROWTH METHOD | Department of Energy HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD MEMC Electronic Materials, Inc. - St. Peters, MO Efficient manufacturing of gallium nitride (GaN) could reduce the cost of and improve the output for light-emitting diodes, solid-state lighting, laser displays, and other

  17. Traps identification in Copper-Indium-Gallium-Sulfur-Selenide Solar Cells

    Office of Scientific and Technical Information (OSTI)

    Completed with Various Buffer Layers by Deep Level Transient Spectroscopy (Journal Article) | SciTech Connect Journal Article: Traps identification in Copper-Indium-Gallium-Sulfur-Selenide Solar Cells Completed with Various Buffer Layers by Deep Level Transient Spectroscopy Citation Details In-Document Search Title: Traps identification in Copper-Indium-Gallium-Sulfur-Selenide Solar Cells Completed with Various Buffer Layers by Deep Level Transient Spectroscopy Current-voltage

  18. BES Web Highlight: Single-mode gallium nitride nanowire lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Highlight: Single-mode gallium nitride nanowire lasers - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  19. Hydrogenation of palladium rich compounds of aluminium, gallium and indium

    SciTech Connect (OSTI)

    Kohlmann, H.

    2010-02-15

    Palladium rich intermetallic compounds of aluminium, gallium and indium have been studied before and after hydrogenation by powder X-ray diffraction and during hydrogenation by in situ thermal analysis (DSC) at hydrogen gas pressures up to 39 MPa and temperatures up to 700 K. Very weak DSC signals and small unit cell increases of below 1% for AlPd{sub 2}, AlPd{sub 3}, GaPd{sub 2}, Ga{sub 5}Pd{sub 13}, In{sub 3}Pd{sub 5}, and InPd{sub 2} suggest negligible hydrogen uptake. In contrast, for both tetragonal modifications of InPd{sub 3} (ZrAl{sub 3} and TiAl{sub 3} type), heating to 523 K at 2 MPa hydrogen pressure leads to a rearrangement of the intermetallic structure to a cubic AuCu{sub 3} type with an increase in unit cell volume per formula unit by 3.6-3.9%. Gravimetric analysis suggests a composition InPd{sub 3}H{sub a}pprox{sub 0.8} for the hydrogenation product. Very similar behaviour is found for the deuteration of InPd{sub 3}. - Graphical abstract: In situ differential scanning calorimetry of the hydrogenation of tetragonal InPd{sub 3} (ZrAl{sub 3} type) at 1.3 MPa hydrogen pressure.

  20. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  1. (Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2002-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  2. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect (OSTI)

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramn; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of ?111?-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100 reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  3. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary Ann; Baczewski, Andrew David; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  4. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOE Patents [OSTI]

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  5. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN...

    Office of Environmental Management (EM)

    Efficient manufacturing of gallium nitride (GaN) could reduce the cost of and improve the output for light-emitting diodes, solid-state lighting, laser displays, and other power ...

  6. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    SciTech Connect (OSTI)

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adiguezel, Denis; Stutzmann, Martin; Sharp, Ian D.; Thalhammer, Stefan

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification.

  7. (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon

    DOE Patents [OSTI]

    Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

    2001-01-01

    The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

  8. Controlled VLS Growth of Indium, Gallium and Tin Oxide Nanowiresvia Chemical Vapor Transport

    SciTech Connect (OSTI)

    Johnson, M.C.; Aloni, S.; McCready, D.E.; Bourret-Courchesne, E.D.

    2006-03-13

    We utilized a vapor-liquid-solid growth technique to synthesize indium oxide, gallium oxide, and tin oxide nanowires using chemical vapor transport with gold nanoparticles as the catalyst. Using identical growth parameters we were able to synthesize single crystal nanowires typically 40-100 nm diameter and more than 10-100 microns long. The products were characterized by means of XRD, SEM and HRTEM. All the wires were grown under the same growth conditions with growth rates inversely proportional to the source metal vapor pressure. Initial experiments show that different transparent oxide nanowires can be grown simultaneously on a single substrate with potential application for multi-component gas sensors.

  9. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect (OSTI)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  10. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    SciTech Connect (OSTI)

    Yang, Seong-Uk; Jung, Woo-Shik; Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho; Park, Jin-Hong

    2014-02-01

    Highlights: We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. InAs and InGaAs formed by this process decrease an electron barrier height. Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, JV measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  11. Sandia Demonstrated First-Time, Single-Mode Lasing in Gallium-Nitride

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanowire Lasers Demonstrated First-Time, Single-Mode Lasing in Gallium-Nitride Nanowire Lasers - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  12. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  13. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  14. Process for growing epitaxial gallium nitride and composite wafers

    DOE Patents [OSTI]

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  15. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect (OSTI)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  16. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect (OSTI)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

  17. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    SciTech Connect (OSTI)

    Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ?}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ?}? effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ?} images.

  18. Recovery from ultraviolet-induced threshold voltage shift in indium gallium zinc oxide thin film transistors by positive gate bias

    SciTech Connect (OSTI)

    Liu, P.; Chen, T. P.; Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2013-11-11

    The effect of short-duration ultraviolet (UV) exposure on the threshold voltage (V{sub th}) of amorphous indium gallium zinc oxide thin film transistors (TFTs) and its recovery characteristics were investigated. The V{sub th} exhibited a significant negative shift after UV exposure. The V{sub th} instability caused by UV illumination is attributed to the positive charge trapping in the dielectric layer and/or at the channel/dielectric interface. The illuminated devices showed a slow recovery in threshold voltage without external bias. However, an instant recovery can be achieved by the application of positive gate pulses, which is due to the elimination of the positive trapped charges as a result of the presence of a large amount of field-induced electrons in the interface region.

  19. Size effects in the thermal conductivity of gallium oxide (β...

    Office of Scientific and Technical Information (OSTI)

    (-Gasub 2Osub 3) films grown via open-atmosphere annealing of gallium nitride ... (-Gasub 2Osub 3) films grown via open-atmosphere annealing of gallium nitride ...

  20. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    SciTech Connect (OSTI)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-14

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  1. Gallium and indium imaging agents. 2. Complexes of sulfonated catecholyamide sequestering agents

    SciTech Connect (OSTI)

    Pecoraro, V.L.; Wong, G.B.; Raymond, K.N.

    1982-06-01

    The solution equilibria for the reaction of Ga(III) and In(III) with the hexadentate ligands N, N', N''-tris(2,3-dihydroxy-5-sulfonatobenzoyl)-1,3,5-tris(aminomethyl)benzene (MECAMS) and N, N', N''-tris(2,3-dihydroxy-5-sulfonatobenzoyl)-1,5,10-triazadecane (3,4-LICAMS) and the bidentate catechol N,N-dimethyl-2,3-dihydroxy-5-sulfonatobenzamide (DMBS) have been determined on 0.1 M KNO/sub 3/ at 25/sup 0/C. Both Ga(III) and In(III) are coordinated by three catecholate groups at high pH and have formation constants of the order ..beta../sub 110/ = 10/sup 38/ M/sup -1/. As the acidity of the medium is increased, the metal complexes of the hexadentate sequestering agents undergo protonation reactions. For the determination of the nature of the protonated metal chelates, the stretching frequency of the amide carbonyl has been monitored in D/sub 2/O by Fourier transform infrared spectroscopy (FT IR). These data support a series of two one-proton steps to form a mixed salicylate-catecholate coordination about the metal ion. In the salicylate bonding mode the metal is bound through the ortho phenolic oxygen and the amide cabonyl whereas catecholate coordination is via the adjacent phenols. In contrast, protonation of the M/sup III/(DMBS)/sub 3/ complexes results in dissociation of a catechol moiety to form M/sup III/(DMBS)/sub 2/. The potential use of these compounds as tumor-imaging agents in cancer diagnosis is discussed, with specific attention to the role of the gallium transferrin complex.

  2. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect (OSTI)

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  3. Realization of write-once-read-many-times memory device with O{sub 2} plasma-treated indium gallium zinc oxide thin film

    SciTech Connect (OSTI)

    Liu, P. Chen, T. P. Li, X. D.; Wong, J. I.; Liu, Z.; Liu, Y.; Leong, K. C.

    2014-01-20

    A write-once-read-many-times (WORM) memory devices based on O{sub 2} plasma-treated indium gallium zinc oxide (IGZO) thin films has been demonstrated. The device has a simple Al/IGZO/Al structure. The device has a normally OFF state with a very high resistance (e.g., the resistance at 2?V is ?10{sup 9} ? for a device with the radius of 50??m) as a result of the O{sub 2} plasma treatment on the IGZO thin films. The device could be switched to an ON state with a low resistance (e.g., the resistance at 2?V is ?10{sup 3} ? for the radius of 50??m) by applying a voltage pulse (e.g., 10?V/1??s). The WORM device has good data-retention and reading-endurance capabilities.

  4. Effects of low-temperature (120?C) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors

    SciTech Connect (OSTI)

    Kim, Jae-sung; Piao, Mingxing; Jang, Ho-Kyun; Kim, Gyu-Tae; Oh, Byung Su; Joo, Min-Kyu; Ahn, Seung-Eon

    2014-12-28

    We report an investigation of the effects of low-temperature annealing on the electrical properties of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). X-ray photoelectron spectroscopy was used to characterize the charge carrier concentration, which is related to the density of oxygen vacancies. The field-effect mobility was found to decrease as a function of the charge carrier concentration, owing to the presence of band-tail states. By employing the transmission line method, we show that the contact resistance did not significantly contribute to the changes in device performance after annealing. In addition, using low-frequency noise analyses, we found that the trap density decreased by a factor of 10 following annealing at 120?C. The switching operation and on/off ratio of the a-IGZO TFTs improved considerably after low-temperature annealing.

  5. Growth of gallium nitride films via the innovative technique of atomic-layer epitaxy. Annual progress report, 1 June 1987-31 May 1988

    SciTech Connect (OSTI)

    Davis, R.F.; Paisley, M.J.; Sitar, Z.

    1988-06-01

    Gallium nitride (GaN) is a wide-bandgap (3.45 eV at 300K) III-V compound semiconductor. The large direct bandgap and high electron-drift velocity of GaN are important properties in the performance of short-wavelength optical devices and high-power microwave devices. Immediate applications that would be greatly enhanced by the availability of GaN and/or Al/sub x/Ga/sub 1-x/N devices include threat warning systems (based on the ultraviolet (UV) emission from the exhaust plumes of missiles) and radar systems (which require high-power microwave generation). Important future applications for devices produced from these materials include blue and ultraviolet semiconductor lasers, blue-light-emitting diodes (LEDs) and high temperature electronic devices. This report discusses this material.

  6. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub

    Office of Scientific and Technical Information (OSTI)

    2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride (Journal Article) | SciTech Connect Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride Citation Details In-Document Search Title: Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride Gallium nitride (GaN) is a widely used semiconductor for

  7. NREL: Process Development and Integration Laboratory - Copper Indium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallium Diselenide Cluster Tool Capabilities Copper Indium Gallium Diselenide Cluster Tool Capabilities The Copper Indium Gallium Diselenide (CIGS) cluster tool in the Process Development and Integration Laboratory offers powerful capabilities with integrated chambers for depositing, processing, measuring, and characterizing photovoltaic materials and devices. You can read more on the rationale for developing this cluster tool and its capabilities, and check out the National Solar Technology

  8. Growth process for gallium nitride porous nanorods

    DOE Patents [OSTI]

    Wildeson, Isaac Harshman; Sands, Timothy David

    2015-03-24

    A GaN nanorod and formation method. Formation includes providing a substrate having a GaN film, depositing SiN.sub.x on the GaN film, etching a growth opening through the SiN.sub.x and into the GaN film, growing a GaN nanorod through the growth opening, the nanorod having a nanopore running substantially through its centerline. Focused ion beam etching can be used. The growing can be done using organometallic vapor phase epitaxy. The nanopore diameter can be controlled using the growth opening diameter or the growing step duration. The GaN nanorods can be removed from the substrate. The SiN.sub.x layer can be removed after the growing step. A SiO.sub.x template can be formed on the GaN film and the GaN can be grown to cover the SiO.sub.x template before depositing SiN.sub.x on the GaN film. The SiO.sub.x template can be removed after growing the nanorods.

  9. Summer 2011 Intern Project- Jonathan Waltman | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High efficiency solar cells require multiple junctions optimized for different wavelengths, and indium gallium nitride (InGaN) has the potential to further improve the efficiency ...

  10. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stresses, defects, and dislocations. In addition, the small as-deposited indium grains grow into large crystals at ambient conditions. Indium and its compounds have many...

  11. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (SXRD) studies revealed that the indium microstructure is typical...

  12. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended...

  13. This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

    DOE Patents [OSTI]

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  14. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  15. Group III-nitride thin films grown using MBE and bismuth

    DOE Patents [OSTI]

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  16. Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...

    Office of Science (SC) Website

    Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy ... indium in Indium Gallium Nitride (InGaN) green LEDs caused a decrease in light intensity. ...

  17. Hafnium nitride buffer layers for growth of GaN on silicon

    DOE Patents [OSTI]

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  18. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale

  19. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1989-01-01

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  20. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of crystalline GaN growth in ESG Results and Accomplishments HRXRD vs reference SEM surface view 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 Deposition rate ...

  1. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... useable in the production of solid-state lighting, high-brightness LEDs, and laser diodes. ... and developing fow models to optimize ion transport to the growth surface of the GaN seed. ...

  2. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  3. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  4. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  5. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  6. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  7. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  8. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  9. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have a significant impact on the commercial success of these novel devices. Scanning electron microscopy image of an indium pillar characterized by scanning x-ray...

  10. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical...

  11. Preparation of uranium nitride

    DOE Patents [OSTI]

    Potter, Ralph A.; Tennery, Victor J.

    1976-01-01

    A process for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride.

  12. Potential effects of gallium on cladding materials

    SciTech Connect (OSTI)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented.

  13. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical...

  14. Nitrided Metallic Bipolar Plates

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on nitrided metallic bipolar plates, was given by M. P. Brady of ORNL at a February 2007 meeting on new fuel cell projects.

  15. CX-010895: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development and Industrialization of Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Light Emitting Diodes LEDs on Patterned Sapphire Substrate (PSS) for Low Cost Emitter Architecture CX(s) Applied: B3.6 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  16. Methods of forming boron nitride

    DOE Patents [OSTI]

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  17. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  18. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  19. Method for preparing actinide nitrides

    DOE Patents [OSTI]

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  20. Summer 2010 Intern Project- Ali Al-Heji | Center for Energy Efficient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentor: Robert M. Farrell Faculty Advisor: James S. Speck Department: Materials Indium gallium nitride (InGaN) solar cells show promise for absorbing high-energy photons with ...

  1. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  2. Boron nitride nanotubes

    DOE Patents [OSTI]

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  3. Boron nitride composites

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  4. Generator for gallium-68 and compositions obtained therefrom

    DOE Patents [OSTI]

    Neirinckx, Rudi D. (Medfield, MA); Davis, Michael A. (Westwood, MA)

    1981-01-01

    A generator for obtaining radioactive gallium-68 from germanium-68 bound in a resin containing unsubstituted phenolic hydroxyl groups. The germanium-68 is loaded into the resin from an aqueous solution of the germanium-68. A physiologically acceptable solution of gallium-68 having an activity of 0.1 to 50 millicuries per milliliter of gallium-68 solution is obtained. The solution is obtained from the bound germanium-68 which forms gallium-68 in situ by eluting the column with a hydrochloric acid solution to form an acidic solution of gallium-68. The acidic solution of gallium-68 can be neutralized.

  5. Cubic nitride templates

    DOE Patents [OSTI]

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  6. Fluorescent lighting with aluminum nitride phosphors

    DOE Patents [OSTI]

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  7. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  8. Superplastic forging nitride ceramics

    DOE Patents [OSTI]

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  9. III-Nitride Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III-Nitride Nanowires - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  10. Electrochemical nitridation of metal surfaces

    DOE Patents [OSTI]

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  11. Silicon nitride ceramic comprising samaria and ytterbia

    DOE Patents [OSTI]

    Yeckley, Russell L.

    1996-01-01

    This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

  12. Functionalized boron nitride nanotubes

    DOE Patents [OSTI]

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  13. Synthesis and characterization of actinide nitrides

    SciTech Connect (OSTI)

    Jaques, Brian; Butt, Darryl P.; Marx, Brian M.; Hamdy, A.S.; Osterberg, Daniel; Balfour, Gordon

    2007-07-01

    A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavings in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)

  14. Indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  15. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL); Knapp, Gordon S. (Cupertino, CA); Westbrook, Edwin M. (Chicago, IL); Forster, George A. (Westmont, IL)

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  16. Cordierite silicon nitride filters

    SciTech Connect (OSTI)

    Sawyer, J.; Buchan, B. ); Duiven, R.; Berger, M. ); Cleveland, J.; Ferri, J. )

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  17. Hard carbon nitride and method for preparing same

    DOE Patents [OSTI]

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  18. Boron nitride converted carbon fiber

    DOE Patents [OSTI]

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  19. Method for producing refractory nitrides

    DOE Patents [OSTI]

    Quinby, Thomas C.

    1989-01-24

    A process for making fine, uniform metal nitride powders that can be hot pressed or sintered. A metal salt is placed in a solvent with Melamine and warmed until a metal-Melamine compound forms. The solution is cooled and the metal-Melamine precipitate is calcined at a temperature below 700.degree. C. to form the metal nitrides and to avoid formation of the metal oxide.

  20. Superplastic forging nitride ceramics

    DOE Patents [OSTI]

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  1. Laser photochemistry of gallium-containing compounds. [Trimethylgallium

    SciTech Connect (OSTI)

    Baughcum, S.L.; Oldenborg, R.C.

    1986-01-01

    The production of gas-phase gallium atoms in the photolysis of trimethylgallium has been investigated at 193 nm and at other laser wavelengths. Ground state (4 /sup 2/P/sup 0//sub 1/2) and metastable (4 /sup 2/P/sup 0//sub 3/2/) gallium atoms are detected using laser-induced fluorescence techniques. Our results indicate that gallium atoms continue to be produced at long times after the laser pulse. The observed dependence on photolysis laser fluence, trimethylgallium pressure, and buffer gas pressure are consistent with a mechanism in which highly excited gallium methyl radicals undergo unimolecular decomposition to produce gallium atoms. Since this process is observed to happen on the time scale of hundreds of microseconds, these results have important implications for studies of metal deposition and direct laser writing by laser photolysis of organometallic compounds. 31 refs., 5 figs.

  2. Structural and morphological evolution of gallium nitride nanorods grown by chemical beam epitaxy

    SciTech Connect (OSTI)

    Kuo, Shou-Yi; Lai, Fang-I; Chen, Wei-Chun; Hsiao, Chien-Nan; Lin, Woei-Tyng

    2009-07-15

    The morphological and structural evolution is presented for GaN nanorods grown by chemical beam epitaxy on (0001) Al{sub 2}O{sub 3} substrates. Their structural and optical properties are investigated by x-ray diffraction, scanning and transmission electron microscopy, and temperature-dependent photoluminescence measurements. While increasing the growth temperature and the flow rate of radio-frequency nitrogen radical, the three-dimensional growth mode will be enhanced to form one-dimensional nanostructures. The high density of well-aligned nanorods with a diameter of 30-50 nm formed uniformly over the entire sapphire substrate. The x-ray diffraction patterns and transmission electron microscopic images indicate that the self-assembled GaN nanorods are a pure single crystal and preferentially oriented in the c-axis direction. Particularly, the ''S-shape'' behavior with localization of {approx}10 meV observed in the temperature-dependent photoluminescence might be ascribed to the fluctuation in crystallographic defects and composition.

  3. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE

    Energy Savers [EERE]

    HIA ZERH Judge Bios HIA ZERH Judge Bios Meet the judges for the Zero Energy Ready Home Builder Awards - part of the 2014 Housing Innovation Awards. PDF icon Judge Bios.pdf More Documents & Publications Minutes of the September 13, 2013 Meeting of the Secretary of Energy Advisory Board Near-term Fuel Cell Applications in Japan Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment ELECTROCHEMICAL SOLUTION GROWTH METHOD | Department of Energy

  4. Sandia Energy - III-Nitride Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    III-Nitride NanowiresTara Camacho-Lopez2015-03-25T21:58:18+00:00 III-Nitride Nanowires: Novel Emitters for Lighting Speaker: George Wang, EFRC Thrust Leader Date: September 14,...

  5. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  6. Silicon nitride/silicon carbide composite powders

    DOE Patents [OSTI]

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  7. Process for making transition metal nitride whiskers

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  8. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    SciTech Connect (OSTI)

    Araujo, Rafael B. Almeida, J. S. de Ferreira da Silva, A.

    2013-11-14

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  9. Interactions of Zircaloy Cladding with Gallium: Final Report

    SciTech Connect (OSTI)

    D.F. Wilson; E.T. Manneschmidt; J.F. King; J.P. Strizak; J.R. DiStefano

    1998-09-01

    The U.S. Department of Energy has established a dual-track approach to the disposition of plutonium arising from the dismantling of nuclear weapons. Both immobilization and reactor-based mixed-oxide (MOX) fuel technologies are being evaluated. The reactor-based MOX fuel option requires assessment of the potential impact of concentrations of gallium (on the order of 1 to 10 ppm), not present in conventional MOX fhel, on cladding material performance. Three previous repmts"3 identified several compatibility issues relating to the presence of gallium in MOX fuel and its possible reaction with fiel cladding. Gallium initially present in weapons-grade (WG) plutonium is largely removed during processing to produce MOX fhel. After blending the plutonium with uranium, only 1 to 10 ppm gallium is expected in the sintered MOX fuel. Gallium present as gallium oxide (G~OJ could be evolved as the suboxide (G~O). Migration of the evolved G~O and diffusion of gallium in the MOX matrix along thermal gradients could lead to locally higher concentrations of G~03. Thus, while an extremely low concentration of gallium in MOX fiel almost ensures a lack of significant interaction of gallium whh Zircaloy fhel cladding, there remains a small probability that corrosion effects will not be negligible. General corrosion in the form of surface alloying resulting from formation of intermetallic compounds between Zircaloy and gallium should be ma& limited and, therefore, superficial because of the expected low ratio of gallium to the surface area or volume of the Zircaloy cladding. Although the expected concentration of gallium is low and there is very limited volubility of gallium in zirconium, especially at temperatures below 700 "C,4 grain boundary penetration and liquid metal embrittlement (LME) are forms of localized corrosion that were also considered. One fuel system darnage mechanism, pellet clad interaction, has led to some failure of the Zircaloy cladding in light-water reactors (LWRS). This has been attributed to stresses in the cladding and one or more aggressive fission products. Stress corrosion cracking by iodines' 6 and LME by cadmium7>8 have been reported, and it is known that Zircaloy can be embrittled by some low-melting metals, (e.g., mercury).g LME is a form of environmentally induced embrittlement that can induce cracking or loss of ductility. LME requties wetting and a tensile stress, but it does not require corrosion penetration. Experimentally, it has been demonstrated that gallium can cause embrittlement of some alloys (e.g., aluminum) at low temperatures,'"' ] ] but experiments relative to LME of zirconium by gallium have been limited and inconclusive.*2 This report describes a series of tests designed to establish the effects of low levels of residual gallium in WG-MOX fhel on its compatibility with Zircaloy. In addition, to establish damage mechanisms it was important to understand types of cladding interactions and available stiety margins with respect to gallium concentration.

  10. Thermoelectric Properties of Indium-Filled Skutterudites

    SciTech Connect (OSTI)

    He, Tao; Chen, Jiazhong; Rosenfeld, H. David; Subramanian, M.A.

    2008-09-18

    Structural, electrical, and thermal transport properties of CoSb{sub 3} partially filled with indium are reported. Polycrystalline samples of In{sub x}Co{sub 4}Sb{sub 12} (0 {le} x {le} 0.3) were prepared by solid-state reaction under a gas mixture of 5% H{sub 2} and 95% Ar. The solubility limit of the indium filling voids in CoSb{sub 3} was found to be close to 0.22. Synchrotron X-ray diffraction refinement of the x = 0.2 sample showed that the indium is located in the classic rattler site and has a substantially larger thermal factor than those of Co and Sb. The electrical resistivity, Seebeck coefficients, and thermal conductivity of the In{sub x}Co{sub 4}Sb{sub 12} samples were measured in the temperature range of 300-600 K. All samples showed metal-like behavior, and the large negative Seebeck coefficients indicated n-type conduction. The thermal conductivity decreased with increasing temperature for all samples. A thermoelectric figure-of-merit (ZT) {ge} 1 (n-type) has been achieved when x {ge} 0.2 in In{sub x}Co{sub 4}Sb{sub 12} at 575 K.

  11. Sputtering of neutral and ionic indium clusters

    SciTech Connect (OSTI)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-10-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident {approximately}4 keV Ar{sup +} ions. In the secondary neutral mass spectra, indium clusters as large as In{sub 32} were observed. In the secondary ion mass spectra, indium clusters up to In{sub 18}{sup +} were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be {minus}5.6 and {minus}4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions.

  12. Cavity optomechanics in gallium phosphide microdisks

    SciTech Connect (OSTI)

    Mitchell, Matthew; Barclay, Paul E.; Hryciw, Aaron C.

    2014-04-07

    We demonstrate gallium phosphide (GaP) microdisk optical cavities with intrinsic quality factors >2.8??10{sup 5} and mode volumes <10(?/n){sup 3}, and study their nonlinear and optomechanical properties. For optical intensities up to 8.0??10{sup 4} intracavity photons, we observe optical loss in the microcavity to decrease with increasing intensity, indicating that saturable absorption sites are present in the GaP material, and that two-photon absorption is not significant. We observe optomechanical coupling between optical modes of the microdisk around 1.5??m and several mechanical resonances, and measure an optical spring effect consistent with a theoretically predicted optomechanical coupling rate g{sub 0}/2??30?kHz for the fundamental mechanical radial breathing mode at 488?MHz.

  13. Generator for ionic gallium-68 based on column chromatography

    DOE Patents [OSTI]

    Neirinckx, Rudi D.; Davis, Michael A.

    1981-01-01

    A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.

  14. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features

  15. The Hardest Superconducting Metal Nitride

    SciTech Connect (OSTI)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  16. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transitionmetal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rocksalt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 1020 GPa. Here, we report highpressure synthesis of hexagonal ?MoN and cubic ?MoN through an ionexchange reaction at 3.5 GPa. The final products are in the bulk form withmorecrystallite sizes of 50 80 ?m. Based on indentation testing on single crystals, hexagonal ?MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic ?MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded MoN network than that in cubic phase. The measured superconducting transition temperatures for ?MoN and cubic ?MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.less

  17. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  18. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect (OSTI)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  19. Low frequency pressure modulation of indium antimonide

    SciTech Connect (OSTI)

    Hallock, Gary A.; Meier, Mark A.

    2012-07-15

    A lumped parameter resonator capable of generating megapascal pressures at low frequency (kilohertz) is described. Accelerometers are used to determine the applied pressure, and are calibrated with a piezoelectric sample. A laser diagnostic was also developed to measure the pressure in semiconductor samples through the band gap pressure dependence. In addition, the laser diagnostic has been used to measure the attenuation coefficient {alpha} of commercially available indium antimonide (InSb) wafers. The resonator and laser diagnostic have been used with InSb samples to verify the pressure response.

  20. Could Aluminum Nitride Produce Quantum Bits?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » NERSC News » Science News » Could Aluminum Nitride Produce Quantum Bits? Could Aluminum Nitride Produce Quantum Bits? After running simulations at NERSC researchers believe it's possible May 2, 2016 Linda Vu, lvu@lbl.gov, 510.495.2402 Graphical Abstract AlN Sci Rep no logo cropped This graphic illustrates an engineered nitrogen vacancy in aluminum nitride. Quantum computers have the potential to break common cryptography techniques, search huge datasets and

  1. Boron nitride ablation studies in arc jet facilities (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Boron nitride ablation studies in arc jet facilities Citation Details In-Document Search Title: Boron nitride ablation studies in arc jet facilities You are ...

  2. Uranium Nitride: Enabling New Applications for TRISO Fuel Particles...

    Office of Scientific and Technical Information (OSTI)

    Uranium Nitride: Enabling New Applications for TRISO Fuel Particles Citation Details In-Document Search Title: Uranium Nitride: Enabling New Applications for TRISO Fuel Particles ...

  3. Epitaxial ternary nitride thin films prepared by a chemical solution...

    Office of Scientific and Technical Information (OSTI)

    Epitaxial ternary nitride thin films prepared by a chemical solution method Citation Details In-Document Search Title: Epitaxial ternary nitride thin films prepared by a chemical ...

  4. Gallium based low-interaction anions

    DOE Patents [OSTI]

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  5. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electron Microscopy and Related Methods Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related ...

  6. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1998-01-01

    A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

  7. Nitrided Metallic Bipolar Plates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Nitrided Metallic Bipolar Plates Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update Mass ...

  8. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOE Patents [OSTI]

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  9. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOE Patents [OSTI]

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  10. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  11. First results from the Soviet-American Gallium Experiment

    SciTech Connect (OSTI)

    Abazov, A.I.; Abdurashitov, D.N.; Anosov, O.L.; Eroshkina, L.A.; Faizov, E.L.; Gavrin, V.N.; Kalikhov, A.V.; Knodel, T.V.; Knyshenko, I.I.; Kornoukhov, V.N.; Mezentseva, S.A.; Mirmov, I.N.; Ostrinsky, A.I.; Petukhov, V.V.; Pshukov, A.M.; Revzin, N.Y.; Shikhin, A.A.; Timofeyev, P.V.; Veretenkin, E.P.; Vermul, V.M.; Zakharov, Y.; Zatsepin, G.T.; Zhandarov, V.I. . Inst. Yadernykh Issledovanij); Bowl

    1990-01-01

    The Soviet-American Gallium Experiment is the first experiment able to measure the dominant flux of low energy p-p solar neutrinos. Four extractions made during January to May 1990 from 30 tons of gallium have been counted and indicate that the flux is consistent with 0 SNU and is less than 72 SNU (68% CL) and less than 138 SNU (95% CL). This is to be compared with the flux of 132 SNU predicted by the Standard Solar Model. 10 refs., 4 figs., 1 tab.

  12. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  13. Hard carbon nitride and method for preparing same

    DOE Patents [OSTI]

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  14. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zheng, M., Yu, Z., Seok, T.J., Chen, Y-Z., Kapadia, R., Takei, K., Aloni, S., Ager, J.W., Wu, M., Chueh, Y-L., Javey, A. "High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition," Journal of Applied Physics 111,

  15. Self- and zinc diffusion in gallium antimonide

    SciTech Connect (OSTI)

    Nicols, Samuel Piers

    2002-03-26

    The technological age has in large part been driven by the applications of semiconductors, and most notably by silicon. Our lives have been thoroughly changed by devices using the broad range of semiconductor technology developed over the past forty years. Much of the technological development has its foundation in research carried out on the different semiconductors whose properties can be exploited to make transistors, lasers, and many other devices. While the technological focus has largely been on silicon, many other semiconductor systems have applications in industry and offer formidable academic challenges. Diffusion studies belong to the most basic studies in semiconductors, important from both an application as well as research standpoint. Diffusion processes govern the junctions formed for device applications. As the device dimensions are decreased and the dopant concentrations increased, keeping pace with Moore's Law, a deeper understanding of diffusion is necessary to establish and maintain the sharp dopant profiles engineered for optimal device performance. From an academic viewpoint, diffusion in semiconductors allows for the study of point defects. Very few techniques exist which allow for the extraction of as much information of their properties. This study focuses on diffusion in the semiconductor gallium antimonide (GaSb). As will become clear, this compound semiconductor proves to be a powerful one for investigating both self- and foreign atom diffusion. While the results have direct applications for work on GaSb devices, the results should also be taken in the broader context of III-V semiconductors. Results here can be compared and contrasted to results in systems such as GaAs and even GaN, indicating trends within this common group of semiconductors. The results also have direct importance for ternary and quaternary semiconductor systems used in devices such as high speed InP/GaAsSb/InP double heterojunction bipolar transistors (DHBT) [Dvorak, (2001)]. Many of the findings which will be reported here were previously published in three journal articles. Hartmut Bracht was the lead author on two articles on self-diffusion studies in GaSb [Bracht, (2001), (2000)], while this report's author was the lead author on Zn diffusion results [Nicols, (2001)]. Much of the information contained herein can be found in those articles, but a more detailed treatment is presented here.

  16. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Misra, Mira

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  17. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  18. Design of Integrated III-Nitride/Non-III-Nitride Tandem Photovoltaic Devices

    SciTech Connect (OSTI)

    Toledo, N. G.; Friedman, D.J.; Farrell, R. M.; Perl, E. E.; Lin, C. T.; Bowers, J. E.; Speck, J. S.; Mishra, U. K.

    2012-03-01

    The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, {lambda}{sub N}, increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5G, AM1.5 D, and AM0), the technology to grow InGaN cells with {lambda}{sub N}<520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell efficiency.

  19. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect (OSTI)

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro; PRESTO, Japan Science and Technology Agency , Honcho Kawaguchi, 3320012 Saitama

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436?V, short-circuit current of 24.8?mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5?G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  20. Electron emitting device and method of making the same

    DOE Patents [OSTI]

    Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael

    1977-04-19

    A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.

  1. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, Terry N.; Holcombe, Cressie E.; Dykes, Norman L.; Omatete, Ogbemi O.; Young, Albert C.

    1994-01-01

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  2. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1998-06-02

    A ceramic body is disclosed comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa. 4 figs.

  3. Low temperature route to uranium nitride

    DOE Patents [OSTI]

    Burrell, Anthony K.; Sattelberger, Alfred P.; Yeamans, Charles; Hartmann, Thomas; Silva, G. W. Chinthaka; Cerefice, Gary; Czerwinski, Kenneth R.

    2009-09-01

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  4. Method of nitriding refractory metal articles

    DOE Patents [OSTI]

    Tiegs, T.N.; Holcombe, C.E.; Dykes, N.L.; Omatete, O.O.; Young, A.C.

    1994-03-15

    A method of nitriding a refractory-nitride forming metal or metalloid articles and composite articles. A consolidated metal or metalloid article or composite is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article or composite is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article or composite is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid or composite to an article or composite of refractory nitride. In addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  5. Silicon nitride reinforced with molybdenum disilicide

    DOE Patents [OSTI]

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol. %.

  6. Band anticrossing in dilute nitrides

    SciTech Connect (OSTI)

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  7. The Nitrogen-Nitride Anode.

    SciTech Connect (OSTI)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  8. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  9. Gallium Safety in the Laboratory INEEL/CON-03-00078

    Office of Scientific and Technical Information (OSTI)

    or represents that its use by such third party would not infringe privately owned rights. ... gallium surfaces with oils from human skin, and gloves protect against puncture wounds. ...

  10. Application of the bounds-analysis approach to arsenic and gallium...

    Office of Scientific and Technical Information (OSTI)

    Details In-Document Search This content will become publicly available on January 23, 2016 Title: Application of the bounds-analysis approach to arsenic and gallium antisite...

  11. Mobility of indium on the ZnO(0001) surface

    SciTech Connect (OSTI)

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  12. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  13. 03.01.16 RH Nickel-Gallium - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database CO2 electrochemical reduction catalyzed by bimetallic materials at low overpotential Torelli, D. A., Francis, S.A. et al. Nickel-Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials. ACS

  14. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  15. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  16. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  17. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  18. Convective Turbulence in Liquid Gallium and Sodium | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility The field displays the complex dynamics of the velocity field The figure displays streamlines of the two-dimensional skin friction field which was obtained right at the heated bottom plate of a cylindrical cell for turbulent Rayleigh-Bénard convection in liquid mercury at a Rayleigh number of a hundred million. The field displays the complex dynamics of the velocity field. Joerg Schumacher, Technische Universitaet Ilmenau Convective Turbulence in Liquid Gallium and Sodium

  19. Method of manufacture of atomically thin boron nitride

    DOE Patents [OSTI]

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  20. Silicon nitride ceramic having high fatigue life and high toughness

    DOE Patents [OSTI]

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  1. DESIGN AND ANALYSIS OF AN INTEGRATED PULSE MODULATED S-BAND POWER AMPLIFIER IN GALLIUM NITRIDE PROCESS

    SciTech Connect (OSTI)

    STEVE SEDLOCK

    2012-04-04

    The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.

  2. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gamalski, A. D.; Tersoff, J.; Stach, E. A.

    2016-04-13

    We study the growth of GaN nanowires from liquid Au–Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (11¯20) or (11¯00) directions, by the addition of {11¯00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. Finally, the results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III–V semiconductor nanowires.

  3. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOE Patents [OSTI]

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  4. Preliminary survey report: control technology for gallium arsenide processing at Morgan Semiconductor Division, Garland, Texas

    SciTech Connect (OSTI)

    Lenihan, K.L.

    1987-03-01

    The report covers a walk through survey made of the Morgan Semiconductor Facility in Garland, Texas, to evaluate control technology for gallium-arsenide dust in the semiconductor industry. Engineering controls included the synthesis of gallium-arsenide outside the crystal pullers to reduce arsenic residues in the pullers, also reducing worker exposure to arsenic during cleaning of the crystal pullers.

  5. Silicon-nitride and metal composite

    DOE Patents [OSTI]

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  6. Silicon-nitride and metal composite

    DOE Patents [OSTI]

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  7. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    SciTech Connect (OSTI)

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c-axis. The rhombohedral system consists of three-layered units: ABCABC..., whose honeycomb layers are arranged in a shifted phase, like as those of graphite. Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, and hence, is widely used as a lubricant material. The material is stable up to a high temperature of 2300 C before decomposition sets in [2] does not fuse a nitrogen atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such properties, similar to those of graphite, the material is transparent, and acts as a good electric insulator, especially at high temperatures (10{sup 6} {Omega}m at 1000 C) [1]. c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second hardest known material (the hardest is diamond), the so-called white diamond. It is used mainly for grinding and cutting industrial ferrous materials because it does not react with molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond. This chapter focuses principally upon information about h-BN nanomaterials, mainly BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good reviews book chapters about c-BN in [1, 4-6].

  8. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  9. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F.; Schmatz, Duane J.; Hunt, Thomas K.

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  10. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  11. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  12. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, Theodore D.

    1998-01-01

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal.

  13. Photodetectors using III-V nitrides

    DOE Patents [OSTI]

    Moustakas, T.D.

    1998-12-08

    A bandpass photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The bandpass photodetector detects electromagnetic radiation between a lower transition wavelength and an upper transition wavelength. That detector comprises two low pass photodetectors. The response of the two low pass photodetectors is subtracted to yield a response signal. 24 figs.

  14. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    SciTech Connect (OSTI)

    Si, M. S.; Gao, Daqiang E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng E-mail: xueds@lzu.edu.cn; Liu, Yushen; Deng, Xiaohui; Zhang, G. P.

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  15. Method for enhancing the solubility of boron and indium in silicon

    DOE Patents [OSTI]

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  16. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    SciTech Connect (OSTI)

    Shi Xiaoliang Wang Sheng; Yang Hua; Duan Xinglong; Dong Xuebin

    2008-09-15

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm ({lambda}{sub ex}=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 {mu}m in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale.

  17. Low-loss binder for hot pressing boron nitride

    DOE Patents [OSTI]

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  18. Synthesis and characterization of nitrides of iridium and palladiums

    SciTech Connect (OSTI)

    Crowhurst, Jonathan C.; Goncharov, Alexander F.; Sadigh, B.; Zaug, J.M.; Aberg, D.; Meng, Yue; Prakapenka, Vitali B.

    2008-08-14

    We describe the synthesis of nitrides of iridium and palladium using the laser-heated diamond anvil cell. We have used the in situ techniques of x-ray powder diffraction and Raman scattering to characterize these compounds and have compared our experimental findings where possible to the results of first-principles theoretical calculations. We suggest that palladium nitride is isostructural with pyrite, while iridium nitride has a monoclinic symmetry and is isostructural with baddeleyite.

  19. Boron nitride ablation studies in arc jet facilities (Conference...

    Office of Scientific and Technical Information (OSTI)

    The use of boron nitride as an ablative material for antenna windows on high performance reentry vehicles necessitated an experimental study of its ablative behavior and thermal ...

  20. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOE Patents [OSTI]

    White, Jack C.; Traut, Davis E.; Oden, Laurance L.; Schmitt, Roman A.

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  1. Design and Implementation of Silicon Nitride Valves for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  2. Local residual stress monitoring of aluminum nitride MEMS using...

    Office of Scientific and Technical Information (OSTI)

    micro-Raman spectroscopy This content will become publicly available on January 6, 2017 Title: Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman ...

  3. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies Citation Details In-Document Search Title: Design of defect spins in ...

  4. Temperature dependence of carrier capture by defects in gallium arsenide

    SciTech Connect (OSTI)

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structure that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.

  5. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  6. Process for making boron nitride using sodium cyanide and boron

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  7. Method for producing silicon nitride/silicon carbide composite

    DOE Patents [OSTI]

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  8. Nitriding of super alloys for enhancing physical properties

    DOE Patents [OSTI]

    Purohit, A.

    1984-06-25

    The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750/sup 0/C but less than 1150/sup 0/C for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25 to 100 micrometers thickness. These barrier

  9. METHOD OF COATING GRAPHITE WITH STABLE METAL CARBIDES AND NITRIDES

    DOE Patents [OSTI]

    Gurinsky, D.H.

    1959-10-27

    A method is presented for forming protective stable nitride and carbide compounds on the surface of graphite. This is accomplished by contacting the graphite surface with a fused heavy liquid metal such as bismuth or leadbismuth containing zirconium, titanium, and hafnium dissolved or finely dispersed therein to form a carbide and nitride of at least one of the dissolved metals on the graphite surface.

  10. Process for producing ceramic nitrides anc carbonitrides and their precursors

    DOE Patents [OSTI]

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  11. Exploration of Novel Reaction Pathway for Formation of Copper Indium Gallium Diselenide: Cooperative Research and Development Final Report, CRADA Number CRD-03-121

    SciTech Connect (OSTI)

    van Hest, M.

    2014-11-01

    The investigation will explore a potentially low-cost method of forming CIGS for use in solar cells. Investigators from HelioVolt will work in NREL laboratories to modify and apply our tools in fabrication of the CIGS layer. Investigators from NREL will assist in preparing substrates and in compleing solar cells composed of these CIGS layers to evaluate the effectiveness of the HelioVolt processes.

  12. Titanium nitride thin films for minimizing multipactoring

    DOE Patents [OSTI]

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  13. Stability analysis of zigzag boron nitride nanoribbons

    SciTech Connect (OSTI)

    Rai, Hari Mohan Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  14. Magnesium doping of boron nitride nanotubes

    DOE Patents [OSTI]

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  15. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  16. Hard and low friction nitride coatings and methods for forming the same

    DOE Patents [OSTI]

    Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul

    2007-05-01

    An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.

  17. Spin-phonon coupling in scandium doped gallium ferrite

    SciTech Connect (OSTI)

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Paul, Barnita; Roy, Anushree; Grover, Vinita; Tyagi, A. K.

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5?K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1?x}Sc{sub x}FeO{sub 3}: x?=?0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Nel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  18. Bright Lights and Even Brighter Ideas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Even Brighter Ideas Bright Lights and Even Brighter Ideas July 3, 2013 - 2:04pm Addthis Kim Kisslinger, a researcher at Brookhaven Lab's Center for Functional Nanomaterials seen here with a focused-ion beam instrument, reduced the indium gallium nitride (InGaN) samples to a thickness of just 20 nanometers to prepare them for electron microscopy. | Photo courtesy of Brookhaven National Laboratory. Kim Kisslinger, a researcher at Brookhaven Lab's Center for Functional Nanomaterials seen here

  19. Cordierite silicon nitride filters. Final report

    SciTech Connect (OSTI)

    Sawyer, J.; Buchan, B.; Duiven, R.; Berger, M.; Cleveland, J.; Ferri, J.

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  20. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOE Patents [OSTI]

    Seager, Carleton H.; Evans, Jr., Joseph Tate

    1998-01-01

    A method for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100.degree. C. and 300.degree. C. for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer.

  1. Method for restoring the resistance of indium oxide semiconductors after heating while in sealed structures

    DOE Patents [OSTI]

    Seager, C.H.; Evans, J.T. Jr.

    1998-11-24

    A method is described for counteracting increases in resistivity encountered when Indium Oxide resistive layers are subjected to high temperature annealing steps during semiconductor device fabrication. The method utilizes a recovery annealing step which returns the Indium Oxide layer to its original resistivity after a high temperature annealing step has caused the resistivity to increase. The recovery anneal comprises heating the resistive layer to a temperature between 100 C and 300 C for a period of time that depends on the annealing temperature. The recovery is observed even when the Indium Oxide layer is sealed under a dielectric layer. 1 fig.

  2. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  3. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  4. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  5. Nitriding of super alloys for enhancing physical properties

    DOE Patents [OSTI]

    Purohit, Ankur

    1986-01-01

    The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750.degree. C. but less than 1150.degree. C. for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25-100 micrometers thickness. These barrier nitrides appear to shield the available oxidizing metallic species of the alloy for up to a sixfold improved resistance against oxidation and also appear to impede egress of surface dislocations for increased fatigue and creep strengths.

  6. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  7. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  8. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in todays best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  9. Deposition of metallic gallium on re-crystallized ceramic material during focused ion beam milling

    SciTech Connect (OSTI)

    Muoz-Tabares, J.A.; Reyes-Gasga, J.

    2013-12-15

    We report a new kind of artifact observed in the preparation of a TEM sample of zirconia by FIB, which consists in the deposition of metallic gallium nano-dots on the TEM sample surface. High resolution TEM images showed a microstructure of fine equiaxed grains of ? 5 nm, with some of them possessing two particular characteristics: high contrast and well-defined fast Fourier transform. These grains could not be identified as any phase of zirconia but it was possible to identify them as gallium crystals in the zone axis [110]. Based on HRTEM simulations, the possible orientations between zirconia substrate and deposited gallium are discussed in terms of lattice mismatch and oxygen affinity. - Highlights: We show a new type of artifact induced during preparation of TEM samples by FIB. Deposition of Ga occurs due to its high affinity for oxygen. Materials with small grain size (? 5 nm) could promote Ga deposition. Small grain size permits the elastic accommodation of deposited Ga.

  10. Tunable morphologies of indium tin oxide nanostructures using nanocellulose templates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aytug, Tolga; Meyer, III, Harry M.; Ozcan, Soydan; Lu, Yuan; Poole, II, Joseph E.

    2015-01-01

    Metal oxide nanostructures have emerged as an important family of materials for various device applications. The performance is highly dependent on the morphology of the metal oxide nanostructures. Here we report a completely green approach to prepare indium tin oxide (ITO) nanoparticles using only water and cellulose nanofibril (CNF) in addition to the ITO precursor. Surface hydroxyl groups of the CNFs allow for efficient conjugation of ITO precursors (e.g., metal ions) in aqueous solution. The resulting CNF film allows for controllable spatial arrangement of metal oxide precursors, which results in tunable particle morphology (e.g., nanowires, nanospheres, and octahedral nanoparticles). Thesemore » ITO nanoparticles can also form conductive and transparent ITO films. This study opens a new perspective on developing metal oxide nanostructures.« less

  11. Macro- and microscopic properties of strontium doped indium oxide

    SciTech Connect (OSTI)

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I.; Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A.

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T?=?20300?C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x?=?10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x?=?10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100200?C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3??10{sup ?13}?cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  12. Npn double heterostructure bipolar transistor with ingaasn base region

    DOE Patents [OSTI]

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  13. The Influence of Lewis Acid/Base Chemistry on the Removal of Gallium by

    Office of Scientific and Technical Information (OSTI)

    Volatility from Weapons-Grade Plutonium Dissolved in Molten Chlorides (Journal Article) | SciTech Connect The Influence of Lewis Acid/Base Chemistry on the Removal of Gallium by Volatility from Weapons-Grade Plutonium Dissolved in Molten Chlorides Citation Details In-Document Search Title: The Influence of Lewis Acid/Base Chemistry on the Removal of Gallium by Volatility from Weapons-Grade Plutonium Dissolved in Molten Chlorides It has been proposed that GaCl{sub 3} can be removed by direct

  14. Results of the Gallium-Clad Phase 3 and Phase 4 tasks (canceled prior to completion)

    SciTech Connect (OSTI)

    Morris, R.N.

    1998-08-01

    This report summarizes the results of the Gallium-Clad interactions Phase 3 and 4 tasks. Both tasks were to involve examining the out-of-pile stability of residual gallium in short fuel rods with an imposed thermal gradient. The thermal environment was to be created by an electrical heater in the center of the fuel rod and coolant flow on the rod outer cladding. Both tasks were canceled due to difficulties with fuel pellet fabrication, delays in the preparation of the test apparatus, and changes in the Fissile Materials Disposition program budget.

  15. Process for manufacture of semipermeable silicon nitride membranes

    DOE Patents [OSTI]

    Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober

    2003-12-09

    A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.

  16. Apparatus for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  17. Method for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  18. Process for preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  19. Nitrogen Atom Transfer From High Valent Iron Nitrides

    SciTech Connect (OSTI)

    Johnson, Michael D.; Smith, Jeremy M.

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  20. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  1. Apparatus for the production of boron nitride nanotubes

    SciTech Connect (OSTI)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  2. III-Nitride Nanowires: Emerging Materials for Lighting and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | MIT-Harvard Center for Excitonics III-Nitride Nanowires: Emerging Materials for Lighting and Energy Applications March 20, 2012 at 3pm/36-428 George T. Wang Advanced Materials Science, Sandia National Laboratories Wang001_000 Abstract: Nanowires based on the III nitride (AlGaInN) materials system have attracted attention as potential nanoscale building blocks in LEDs, lasers, sensors, photovoltaics, and high power and high speed electronics. Compared to planar films,

  3. Uranium Nitride: Enabling New Applications for TRISO Fuel Particles

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Uranium Nitride: Enabling New Applications for TRISO Fuel Particles Citation Details In-Document Search Title: Uranium Nitride: Enabling New Applications for TRISO Fuel Particles Authors: Powers, Jeffrey J [1] ; Terrani, Kurt A [1] + Show Author Affiliations ORNL [ORNL Publication Date: 2013-01-01 OSTI Identifier: 1093735 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: 2013 LWR Fuel Performance

  4. Spherical boron nitride particles and method for preparing them

    DOE Patents [OSTI]

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  5. Facile synthesis of efficient photocatalytic tantalum nitride nanoparticles

    SciTech Connect (OSTI)

    Wang, Zheng; Wang, Jiangting; Hou, Jungang; Huang, Kai; Jiao, Shuqiang; Zhu, Hongmin

    2012-11-15

    Graphical abstract: Tantalum nitride nanoparticles as a visible-light-driven photocatalyst prepared by a novel homogeneously chemical reduction of tantalum pentachloride using sodium in liquid ammonia and the morphologies, visible-light photocatalytic properties and stability of tantalum nitride nanoparticles were investigated. Highlights: ? Tantalum nitride nanoparticles have been prepared by a homogeneously chemical reduction. ? The crystal structure of tantalum nitride was determined by Rietveld refinement and XRD patterns. ? The Tantalum nitride nanoparticle size was in the range of 2050 nm. ? Much high photocatalytic activities of Ta{sub 3}N{sub 5} nanoparticles were obtained under visible-light irradiation. -- Abstract: Tantalum nitride nanoparticles, as visible-light photocatalysts were synthesized by a two-step homogeneously chemical reduction without any polymers and templates. The well-crystallized Ta{sub 3}N{sub 5} nanoparticles with a range of 2050 nm in size have been characterized by a number of techniques, such as XRD, XPS, SEM, TEM, BET and UVVis spectrum. Most importantly, the Ta{sub 3}N{sub 5} nanoparticles with good stability exhibited higher photooxidation activities in the water splitting and degradation of methylene blue under visible light irradiation than bulk Ta{sub 3}N{sub 5} particles and commercial P25 TiO{sub 2}, demonstrating that Ta{sub 3}N{sub 5} nanoparticle is a promising candidate as a visible-light photocatalyst.

  6. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  7. Cooled silicon nitride stationary turbine vane risk reduction. Final report

    SciTech Connect (OSTI)

    Holowczak, John

    1999-12-31

    The purpose of this program was to reduce the technical risk factors for demonstration of air cooled silicon nitride turbine vanes. The effort involved vane prototype fabrication efforts at two U.S. based gas turbine grade silicon nitride component manufacturers. The efficacy of the cooling system was analyzed via a thermal time/temperature flow test technique previously at UTRC. By having multiple vendors work on parts fabrication, the chance of program success increased for producing these challenging components. The majority of the effort under this contract focused on developing methods for, and producing, the complex thin walled silicon nitride vanes. Components developed under this program will undergo engine environment testing within N00014-96-2-0014.

  8. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    SciTech Connect (OSTI)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  9. Structural studies of magnesium nitride fluorides by powder neutron diffraction

    SciTech Connect (OSTI)

    Brogan, Michael A.; Hughes, Robert W.; Smith, Ronald I.; Gregory, Duncan H.

    2012-01-15

    Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

  10. Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction

    SciTech Connect (OSTI)

    Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M.; Hickman, R.R.

    2007-07-01

    Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

  11. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOE Patents [OSTI]

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  12. Process for producing wurtzitic or cubic boron nitride

    DOE Patents [OSTI]

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  13. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOE Patents [OSTI]

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  14. Process for producing wurtzitic or cubic boron nitride

    DOE Patents [OSTI]

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  15. Process for producing amorphous and crystalline silicon nitride

    DOE Patents [OSTI]

    Morgan, Peter E. D.; Pugar, Eloise A.

    1985-01-01

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of "whiskers" or needles is heated at temperature ranging from about 900.degree. C. to about 1200.degree. C. to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900.degree. C.

  16. Process for producing amorphous and crystalline silicon nitride

    DOE Patents [OSTI]

    Morgan, P.E.D.; Pugar, E.A.

    1985-11-12

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of whiskers'' or needles is heated at temperature ranging from about 900 C to about 1,200 C to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900 C. 6 figs.

  17. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    SciTech Connect (OSTI)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  18. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    SciTech Connect (OSTI)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alf, Dario; Lilienfeld, O. Anatole von

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of ?84 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  19. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  20. Band gap narrowing in zinc oxide-based semiconductor thin films...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  1. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  2. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION ALUMINIUM COMPOUNDS BORON COMPOUNDS CHARGE CARRIERS CONCENTRATION RATIO DENSITY DOPED MATERIALS ELECTRONIC STRUCTURE ENERGY GAP GALLIUM COMPOUNDS INDIUM COMPOUNDS...

  3. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    SciTech Connect (OSTI)

    Grachev, V.; Meyer, M.; Malovichko, G.; Hunt, A. W.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20?MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin was registered and attributed to the interaction of gallium electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystalsionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and ?-radiation.

  4. Methods for improved growth of group III nitride buffer layers

    DOE Patents [OSTI]

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  5. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    SciTech Connect (OSTI)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  6. Process for producing ceramic nitrides and carbonitrides and their precursors

    DOE Patents [OSTI]

    Brown, Gilbert M.; Maya, Leon

    1988-01-01

    A process for preparing ceramic nitrides and carbonitrides in the form of very pure, fine particulate powder. Appropriate precursor is prepared by reacting a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  7. Lattice matched crystalline substrates for cubic nitride semiconductor growth

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2015-02-24

    Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.

  8. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOE Patents [OSTI]

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  9. Progress of nitride fuel cycle research for transmutation of minor actinides

    SciTech Connect (OSTI)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo

    2007-07-01

    Recent progress of nitride fuel cycle research for transmutation of MA is summarized. Preparation of MA-bearing nitride pellets, such as (Np,Am)N, (Am,Pu)N and (Np,Pu,Am,Cm)N, was carried out. Irradiation behavior of U-free nitride fuel was investigated by the irradiation test of (Pu,Zr)N and PuN+TiN fuels, in which ZrN and TiN were added as a possible diluent material. Further, pyrochemical process of spent nitride fuel was developed by electrorefining in a molten chloride salt and subsequent re-nitridation of actinides in liquid Cd cathode electro-deposits. Nitride fuel cycle for transmutation of MA has been demonstrated in a laboratory scale by the experimental study with MA and Pu. (authors)

  10. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Epitaxial ternary nitride thin films prepared by a chemical solution method Citation Details In-Document Search Title: Epitaxial ternary nitride thin films prepared by a chemical solution method It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach,

  11. Boron-Nitride Nanotubes Show Potential in Cancer Treatment | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron-Nitride Nanotubes Show Potential in Cancer Treatment Boron-Nitride Nanotubes Show Potential in Cancer Treatment NEWPORT NEWS, VA, April 26 - A new study has shown that adding boron-nitride nanotubes to the surface of cancer cells can double the effectiveness of Irreversible Electroporation, a minimally invasive treatment for soft tissue tumors in the liver, lung, prostate, head and neck, kidney and pancreas. Although this research is in the very early stages, it could one day lead to

  12. III-nitrides on oxygen- and zinc-face ZnO substrates (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Journal Article: III-nitrides on oxygen- and zinc-face ZnO substrates Citation Details In-Document Search Title: III-nitrides on oxygen- and zinc-face ZnO substrates The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and

  13. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOE Patents [OSTI]

    Hui, Rongqing; Jiang,Hong-Xing; Lin, Jing-Yu

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  14. The phase diagram and hardness of carbon nitrides

    SciTech Connect (OSTI)

    Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang; Zhu, Qiang; Qian, Guang-Rui

    2015-05-06

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0–300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C3N4 structure (P6-bar m2) is dynamically unstable, and we find the lowest-energy structure based on s-triazine unit and s-heptazine unit.

  15. Identification of microscopic hole-trapping mechanisms in nitride semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; Van de Walle, Chris G.; Anderson, Janotti

    2015-12-17

    Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrödinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.

  16. The phase diagram and hardness of carbon nitrides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang; Qian, Guang-Rui

    2015-05-06

    Novel superhard materials, especially those with superior thermal and chemical stability, are needed to replace diamond. Carbon nitrides (C-N), which are likely to possess these characteristics and have even been expected to be harder than diamond, are excellent candidates. Here we report three new superhard and thermodynamically stable carbon nitride phases. Based on a systematic evolutionary structure searches, we report a complete phase diagram of the C-N system at 0–300 GPa and analyze the hardest metastable structures. Surprisingly, we find that at zero pressure, the earlier proposed graphitic-C3N4 structure (P6-bar m2) is dynamically unstable, and we find the lowest-energy structuremore » based on s-triazine unit and s-heptazine unit.« less

  17. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect (OSTI)

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  18. Method of preparing uranium nitride or uranium carbonitride bodies

    DOE Patents [OSTI]

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  19. Electrically Integrated Graphene on Silicon Nitride Liquid Flow Cells for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution TEM - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Electrically Integrated Graphene on Silicon Nitride Liquid Flow Cells for High Resolution TEM Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A Berkeley Lab research team led by Paul Alivisatos and Alex Zettl has developed liquid flow cells providing unprecedented resolution and contrast in

  20. Tunable electrical and optical properties of hafnium nitride thin films

    SciTech Connect (OSTI)

    Farrell, I. L.; Reeves, R. J.; Preston, A. R. H.; Ludbrook, B. M.; Ruck, B. J.; Downes, J. E.; Durbin, S. M.

    2010-02-15

    We report structural and electronic properties of epitaxial hafnium nitride films grown on MgO by plasma-assisted pulsed laser deposition. The electronic structure measured using soft x-ray absorption and emission spectroscopy is in excellent agreement with the results of a band structure calculation. We show that by varying the growth conditions we can extend the films' reflectance further toward the UV, and we relate this observation to the electronic structure.

  1. Use of silicon in liquid sintered silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, Rishi; Baik, Sunggi

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  2. Use of silicon in liquid sintered silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, R.; Baik, S.

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  3. Nitridation under ammonia of high surface area vanadium aerogels

    SciTech Connect (OSTI)

    Merdrignac-Conanec, Odile [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)]. E-mail: odile.merdrignac@univ-rennes1.fr; El Badraoui, Khadija [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); L'Haridon, Paul [Laboratoire Verres et Ceramiques, UMR CNRS 6512, Institut de Chimie de Rennes, Universite de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2005-01-15

    Vanadium pentoxide gels have been obtained from decavanadic acid prepared by ion exchange on a resin from ammonium metavanadate solution. The progressive removal of water by solvent exchange in supercritical conditions led to the formation of high surface area V{sub 2}O{sub 5}, 1.6H{sub 2}O aerogels. Heat treatment under ammonia has been performed on these aerogels in the 450-900 deg. C temperature range. The oxide precursors and oxynitrides have been characterized by XRD, SEM, TGA, BET. Nitridation leads to divided oxynitride powders in which the fibrous structure of the aerogel is maintained. The use of both very low heating rates and high surface area aerogel precursors allows a higher rate and a lower threshold of nitridation than those reported in previous works. By adjusting the nitridation temperature, it has been possible to prepare oxynitrides with various nitrogen enrichment and vanadium valency states. Whatever the V(O,N) composition, the oxidation of the oxynitrides in air starts between 250 and 300 deg. C. This determines their potential use as chemical gas sensors at a maximum working temperature of 250 deg. C.

  4. Temperature sensibility of the birefringence properties in side-hole photonic crystal fiber filled with Indium

    SciTech Connect (OSTI)

    Reyes-Vera, Erick Gmez-Cardona, Nelson D.; Chesini, Giancarlo; Cordeiro, Cristiano M. B.; Torres, Pedro

    2014-11-17

    We report on the temperature sensitivity of the birefringence properties of a special kind of photonic crystal fiber containing two side holes filled with Indium metal. The modulation of the fiber birefringence is accomplished through the stress field induced by the expansion of the metal. Although the fiber was made at low gas pressures during the indium infiltration process, the birefringence showed anomalous property at a relatively low temperature value, which is completely different from those reported in conventional-like fibers with two holes filled with metal. By modeling the anisotropic changes induced by the metal expansion to the refractive index within the fiber, we are able to reproduce the experimental results. Our results have practical relevance for the design of devices based on this technology.

  5. Synthesis and Raman spectrum of crystalline indium oxide micro-rods with rectangular cross-section

    SciTech Connect (OSTI)

    Yadav, Kavita Mehta, B. R. Singh, J. P.

    2014-04-24

    Indium oxide (IO) micro-rods with rectangular cross section were synthesized without catalyst in chemical vapor deposition (CVD) system by carbothermal reduction of indium oxide at 900 °C. The rectangular micro-rods (RMRs) were grown on Si substrate in presence of water vapors and Ar atmosphere. Water was used as oxidizing reagent which controls the In/O stoichiometry in RMRs. The IO RMRs have dimensions of about 20 μm in length and about 1 μm width. The growth process involved in formation of RMRs is vapor-solid (VS) mechanism. Raman analysis was performed to obtain the phonon modes of the RMRs and the peaks of Raman spectrum were indexed to the modes being associated with bcc−In{sub 2}O{sub 3}.

  6. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  7. Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol

    SciTech Connect (OSTI)

    Mahapure, Sonali A.; Ambekar, Jalindar D.; Nikam, Latesh K.; Marimuthu, R.; Kulkarni, Milind V.

    2011-05-15

    Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV) by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.

  8. Indium diffusion through high-k dielectrics in high-k/InP stacks

    SciTech Connect (OSTI)

    Dong, H.; Cabrera, W.; Santosh KC,; Brennan, B.; Qin, X.; McDonnell, S.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Galatage, R. V.; Zhernokletov, D.; Wallace, R. M.; Department of Physics, University of Texas at Dallas, Richardson, Texas 75080

    2013-08-05

    Evidence of indium diffusion through high-k dielectric (Al{sub 2}O{sub 3} and HfO{sub 2}) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a PO{sub x} rich interface.

  9. Dynamics of formation of photoresponse in a detector structure made of gallium arsenide

    SciTech Connect (OSTI)

    Ayzenshtat, G. I., E-mail: ayzen@mail.tomsknet.ru; Lelekov, M. A.; Tolbanov, O. P. [Tomsk State University (Russian Federation)

    2008-04-15

    The influence of capture effects on the characteristics of detectors of the ionizing radiation based on semi-insulating gallium arsenide is considered. Generation of nonequilibrium electrons and holes along the entire thickness of the active region was performed under illumination with an infrared light-emitting diode with a wavelength of 0.9 {mu}m. In this case, the situation emerging in the device structure under the effect of X-ray radiation or a high-energy electron beam was simulated. It is shown that the variation in the shape of the output signal with time in this case is caused by variation in the electric field profile due to the capture of holes at deep centers in gallium arsenide. An absolutely different distribution of the electric field emerges in the structure under irradiation of a semitransparent cathode of the structure with a red light-emitting diode, emission of which penetrates into the active region for mere 1 {mu}m. In this case, the transformation of the electric field is caused by the capture of electrons. Under the prolonged effect of such radiation, a space-charge-limited current mode emerges in the device.

  10. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  11. One step process for producing dense aluminum nitride and composites thereof

    DOE Patents [OSTI]

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  12. One step process for producing dense aluminum nitride and composites thereof

    DOE Patents [OSTI]

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  13. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    SciTech Connect (OSTI)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  14. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    Nitrided iron catalysts are active and durable and have an unusal selectivity. They do not produce significant amounts of wax, which should be advantageous in situations where gasoline is the desired product. The low yield of wax permits operation of nitrided iron in fluidized fixed-bed or entrained reactors at 230 to 255/sup 0/C. Conventional reduced iron catalysts in these reactors must be operated at about 325/sup 0/C to prevent formation of higher hydrocarbon that leads to agglomeration of the fluidized particles. At 325/sup 0/C carbon deposition and other processes leading to catalyst deterioration proceed rapidly. The yields of methane and ethane from nitrided iron are larger than desired for most purposes. Possibly promoters may be found to improve the selectivity of nitrided iron catalysts. The Bureau of Mines did not conduct a systematic catalyst development program on iron nitrides. (DP) 5 fgures, 6 tables.

  15. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    DOE Patents [OSTI]

    Brady, Michael P. [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J. [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  16. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; et al

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  17. Nitride Stabilized Core-Shell Nanoparticles - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitride Stabilized Core-Shell Nanoparticles Brookhaven National Laboratory Contact BNL About This Technology <br type="_moz" /> (A) Comparison of surface strain versus predicted binding energy of oxygen (BE-O) on the Pt<sub>2</sub>MLNi<sub>4</sub>N and Pt nanoparticle models with ~1.7 nm. (B) Pt specific activity against BE-O on PtNiN/C and Pt/C. (C) Schematic of the inner Pt diffusion process to the defective sites at the vertex during cycling in the

  18. Field emission characteristics from graphene on hexagonal boron nitride

    SciTech Connect (OSTI)

    Yamada, Takatoshi, E-mail: takatoshi-yamada@aist.go.jp [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken [International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585 (Japan); Taniguchi, Takashi [National Institute for Material Science (NIMS), 1-1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-06-02

    An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

  19. Preparation of superhydrophobic nanodiamond and cubic boron nitride films

    SciTech Connect (OSTI)

    Zhou, Y. B.; Liu, W. M.; Wang, P. F.; Yang, Y.; Ye, Q.; He, B.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T.; Zou, Y. S.

    2010-09-27

    Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150 deg. and a sliding angle smaller than 10 deg. were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.

  20. Method of nitriding niobium to form a superconducting surface

    SciTech Connect (OSTI)

    Kelley, Michael J.; Klopf, John Michael; Singaravelu, Senthilaraja

    2014-08-19

    A method of forming a delta niobium nitride .delta.-NbN layer on the surface of a niobium object including cleaning the surface of the niobium object; providing a treatment chamber; placing the niobium object in the treatment chamber; evacuating the chamber; passing pure nitrogen into the treatment chamber; focusing a laser spot on the niobium object; delivering laser fluences at the laser spot until the surface of the niobium object reaches above its boiling temperature; and rastering the laser spot over the surface of the niobium object.

  1. Metal Nitride Catalysts to Enhance Hydrogen Evolution Reactions - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Metal Nitride Catalysts to Enhance Hydrogen Evolution Reactions Brookhaven National Laboratory Contact BNL About This Technology TEM image of catalyst ink comprised of Co<sub>0.6</sub>Mo<sub>1.4</sub>N<sub>2</sub> dispersed on carbon black TEM image of catalyst ink comprised of Co0.6Mo1.4N2 dispersed on carbon black

  2. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    SciTech Connect (OSTI)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-07

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  3. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  4. Structure and electrical characterization of gallium arsenide nanowires with different V/III ratio growth parameters

    SciTech Connect (OSTI)

    Muhammad, R.; Ahamad, R.; Ibrahim, Z.; Othaman, Z.

    2014-03-05

    Gallium arsenide (GaAs) nanowires were grown vertically on GaAs(111)B substrate by gold-assisted using metal-organic chemical vapour deposition. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and conductivity atomic force microscopy (CAFM) analysis were carried out to investigate the effects of V/III ratio on structural properties and current-voltage changes in the wires. Results show that GaAs NWs grow preferably in the wurtzite crystal structure than zinc blende crystal structure with increasing V/III ratio. Additionally, CAFM studies have revealed that zincblende nanowires indicate ohmic characteristic compared to oscillation current occurred for wurtzite structures. The GaAs NWs with high quality structures are needed in solar cells technology for trapping energy that directly converts of sunlight into electricity with maximum capacity.

  5. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  6. Morphological development and oxidation mechanisms of aluminum nitride whiskers

    SciTech Connect (OSTI)

    Hou Xinmei; Yue Changsheng; Kumar Singh, Ankit; Zhang Mei; Chou Kuochih

    2010-04-15

    Hexagonal aluminum nitride (AlN) whiskers have been synthesized at 1873 K under a flowing nitrogen atmosphere. The synthesized whiskers are long straight filaments with diameters between 1 and 5 {mu}m and length in the cm range. In order to investigate its 'oxidation resistance', a series of experiments have been performed. The oxidation behavior was quite different in the experimental temperature range assigned, which can be attributed to the kinetic factor and the morphological development during oxidation process. It was chemical controlled at lower temperature while both chemical reaction and diffusion controlled at medium temperature. Further accelerating of temperature to 1473 K, AlN whiskers was peeled into smaller parts, which increased the oxidation rate and hence showed powder-like oxidation behavior. Our new kinetic theory has been applied to study the oxidation behavior of AlN whiskers. The comparison of the experimental data with the theoretical ones validates the applicability of the new model. - Hexagonal aluminum nitride (AlN) whiskers have been synthesized at 1873 K under a flowing nitrogen atmosphere. The synthesized whiskers are long straight filaments with diameters between 1 and 5 {mu}m and length in the cm range.

  7. Consolidation of cubic and hexagonal boron nitride composites

    SciTech Connect (OSTI)

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that in some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.

  8. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect (OSTI)

    Doganov, Rostislav A.; zyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitridean atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400?K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  9. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect (OSTI)

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  10. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin Zhang, Boya; Liu, Cheng; Wang, Zhi; Huang, Jian

    2014-02-17

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  11. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect (OSTI)

    Yang, Chan-Shan; Tang, Tsung-Ta; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-07

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding ?/2 at 1.0 THz was achieved in a ?517??m-thick cell. The phase shifter exhibits high transmittance (?78%). The driving voltage required for quarter-wave operation is as low as 5.66?V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  12. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    SciTech Connect (OSTI)

    Rudin, Sven Peter

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  13. Real-time x-ray studies of indium island growth kinetics

    SciTech Connect (OSTI)

    Demasi, Alexander; Rainville, Meliha G.; Ludwig, Karl F.

    2015-03-15

    The authors have investigated the early stages of indium island formation and growth by vapor phase deposition on room temperature sapphire using real-time grazing incidence small angle x-ray scattering (GISAXS), followed by ex-situ atomic force microscopy and scanning electron microscopy. The results are consistent with the formation and coalescence of hemispherical islands, as described by Family and Meakin. Monte Carlo simulations of systems of coalescing islands were used to supplement and quantify the results of GISAXS, and a good agreement is seen between the data and the simulations.

  14. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect (OSTI)

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  15. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect (OSTI)

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30?V to 0.55?V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  16. Tunneling characteristics in chemical vapor deposited graphenehexagonal boron nitridegraphene junctions

    SciTech Connect (OSTI)

    Roy, T.; Hesabi, Z. R.; Joiner, C. A.; Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Liu, L.; Gu, G. [Department of Electrical Engineering and Computer Science, University of Tennessee, 1520 Middle Drive, Knoxville, Tennessee 37996 (United States); Barrera, S. de la; Feenstra, R. M. [Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, B. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080 (United States)

    2014-03-24

    Large area chemical vapor deposited graphene and hexagonal boron nitride was used to fabricate graphenehexagonal boron nitridegraphene symmetric field effect transistors. Gate control of the tunneling characteristics is observed similar to previously reported results for exfoliated graphenehexagonal boron nitridegraphene devices. Density-of-states features are observed in the tunneling characteristics of the devices, although without large resonant peaks that would arise from lateral momentum conservation. The lack of distinct resonant behavior is attributed to disorder in the devices, and a possible source of the disorder is discussed.

  17. Laser nitriding for niobium superconducting radio-frequency accelerator cavities

    SciTech Connect (OSTI)

    Senthilraja Singaravelu, John Klopf, Gwyn Williams, Michael Kelley

    2010-10-01

    Particle accelerators are a key tool for scientific research ranging from fundamental studies of matter to analytical studies at light sources. Cost-forperformance is critical, both in terms of initial capital outlay and ongoing operating expense, especially for electricity. It depends on the niobium superconducting radiofrequency (SRF) accelerator cavities at the heart of most of these machines. Presently Nb SRF cavities operate near 1.9 K, well (and expensively) below the 4.2 K atmospheric boiling point of liquid He. Transforming the 40 nm thick active interior surface layer from Nb to delta NbN (Tc = 17 K instead of 9.2 K) appears to be a promising approach. Traditional furnace nitriding appears to have not been successful for this. Further, exposing a complete SRF cavity to the time-temperature history required for nitriding risks mechanical distortion. Gas laser nitriding instead has been applied successfully to other metals [P.Schaaf, Prog. Mat. Sci. 47 (2002) 1]. The beam dimensions and thermal diffusion length permit modeling in one dimension to predict the time course of the surface temperature for a range of per-pulse energy densities. As with the earlier work, we chose conditions just sufficient for boiling as a reference point. We used a Spectra Physics HIPPO nanosecond laser (l = 1064 nm, Emax= 0.392 mJ, beam spot@ 34 microns, PRF =15 – 30 kHz) to obtain an incident fluence of 1.73 - 2.15 J/cm2 for each laser pulse at the target. The target was a 50 mm diameter SRF-grade Nb disk maintained in a nitrogen atmosphere at a pressure of 550 – 625 torr and rotated at a constant speed of 9 rpm. The materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and x-ray diffraction (XRD). The SEM images show a sharp transition with fluence from a smooth, undulating topography to significant roughening, interpreted here as the onset of ablation. EPMA measurements of N/Nb atom ratio as a function of depth found a constant value to depths greater than the SRF active layer thickness. Certain irradiation conditions resulted in values consistent with formation of delta NbN. Under certain irradiation conditions, XRD data were consistent only with delta NbN on top of Nb metal. Funding: authored by Jefferson Science Associates LLC under US DOE Contract De-AC05-06OR23177. We are indebted to Prof. P. Schaaf (Goettingen) for the simulation code and helpful discussions.

  18. EA-1686: Department of Energy Loan Guarantee to SoloPower Inc. for the Electrodeposition-based Copper indium gallium selenide (CIGS) Solar Technology Manufacturing Facility near San Jose, California

    Broader source: Energy.gov [DOE]

    EA cancelled due to a change in project scope; DOE prepared a categorical exclusion determination (8/15/11).

  19. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOE Patents [OSTI]

    McCoy, L.R.

    1981-01-23

    A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  20. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOE Patents [OSTI]

    McCoy, Lowell R.

    1982-01-01

    A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  1. Aluminum nitride transitional layer for reducing dislocation density and cracking of AIGan epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.

    2011-03-29

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  2. Sandia Energy - III-Nitride core-shell nanowire arrayed solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for other III-nitride devices such as light-emitting diodes (LEDs). Abstract: A solar cell based on a hybrid nanowire-film architecture consisting of a vertically aligned...

  3. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN); Tiegs, Terry N. (Lenoir City, TN)

    1992-01-01

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  4. Method of nitriding, carburizing, or oxidizing refractory metal articles using microwaves

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Tiegs, T.N.

    1992-10-13

    A method of nitriding an article of refractory-nitride-forming metal or metalloids. A consolidated metal or metalloid article is placed inside a microwave oven and nitrogen containing gas is introduced into the microwave oven. The metal or metalloid article is heated to a temperature sufficient to react the metal or metalloid with the nitrogen by applying a microwave energy within the microwave oven. The metal or metalloid article is maintained at that temperature for a period of time sufficient to convert the article of metal or metalloid to an article of refractory nitride. in addition, a method of applying a coating, such as a coating of an oxide, a carbide, or a carbo-nitride, to an article of metal or metalloid by microwave heating.

  5. Precursors in the preparation of transition metal nitrides and transition metal carbonitrides and their reaction intermediates

    DOE Patents [OSTI]

    Maya, Leon

    1991-01-01

    A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

  6. Process for preparing transition metal nitrides and transition metal carbonitrides and their reaction intermediates

    DOE Patents [OSTI]

    Maya, Leon

    1988-05-24

    A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

  7. Anomalous response of superconducting titanium nitride resonators to terahertz radiation

    SciTech Connect (OSTI)

    Bueno, J. Baselmans, J. J. A; Coumou, P. C. J. J.; Zheng, G.; Visser, P. J. de; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.

    2014-11-10

    We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.

  8. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  9. Submicron cubic boron nitride as hard as diamond

    SciTech Connect (OSTI)

    Liu, Guoduan; Kou, Zili E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua; Yan, Xiaozhi E-mail: yanxz@hpstar.ac.cn; Li, Wentao; Bi, Yan; Leng, Yang; He, Duanwei

    2015-03-23

    Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.

  10. Methods for improved growth of group III nitride semiconductor compounds

    DOE Patents [OSTI]

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  11. DEVELOPMENT OF TITANIUM NITRIDE COATING FOR SNS RING VACUUM CHAMBERS.

    SciTech Connect (OSTI)

    HE,P.; HSEUH,H.C.; MAPES,M.; TODD,R.; WEISS,D.

    2001-06-18

    The inner surface of the ring vacuum chambers of the US Spallation Neutron Source (SNS) will be coated with {approximately}100 nm of Titanium Nitride (TiN). This is to minimize the secondary electron yield (SEY) from the chamber wall, and thus avoid the so-called e-p instability caused by electron multipacting as observed in a few high-intensity proton storage rings. Both DC sputtering and DC-magnetron sputtering were conducted in a test chamber of relevant geometry to SNS ring vacuum chambers. Auger Electron Spectroscopy (AES) and Rutherford Back Scattering (RBS) were used to analyze the coatings for thickness, stoichiometry and impurity. Excellent results were obtained with magnetron sputtering. The development of the parameters for the coating process and the surface analysis results are presented.

  12. Spectroscopic ellipsometry characterization of thin-film silicon nitride

    SciTech Connect (OSTI)

    Jellison, G.E. Jr.; Modine, F.A.; Doshi, P.; Rohatgi, A.

    1997-05-01

    We have measured and analyzed the optical characteristics of a series of silicon nitride thin films prepared by plasma-enhanced chemical vapor deposition on silicon substrates for photovoltaic applications. Spectroscopic ellipsometry measurements were made by using a two-channel spectroscopic polarization modulator ellipsometer that measures N, S, and C data simultaneously. The data were fit to a model consisting of air / roughness / SiN / crystalline silicon. The roughness was modeled using the Bruggeman effective medium approximation, assuming 50% SiN, 50% voids. The optical functions of the SiN film were parameterized using a model by Jellison and Modine. All the {Chi}{sup 2} are near 1, demonstrating that this model works extremely well for all SiN films. The measured dielectric functions were used to make optimized SiN antireflection coatings for crystalline silicon solar cells.

  13. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Epitaxial ternary nitride thin films prepared by a chemical solution method Citation Details In-Document Search Title: Epitaxial ternary nitride thin films prepared by a chemical solution method × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  14. Impurity-induced disorder in III-nitride materials and devices

    DOE Patents [OSTI]

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  15. Design of defect spins in piezoelectric aluminum nitride for solid-state

    Office of Scientific and Technical Information (OSTI)

    hybrid quantum technologies (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies Citation Details In-Document Search Title: Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state

  16. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOE Patents [OSTI]

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  17. Consolidation of cubic and hexagonal boron nitride composites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du Frane, W. L.; Cervantes, O.; Ellsworth, G. F.; Kuntz, J. D.

    2015-12-08

    When we Consolidate cubic boron nitride (cBN) it typically requires either a matrix of metal bearing materials that are undesirable for certain applications, or very high pressures within the cBN phase stability field that are prohibitive to manufacturing size and cost. We present new methodology for consolidating high stiffness cBN composites within a hexagonal boron nitride (hBN) matrix (15–25 vol%) with the aid of a binder phase (0–6 vol%) at moderate pressures (0.5–1.0 GPa) and temperatures (900–1300 °C). The composites are demonstrated to be highly tailorable with a range of compositions and resulting physical/mechanical properties. Ultrasonic measurements indicate that inmore » some cases these composites have elastic mechanical properties that exceed those of the highest strength steel alloys. Moreover, two methods were identified to prevent phase transformation of the metastable cBN phase into hBN during consolidation: 1. removal of hydrocarbons, and 2. increased cBN particle size. Lithium tetraborate worked better as a binder than boron oxide, aiding consolidation without enhancing cBN to hBN phase transformation kinetics. These powder mixtures consolidated within error of their full theoretical mass densities at 1 GPa, and had only slightly lower densities at 0.5 GPa. This shows potential for consolidation of these composites into larger parts, in a variety of shapes, at even lower pressures using more conventional manufacturing methods, such as hot-pressing.« less

  18. Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics

    DOE Patents [OSTI]

    Becher, Paul F.; Lin, Hua-Tay

    2011-06-28

    A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

  19. Preparation of CIGS-based solar cells using a buffered electrodeposition bath

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath

    2007-11-20

    A photovoltaic cell exhibiting an overall conversion efficiency of at least 9.0% is prepared from a copper-indium-gallium-diselenide thin film. The thin film is prepared by simultaneously electroplating copper, indium, gallium, and selenium onto a substrate using a buffered electro-deposition bath. The electrodeposition is followed by adding indium to adjust the final stoichiometry of the thin film.

  20. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    SciTech Connect (OSTI)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-15

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 {epsilon}/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10{sup -3} {Omega}{sup -1} on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  1. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    SciTech Connect (OSTI)

    Zhang, Yan; Yu, Jianqiang; Sun, Kai; Zhu, Yukun; Bu, Yuyu; Chen, Zhuoyuan

    2014-05-01

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: Indium oxide performed novel application under visible light. Indium oxide by solgel method behaved better photoelectrochemical properties. Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel by In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both solgel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.

  2. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    SciTech Connect (OSTI)

    Li, Xufan; Basile Carrasco, Leonardo A; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  3. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    SciTech Connect (OSTI)

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  4. Revealing the Preferred Interlayer Orientations and Stackings of Two-Dimensional Bilayer Gallium Selenide Crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Yoon, Mina; Puretzky, Alexander A; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-01-01

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0 or 60 interlayer rotations. The commensurate stacking configurations (AA and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. The combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  5. Phosphonic Acid Functionalized Asymmetric Phthalocyanines: Synthesis, Modification of Indium Tin Oxide (ITO), and Charge Transfer

    SciTech Connect (OSTI)

    Polaske, Nathan W.; Lin, Hsiao-Chu; Tang, Anna; Mayukh, Mayank; Oquendo, Luis E.; Green, John; Ratcliff, Erin L.; Armstrong, Neal R.; Saavedra, S. Scott; McGrath, Dominic V.

    2011-12-20

    Metalated and free-base A?B-type asymmetric phthalocyanines (Pcs) bearing, in the asymmetric quadrant, a flexible alkyl linker of varying chain lengths terminating in a phosphonic acid (PA) group have been synthesized. Two parallel series of asymmetric Pc derivatives bearing aryloxy and arylthio substituents are reported, and their synthesis and characterization through NMR, combustion analysis, and MALDI-MS are described. We also demonstrate the modification of indium tin oxide (ITO) substrates using the PA functionalized asymmetric Pc derivatives and monitoring their electrochemistry. The PA functionalized asymmetric Pcs were anchored to the ITO surface through chemisorption and their electrochemical properties characterized using cyclic voltammetry to investigate the effects of PA structure on the thermodynamics and kinetics of charge transfer. Ionization energies of the modified ITO surfaces were measured using ultraviolet photoemission spectroscopy.

  6. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150?nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150?nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  7. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    SciTech Connect (OSTI)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, Andr

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 ?cm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  8. Ferromagnetism of manganese-doped indium tin oxide films deposited on polyethylene naphthalate substrates

    SciTech Connect (OSTI)

    Nakamura, Toshihiro; Isozaki, Shinichi; Tanabe, Kohei; Tachibana, Kunihide

    2009-04-01

    Mn-doped indium tin oxide (ITO) films were deposited on polyethylene naphthalate (PEN) substrates using radio-frequency magnetron sputtering. The magnetic, electrical, and optical properties of the films deposited on PEN substrates were investigated by comparing with the properties of films grown on glass substrates at the same growth conditions. Thin films on PEN substrates exhibited low electrical resistivity of the order of 10{sup -4} {omega} cm and high optical transmittance between 75% and 90% in the visible region. Ferromagnetic hysteresis loops were observed at room temperature for the samples grown on PEN substrates. Mn-doped ITO films can be one of the most promising candidates of transparent ferromagnetic materials for flexible spintronic devices.

  9. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    SciTech Connect (OSTI)

    Doggart, P.; Bristow, N.; Kettle, J.

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (?{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and ?{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  10. Structural tuning of residual conductivity in highly mismatched III-V layers

    DOE Patents [OSTI]

    Han, Jung; Figiel, Jeffrey J.

    2002-01-01

    A new process to control the electrical conductivity of gallium nitride layers grown on a sapphire substrate has been developed. This process is based on initially coating the sapphire substrate with a thin layer of aluminum nitride, then depositing the gallium nitride thereon. This process allows one to controllably produce gallium nitride layers with resistivity varying over as much as 10 orders of magnitude, without requiring the introduction and activation of suitable dopants.

  11. Steady State Sputtering Yields and Surface Compositions of Depleted Uranium and Uranium Carbide bombarded by 30 keV Gallium or 16 keV Cesium Ions.

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    2014-10-23

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions range, i.e. using steady-state sputtering. The recession of both the uraniums and uranium carbides surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantation and sputter-erosion of uranium and uranium carbide were calculated to be U??Ga??, (UC)??Ga?? and U??Cs?, (UC)??Cs??, respectively.

  12. Process for producing silicon nitride based articles of high fracture toughness and strength

    DOE Patents [OSTI]

    Huckabee, Marvin; Buljan, Sergej-Tomislav; Neil, Jeffrey T.

    1991-01-01

    A process for producing a silicon nitride-based article of improved fracture toughness and strength. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12 m.sup.2 /g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

  13. Process for producing silicon nitride based articles of high fracture toughness and strength

    DOE Patents [OSTI]

    Huckabee, M.; Buljan, S.T.; Neil, J.T.

    1991-09-10

    A process for producing a silicon nitride-based article of improved fracture toughness and strength is disclosed. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12 m[sup 2]/g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.

  14. Brazing of titanium-vapor-coated silicon nitride

    SciTech Connect (OSTI)

    Santella, M.L. )

    1988-09-01

    A technique for brazing Si{sub 3}N{sub 4} with metallic alloys was evaluated. The process involved vapor coating the ceramic with a 1.0-{mu}-thick layer of titanium before the brazing operation. The coating improved wetting of the Si{sub 3}N{sub 4} surfaces to the extent that strong bonding between the solidified braze filler metal and the ceramic occurred. Braze joints of Si{sub 3}N{sub 4} were made with Ag-Cu, Au-Ni, and Au-Ni-Pd alloys at temperatures of 790{degree}, 970{degree}, and 1,130{degree}C. Silicon nitride specimens were also brazed with a Ag-Cu alloy to the molybdenum alloy TZM, titanium, and A286 steel at 790{degree}C. Residual stresses resulting from mismatch of thermal expansion coefficients between the Si{sub 3}N{sub 4} and the metals caused all of the ceramic-to-metal joints to spontaneously crack in the Si{sub 3}N{sub 4} upon cooling from the brazing temperature.

  15. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect (OSTI)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.214.67?nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.27.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07??0.11 TPa and 0.180.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  16. Thermal transport across graphene and single layer hexagonal boron nitride

    SciTech Connect (OSTI)

    Zhang, Jingchao E-mail: yyue@whu.edu.cn; Hong, Yang; Yue, Yanan E-mail: yyue@whu.edu.cn

    2015-04-07

    As the dimensions of nanocircuits and nanoelectronics shrink, thermal energies are being generated in more confined spaces, making it extremely important and urgent to explore for efficient heat dissipation pathways. In this work, the phonon energy transport across graphene and hexagonal boron-nitride (h-BN) interface is studied using classic molecular dynamics simulations. Effects of temperature, interatomic bond strength, heat flux direction, and functionalization on interfacial thermal transport are investigated. It is found out that by hydrogenating graphene in the hybrid structure, the interfacial thermal resistance (R) between graphene and h-BN can be reduced by 76.3%, indicating an effective approach to manipulate the interfacial thermal transport. Improved in-plane/out-of-plane phonon couplings and broadened phonon channels are observed in the hydrogenated graphene system by analyzing its phonon power spectra. The reported R results monotonically decrease with temperature and interatomic bond strengths. No thermal rectification phenomenon is observed in this interfacial thermal transport. Results reported in this work give the fundamental knowledge on graphene and h-BN thermal transport and provide rational guidelines for next generation thermal interface material designs.

  17. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    SciTech Connect (OSTI)

    Fitzgerald, M.

    1993-05-01

    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  18. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    SciTech Connect (OSTI)

    Sreenivasulu, G.; Piskulich, E.; Srinivasan, G.; Qu, P.; Qu, Hongwei; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.

    2014-07-21

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  19. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    SciTech Connect (OSTI)

    Kyle, Erin C. H. Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5–6 × 10{sup 19} cm{sup −3} as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 10{sup 18} cm{sup −3}. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  20. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOE Patents [OSTI]

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  1. Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film

    SciTech Connect (OSTI)

    Cho, Chang-Hee; Kim, Baek-Hyun; Kim, Tae-Wook; Park, Seong-Ju; Park, Nae-Man; Sung, Gun-Yong

    2005-04-04

    The effect of hydrogen passivation on the charge storage characteristics of two types of silicon nitride films containing silicon quantum dots (Si QDs) grown by SiH{sub 4}+N{sub 2} and SiH{sub 4}+NH{sub 3} plasma was investigated. The transmission electron microscope analysis and the capacitance-voltage measurement showed that the silicon nitride film grown by SiH{sub 4}+NH{sub 3} plasma has a lower interface trap density and a higher density of Si QDs compared to that grown by SiH{sub 4}+N{sub 2} plasma. It was also found that the charge retention characteristics in the Si QDs were greatly enhanced in the samples grown by means of SiH{sub 4}+NH{sub 3} plasma, due to the hydrogen passivation of the defects in the silicon nitride films by NH{sub 3} during the growth of the Si QDs.

  2. Si Passivation and Chemical Vapor Deposition of Silicon Nitride: Final Technical Report, March 18, 2007

    SciTech Connect (OSTI)

    Atwater, H. A.

    2007-11-01

    This report investigated chemical and physical methods for Si surface passivation for application in crystalline Si and thin Si film photovoltaic devices. Overall, our efforts during the project were focused in three areas: i) synthesis of silicon nitride thin films with high hydrogen content by hot-wire chemical vapor deposition; ii) investigation of the role of hydrogen passivation of defects in crystalline Si and Si solar cells by out diffusion from hydrogenated silicon nitride films; iii) investigation of the growth kinetics and passivation of hydrogenated polycrystalline. Silicon nitride films were grown by hot-wire chemical vapor deposition and film properties have been characterized as a function of SiH4/NH3 flow ratio. It was demonstrated that hot-wire chemical vapor deposition leads to growth of SiNx films with controllable stoichiometry and hydrogen.

  3. Influence of slurry flocculation on the character and compaction of spray-dried silicon nitride granules

    SciTech Connect (OSTI)

    Takahashi, Hideo; Shinohara, Nobuhiro; Okumiya, Masataro; Uematsu, Keizo; JunIchiro, Tsubaki; Iwamoto, Yuji; Kamiya, Hidehiro

    1995-04-01

    The effect of slurry flocculation on the characteristics of silicon nitride granules prepared by the spray drying process is investigated. The flocculation state of an aqueous silicon nitride slurry is controlled by adding nitric acid and evaluated as a function of pH. Dense and hard silicon nitride granules result from a well-dispersed slurry having a high pH (e.g., 10.8). These hard granules retain their shape in green compacts and form detrimental defects. Lowering the pH of the slurry to a certain value (e.g., pH 7.9) results in slurry flocculation. Granules prepared from this flocculated slurry have low density and low diametral compression strength and contribute to the elimination large pores in green compacts.

  4. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOE Patents [OSTI]

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  5. Structural modifications due to interface chemistry at metal-nitride interfaces

    SciTech Connect (OSTI)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  6. Nitrided iron catalysts for the Fischer-Tropsch synthesis in the eighties

    SciTech Connect (OSTI)

    Anderson, R.B.

    1980-01-01

    A survey covers the preparation and structure of nitrided iron catalysts and their activity, selectivity, and stability for the reaction of synthesis gas in comparison with iron catalysts pretreated by various other methods, as measured in laboratory reactors; a comparison of product distributions obtained in fluidized-bed, slurry, and oil-circulation fixed bed pilot plants with nitrided catalysts and by the Kellogg entrained catalyst process SASOL, which uses a reduced iron catalyst; and possible methods for refining the Fischer-Tropsch products from nitrided iron catalysts for producing gasoline, including bauxite treatment, the Mobil process for converting oxygenates to high-octane gasoline and C/sub 3/-C/sub 4/ olefins, and an alkylation-polymerization process for converting the C/sub 3/-C/sub 4/ fraction to high-octane blending stocks.

  7. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    SciTech Connect (OSTI)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M.

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energy of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.

  8. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  9. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, H.Q.; Reinhardt, K.C.

    1999-08-31

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

  10. High-efficiency solar cell and method for fabrication

    DOE Patents [OSTI]

    Hou, Hong Q.; Reinhardt, Kitt C.

    1999-01-01

    A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

  11. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect (OSTI)

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600?C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600?C. TiN film deposited at 600?C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600?C on Si(111) wafer but the film deposited at 500?C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600?C. Nitride film of tungsten deposited at 600?C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500?C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600?C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  12. Solibro AB | Open Energy Information

    Open Energy Info (EERE)

    Sweden Zip: 751 21 Sector: Solar Product: Develops thin film solar cells using copper indium gallium diselenide (CIGS). References: Solibro AB1 This article is a stub....

  13. Johanna Solar Technology GmbH JST | Open Energy Information

    Open Energy Info (EERE)

    Havel, Brandenburg, Germany Zip: D-14772 Sector: Solar Product: German manufacturer of copper-indium-gallium-sulphide-selenium (CIGSSe) thin-film solar modules. References: Johanna...

  14. HelioVolt Corporation | Open Energy Information

    Open Energy Info (EERE)

    search Name: HelioVolt Corporation Place: Austin, Texas Zip: TX 78744 Product: Copper indium gallium selenide (CIGS) thin-film PV module manufacturer based in Austin,...

  15. PTIP Ltd | Open Energy Information

    Open Energy Info (EERE)

    Africa Sector: Solar Product: Thin-film Copper-indium-gallium-sulphur-selenide solar cell technology spinout from the University of Johannesburg. References: PTIP Ltd1 This...

  16. Enhanced single photon emission from positioned InP/GaInP quantum...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 77 NANOSCIENCE AND NANOTECHNOLOGY; EXCITATION; GALLIUM COMPOUNDS; GOLD; INDIUM PHOSPHIDES; MHZ RANGE ...

  17. Temperature dependency of the emission properties from positioned...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ELECTRON BEAMS; GALLIUM ARSENIDES; INDIUM ARSENIDES; ...

  18. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co,

    Office of Scientific and Technical Information (OSTI)

    and Ni) core-shell nanoparticle electrocatalysts (Journal Article) | SciTech Connect Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core-shell nanoparticle electrocatalysts Citation Details In-Document Search This content will become publicly available on June 10, 2017 Title: Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core-shell nanoparticle electrocatalysts Authors: Kuttiyiel, Kurian A. ; Choi, YongMan ; Hwang, Sun-Mi

  19. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOE Patents [OSTI]

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  20. Metal/semiconductor phase transition in chromium nitride(001) grown by

    Office of Scientific and Technical Information (OSTI)

    rf-plasma-assisted molecular-beam epitaxy (Journal Article) | SciTech Connect Metal/semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy Citation Details In-Document Search Title: Metal/semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy Structural and electronic properties of stoichiometric single-phase CrN(001) thin films grown on MgO(001) substrates by radio-frequency N

  1. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    SciTech Connect (OSTI)

    Murugan, A. Rajeswarapalanichamy, R. Santhosh, M. Sudhapriyanga, G.; Kanagaprabha, S.

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  2. Improved porous mixture of molybdenum nitride and tantalum oxide as a charge storage material

    SciTech Connect (OSTI)

    Deng, C.Z.; Pynenburg, R.A.J.; Tsai, K.C.

    1998-04-01

    High surface area {gamma}-molybdenum nitride has shown promise as a charge storage material. The addition of amorphous tantalum oxide to the molybdenum nitride system not only improves the film cohesion tremendously, but also widens the voltage stability window from 0.8 to 1.1 V. This occurs without adversely effecting the capacitance. Ultracapacitors, also called supercapacitors or electrochemical capacitors, are high power storage devices which have found application in products as diverse as cardiac pacemakers, cellular phones, electric vehicles, and air bags.

  3. Alternative Liquid Fuel Effects on Cooled Silicon Nitride Marine Gas Turbine Airfoils

    SciTech Connect (OSTI)

    Holowczak, J.

    2002-03-01

    With prior support from the Office of Naval Research, DARPA, and U.S. Department of Energy, United Technologies is developing and engine environment testing what we believe to be the first internally cooled silicon nitride ceramic turbine vane in the United States. The vanes are being developed for the FT8, an aeroderivative stationary/marine gas turbine. The current effort resulted in further manufacturing and development and prototyping by two U.S. based gas turbine grade silicon nitride component manufacturers, preliminary development of both alumina, and YTRIA based environmental barrier coatings (EBC's) and testing or ceramic vanes with an EBC coating.

  4. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; Han, Jiecai; Anders, André

    2012-11-26

    Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10-5 Ωcm, high electron mobility of 142 cm2/Vs, and mean transmittance over 80% from 500-1250 nmmore » (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less

  5. Cycling Endurance of SONOS Non-Volatile Memory Stacks Prepared with Nitrided SiO(2)/Si(100) Intefaces

    SciTech Connect (OSTI)

    Habermehl, S.; Nasby, R.D.; Rightley, M.J.

    1999-01-11

    The effects of nitrided SiO{sub 2}/Si(100) interfaces upon cycling endurance in silicon-oxide-nitride-oxide-silicon (SONOS) non-volatile memory transistors are investigated. Analysis of MOSFET sub-threshold characteristics indicate cycling degradation to be a manifestation of interface state (D{sub it}) generation at the tunnel oxide/silicon interface. After 10{sup 6} write/erase cycles, SONOS film stacks prepared with nitrided tunnel oxides exhibit enhanced cycling endurance with {Delta}D{sub it}=3x10{sup 12} V{sup -1}cm{sup -2}, compared to {Delta}D{sub it}=2x10{sup 13} V{sup -l}cm{sup -2} for non-nitrided tunnel oxides. Additionally, if the capping oxide is formed by steam oxidation, rather than by deposition, SONOS stacks prepared with non-nitrided tunnel oxides exhibit endurance characteristics similar to stacks with nitrided tunnel oxides. From this observation it is concluded that latent nitridation of the tunnel oxidehilicon interface occurs during steam oxide cap formation.

  6. Organic additive systems for spray-drying and dry pressing silicon nitride

    SciTech Connect (OSTI)

    Walker, W.J. Jr.; Reed, J.S.

    1996-06-01

    Silicon nitride granules for dry pressing were prepared by spray-drying slurries containing polyethylene glycol as the primary binder combined with other organic additives. Differences in slurry viscosity, granule character, pressing behavior and green strength were found to depend on the choice of deflocculant.

  7. Method for Improving Mg Doping During Group-III Nitride MOCVD

    DOE Patents [OSTI]

    Creighton, J. Randall; Wang, George T.

    2008-11-11

    A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

  8. Reaction layer characterization of the braze joint of silicon nitride to stainless steel

    SciTech Connect (OSTI)

    Xu, R.; Indacochea, J.E. . Civil and Materials Engineering Dept.)

    1994-10-01

    This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium silicide (Ti[sub 5]Si[sub 3]). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kJ/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kJ/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.

  9. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOE Patents [OSTI]

    Corman, Gregory Scot; Luthra, Krishan Lal

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  10. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOE Patents [OSTI]

    Corman, Gregory Scot; Luthra, Krishan Lal

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  11. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOE Patents [OSTI]

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  12. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites

    SciTech Connect (OSTI)

    Borkar, Tushar; Nag, Soumya; Ren, Yang; Tiley, Jaimie; Banerjee, Rajarshi

    2014-12-25

    Coupled in situ alloying and nitridation of titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and vanadium elemental powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting microstructure includes precipitates of the d-TiN phase with the NaCl structure, equiaxed (or globular) precipitates of a nitrogen enriched hcp a(Ti,N) phase with a c/a ratio more than what is expected for pure hcp Ti, and fine scale plate-shaped precipitates of hcp a-Ti, distributed within a bcc b matrix. During SPS processing, the d-TiN phase appears to form at a temperature of 1400 C, while only hcp a(Ti,N) and a-Ti phases form at lower processing temperatures. Consequently, the highest microhardness is exhibited by the composite processed at 1400 C while those processed at 1300 C or below exhibit lower values. Processing at temperatures below 1300 C, resulted in an incomplete alloying of the blend of titanium and vanadium powders. These d-TiN precipitates act as heterogeneous nucleation sites for the a(Ti,N) precipitates that appear to engulf and exhibit an orientation relationship with the nitride phase at the center. Furthermore, fine scale a-Ti plates are precipitated within the nitride precipitates, presumably resulting from the retrograde solubility of nitrogen in titanium.

  13. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOE Patents [OSTI]

    Huynh, My Hang V.; Hiskey, Michael A.

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  14. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOE Patents [OSTI]

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  15. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect (OSTI)

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  16. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    SciTech Connect (OSTI)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki; Noh, Yong-Jin; Na, Seok-In

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITO multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.

  17. Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films

    DOE Patents [OSTI]

    Allerman, Andrew A.; Crawford, Mary H.; Lee, Stephen R.

    2013-01-08

    A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

  18. Low Temperature, Self-nucleated Growth of Indium Tin Oxide Nanostructures by Pulsed Laser Deposition in Argon

    SciTech Connect (OSTI)

    Tan, S. S.; Lee, W. K.; Kee, Y. Y.; Wong, H. Y.; Tou, T. Y.

    2011-03-30

    Indium tin oxide (ITO) nanostructures were successfully deposited on glass substrate by pulsed laser ablation in argon gas at 250 deg. C. Microstructural changes were observed in the argon gas pressure between 30 to 50 mTorr. The as-grown, nanostructured ITO exhibit In{sub 2}O{sub 3} bixbyite structure orientated at <111> direction. At the initial stage of growth, there was a large number of nucleation sites detected which eventually evolved into needle-like branches. The presence of spheres at the tip of these branches indicates that these nanostructured ITO were likely governed by vapor-liquid-solid (VLS) growth mechanism.

  19. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    SciTech Connect (OSTI)

    Qian, J. C.; Jha, S. K. E-mail: apwjzh@cityu.edu.hk; Wang, B. Q.; Jelenkovi?, E. V.; Bello, I.; Klemberg-Sapieha, J. E.; Martinu, L.; Zhang, W. J. E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ?1.0?eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of 5?V.

  20. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for silicon (10 x faster) - Gallium Nitride for power electronics in electric and hybrid cars; improved efficiency and lower "use" stage energy - Graphene nanoribbons transistors ...

  1. Main Title 32pt

    Energy Savers [EERE]

    Electroactive Ionic Liquids: A New Approach to Flow Batteries 2. Gallium Nitride ... A New Approach To Flow Batteries Date Travis Anderson David Ingersoll Chad Staiger Karen ...

  2. Intrinsic Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    Intrinsic Semiconductor is a privately held emerging growth company focusing on materials and device technologies based on silicon carbide (SiC) and gallium nitride (GaN)...

  3. Cree Inc | Open Energy Information

    Open Energy Info (EERE)

    North Carolina Zip: 27703 Product: Cree develops and manufactures semiconductor materials and devices based on silicon carbide (SiC), gallium nitride (GaN), silicon (Si) and...

  4. Influence of granule character and compaction on the mechanical properties of sintered silicon nitride

    SciTech Connect (OSTI)

    Takahashi, Hideo; Shinohara, Nobuhiro; Uematsu, Keizo; JunIchiro, Tsubaki

    1996-04-01

    The influence of granule character and compaction on the mechanical properties of sintered silicon nitride was studied as a function of the pH of the spray-dry slurry. The character and the compaction behavior of the spray-dried silicon nitride granules considerably affect the mechanical properties of the sintered body. Dense and hard granules resulting from a well-dispersed slurry retained their shape in green compacts and caused numerous pore defects in sintered body. Decreasing the slurry pH to a certain value (e.g., 7.9) caused slurry flocculation and reduced the granule density as well as the diametral compression strength of the granules. Sintered bodies fabricated with these weak granules contained fewer defects and showed remarkable strength increase.

  5. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOE Patents [OSTI]

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  6. Slip casting and green body evaluation of 6% yttria, 2% alumina silicon nitride. Final report

    SciTech Connect (OSTI)

    Quinn, J.

    1991-12-01

    The superior high temperature properties of silicon nitride are well known. It has good strength, excellent high temperature strength, oxidation resistance, and is resistant to thermal shock. These properties make silicon nitride a good choice for many structural ceramics. Additionally, its high thermal conductivity and low dielectric constant make it a possible candidate for electronic substrates. Knowledge in the areas of characterization, machining, and proper firing parameters is growing and crucial to the production of modern ceramics. Such knowledge also makes it increasingly evident that a poor initial green body cannot result in a good final product. Many fabrication problems can be traced back to the processes such as casting and green body preparation and attention is being concentrated in these areas.

  7. Phase transformations of nano-sized cubic boron nitride to white graphene and white graphite

    SciTech Connect (OSTI)

    Dang, Hongli; Liu, Yingdi; Xue, Wenhua; Anderson, Ryan S.; Sewell, Cody R.; Xue, Sha; Crunkleton, Daniel W.; Shen, Yaogen; Wang, Sanwu

    2014-03-03

    We report quantum-mechanical investigations that predict the formation of white graphene and nano-sized white graphite from the first-order phase transformations of nano-sized boron nitride thin-films. The phase transformations from the nano-sized diamond-like structure, when the thickness d > 1.4 nm, to the energetically more stable nano-sized white graphite involve low activation energies of less than 1.0 eV. On the other hand, the diamond-like structure transforms spontaneously to white graphite when d ≤ 1.4 nm. In particular, the two-dimensional structure with single-layer boron nitride, the so-called white graphene, could be formed as a result of such transformation.

  8. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride

    SciTech Connect (OSTI)

    Dauber, Jan; Stampfer, Christoph; Sagade, Abhay A.; Neumaier, Daniel; Oellers, Martin; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-11

    The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700?V/AT and 3?V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50 nT/?(Hz) making our graphene sensors highly interesting for industrial applications.

  9. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, R.; Baik, S.

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  10. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOE Patents [OSTI]

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  11. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, Rishi; Baik, Sunggi

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  12. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    SciTech Connect (OSTI)

    Wolf, Omri E-mail: ibrener@sandia.gov; Ma, Xuedan; Brener, Igal E-mail: ibrener@sandia.gov; Allerman, Andrew A.; Wendt, Joel R.; Shaner, Eric A.; Song, Alex Y.

    2015-10-12

    We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

  13. Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF| U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington,

  14. Electronic structure and magnetic properties of RuFe{sub 3}N nitride

    SciTech Connect (OSTI)

    Santos, A.V. dos; Kuhnen, C.A.

    2009-11-15

    Self-consistent band structure calculations were performed on nitride RuFe{sub 3}N in order to investigate its magnetic and ground state properties. The Linear Muffin-Tin Orbital (LMTO) method was employed and calculations were performed at several lattice parameters so as to obtain the RuFe{sub 3}N equilibrium volume. Nonmagnetic and ferromagnetic LMTO calculations have shown that the RuFe{sub 3}N stable stage is ferromagnetic with constant lattice equilibrium of 7.2502 atomic units (a.u.). At equilibrium volume the LMTO calculations have given magnetic moments of 1.25 and 1.63 mu{sub B} at Ru and Fe sites, respectively, and no magnetic moment at N sites. The analysis of states density at equilibrium volume as well as the results for charge transfer illustrates why this ruthenium nitride is ferromagnetic. The LMTO calculations anticipate that the magnetic moment, the hyperfine field (the Fermi contact) and the isomer shift show a strong dependence on the lattice spacing. - Graphical Abstract: Total energy curves, versus lattice spacing for the RuFe{sub 3}N nitride. It is observed an energy difference between ferromagnetic and paramagnetic states, which provides high critic pressure.

  15. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  16. Power mixture and green body for producing silicon nitride base articles of high fracture toughness and strength

    DOE Patents [OSTI]

    Huckabee, M.L.; Buljan, S.T.; Neil, J.T.

    1991-09-17

    A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength are disclosed. The powder mixture includes (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12m[sup 2]g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder. No Drawings

  17. Process for the production of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a metal boride, nitride, carbide and/or silicide catalyst

    SciTech Connect (OSTI)

    McGuiggan, M.F.; Kuch, P.L.

    1984-05-08

    Hydrogen and carbonyl sulfide are produced by a process comprising contacting gaseous hydrogen sulfide with gaseous carbon monoxide in the presence of a metal boride, carbide, nitride and/or silicide catalyst, such as titanium carbide, vanadium boride, manganese nitride or molybdenum silicide.

  18. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  19. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?

  20. Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Geyer, Ulf; Hauss, Julian; Riedel, Boris; Gleiss, Sebastian; Lemmer, Uli; Gerken, Martina

    2008-11-01

    We describe a cost-efficient and large area scalable production process of organic light-emitting diodes (OLEDs) with photonic crystals (PCs) as extraction elements for guided modes. Using laser interference lithography and physical plasma etching, we texture the indium tin oxide (ITO) electrode layer of an OLED with one- and two-dimensional PC gratings. By optical transmission measurements, the resonant mode of the grating is shown to have a drift of only 0.4% over the 5 mm length of the ITO grating. By changing the lattice constant between 300 and 600 nm, the OLED emission angle of enhanced light outcoupling is tailored from -24.25 deg. to 37 deg. At these angles, the TE emission is enhanced up to a factor of 2.14.

  1. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  2. The development of a porous silicon nitride crossflow filter; Final report, September 1988--September 1992

    SciTech Connect (OSTI)

    1992-09-01

    This report summarizes the work performed in developing a permeable form of silicon nitride for application to ceramic crossflow filters for use in advanced coal-fired electric power plants. The program was sponsored by the Department of Energy Morgantown Energy Technology Center and consisted of a design analysis and material development phase and a filter manufacture and demonstration phase. The crossflow filter design and operating requirements were defined. A filter design meeting the requirements was developed and thermal and stress analyses were performed. Material development efforts focused initially on reaction-bonded silicon nitride material. This approach was not successful, and the materials effort was refocused on the development of a permeable form of sintered silicon nitride (SSN). This effort was successful. The SSN material was used for the second phase of the program, filter manufacture and evaluation. Four half-scale SAN filter modules were fabricated. Three of the modules were qualified for filter performance tests. Tests were performed on two of the three qualified modules in the High-Temperature, High-Pressure facility at the Westinghouse Science and Technology Center. The first module failed on test when it expanded into the clamping device, causing dust leakage through the filter. The second module performed well for a cumulative 150-hr test. It displayed excellent filtration capability during the test. The blowback pulse cleaning was highly effective, and the module apparently withstood the stresses induced by the periodic pulse cleaning. Testing of the module resumed, and when the flow of combustion gas through the filter was doubled, cracks developed and the test was concluded.

  3. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride – Technology and piezoelectric properties

    SciTech Connect (OSTI)

    Stoeckel, C. Kaufmann, C.; Hahn, R.; Schulze, R.; Billep, D.; Gessner, T.

    2014-07-21

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d{sub 31} is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d{sub 33}.

  4. Auger analysis of scandium, Sc-Oxide, Sc-Deuteride and Sc-Nitride

    SciTech Connect (OSTI)

    Moore, G.; Nelson, G.C.; Madden, H.H.

    1996-09-01

    Elemental scandium, Sc-oxide, Sc-hydride and Sc-nitride films were investigated using Auger electron spectroscopy in a study of the interaction of scandium with hydrogen and atmospheric gases. A catalog of Sc Auger spectra representative of Sc-metal, Sc-0, Sc-H and Sc-N bonding is presented. Changes in spectral features unique to the changes in scandium matrix are identified. Comparisons with theoretical calculations, along with variation in the experimental conditions for recording the Auger data, enabled the Sc spectra found in separate low and high energy regions to be identified with M-shell and L-shell core excitations, respectively.

  5. Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

    SciTech Connect (OSTI)

    Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.; Breder, K.

    2000-02-01

    The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... doped materials (1) energy levels (1) homeostasis (1) indium nitrides (1) ligases (1) ... and degradation of TRF1 in telomere homeostasis control. less September 2010 Prev ...

  7. Growth and magnetic property of antiperovskite manganese nitride films doped with Cu by molecular beam epitaxy

    SciTech Connect (OSTI)

    Yu, Fengmei; Ren, Lizhu; Meng, Meng; Wang, Yunjia; Yang, Mei; Wu, Shuxiang; Li, Shuwei

    2014-04-07

    Manganese nitrides thin films on MgO (100) substrates with and without Cu-doping have been fabricated by plasma assisted molecular beam epitaxy. Antiperovskite compounds Mn{sub 3.6}Cu{sub 0.4}N have been grown in the case of Cu-doping, and the pure Mn{sub 3}N{sub 2} single crystal has been obtained without Cu-doping. The Mn{sub 3.6}Cu{sub 0.4}N exhibits ferrimagnetism, and the magnetization of Mn{sub 3.6}Cu{sub 0.4}N increases upon the temperature decreasing from 300 K to 5 K, similar to Mn{sub 4}N. The exchange bias (EB) effects emerge in the Mn{sub 3.6}Cu{sub 0.4}N films. The EB behavior is originated from the interfaces between ferrimagnetic Mn{sub 3.6}Cu{sub 0.4}N and antiferromagnetic metal Mn, which is verified to be formed by the data of x-ray photoelectron spectroscopy. The present results not only provide a strategy for producing functional antiperovskite manganese nitrides, but also shed promising light on fabricating the exchange bias part of spintronic devices.

  8. Electron trap level of hydrogen incorporated nitrogen vacancies in silicon nitride

    SciTech Connect (OSTI)

    Sonoda, Ken'ichiro Tsukuda, Eiji; Tanizawa, Motoaki; Yamaguchi, Yasuo

    2015-03-14

    Hydrogen incorporation into nitrogen vacancies in silicon nitride and its effects on electron trap level are analyzed using simulation based on density functional theory with temperature- and pressure-dependent hydrogen chemical potential. If the silicon dangling bonds around a nitrogen vacancy are well separated each other, hydrogen incorporation is energetically stable up to 900?C, which is in agreement with the experimentally observed desorption temperature. On the other hand, if the dangling bonds strongly interact, the incorporation is energetically unfavorable even at room temperature because of steric hindrance. An electron trap level caused by a nitrogen vacancy becomes shallow by the hydrogen incorporation. An electron is trapped in a deep level created by a silicon dangling bond before hydrogen incorporation, whereas it is trapped in a shallow level created by an anti-bonding state of a silicon-silicon bond after hydrogen incorporation. The simulation results qualitatively explain the experiment, in which reduced hydrogen content in silicon nitride shows superior charge retention characteristics.

  9. Self-annihilation of inversion domains by high energy defects in III-Nitrides

    SciTech Connect (OSTI)

    Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.

    2014-04-07

    Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ?1??m thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup }) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.

  10. Power mixture and green body for producing silicon nitride base & articles of high fracture toughness and strength

    DOE Patents [OSTI]

    Huckabee, Marvin L.; Buljan, Sergej-Tomislav; Neil, Jeffrey T.

    1991-01-01

    A powder mixture and a green body for producing a silicon nitride-based article of improved fracture toughness and strength. The powder mixture includes 9a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon mitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12m.sup.2 g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified articel an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. The green body is formed from the powder mixture, an effective amount of a suitable oxide densification aid, and an effective amount of a suitable organic binder.

  11. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    SciTech Connect (OSTI)

    Kumar, Arun; Bahadur, Amar; Mishra, Madhukar; Vasudeva, Neena

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  12. Hydrogen Sensor Based on Yttria-Stabilized Zirconia Electrolyte and Tin-Doped Indium Oxide Sensing Electrode

    SciTech Connect (OSTI)

    Martin, L P; Glass, R S

    2004-03-26

    A solid state electrochemical sensor has been developed for hydrogen leak detection in ambient air. The sensor uses an yttria-stabilized electrolyte with a tin-doped indium oxide sensing electrode and a Pt reference electrode. Excellent sensitivity, and response time of one second or less, are reported for hydrogen gas over the concentration range of 0.03 to 5.5% in air. Cross-sensitivity to relative humidity and to CO{sub 2} are shown to be low. The response to methane, a potentially significant source of interference for such a sensor, is significantly less than that for hydrogen. The sensor shows good reproducibility and was unaffected by thermal cycling over the course of this investigation. The effects of sensing electrode thickness and thermal aging are also reported, and the sensing mechanism is discussed. The sensor is intended for use in vehicles powered by hydrogen fuel cells and hydrogen internal combustion engines. Those vehicles will use and/or store significant quantities of hydrogen, and will require safety sensor for monitoring potential hydrogen leakage in order to ensure passenger safety.

  13. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; Keiffer, Patrick; Sears, Jasmine; Khitrova, Galina

    2016-02-01

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  14. FY07 LDRD Final Report Synthesis under High Pressure and Temperature of New Metal Nitrides

    SciTech Connect (OSTI)

    Crowhurst, J C; Sadigh, B; Aberg, D; Zaug, J M; Goncharov, A F

    2008-09-23

    The original aim of this LDRD was to determine with unprecedented precision the melting curve of iron to geophysically relevant pressures. In the course of developing much of the technology and techniques required to obtain this information we have encountered and studied novel chemical reactions some of whose products are stable or metastable under ambient conditions. Specifically we have synthesized nitrides of the platinum group metals including platinum, iridium, and palladium. We have also carried out in depth first principles theoretical investigations into the nature of these materials. We believed that the scientific impact of continuing this work would be greater than that of the original goals of this project. Indeed the work has led to a number of high profile publications with additional publications in preparation. While nitrides of the transition metals are generally of tremendous technological importance, those of the noble metals in particular have enjoyed much experimental and theoretical attention in the very short time since they were first synthesized. The field was and clearly remains open for further study. While the scientific motivation for this research is different from that originally proposed, many of the associated methods in which we have now gained experience are similar or identical. These include use of the diamond anvil cell combined with technologies to generate high temperatures, the in-situ technique of Raman scattering using our purpose-built, state-of-the-art system, analytical techniques for determining the composition of recovered samples such as x-ray photoelectron spectroscopy, and finally synchrotron-based techniques such as x-ray diffraction for structural and equation of state determinations. Close interactions between theorists and experimentalists has and will continue to allow our group to rapidly and reliably interpret complicated results on the structure and dynamics of these compounds and also additional novel materials. Although the purely scientific dividends of this project have been substantial, there remains the possibility of a technological application--now that nitrides with likely desirable properties have been shown to exist, large-scale synthesis techniques can be considered.

  15. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  16. Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Yang, Tae -Hyun; Park, Gu -Gon; Zhang, Chengxu; Chen, Guangyu; Adzic, Radoslav R.

    2015-07-22

    The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of themore » PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.« less

  17. Contact-induced spin polarization of monolayer hexagonal boron nitride on Ni(111)

    SciTech Connect (OSTI)

    Ohtomo, Manabu; Entani, Shiro; Matsumoto, Yoshihiro; Naramoto, Hiroshi; Sakai, Seiji; Yamauchi, Yasushi; Kuzubov, Alex A.; Eliseeva, Natalya S.; Avramov, Pavel V.

    2014-02-03

    Hexagonal boron nitride (h-BN) is a promising barrier material for graphene spintronics. In this Letter, spin-polarized metastable de-excitation spectroscopy (SPMDS) is employed to study the spin-dependent electronic structure of monolayer h-BN/Ni(111). The extreme surface sensitivity of SPMDS enables us to elucidate a partial filling of the in-gap states of h-BN without any superposition of Ni 3d signals. The in-gap states are shown to have a considerable spin polarization parallel to the majority spin of Ni. The positive spin polarization is attributed to the π-d hybridization and the effective spin transfer to the nitrogen atoms at the h-BN/Ni(111) interface.

  18. Vacancies in fully hydrogenated boron nitride layer: implications for functional nanodevices

    SciTech Connect (OSTI)

    Zhou, Yungang; Wang, Zhiguo; Nie, JL; Yang, Ping; Sun, Xin; Khaleel, Mohammad A.; Zu, Xiaotao; Gao, Fei

    2012-03-01

    Using density functional theory, a series of calculations of structural and electronic properties of hydrogen vacancies in a fully hydrogenated boron nitride (fH-BN) layer were conducted. By dehydrogenating the fH-BN structure, B-terminated vacancies can be created which induce complete spin polarization around the Fermi level, irrespective of the vacancy size. On the contrary, the fH-BN structure with N-terminated vacancies can be a small-gap semiconductor, a typical spin gapless semiconductor, or a metal depending on the vacancy size. Utilizing such vacancy-induced band gap and magnetism changes, possible applications in spintronics are proposed, and a special fH-BN based quantum dot device is designed.

  19. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    SciTech Connect (OSTI)

    Kamalakar, M. Venkata Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-11-24

    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies.

  20. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOE Patents [OSTI]

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  1. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less

  2. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOE Patents [OSTI]

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  3. Porous Vycor membranes modified by chemical vapor deposition of boron nitride for gas separation

    SciTech Connect (OSTI)

    Levy, R.A.; Ravindranath, C.; Krasnoperov, L.N.; Opyrchal, J.; Ramos, E.S.

    1997-01-01

    This study focuses on the characterization of porous Vycor membranes modified by chemical vapor deposition of boron nitride (B-N-C-H) for gas separation. The B-N-C-H films were deposited on mesoporous Vycor tubes using triethylamine borane complex and ammonia as precursors. The effects of deposition temperature and reactant flow geometry on permselectivity of membranes with respect to various permeant gases were investigated. High selectivities (up to 50,000) were achieved between small molecules (He, H{sub 2}) and large molecules (N{sub 2}, Ar, C{sub 6}H{sub 5}CH{sub 3}). The measured activation energies for the He and H{sub 2} permeability are 9.5 kcal/mol and 12 kcal/mol, respectively. The membranes synthesized at lower temperatures and lower ammonia flow rates showed good mechanical and chemical stability.

  4. Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction

    SciTech Connect (OSTI)

    Chen, Chun-Chung; Li, Zhen; Cronin, Stephen B. [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Shi, Li [Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-02-24

    We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60?K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4??10{sup 6}?Wm{sup ?2}K{sup ?1}, which is below the 10{sup 7}10{sup 8}?Wm{sup ?2}K{sup ?1} values previously reported for graphene/SiO{sub 2} interface.

  5. Graphene on boron-nitride: Moir pattern in the van der Waals energy

    SciTech Connect (OSTI)

    Neek-Amal, M. [Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, Shahid Rajaee University, Lavizan, Tehran 16788 (Iran, Islamic Republic of); Peeters, F. M. [Department of Physics, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2014-01-27

    The spatial dependence of the van der Waals (vdW) energy between graphene and hexagonal boron-nitride (h-BN) is investigated using atomistic simulations. The van der Waals energy between graphene and h-BN shows a hexagonal superlattice structure identical to the observed Moir pattern in the local density of states, which depends on the lattice mismatch and misorientation angle between graphene and h-BN. Our results provide atomistic features of the weak van der Waals interaction between graphene and BN which are in agreement with experiment and provide an analytical expression for the size of the spatial variation of the weak van der Waals interaction. We also found that the A-B-lattice symmetry of graphene is broken along the armchair direction.

  6. Functionalization of cubic boron nitride films with rhodamine B and their fluorescent properties

    SciTech Connect (OSTI)

    Liu, W. M.; Zhang, H. Y.; Wang, P. F.; Ye, Q.; Yang, Y.; He, B.; Bello, I.; Lee, S. T.; Zhang, W. J.

    2011-08-08

    Fluorophore-functionalized cubic boron nitride (cBN) films grown by chemical vapor deposition were achieved by immobilizing rhodamine B isothiocyanate onto their surfaces. To perform the immobilization, the cBN substrates were modified with amino groups by photochemical reaction between hydrogen-terminated cBN surfaces and allylamine. The surface analysis of hydrogen-terminated cBN films surfaces and after functionalization with x-ray photoelectron spectroscopy verified that rhodamine B was indeed attached to the cBN surfaces with covalent bonding. The rhodamine B-functionalized cBN surfaces showed significant variation in fluorescent spectra and confocal imaging upon the treatment in acidic or basic solutions.

  7. The synthesis and structure of new transition metal lithium calcium nitride compounds

    SciTech Connect (OSTI)

    Hunting, Janet L.; Szymanski, Marta M.; Kowalsick, Amanda L.; Downie, Craig M.; DiSalvo, Francis J.

    2013-01-15

    Three new nitrides, Li{sub 3}Ca{sub 2}V{sub 0.79}Nb{sub 0.21}N{sub 4}, Li{sub 2}Ca{sub 2.67}Nb{sub 0.33}N{sub 3} and Li{sub 12}Ca{sub 9}W{sub 5}N{sub 20}, were synthesized in sealed niobium tubes using lithium nitride as a flux at temperatures ranging from 800 Degree-Sign C to 1050 Degree-Sign C. In all of these compounds, the transition metals are coordinated tetrahedrally by nitrogen; these tetrahedra are isolated from each other. Bullet Li{sub 3}Ca{sub 2}V{sub 0.79}Nb{sub 0.21}N{sub 4}, space group P2{sub 1}/m (no. 11), cell parameters a=5.7669(8) A, b=6.9123(9) A, c=6.0116(12) A, {beta}=90.727(9) Degree-Sign , Z=2, has a shared vanadium/niobium tetrahedral position which shares vertices with the tetrahedrally-coordinated lithium position. Bullet Li{sub 2}Ca{sub 2.67}Nb{sub 0.33}N{sub 3}, space group Req /o(3, Macron )m (no. 166), cell parameters a=3.6311(2) A, c=29.459(3) A, Z=3, contains a disordered tetrahedral calcium/niobium position, an octahedral calcium position and a triangularly coordinated lithium position. Bullet Li{sub 12}Ca{sub 9}W{sub 5}N{sub 20}, space group C2/c (no. 15), cell parameters a=27.7347(19) A, b=8.6652(6) A, c=10.7685(7) A, {beta}=110.314(2) Degree-Sign , Z=4, contains three crystallographically different tungsten positions as well as one disordered lithium position. - Graphical abstract: Crystal structure of Li{sub 3}Ca{sub 2}V{sub 0.79}Nb{sub 0.21}N{sub 4} depicting the chains of edge-sharing LiN{sub 4} (light hatching) and (V/Nb)N{sub 4} (dark hatching) tetrahedra viewed approximately along the [100] direction. Calcium atoms are shown as open circles and nitrogen atoms are colored black. Highlights: Black-Right-Pointing-Pointer Three new lithium calcium nitrides are synthesized. Black-Right-Pointing-Pointer Lithium nitride flux used in synthesis. Black-Right-Pointing-Pointer Structures contain isolated tetrahedrally coordinated transition metals. Black-Right-Pointing-Pointer Li{sub 12}Ca{sub 9}W{sub 5}N{sub 20} contains three crystallographically different W positions.

  8. A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure

    SciTech Connect (OSTI)

    Zhang, Chenxi; Lou, Jun; Song, Jizhou

    2014-04-14

    Graphene/hexagonal boron nitride (h-BN) heterostructure has showed great potential to improve the performance of graphene device. We have established the cohesive law for interfaces between graphene and monolayer or multi-layer h-BN based on the van der Waals force. The cohesive energy and cohesive strength are given in terms of area density of atoms on corresponding layers, number of layers, and parameters in the van der Waals force. It is found that the cohesive law in the graphene/multi-layer h-BN is dominated by the three h-BN layers which are closest to the graphene. The approximate solution is also obtained to simplify the expression of cohesive law. These results are very useful to study the deformation of graphene/h-BN heterostructure, which may have significant impacts on the performance and reliability of the graphene devices especially in the areas of emerging applications such as stretchable electronics.

  9. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  10. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  11. Polarization doping and the efficiency of III-nitride optoelectronic devices

    SciTech Connect (OSTI)

    Kivisaari, Pyry; Oksanen, Jani; Tulkki, Jukka

    2013-11-18

    The intrinsic polarization is generally considered a nuisance in III-nitride devices, but recent studies have shown that it can be used to enhance p- and n-type conductivity and even to replace impurity doping. We show by numerical simulations that polarization-doped light-emitting diode (LED) structures have a significant performance advantage over conventional impurity-doped LED structures. Our results indicate that polarization doping decreases electric fields inside the active region and potential barriers in the depletion region, as well as the magnitude of the quantum-confined Stark effect. The simulations also predict at least an order of magnitude increase in the current density corresponding to the maximum efficiency (i.e., smaller droop) as compared to impurity-doped structures. The obtained high doping concentrations could also enable, e.g., fabrication of III-N resonant tunneling diodes and improved ohmic contacts.

  12. Transient fission-gas behavior in uranium nitride fuel under proposed space applications. Doctoral thesis

    SciTech Connect (OSTI)

    Deforest, D.L.

    1991-12-01

    In order to investigate whether fission gas swelling and release would be significant factors in a space based nuclear reactor operating under the Strategic Defense Initiative (SDI) program, the finite element program REDSTONE (Routine For Evaluating Dynamic Swelling in Transient Operational Nuclear Environments) was developed to model the 1-D, spherical geometry diffusion equations describing transient fission gas behavior in a single uranium nitride fuel grain. The equations characterized individual bubbles, rather than bubble groupings. This limits calculations to those scenarios where low temperatures, low burnups, or both were present. Instabilities in the bubble radii calculations forced the implementation of additional constraints limiting the bubble sizes to minimum and maximum (equilibrium) radii. The validity of REDSTONE calculations were checked against analytical solutions for internal consistency and against experimental studies for agreement with swelling and release results.

  13. The interaction between hexagonal boron nitride and water from first principles

    SciTech Connect (OSTI)

    Wu, Yanbin; Aluru, Narayana R.; Wagner, Lucas K.

    2015-06-21

    The use of hexagonal boron nitride (h-BN) in microfluidic and nanofluidic applications requires a fundamental understanding of the interaction between water and the h-BN surface. A crucial component of the interaction is the binding energy, which is sensitive to the treatment of electron correlation. In this work, we use state of the art quantum Monte Carlo and quantum chemistry techniques to compute the binding energy. Compared to high-level many-body theory, we found that the second-order Mller-Plesset perturbation theory captures the interaction accurately and can thus be used to develop force field parameters between h-BN and water for use in atomic scale simulations. On the contrary, density functional theory with standard dispersion corrections tends to overestimate the binding energy by approximately 75%.

  14. Novel Electronic and Magnetic Properties of Graphene Nanoflakes in a Boron Nitride Layer

    SciTech Connect (OSTI)

    Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Gao, Fei

    2012-04-05

    Novel electronic and magnetic properties of various-sized graphene nanoflakes (GNFs) embedded in a boron nitride (BN) layer are studied using ab initio methods. The feasibility of synthesizing hybrid GNF-BN structure, a desirable quantum dot structure, is explored. In this structure, photoexcited electrons and holes occupy the same spatial region - the GNF region - which offers an effective way to generate a GNF-based light-emitting device and adjust its emitted optical properties by controlling the size and array of GNF in the BN layer. Based on the important magnetism properties of embedded GNF, we propose a specific configuration to obtain a large spin. Together with the high stability of spin alignment, the proposed configuration can be exploited for spintronic devices.

  15. Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst

    SciTech Connect (OSTI)

    Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Su, Dong; Yang, Tae -Hyun; Park, Gu -Gon; Zhang, Chengxu; Chen, Guangyu; Adzic, Radoslav R.

    2015-07-22

    The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  16. Silicon nitride swirl lower-chamber for high power turbocharged diesel engines

    SciTech Connect (OSTI)

    Kamiya, S.; Murachi, M.; Kawamoto, H.; Kato, S.; Kawakami, S.; Suzuki, Y.

    1985-01-01

    This paper describes application of sintered silicon nitride to the swirl lower-chamber in order to improve performance of turbocharged diesel engines. Various stress analyses by finite element method and stress measurements have been applied to determine the design specifications for the component, which compromise brittleness of ceramic materials. Material development was conducted to evaluate strength, fracture toughness, and thermal properties for the sintered bodies. Ceramic injection molding has been employed to fabricate components with large quantities. In the present work. Quality assurance for the components can be made by reliability evaluation methods as well as non-destructive and stress loading inspections. It is found that the engine performance with ceramic component has been increased in the power out put of 9ps as compared to that of conventional engines.

  17. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, Sukwon; Griffin, Benjamin A.

    2016-01-06

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less

  18. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    SciTech Connect (OSTI)

    Gillinger, M.; Schneider, M.; Bittner, A.; Schmid, U.; Nicolay, P.

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 h in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.

  19. The cost of silicon nitride powder: What must it be to compete?

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.

    1992-02-01

    The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

  20. The cost of silicon nitride powder: What must it be to compete

    SciTech Connect (OSTI)

    Das, S.; Curlee, T.R.

    1992-02-01

    The ability of advanced ceramic components to compete with similar metallic parts will depend in part on current and future efforts to reduce the cost of ceramic parts. This paper examines the potential reductions in part cost that could result from the development of less expensive advanced ceramic powders. The analysis focuses specifically on two silicon nitride engine components -- roller followers and turbocharger rotors. The results of the process-cost models developed for this work suggest that reductions in the cost of advanced silicon nitride powder from its current level of about $20 per pound to about $5 per pound will not in itself be sufficient to lower the cost of ceramic parts below the current cost of similar metallic components. This work also examines if combinations of lower-cost powders and further improvements in other key technical parameters to which costs are most sensitive could push the cost of ceramics below the cost of metallics. Although these sensitivity analyses are reflective of technical improvements that are very optimistic, the resulting part costs are estimated to remain higher than similar metallic parts. Our findings call into question the widely-held notion that the cost of ceramic components must not exceed the cost of similar metallic parts if ceramics are to be competitive. Economic viability will ultimately be decided not on the basis of which part is less costly, but on an assessment of the marginal costs and benefits provided by ceramics and metallics. This analysis does not consider the benefits side of the equation. Our findings on the cost side of the equation suggest that the competitiveness of advanced ceramics will ultimately be decided by our ability to evaluate and communicate the higher benefits that advanced ceramic parts may offer.

  1. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 1 Corrosion, Interfacial Contact Resistance, and Surface Structure

    SciTech Connect (OSTI)

    Brady, Michael P; Wang, Heli; Turner, John; Meyer III, Harry M; More, Karren Leslie; Tortorelli, Peter F; McCarthy, Brian D

    2010-01-01

    Thermal (gas) nitridation of stainless steels can yield low interfacial contact resistance (ICR), electrically-conductive and corrosion-resistant nitride containing surfaces (Cr2N, CrN, TiN, V2N, VN, etc) of interest for fuel cells, batteries, and sensors. This paper presents the results of scale up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. A major emphasis was placed on selection of alloy foil composition and nitidation conditions potentially capable of meeting the stringent cost goals for automotive PEMFC applications. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. Promising behavior was observed under simulated aggressive anode- and cathode- side bipolar plate conditions for both materials. Variation in ICR values were observed for treated 2205 foil, with lower (better) values generally observed for the treated Fe-20Cr-4V. This behavior was linked to the nature of the pre-oxidized and nitrided surface structure, which contained through surface layer thickness V-nitride particles in the case of Fe-20Cr-4V but near continuous chromia in the case of 2205 stainless steel. The implications of these findings for stamped bipolar plate foils are discussed.

  2. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    SciTech Connect (OSTI)

    Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

    2014-03-15

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

  3. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    SciTech Connect (OSTI)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  4. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Jäger, Timo Romanyuk, Yaroslav E.; Nishiwaki, Shiro; Bissig, Benjamin; Pianezzi, Fabian; Fuchs, Peter; Gretener, Christina; Tiwari, Ayodhya N.; Döbeli, Max

    2015-05-28

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se{sub 2} (CIGS) solar cells. Hydrogen doping of In{sub 2}O{sub 3} thin films is achieved by injection of H{sub 2}O water vapor or H{sub 2} gas during the sputter process. As-deposited amorphous In{sub 2}O{sub 3}:H films exhibit a high electron mobility of ∼50 cm{sup 2}/Vs at room temperature. A bulk hydrogen concentration of ∼4 at. % was measured for both optimized H{sub 2}O and H{sub 2}-processed films, although the H{sub 2}O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (V{sub OC}) of ∼20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H{sub 2}O case or slightly decrease for H{sub 2}. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H{sub 2}O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

  5. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    SciTech Connect (OSTI)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  6. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect (OSTI)

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana; Li Luhua; Chen Ying; Cowie, Bruce C. C.

    2013-05-15

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  7. Preparation and properties of antiperovskite-type nitrides: InNNi{sub 3} and InNCo{sub 3}

    SciTech Connect (OSTI)

    Cao, W.H.; He, B.; Liao, C.Z.; Yang, L.H.; Zeng, L.M.; Dong, C.

    2009-12-15

    Two antiperovskite-type ternary nitrides of InNM{sub 3} (M=Ni, Co) have been synthesized from In{sub 2}O{sub 3} and Ni or Co powders under NH{sub 3} atmosphere at 600 deg. C. InNCo{sub 3} is a new ternary nitride whereas InNNi{sub 3} was previously reported as InN{sub 0.5}Ni{sub 3} with different nitrogen content. The lattice parameters refined by Rietveld method are 3.8445(1) A for InNNi{sub 3} and 3.8541(7) A for InNCo{sub 3}, respectively. Both nitrides show metallic behaviors and below 70 K the T{sup 2} temperature dependence of resistivity was observed indicative of a Fermi liquid behavior. The temperature dependence of the field-cooling (FC) and zero-field-cooling (ZFC) magnetization and time decay of thermoremanent magnetization indicate the spin-glass-like behavior in InNM{sub 3} (M=Ni, Co). The freezing temperatures for this behavior, T{sub f}, are about 300 K for InNNi{sub 3} and 10 K for InNCo{sub 3}, respectively. - Graphical abstract: Two ternary nitrides InNM{sub 3} (M=Ni, Co) were synthesized by solid-gas reactions of metal powders with NH{sub 3}. Both InNNi{sub 3} and InNCo{sub 3} adopt the antiperovskite crystal structure, and measurements of magnetization indicate that they have spin-glass-like properties.

  8. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOE Patents [OSTI]

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-01-01

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.

  9. Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

    SciTech Connect (OSTI)

    Russell D. Dupuis

    2004-09-30

    We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the first year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The first year activities were focused on the installation, set-up, and use of advanced equipment for the metalorganic chemical vapor deposition growth of III-nitride films and the characterization of these materials (Task 1) and the design, fabrication, testing of nitride LEDs (Task 4). As a progress highlight, we obtained improved quality of {approx} 2 {micro}m-thick GaN layers (as measured by the full width at half maximum of the asymmetric (102) X-ray diffraction peak of less than 350 arc-s) and higher p-GaN:Mg doping level (free hole carrier higher than 1E18 cm{sup -3}). Also in this year, we have developed the growth of InGaN/GaN active layers for long-wavelength green light emitting diodes, specifically, for emission at {lambda} {approx} 540nm. The effect of the Column III precursor (for Ga) and the post-growth thermal annealing effect were also studied. Our LED device fabrication process was developed and initially optimized, especially for low-resistance ohmic contacts for p-GaN:Mg layers, and blue-green light emitting diode structures were processed and characterized.

  10. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOE Patents [OSTI]

    Pugar, E.A.; Morgan, P.E.D.

    1987-09-15

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics

  11. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOE Patents [OSTI]

    Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  12. Exploration of LOCOS-type isolation limit using SUPERSILO isolation by rapid thermal nitridation of silicon

    SciTech Connect (OSTI)

    Deleonibus, S.; Martin, F.; Pontcharra, J. du Port de; Tedesco, S. . Dept. de Microelectronique)

    1993-10-01

    The limits for overcoming shrinking localized oxidation of silicon type isolation in the subhalfmicron design rules area are considered: geometric limitations and field implant defect generation are investigated. A super sealed interface local oxidation (SUPERSILO) field isolation process using rapid thermal nitridation of silicon is characterized in terms of morphology, defect density, and electrical performance, With this isolation an encroachment lower than 100 nm is obtained in a large field area of 400 nm finished field oxide. Field oxide thinning and corner encroachment are minimized compared to other conventional isolations and make this process and better candidate for scaling down to 0.7 [mu]m active area pitch design rules. The compatibility with low gate oxide defect density for a thickness as low as 7 nm is demonstrated. Several boron p[sup +] field channel stop implant processes are investigated by characterizing three different scenarios: implanting before field oxidation (classical), through field oxide after the oxidation mask removal (field-retro), and through the poly gate material (poly-retro). In order to avoid defect generation, the retrograde scenarios will be the solution in the future. The poly-retro scenario is the one that reduces boron segregation by a factor of about 10 with respect to the classical scenario and allows high performance without affecting the sustaining voltage. The use of a 0[degree] tilt boron implant at 350 keV through the field oxide and poly gate material stack is shown to be practicable and reproducible.

  13. Silicon surface and bulk defect passivation by low temperature PECVD oxides and nitrides

    SciTech Connect (OSTI)

    Chen, Z.; Rohatgi, A.; Ruby, D.

    1995-01-01

    The effectiveness of PECVD passivation of surface and bulk defects in Si, as well as phosphorous diffused emitters, Is investigated and quantified. Significant hydrogen incorporation coupled with high positive charge density in the PECVD SiN layer is found to play an important role in bulk and surface passivation. It is shown that photo-assisted anneal in a forming gas ambient after PECVD depositions significantly improves the passivation of emitter and bulk defects. PECVD passivation of phosphorous doped emitters and boron doped bare Si surfaces is found to be a strong function of doping concentration. Surface recombination velocity of less than 200 cm/s for 0.2 Ohm-cm and less than 1 cm/s for high resistivity substrates ({approximately} Ohm-cm) were achieved. PECVD passivation improved bulk lifetime in the range of 30% to 70% in multicrystalline Si materials. However, the degree of the passivation was found to be highly material specific. Depending upon the passivation scheme, emitter saturation current density (J{sub oe}) can be reduced by a factor of 3 to 9. Finally, the stability of PECVD oxide/nitride passivation under prolonged UV exposure is established.

  14. Microwave induced plasma (MIP) brazing of silicon nitride to stainless steel

    SciTech Connect (OSTI)

    Samandi, M.; Bate, M.; Donnan, R.; Miyake, S.

    1996-12-31

    In an attempt to accelerate the process of joining of metals to ceramics, a new rapid brazing technology has been developed. In this process, referred to as Microwave Induced Plasma (MIP) brazing, a microwave plasma is used to rapidly heat the ceramic and metal to the melting temperature of the reactive braze material. The heating rate obtained by MIP could be many times faster than those achieved by conventional resistive heating in a tube furnace. The fast heating rate has no detrimental effect on the joint quality and in fact results in the formation of a thick interfacial film suggesting significant interdiffusion between the braze and ceramic, possibly stimulated by the microwave radiation. In this paper the experimental arrangement of the MIP system is described. The unique capability of the MIP heating is demonstrated by successful joining of hot pressed nitride to stainless steel using reactive metal brazing. The results of microstructural characterization of the joints carried out by SEM and EDS will also be presented.

  15. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOE Patents [OSTI]

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0

  16. Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies

    SciTech Connect (OSTI)

    Park, Sohee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of)] [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Park, Changwon [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kim, Gunn, E-mail: gunnkim@sejong.ac.kr [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)] [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2014-04-07

    Hexagonal boron nitride (hBN), a remarkable material with a two-dimensional atomic crystal structure, has the potential to fabricate heterostructures with unusual properties. We perform first-principles calculations to determine whether intercalated metal atoms and vacancies can mediate interfacial coupling and influence the structural and electronic properties of the graphene/hBN heterostructure. Metal impurity atoms (Li, K, Cr, Mn, Co, and Cu), acting as extrinsic defects between the graphene and hBN sheets, produce n-doped graphene. We also consider intrinsic vacancy defects and find that a boron monovacancy in hBN acts as a magnetic dopant for graphene, whereas a nitrogen monovacancy in hBN serves as a nonmagnetic dopant for graphene. In contrast, the smallest triangular vacancy defects in hBN are unlikely to result in significant changes in the electronic transport of graphene. Our findings reveal that a hBN layer with some vacancies or metal impurities enhances the interlayer coupling in the graphene/hBN heterostructure with respect to charge doping and electron scattering.

  17. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect (OSTI)

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4?eV at a small forward bias larger than ?2?V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a universal property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  18. Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter

    SciTech Connect (OSTI)

    Hou, Xinmei Yu, Ziyou; Li, Yang; Chou, Kuo-Chih

    2014-01-01

    Graphical abstract: - Highlights: • h-BN fibers were successfully fabricated using H{sub 3}BO{sub 3} and C{sub 3}H{sub 6}N{sub 6} as raw materials. • The obtained BN fibers were polycrystalline and uniform in morphology. • It exhibited good oxidation resistance and low thermal expansion coefficient. - Abstract: Hexagonal boron nitride fibers were synthesized via polymeric precursor method using boric acid (H{sub 3}BO{sub 3}) and melamine (C{sub 3}H{sub 6}N{sub 6}) as raw materials. The precursor fibers were synthesized by water bath and BN fibers were prepared from the precursor at 1873 K for 3 h in flowing nitrogen atmosphere. The crystalline phase and microstructures of BN fibers were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and high resolution electron microscopy. The results showed that h-BN fibers with uniform morphology were successfully fabricated. The well-synthesized BN fibers were polycrystalline with 0.4–1.5 μm in diameter and 200–500 μm in length. The as-prepared samples exhibited good oxidation resistance and low thermal expansion coefficient at high temperature.

  19. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    SciTech Connect (OSTI)

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-12-09

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO{sub 2}. Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO{sub 2} as an electron acceptor exhibits photoconversion efficiency ?46% more than BHJ employed unpassivated TiO{sub 2}. Dominant interfacial recombination pathways such as electron capture by TiO{sub 2} surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO{sub 2}, allowing electronic transport at TiO{sub 2}/h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO{sub 2}/CdSe interface.

  20. Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility

    SciTech Connect (OSTI)

    Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung; Kim, Tae Geun

    2013-12-15

    Graphical abstract: - Highlights: The resistive switching characteristics of WN{sub x} thin films. Excellent CMOS compatibility WN{sub x} films as a resistive switching material. Resistive switching mechanism revealed trap-controlled space charge limited conduction. Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately 2.2 V. The dominant conduction mechanisms at low and high resistance states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.

  1. Nitride based quantum well light-emitting devices having improved current injection efficiency

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  2. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    SciTech Connect (OSTI)

    Tay, Roland Yingjie; Tsang, Siu Hon; Loeblein, Manuela; Chow, Wai Leong; Loh, Guan Chee; Toh, Joo Wah; Ang, Soon Loong; Teo, Edwin Hang Tong

    2015-03-09

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random and uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ?25?nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ?2 to 25?nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.

  3. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOE Patents [OSTI]

    McCallum, R. William; Branagan, Daniel J.

    1996-01-23

    A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.

  4. Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making

    DOE Patents [OSTI]

    McCallum, R.W.; Branagan, D.J.

    1996-01-23

    A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.

  5. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  6. CX-004886: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Indium Gallium Sulfur-Selenide (CIGSS) Manufacturing PlantCX(s) Applied: B1.31Date: 01/05/2011Location(s): San Jose, CaliforniaOffice(s): Loan Guarantee Program Office

  7. Nuvosun Inc | Open Energy Information

    Open Energy Info (EERE)

    Nuvosun Inc Place: Palo Alto, California Zip: 94303-4601 Product: California-based copper indium gallium (di)selenide (CIGS) thin film PV maker. References: Nuvosun Inc1 This...

  8. Barrier Coatings for Thin Film Solar Cells: Final Subcontract Report, September 1, 2002 -- January 30, 2008

    SciTech Connect (OSTI)

    Olsen, L. C.

    2010-03-01

    This program has involved investigations of the stability of CdTe and copper-indium-gallium-diselenide (CIGS) solar cells under damp heat conditions and effects of barrier coatings.

  9. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Caskey, Christopher M.; Holder, Aaron; Shulda, Sarah; Christensen, Steven T.; Diercks, David; Schwartz, Craig P.; Biagioni, David; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; et al

    2016-04-12

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin filmmore » experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn3N4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of the metastable material. In addition to reporting on the discovery of the simple binary SnN compound, this study illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.« less

  10. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    SciTech Connect (OSTI)

    Jeanmaire, G.; Dehmas, M.; Redjamia, A.; Puech, S.; Fribourg, G.

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 ?m) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra software. - Highlights: Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation Size of AlN precipitates can be reduced by quenching prior isothermal holding. Fine precipitation of AlN related to the ? ? ? transformation.

  11. Thermal oxidation of polycrystalline and single crystalline aluminum nitride wafers (Prop 2003-054)

    SciTech Connect (OSTI)

    Speakman, Scott A; Gu, Z; Edgar, J H; Blom, Douglas Allen; Perrin, J; Chaudhuri, J

    2006-10-01

    Two types of aluminum nitride (AlN) samples were oxidized in flowing oxygen between 900 C and 1150 C for up to 6 h - highly (0001) textured polycrystalline AlN wafers and low defect density AlN single crystals. The N-face consistently oxidized at a faster rate than the Al-face. At 900 C and 1000 C after 6 h, the oxide was 15% thicker on the N-face than on the Al-face of polycrystalline AlN. At 1100 C and 1150 C, the oxide was only 5% thicker on the N-face, as the rate-limiting step changed from kinetically-controlled to diffusion-controlled with the oxide thickness. A linear parabolic model was established for the thermal oxidation of polycrystalline AlN on both the Al- and N-face. Transmission electron microscopy (TEM) confirmed the formation of a thicker crystalline oxide film on the N-face than on the Al-face, and established the crystallographic relationship between the oxide film and substrate. The oxidation of high-quality AlN single crystals resulted in a more uniform colored oxide layer compared to polycrystalline AlN. The aluminum oxide layer was crystalline with a rough AlN/oxide interface. The orientation relationship between AlN and Al{sub 2}O{sub 3} was (0001) AlN//(10{bar 1}0) Al{sub 2}O{sub 3} and (1{bar 1}00) AlN//(01{bar 1}2) Al{sub 2}O{sub 3}.

  12. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOE Patents [OSTI]

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  13. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

  14. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  15. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup }1{sup }) GaN substrates

    SciTech Connect (OSTI)

    Pourhashemi, A. Farrell, R. M.; Cohen, D. A.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup }1{sup }) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451?nm at room temperature, an output power of 2.52?W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34?A. The measured differential quantum efficiency was 50%.

  16. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    SciTech Connect (OSTI)

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  17. A Mechanistic Study of CO2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    SciTech Connect (OSTI)

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played during the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO2 catalysis.

  18. Electrolysis of uranium nitride containing fission product elements (Mo, Pd, Nd) in a molten LiCl-KCl eutectic

    SciTech Connect (OSTI)

    Satoh, Takumi; Iwai, Takashi; Arai, Yasuo

    2007-07-01

    The electrolysis of burnup-simulated uranium nitride, UN, containing representative solid fission product elements (Mo, Pd, Nd) was investigated in the molten LiCl-KCl eutectic salt with 0.54 wt% UCl{sub 3} from the view point of application of pyrochemical reprocessing to nitride fuel cycle. It was found from cyclic voltammetry and anodic polarization curve measurement that anodic dissolution of UN began at about -0.75 V vs. Ag/AgCl reference electrode in all samples. After the electrolysis at the constant anodic potential of -0.65 {approx} -0.60 V vs. Ag/AgCl, most of UN was dissolved into LiCl- KCl as UCl{sub 3} at the anode, and U was recovered in the liquid Cd cathode in all samples. Further, Nd was dissolved into LiCl-KCl as NdCl{sub 3}, while Mo and Pd were not dissolved but remained at the anode. (authors)

  19. Preliminary design study of small long life boiling water reactor (BWR) with tight lattice thorium nitride fuel

    SciTech Connect (OSTI)

    Trianti, Nuri E-mail: szaki@fi.itba.c.id; Su'ud, Zaki E-mail: szaki@fi.itba.c.id; Arif, Idam E-mail: szaki@fi.itba.c.id; Riyana, EkaSapta

    2014-09-30

    Neutronic performance of small long-life boiling water reactors (BWR) with thorium nitride based fuel has been performed. A recent study conducted on BWR in tight lattice environments (with a lower moderator percentage) produces small power reactor which has some specifications, i.e. 10 years operation time, power density of 19.1 watt/cc and maximum excess reactivity of about 4%. This excess reactivity value is smaller than standard reactivity of conventional BWR. The use of hexagonal geometry on the fuel cell of BWR provides a substantial effect on the criticality of the reactor to obtain a longer operating time. Supported by a tight concept lattice where the volume fraction of the fuel is greater than the moderator and fuel, Thorium Nitride give good results for fuel cell design on small long life BWR. The excess reactivity of the reactor can be reduced with the addition of gadolinium as burnable poisons. Therefore the hexagonal tight lattice fuel cell design of small long life BWR that has a criticality more than 20 years of operating time has been obtained.

  20. Combinatorial Insights into Doping Control and Transport Properties of Zinc Tin Nitride

    SciTech Connect (OSTI)

    Fioretti, Angela N.; Zakutayev, Andriy; Moutinho, Helio; Melamed, Celeste; Perkins, John D.; Norman, Andrew G.; Al-Jassim, Mowafak; Toberer, Eric S.; Tamboli, Adele C.

    2015-09-21

    ZnSnN2 is an Earth-abundant semiconductor analogous to the III–nitrides with potential as a solar absorber due to its direct bandgap, steep absorption onset, and disorder-driven bandgap tunability. Despite these desirable properties, discrepancies in the fundamental bandgap and degenerate n-type carrier density have been prevalent issues in the limited amount of literature available on this material. We we use a combinatorial RF co-sputtering approach, we explored a growth-temperature-composition space for Zn1+xSn1-xN2 over the ranges 35–340 °C and 0.30–0.75 Zn/(Zn + Sn). In this way, we identified an optimal set of deposition parameters for obtaining as-deposited films with wurtzite crystal structure and carrier density as low as 1.8 × 1018 cm-3. Films grown at 230 °C with Zn/(Zn + Sn) = 0.60 were found to have the largest grain size overall (70 nm diameter on average) while also exhibiting low carrier density (3 × 1018 cm-3) and high mobility (8.3 cm2 V-1 s-1). Using this approach, we establish the direct bandgap of cation-disordered ZnSnN2 at 1.0 eV. Moreover, we report tunable carrier density as a function of cation composition, in which lower carrier density is observed for higher Zn content. Consequently, this relationship manifests as a Burstein–Moss shift widening the apparent bandgap as cation composition moves away from Zn-rich. Collectively, these findings provide important insight into the fundamental properties of the Zn–Sn–N material system and highlight the potential to utilize ZnSnN2 for photovoltaics.

  1. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    SciTech Connect (OSTI)

    Yap, Yoke Khin

    2013-03-14

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy’s Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los Alamos National Laboratory. Results obtained during the current funding period have led to the publication of twelve peer reviewed articles, three review papers, two book and one encyclopedia chapters, and thirty eight conference/seminar presentation. One US provisional patent and one international patent have also been filed.

  2. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    SciTech Connect (OSTI)

    Volpi, F. Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-07-28

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple mass correction of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

  3. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect (OSTI)

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25?nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850?C for 10?min under atmospheric conditions, the resistivity of the ITO film was 5.2?m??cm. The fabricated LED up to 3?mm square surface emitted red light when the on-voltage was exceeded.

  4. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... "Study of Gallium Nitride for High-Level Neutron Field Measurement", IEEE Transactions on Nuclear Science, Vol. 61, no. 4: 2040 - 2044. 2014. (Published). 5.) Chung-Han Lin, Evan. ...

  5. CX-010873: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ammonothermal Bulk Gallium Nitride Crystal Growth for Energy Efficient Lightning and Power Electronics CX(s) Applied: B3.6 Date: 05/22/2013 Location(s): California Offices(s): Advanced Research Projects Agency-Energy

  6. CX-004937: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Transphorm, Inc. -High Performance Gallium Nitride High Electron Mobility Transistor Modules for Agile Power ElectronicsCX(s) Applied: B3.6Date: 08/05/2010Location(s): CaliforniaOffice(s): Advanced Research Projects Agency - Energy

  7. Taransys Inc | Open Energy Information

    Open Energy Info (EERE)

    Taransys Inc Jump to: navigation, search Name: Taransys Inc. Place: Ottawa, Ontario, Canada Zip: K2K 2E2 Product: The company specialises in gallium nitride technologies, focussing...

  8. Applied Materials Develops an Advanced Epitaxial Growth System to Bring Down LED Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Applied Materials has developed an advanced epitaxial growth system for gallium nitride (GaN) LED devices that decreases operating costs, increases internal quantum efficiency, and improves binning yields.

  9. Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas

    SciTech Connect (OSTI)

    Crank, M.; Harilal, S. S.; Hassan, S. M.; Hassanein, A.

    2012-02-01

    We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-{alpha} and He-{alpha} are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-{alpha} to He-{alpha} emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

  10. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    SciTech Connect (OSTI)

    Jin, K.; Xiao, H. Y. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Weber, W. J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

  11. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    SciTech Connect (OSTI)

    Sutter, P. Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  12. Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective

    SciTech Connect (OSTI)

    Bertazzi, Francesco Goano, Michele; Zhou, Xiangyu; Calciati, Marco; Ghione, Giovanni; Matsubara, Masahiko; Bellotti, Enrico

    2015-02-09

    Recent experiments of electron emission spectroscopy (EES) on III-nitride light-emitting diodes (LEDs) have shown a correlation between droop onset and hot electron emission at the cesiated surface of the LED p-cap. The observed hot electrons have been interpreted as a direct signature of Auger recombination in the LED active region, as highly energetic Auger-excited electrons would be collected in long-lived satellite valleys of the conduction band so that they would not decay on their journey to the surface across the highly doped p-contact layer. We discuss this interpretation by using a full-band Monte Carlo model based on first-principles electronic structure and lattice dynamics calculations. The results of our analysis suggest that Auger-excited electrons cannot be unambiguously detected in the LED structures used in the EES experiments. Additional experimental and simulative work are necessary to unravel the complex physics of GaN cesiated surfaces.

  13. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect (OSTI)

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10?mA to (0.351, 0.322) at 30?mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  14. Selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices with silicon nitride capping layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wierer, Jonathan J.; Allerman, Andrew A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Vawter, Gregory A.; Montaño, Ines

    2015-06-01

    We demonstrate the selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices using a silicon nitride (SiNx) capping layer. The (SiNx) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiNx thickness. The layer disordering is caused by Si diffusion, and the SiNx layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiNx layer results in selective layer disordering, an attractive method to integrate active and passive III–nitride-based intersubband devices.

  15. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications

    SciTech Connect (OSTI)

    Kang, S.; Selverian, J.H.; Kim, H.; O'Niel, D.; Kim, K. )

    1990-04-01

    This report summarizes the results of Phase I of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650 and 950{degree}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA), using ABAQUS code, were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing and service. Finally, the FEA results were compared with experiments using an idealized strength relationship. The results showed that the measured strength of the joint reached 30--90% of the strength by predicted by FEA. Overall results demonstrated that FEA is an effective tool for designing the geometries of ceramic-metal joints and that joining by brazing is a relevant method for advanced heat engine applications. 33 refs., 54 figs., 36 tabs.

  16. Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Gbordzoe, S. Kotoka, R.; Craven, Eric; Kumar, D.; Wu, F.; Narayan, J.

    2014-08-14

    The current work reports on the growth and microstructural characterization of titanium nitride (TiN) nanowires on single crystal silicon substrates using a pulsed laser deposition method. The physical and microstructural properties of the nanowires were characterized using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The corrosion properties of the TiN nanowires compared to TiN thin film were evaluated using Direct Current potentiodynamic and electrochemical impedance spectroscopy. The nanowires corroded faster than the TiN thin film, because the nanowires have a larger surface area which makes them more reactive in a corrosive environment. It was observed from the FESEM image analyses that as the substrate temperature increases from 600 °C to 800 °C, there was an increase in both diameter (25 nm–50 nm) and length (150 nm–250 nm) of the nanowire growth. There was also an increase in spatial density with an increase of substrate temperature. The TEM results showed that the TiN nanowires grow epitaxially with the silicon substrate via domain matching epitaxy paradigm, despite a large misfit.

  17. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    SciTech Connect (OSTI)

    Lin, J. Y. Y. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Aczel, Adam A [ORNL] [ORNL; Abernathy, Douglas L [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Buyers, W. J. L. [National Research Council of Canada] [National Research Council of Canada; Granroth, Garrett E [ORNL] [ORNL

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  18. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOE Patents [OSTI]

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  19. Performance analysis of boron nitride embedded armchair graphene nanoribbon metaloxidesemiconductor field effect transistor with Stone Wales defects

    SciTech Connect (OSTI)

    Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu

    2014-01-21

    We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ?5?nm, the simulated ON current is found to be in the range of 265??A280??A with an ON/OFF ratio 7.1 10{sup 6}7.4 10{sup 6} for a V{sub DD}?=?0.68?V corresponding to 10?nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.

  20. Correlation of photothermal conversion on the photo-induced deformation of amorphous carbon nitride films prepared by reactive sputtering

    SciTech Connect (OSTI)

    Harata, T.; Aono, M. Kitazawa, N.; Watanabe, Y.

    2014-08-04

    The photo-induced deformation of hydrogen-free amorphous carbon nitride (a-CN{sub x}) films was investigated under visible-light illumination. The films gave rise to photothermal conversion by irradiation. In this study, we investigated the effects of thermal energy generated by irradiation on the deformation of a-CN{sub x}/ultrathin substrate bimorph specimens. The films were prepared on both ultrathin Si and SiO{sub 2} substrates by reactive radio-frequency magnetron sputtering from a graphite target in the presence of pure nitrogen gas. The temperature of the film on the SiO{sub 2} substrate increased as the optical band-gap of the a-CN{sub x} was decreased. For the film on Si, the temperature remained constant. The deformation degree of the films on Si and SiO{sub 2} substrates were approximately the same. Thus, the deformation of a-CN{sub x} films primarily induced by photon energy directly.