Powered by Deep Web Technologies
Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Indirect evaporative cooling in retail  

Science Conference Proceedings (OSTI)

JCPenney Co., Inc., recently opened a 126,000-sq ft, two-level retail store in Albuquerque, NM. The project construction was accomplished using a design-build format. This process allows preliminary construction processes to begin while the design is finalized. Law/Kingdom, Inc. was assigned the architectural and engineering services for this building. During the process of design, the team decided to study the addition of evaporative cooling into the air system. This article reviews system design, selection, and performance using an indirect evaporative system in the HVAC system. It also demonstrates the company`s design approach on the original equipment selection for a typical anchor store.

Bartlett, T.A. [JCPenney Co., Plano, TX (United States)

1996-12-01T23:59:59.000Z

2

New and Underutilized Technology: Multi-stage Indirect Evaporative Cooling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-stage Indirect Evaporative Multi-stage Indirect Evaporative Cooling New and Underutilized Technology: Multi-stage Indirect Evaporative Cooling October 4, 2013 - 4:33pm Addthis The following information outlines key deployment considerations for multi-stage evaporative cooling within the Federal sector. Benefits Multi-stage indirect evaporative cooling is an advanced evaporative cooler that can lower air temperatures without adding moisture. These systems evaporate water in a secondary (or working) airstream, which is discharged in multiple stages. No water or humidity is added to the primary (or product) airstream in the process. Application Multi-stage indirect evaporative cooling is applicable in office, research and development, service, and school applications. Climate and Regional Considerations

3

Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling  

Science Conference Proceedings (OSTI)

The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

2012-01-01T23:59:59.000Z

4

Energy Basics: Evaporative Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

absorbent material. Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. How Evaporative Coolers Work There are two types of evaporative...

5

Dew-Point Evaporative Comfort Cooling (Presentation)  

SciTech Connect

Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

Dean, J.

2012-10-01T23:59:59.000Z

6

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

7

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

8

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

9

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

10

Conductive Thermal Interaction in Evaporative Cooling Process  

E-Print Network (OSTI)

It has long been recognized that evaporative cooling is an effective and logical substitute for mechanical cooling in hot-arid climates. This paper explores the application of evaporative coolers to the hot-humid climates using a controlled temperature of the incoming water. With exploitation of the effect of the thermal conduction between cool underground water and entering air, the performance of an evaporative cooler can be enhanced and its use in hot and moderately humid climates should also be considered. Usually the dry-bulb depression performed by an evaporative cooler depends solely on the ambient wet-bulb temperature. The cool underground water in an evaporative cooler can cause not only adiabatic evaporation but also sensible heat transfer between water and entering air for thermal comfort. This hybrid system outperforms the two-stage evaporative cooler without employing a complicated heat exchanger (indirect system), if the temperature of underground water is lower than the ambient wet-bulb temperature. Several areas in the southern hot-humid parts of the U.S. meet this condition.

Kim, B. S.; Degelman, L. O.

1990-01-01T23:59:59.000Z

11

Definition: Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate.[1] References ↑ http://en.wikipedia.org/wiki/Evaporative_cooler Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Evaporative_Cooling&oldid=601323" Category: Definitions What links here Related changes

12

Evaporative Enhancement for Air Cooled Condensers  

Science Conference Proceedings (OSTI)

This report summarizes research into condenser air evaporative pre-cooling technologies and the associated potential for energy and peak power savings. The interest in this project is evaluation of the specific application of evaporative cooling to the inlet air of condenser coils, particularly for large roof-top type air cooled chillers. While the technology is established and understood particularly well for hot, dry climates, this report is intended to also examine evaporative ...

2013-03-06T23:59:59.000Z

13

Evaporative cooling enhanced cold storage system  

DOE Patents (OSTI)

The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

Carr, P.

1991-10-15T23:59:59.000Z

14

Evaporative Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in...

15

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the "Energy Crisis" Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retrofit installations show direct energy savings and paybacks from twelve to thirty months. The main operating cost of an Evaporative Roof Cooling System is water. One thousand gallons of water, completely evaporated, will produce over 700 tons of cooling capability. Water usage seldom averages over 100 gallons per 1000 ft^2 of roof area per day or 10 oz. of water per 100 ft^2 every six minutes. Roof Cooling Systems, when planned in new construction, return 1-1/2 times the investment the first year in equipment savings and operating costs. Roof sprays are a low cost cooling solution for warehouses, distribution centers and light manufacturing or assembly areas with light internal loads. See text "Flywheel Cooling."

Abernethy, D.

1985-01-01T23:59:59.000Z

16

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Pre-Cooling Systems Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

17

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology: Evaporative Pre-Cooling Systems Technology: Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

18

Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities  

E-Print Network (OSTI)

This study investigates the feasibility of using direct and indirect evaporative cooling systems for correctional facilities in two different Texas climatic regions with the DOE-2.1E hourly energy simulation program. The analysis is based on adding user defined functions to the DOE-2 SYSTEMS subprogram to simulate direct and indirect evaporative cooling configurations. The DOE-2 program was run with two weather tapes, one for Kingsville, Texas and one for Abilene, Texas during April, July, and October to resemble neutral, summer and winter weather conditions. The results showed that direct evaporative cooling is applicable in April for Abilene and October for Kingsville. The indirect evaporative cooling is feasible in July for Abilene and April for Kingsville.

Saman, N.; Heneghan, T.; Bou-Saada, T. E.

1996-01-01T23:59:59.000Z

19

EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT  

E-Print Network (OSTI)

The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

Niinikoski, T O

1998-01-01T23:59:59.000Z

20

Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2  

SciTech Connect

The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam compression with inner evaporative spray cooling: a case study  

Science Conference Proceedings (OSTI)

An adiabatic dry saturated steam compression process with inner evaporative spray cooling in screw compressors for steam heat pump systems is studied. Thermodynamic model and simulation of this variable-mass compression process are devised. Differential ... Keywords: inner evaporative spray cooling, screw compressors, simulation, steam compression, steam heat pumps, thermodynamic modelling, variable-mass compression, water injection

Jian Qui; Zhaolin Gu; Guoguang Cai

2004-12-01T23:59:59.000Z

22

Rain on the Roof-Evaporative Spray Roof Cooling  

E-Print Network (OSTI)

This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol-air principles are covered and a simplified method of evaluation presented. A life cycle energy savings example is discussed. Benefits of roof life and roof top equipment efficiency and maintenance are covered as well as water consumption and performance trade-offs with alternate methods of roof heat gain control. Testimonials and case studies are presented. The gradual migration of business, industry, and populace to the southern United States was largely brought on by the advent of the practical air-conditioner, cheap electricity, and the harshness of northern winters. But while "wintering at Palm Beach" has been replaced by "Sun Belt industries" ; the compression-refrigeration cooling cycle is about the only thing separating millions of southerners (native and adopted) from August heat stroke and the Detroit News employment ads. This migration has been spurred by economic recessions which hit harder at the competitively populated northern centers than at the still growing industries of the south. These trends are important illustrations of the concern for efficient cooling strategies. Not only are homes in hot climates vulnerable to the now not-so-low cost of electricity but large, compact. and heavily occupied buildings (offices, schools, hospitals, theaters, etc.) often must air-condition year-around. In 1968. air-conditioning was 3% of U.S. end energy consumption compared to 18% for space heating and 25% for transportation. By 1980, according to Electric Power Research Institute's Oliver Yu, air-conditioning use was 12.5% of all electricity generated and by the year 2000 is projected to reach 16.7% "as migration slows and the GNP reaches a stable 3% growth rate" (EPRI 1982 to 1986 Overview and Strategy). Of further significance is the effect of air-conditioning loads on the peak generating requirements of electrical utilities. Because utilities must build generating capacity to meet peak requirements, they normally charge a higher summer kWh rate (for residential) and levy a peak kW demand charge on a monthly or even annual "ratchet" rate (for larger service customers). The June '83 cover of Houston City Magazine, in reference to future electrical rates, promised: "Pay or Sweat". Typical of many cooling or heat gain prevention strategies being employed on "innovative" buildings in warm climates, evaporative spray roof cooling (ESRC) systems (not to be confused with roof ponds) are not new. Like ventilated structures, ice house roofs, enhanced ventilation, masonry walls, night sky radiation and ground contact cooling, evaporative cooling in many forms has been around for centuries. (See Solar Age, July '82 and February '81 for related articles). Even the development of roof spray systems is not as newly founded as one might suspect.

Bachman, L. R.

1985-01-01T23:59:59.000Z

23

Passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-01-01T23:59:59.000Z

24

Indirect passive cooling system for liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system. It is for liquid metal cooled nuclear reactors having a pool of liquid metal coolant with the heat generating fissionable fuel core substantially immersed in the pool of liquid metal coolant. The passive cooling system including a combination of spaced apart side-by-side partitions in generally concentric arrangement and providing for intermediate fluid circulation and heat transfer therebetween.

Hunsbedt, A.; Boardman, C.E.

1990-09-25T23:59:59.000Z

25

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

26

Floating dry cooling: a competitive alternative to evaporative cooling in a binary cycle geothermal power plant  

DOE Green Energy (OSTI)

The application of the floating cooling concept to non-evaporative and evaporative atmospheric heat rejection systems was studied as a method of improving the performance of geothermal powerplants operating upon medium temperature hydrothermal resources. The LBL thermodynamic process computer code GEOTHM is used in the case study of a 50 MWe isobutane binary cycle power plant at Heber, California. It is shown that operating a fixed capacity plant in the floating cooling mode can generate significantly more electrical energy at a higher thermodynamic efficiency and reduced but bar cost for approximately the same capital investment. Floating cooling is shown to benefit a plant which is dry cooled to an even greater extent than the same plant operating with an evaporative heat rejection system. Results of the Heber case study indicate that a dry floating cooling geothermal binary cycle plant can produce energy at a bus bar cost which is competitive with the cost of energy associated with evaporatively cooled systems.

Pines, H.S.; Green, M.A.; Pope, W.L.; Doyle, P.A.

1978-07-01T23:59:59.000Z

27

Advances in the application of passive down-draft evaporative cooling technology in the cooling of buildings.  

E-Print Network (OSTI)

??A passive down-draft evaporative cooling (PDEC) tower is a component that is designed to capture the wind at the top of a tower and cool (more)

Kang, Daeho

2011-01-01T23:59:59.000Z

28

Potential of Evaporative Cooling Systems for Buildings in India  

E-Print Network (OSTI)

Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level, clothing and air velocity, the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and cumulative dissatisfaction levels for each month are estimated. Time - air condition contours of ambient, supply air and indoor air are plotted on a psychrometric chart for different cities in India like Ahmadabad, Jodhpur, Nagpur and New Delhi representing different climatic conditions of India. While satisfactorily comfort can be achieved at cool and dry weather conditions by evaporative cooling system throughout the year, some discomfort prevailed for few months around July at hot and dry/humid weather conditions. The results are also quantified in terms of PMV, PPD and their cumulative factors; PMV-hour and PPD-hour.

Maiya, M. P.; Vijay, S.

2010-01-01T23:59:59.000Z

29

Emerging Technologies for Efficient Data Centers: Uninterruptible Power Supply Eco Mode, Liquid Cooling, and Evaporative Cooling  

Science Conference Proceedings (OSTI)

This report summarizes research in emerging technologies that improve data center energy efficiency, including evaporative cooling, liquid cooling, and high-efficiency eco mode operation of the uninterruptible power supply. The report describes the efficiency gains of these technologies and their impact on total data center energy use. It also identifies market barriers for each technology and potential next steps to promote adoption of these efficient technologies.

2013-12-09T23:59:59.000Z

30

Assessment of Evaporative Cooling Enhancement Methods for Air-Cooled Geothermal Power Plants: Preprint  

DOE Green Energy (OSTI)

Many binary-cycle geothermal power plants are air cooled because insufficient water is available to provide year-round water cooling. The performance of air-cooled geothermal plants is highly dependent on the dry bulb temperature of the air (much more so than fossil fuel plants that operate at higher boiler temperatures), and plant electric output can drop by 50% or more on hot summer days, compared to winter performance. This problem of reduced summer performance is exacerbated by the fact that electricity has a higher value in the summer. This paper describes a spreadsheet model that was developed to assess the cost and performance of four methods for using supplemental evaporative cooling to boost summer performance: (1) pre-cooling with spray nozzles, (2) pre-cooling with Munters media, (3) a hybrid combination of nozzles and Munters media, and (4) direct deluge cooling of the air-cooled condenser tubes. Although all four options show significant benefit, deluge cooling has the potential to be the most economic. However, issues of scaling and corrosion would need to be addressed.

Kutscher, C.; Costenaro, D.

2002-08-01T23:59:59.000Z

31

Vibration Induced Droplet Generation from a Liquid Layer for Evaporative Cooling in a Heat Transfer Cell .  

E-Print Network (OSTI)

??During this investigation, vibration induced droplet generation from a liquid layer was examined as a means for achieving high heat flux evaporative cooling. Experiments were (more)

Pyrtle, Frank, III

2005-01-01T23:59:59.000Z

32

Application Research of Evaporative Cooling in the Waste Heat Recovery  

Science Conference Proceedings (OSTI)

Evaporative condenser is one kind of high-efficient and energy-water saving heat exchange equipment, which has been widely applied in many engineering fields. The theory and product characteristic of evaporative condenser is introduced in this paper. ... Keywords: Evaporative condenser, Waste heat recovery, Energy saving, Water saving

Zhijiang Wu; Nan Wang; Gongsheng Zhu

2010-12-01T23:59:59.000Z

33

CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System  

E-Print Network (OSTI)

Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving thermal comfort and saving energy, a combined system is presented in this paper. It combines an evaporative cooling system with ceiling cooling, in which the evaporative cooling system handles the entire latent load and one part of the sensible loads, and the ceiling cooling system deals with the other part of sensible loads in the air-conditioned zone, so that the condensation on radiant panels and the insufficiency of cooling capacity can be avoided. The cooling water at 18? used in the cooling coils of ceiling cooling system can be ground water, tap water or the cooled water from cooling towers in the summer. This new air-conditioning system and existing all- outdoor air evaporative cooling system are applied to a project in the city of Lanzhou. Energy consumption analysis of the building is carried out using the energy consumption code. Velocity and temperature distribution in the air-conditioned zone is computed using CFD. According to the results, the energy consumption and indoor human thermal comfort of both systems are then compared. It is concluded that the new system occupies less building space, reduces energy consumption, improves indoor human thermal comfort and saves initial investment.

Xiang, H.; Yinming, L.; Junmei, W.

2006-01-01T23:59:59.000Z

34

Estimating the Evaporative Cooling Bias of an Airborne Reverse Flow Thermometer  

Science Conference Proceedings (OSTI)

Airborne reverse flow immersion thermometers were designed to prevent sensor wetting in cloud. Yet there is strong evidence that some wetting does occur and therefore also sensor evaporative cooling as the aircraft exits a cloud. Numerous ...

Yonggang Wang; Bart Geerts

2009-01-01T23:59:59.000Z

35

An experimental study of evaporative cooling from liquid droplets impinging on a hot surface  

E-Print Network (OSTI)

We have performed a series of experiments to characterize the different regimes observed in drop impacts during evaporative cooling of heated surfaces. We found four regimes which were named splashing, fizzing, flat film, ...

Koveal, Catherine Helene

2005-01-01T23:59:59.000Z

36

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

37

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

38

Dew Point Evaporative Comfort Cooling: Report and Summary Report  

Science Conference Proceedings (OSTI)

The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

2012-11-01T23:59:59.000Z

39

Direct Numerical Simulation of Evaporative Cooling at the Lateral Boundary of Shallow Cumulus Clouds  

Science Conference Proceedings (OSTI)

This study investigates the dynamics of the subsiding shell at the lateral boundary of cumulus clouds, focusing on the role of evaporative cooling. Since the size of this shell is well below what large-eddy simulations can resolve, the authors ...

Dick Abma; Thijs Heus; Juan Pedro Mellado

2013-07-01T23:59:59.000Z

40

Effect of adding flash tank on the evaporator's thermal load of the combined ejector-absorption cooling system  

Science Conference Proceedings (OSTI)

A modified combined absorption-ejector cooling system using aqua-ammonia (NH3-H2O) refrigerant has been investigated. Removable flash tank was added between the condenser and the evaporator. The modified cycle brings the advantage of improving in the ... Keywords: absorption system, combined absorption cooling system, ejectors, evaporators

Ranj Sirwan; Yusoff Ali; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Original papers: Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses  

Science Conference Proceedings (OSTI)

The present work makes an aerodynamic analysis and computational fluid dynamics (CFD) simulation of the four commercial models of corrugated cellulose evaporative cooling pads that are most widely used in Mediterranean greenhouses. The geometric characteristics ... Keywords: Aerodynamic analysis, CFD, Evaporative cooling, Fan and pad, Greenhouse, Pressure drop

A. Franco; D. L. Valera; A. Pea; A. M. Prez

2011-05-01T23:59:59.000Z

42

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-01-01T23:59:59.000Z

43

A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells  

E-Print Network (OSTI)

An investigation was conducted to determine the feasibility of using the technique of ultrasonic nebulization of water into the anode gas stream for evaporative cooling of a Proton Exchange Membrane (PEM) fuel cell. The basic concept of this form of internal evaporative cooling of the PEM fuel cell is to introduce finely atomized liquid water into the anode gas stream, so that the finely atomized liquid water adsorbs onto the anode and then moves to the cathode via electro-osmotic drag, where this water then evaporates into the relatively dry cathode gas stream, carrying with it the waste thermal energy generated within the fuel cell. The thermal and electrical performance of a 50 cm2 PEM fuel cell utilizing this technique was compared to the performance obtained with conventional water management. Both techniques were compared over a range of humidification chamber temperatures for both the anode and cathode gas streams so as to determine the robustness of the proposed method. The proposed method produced only meager levels of evaporative cooling (at best 2 watts, for which a minimum of 30 watts was required for adequate cooling), but the average cell voltage increased considerably (as much as a 10% gain), and the technique increased the fault tolerance of the fuel cell (the Nafion? membrane did not dry out even if cell temperature went well in excess of 70° C despite both anode and cathode humidification temperatures of 55° C). An interesting phenomena was also observed wherein the fuel cell voltage oscillated regularly with a period of tens of seconds, and that the amplitude of this oscillation corresponded inversely with the level of humidification received by the fuel cell.

Snyder, Loren E

2004-12-01T23:59:59.000Z

44

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

cooling (TABS) with a cooling tower providing chilled waterevaporative cooling (cooling tower) for radiant ceiling slabradiant cooling with a cooling tower providing chilled water

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

45

Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control  

E-Print Network (OSTI)

We study cooling and squeezing the fluctuations of a nanomechanical beam using quantum feedback control. In our model, the nanomechanical beam is coupled to a transmission line resonator via a superconducting quantum interference device (SQUID). The leakage of the electromagnetic field from the transmission line resonator is measured using homodyne detection. This measured signal is then used to design a quantum-feedback-control signal to drive the electromagnetic field in the transmission line resonator. Although the control is imposed on the transmission line resonator, this quantum-feedback-control signal indirectly affects the thermal motion of the nanomechanical beam via the inductive beam-resonator coupling, making it possible to cool and squeeze the fluctuations of the beam, allowing it to approach the standard quantum limit.

Jing Zhang; Yu-xi Liu; Franco Nori

2009-02-15T23:59:59.000Z

46

Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-12-31T23:59:59.000Z

47

Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector  

E-Print Network (OSTI)

The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

A. Nomerotski; J. Buytart; P. Collins; R. Dumps; E. Greening; M. John; A. Mapelli; A. Leflat; Y. Li; G. Romagnoli; B. Verlaat

2012-11-06T23:59:59.000Z

48

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

have higher cooling capacity because the thermal resistancethe thermal comfort requirement unless the cooling capacitysurface cooling system and TABS systems THERMAL COMFORT

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

49

Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

Feng, Jingjuan; Bauman, Fred

2013-01-01T23:59:59.000Z

50

Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction  

SciTech Connect

This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

Robichaud, R.

2007-06-01T23:59:59.000Z

51

Evaluation of models for predicting evaporative water loss in cooling impoundments  

E-Print Network (OSTI)

Cooling impoundments can offer a number of advantages over cooling towers for condenser water cooling at steam electric power plants. However, a major disadvantage of cooling ponds is a lack of confidence in the ability ...

Helfrich, Karl Richard

1982-01-01T23:59:59.000Z

52

Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report  

DOE Green Energy (OSTI)

During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

1984-02-01T23:59:59.000Z

53

An air cooled tube-fin evaporator model for an expansion valve control law  

Science Conference Proceedings (OSTI)

For control purposes, a mathematical model of a tube-fin evaporator of a vapour compression plant running with R22 is analyzed. The refrigerant behavior in an evaporating region is described by a homogeneous model. The balance equations, together with ... Keywords: Control devices, Evaporator models, Heat transfer, Nonlinear differential systems, Numerical methods, Phase transition

C. Aprea; C. Renno

1999-10-01T23:59:59.000Z

54

Waste-heat vertical tube foam evaporation for cooling tower blowdown renovation/recycle. Project summary report  

SciTech Connect

A prototype waste-heat vertical tube foam evaporation (WH-VTFE) plant was designed, constructed, and field-tested for reducing power plant cooling tower blowdown to a small residual volume of solids slurried in brine, while producing distilled water for reuse. Facility design was based on previously-developed pilot plant test data. The WH-VTFE facility was constructed for initial parametric testing in upflow/downflow evaporation modes with boiler steam. The field test/demonstration phase was conducted at a power plant site using turbine exhaust steam for the up to 50-fold cooling tower blowdown concentration in a foamy-flow seed-slurried mode of downflow vertical tube evaporation. The VTFE heat transfer coefficient ranged between 5600 to 9000 W/sq m/degree, over 4-fold the level considered as acceptable in another study. Further, a sufficient temperature difference is available within a typical power plant heat rejection system to operate a WH-VTFE when the plant load is above 50% of its design capacity. Scale formed from inadequate brine recycle rates was readily removed by recycling fresh water through the evaporator to restore the high heat transfer performance of the WH-VTFE. It was concluded that WH-VTFE was demonstrated as feasible and commercially viable.

Sephton, H.H.; Someahsaraii, K.

1982-02-01T23:59:59.000Z

55

Evaporation and condensation of spherical interstellar clouds. Self-consistent models with saturated heat conduction and cooling  

E-Print Network (OSTI)

Shortened version: The fate of IS clouds embedded in a hot tenuous medium depends on whether the clouds suffer from evaporation or whether material condensates onto them. Analytical solutions for the rate of evaporative mass loss from an isolated spherical cloud embedded in a hot tenuous gas are deduced by Cowie & McKee (1977). In order to test the validity of the analytical results for more realistic IS conditions the full hydrodynamical equations must be treated. Therefore, 2D numerical simulations of the evolution of IS clouds %are performed with different internal density structures and surrounded by a hot plasma reservoir. Self-gravity, interstellar heating and cooling effects and heat conduction by electrons are added. Classical thermal conductivity of a fully ionized hydrogen plasma and saturated heat flux are considered. Using pure hydrodynamics and classical heat flux we can reproduce the analytical results. Heat flux saturation reduces the evaporation rate by one order of magnitude below the analytical value. The evolution changes totally for more realistic conditions when interstellar heating and cooling effects stabilize the self-gravity. Evaporation then turns into condensation, because the additional energy by heat conduction can be transported away from the interface and radiated off efficiently from the cloud's inner parts. I.e. that the saturated heat flux consideration is inevitable for IS clouds embedded in hot tenuous gas. Various consequences are discussed in the paper.

W. Vieser; G. Hensler

2007-09-05T23:59:59.000Z

56

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, October 1985--February 1986  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-12-31T23:59:59.000Z

57

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

58

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

59

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

Cunningham, W.A.; Migon, G.V.

1985-01-01T23:59:59.000Z

60

Effects of evaporative cooling on the regulation of body water and ...  

Science Conference Proceedings (OSTI)

building, causing air to be drawn through the cooling pads. The study was conducted during two ...... of gut water in living ruminants. Aust J Agric Res 15:

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Experimental evaluation and modeling of a turbine blade with potassium evaporative cooling  

E-Print Network (OSTI)

A new method of turbine blade cooling, the Return Flow Cascade, has been developed in which vaporization of a liquid metal such as potassium is used to maintain the blade surface at a nearly uniform temperature. Turbine ...

Townsend, Jessica Lee

2004-01-01T23:59:59.000Z

62

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

Science Conference Proceedings (OSTI)

This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

Ken Mortensen

2011-12-31T23:59:59.000Z

63

Economizers and Coolerado Evaporative Cooling for Data Centers: Technical Assessments for the Data Center Interest Group  

Science Conference Proceedings (OSTI)

Given the reliance that business has on uninterrupted communications, data centers are required to provide the highest level of reliability. Yet, this emphasis on reliability allows many opportunities for increasing the energy efficiency of data centers. In a typical data center, about 40% of the energy is used for cooling systems. The conventional methods of removing heat from a data center involve either a direct-expansion (DX) computer room air conditioner (CRAC) or a chilled-water plant to ...

2013-07-23T23:59:59.000Z

64

Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint  

SciTech Connect

This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

Woods, J.; Kozubal, E.

2012-10-01T23:59:59.000Z

65

The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell  

E-Print Network (OSTI)

An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly and uniformly to the nickel metal foam flow-field (element for distributing the reactant gases over the surface of the electrodes) on the anode side from which water can migrate to the cathode side of the cell via electroosmotic drag. For an effective overall cooling, water distribution over the surface of the nickel foam has to be uniform to avoid creation of hotspots within the cell. A prototype PEMFC structure was constructed modeled after a 35 kW electrical output PEMFC stack. Water was sprayed on the nickel metal foam flow-field using two types of nozzle spray, giving conical fog type flow and flat fan type flow. A detailed investigation of the distribution pattern of water over the surface of the nickel metal flow field was conducted. The motive behind the investigation was to determine if design parameters such as type of water flow from nozzles, vertical location of the water nozzles above the flowfield, area of the nozzles, or operating variables such as reactant gas flow had any effect on water distribution over the surface of the Ni-metal foam flow field. It was found that the design parameters (types of flow, area and location of the nozzle) had a direct impact on the distribution of water in the nickel metal foam. However, the operating variable, reactant gas flow, showed no effect on the water distribution pattern in the Ni-foam.

Al-Asad, Dawood Khaled Abdullah

2006-08-01T23:59:59.000Z

66

Improvements in solid desiccant cooling  

Science Conference Proceedings (OSTI)

The DINC (Direct-Indirect Evaporative Cooling) cycle was proposed in 1986 by Texas A and M researchers. The idea was to combine the benefits of direct and indirect evaporative cooling with desiccant dehumidifying using a rotating solid silica-gel dehumidifier. Recent parametric studies completed for the Texas Energy Research in Applications Program have developed a computer design for a nominal 3-ton system that would minimize the energy consumption (both thermal and electric) while maintaining a sensible heat ratio of 75% or less. That optimum design for the original 1986 DINC cycle was modified to improve its energy efficiency. The modifications described in this paper were: (1) staging the desiccant regeneration air and (2) recirculation of the primary air to the secondary side of the indirect evaporative cooling. Computer simulations were run to study the effect of the modifications on the performance of the system. American Refrigeration Institute (AIR) standard conditions (Ambient air at 35C, 40% R.H. and Room air at 26.7C, 50% R.H.) were used for all the modifications. Results were also compared to the familiar Pennington (ventilation) cycle. The study indicated that recirculating the indirect evaporative cooler air only degenerated the performance. However, staging a portion of the regeneration air could improve the thermal coefficient of Performance by 25% over the non-staged DINC cycle. Compared to a similar staged-regeneration Pennington cycle it is a 16% improvement in thermal COP and the sensible heat ratio was 70%.

Waugaman, D.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-01-01T23:59:59.000Z

67

Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility  

SciTech Connect

The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired ..delta..p/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200..mu.. resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 10/sup 6/ A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A.

Fast, R.; Grimson, J.; Kephart, R.

1982-10-01T23:59:59.000Z

68

Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)  

SciTech Connect

This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

Kozubal, E.

2013-02-01T23:59:59.000Z

69

Alternate Cooling Methods for Industrial Plants  

E-Print Network (OSTI)

Cooling in industrial facilities has traditionally been performed by mechanical vapor compression units. While it remains the standard, recent concerns with the rising cost of electricity and environmental legislation restricting or outlawing CFC refrigerants has caused many plants to evaluate existing cooling methods. This paper presents case studies on alternate cooling methods used for space conditioning at several different industrial facilities. Methods discussed include direct and indirect evaporative, desiccant, and absorption cooling. Cooling effectiveness, operating cost and investment are also presented. Data for this evaluation was collected from clients served by Georgia Tech's Industrial Energy Extension Service, a state-sponsored energy conservation assistance program.

Brown, M.; Moore, D.

1990-06-01T23:59:59.000Z

70

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, March 1985--September 1985  

DOE Green Energy (OSTI)

The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

Cunningham, W.A.; Migon, G.V.

1985-12-31T23:59:59.000Z

71

Energy Basics: Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the...

72

Water augmented indirectly-fired gas turbine systems and method  

SciTech Connect

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

73

Water augmented indirectly-fired gas turbine system and method  

DOE Patents (OSTI)

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a high driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1000{degrees}C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, T.F.; Parsons, E.J. Jr.

1991-12-31T23:59:59.000Z

74

Water augmented indirectly-fired gas turbine system and method  

DOE Patents (OSTI)

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a high driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1000[degrees]C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, T.F.; Parsons, E.J. Jr.

1991-01-01T23:59:59.000Z

75

Evaporative Coolers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Coolers Evaporative Coolers Evaporative Coolers July 1, 2012 - 6:51pm Addthis Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of Public Domain Photos. Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of Public Domain Photos. What does this mean for me? If you live in a warm, dry climate, you can save money on utility bills and stay comfortable during the cooling season by installing an evaporative cooler. Evaporative coolers add humidity to indoor air, a benefit in dry, warm climates. Unlike air conditioners that recirculate air, an evaporative cooler

76

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these...

77

Measure Guideline: Evaporative Condensers  

SciTech Connect

The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

German, A.; Dakin, B.; Hoeschele, M.

2012-03-01T23:59:59.000Z

78

Desiccant Cooling Systems - A Review  

E-Print Network (OSTI)

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160F, can be achieved using natural gas or by solar systems. Comfort is achieved by reducing the moisture content of air by a solid or liquid desiccant and then reducing the temperature in an evaporative cooler (direct or indirect). Another system is one where the dehumidifier removes enough moisture to meet the latent portion of the load while the sensible portion is met by a vapor compression cooling system; desiccant regeneration is achieved by using the heat rejected from the condenser together with other thermal sources. At present, residential desiccant cooling systems are in actual operation but are more costly than vapor compression systems, resulting in relatively long payback periods. Component efficiencies need to be improved, particularly the efficiency of the dehumidifier.

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

79

Guide to Minimizing Compress-based Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling (direct or indirect), or various liquid cooled solutions. In addition to weather data, the Green Grid organization has developed a free cooling map tool to aid in...

80

Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine  

DOE Green Energy (OSTI)

Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement to AIr2AIr® technology Improvement to AIr2AIr® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

82

A computer simulation appraisal of non-residential low energy cooling systems in California  

SciTech Connect

An appraisal of the potential performance of different Low Energy Cooling (LEC) systems in nonresidential buildings in California is being conducted using computer simulation. The paper presents results from the first phase of the study, which addressed the systems that can be modeled, with the DOE-2.1E simulation program. The following LEC technologies were simulated as variants of a conventional variable-air-volume system with vapor compression cooling and mixing ventilation in the occupied spaces: Air-side indirect and indirect/direct evaporative pre-cooling. Cool beams. Displacement ventilation. Results are presented for four populous climates, represented by Oakland, Sacramento, Pasadena and San Diego. The greatest energy savings are obtained from a combination of displacement ventilation and air-side indirect/direct evaporative pre-cooling. Cool beam systems have the lowest peak demand but do not reduce energy consumption significantly because the reduction in fan energy is offse t by a reduction in air-side free cooling. Overall, the results indicate significant opportunities for LEC technologies to reduce energy consumption and demand in nonresidential new construction and retrofit.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-05-17T23:59:59.000Z

83

Simulation and study of thermal performance of liquid desiccant cooling cycle configurations  

E-Print Network (OSTI)

Five configurations of a 3-ton liquid desiccant cooling cycle were simulated and analyzed on a digital computer. Algebraic equations were developed for the dry bulbtemperatures and humidity ratios at different locations in the systems and solved using a finite difference scheme. The simulations were done at steady state and standard ASHRAE indoor and outdoor conditions. The study compared thermal performance of these five system configurations consisting of a direct evaporative cooler, indirect evaporative cooler(s), liquid desiccant packed dehumidifying tower, and air-to-air heat exchanger. Constant effectiveness of 0.85 and 0.9 were assumed for the direct evaporative cooler and air-to-air heat exchanger respectively. The performance of these five cycles is judged by the thermal Coefficient of Performance (COP). The Sensible Heat Ratio (SHR) is used to quantify the ratio of sensible cooling provided to the total cooling done (sensible plus latent).

Dhir, Rajesh

1995-01-01T23:59:59.000Z

84

Hydronic rooftop cooling systems  

DOE Patents (OSTI)

A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

2008-01-29T23:59:59.000Z

85

Convection-Evaporation Feedback in the Equatorial pacific  

Science Conference Proceedings (OSTI)

The coupling between convection and surface evaporation is investigated to assess the importance of evaporative cooling in regulating the tropical sea surface temperature. It is found that such a coupling is scale dependent. On timescales of ...

Guang Jun Zhang; V. Ramanathan; Michael J. McPhaden

1995-12-01T23:59:59.000Z

86

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

87

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

88

"Increasing Solar Panel Efficiency And Reliability By Evaporative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks...

89

Analysis of Evaporation Data From Heated Ponds  

Science Conference Proceedings (OSTI)

Controlled field experiments have improved understanding of the role evaporation plays in the thermal performance and water consumption of utility cooling ponds. The data show significant effects of water surface temperature, fetch or wind direction, and pond sheltering.

1987-04-27T23:59:59.000Z

90

DRIFT : a numerical simulation solution for cooling tower drift eliminator performance  

E-Print Network (OSTI)

A method for the analysis of the performance of standard industrial evaporative cooling tower drift

Chan, Joseph Kwok-Kwong

91

Shading and Cooling: Impacts of Solar Control and Windows on Indoor Airflow  

E-Print Network (OSTI)

movementforthermal comfort:evaporativecoolingislesswind?drivencoolingacceptable forthermalcomfort? Whatiswind?drivencoolingacceptableforthermalcomfort?

Hildebrand, Penapa Wankaeo

2012-01-01T23:59:59.000Z

92

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network (OSTI)

can often be met by cooling towers, heat exchange with theradiant surfaces, and cooling towers that chill water toby evaporative chillers or cooling towers) and/or night

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

93

Passive containment cooling system  

DOE Patents (OSTI)

A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

1991-01-01T23:59:59.000Z

94

Description and cost analysis of a deluge dry/wet cooling system.  

SciTech Connect

The use of combined dry/wet cooling systems for large base-load power plants offers the potential for significant water savings as compared to evaporatively cooled power plants and significant cost savings in comparison to dry cooled power plants. The results of a detailed engineering and cost study of one type of dry/wet cooling system are described. In the ''deluge'' dry/wet cooling method, a finned-tube heat exchanger is designed to operate in the dry mode up to a given ambient temperature. To avoid the degradation of performance for higher ambient temperatures, water (the delugeate) is distributed over a portion of the heat exchanger surface to enhance the cooling process by evaporation. The deluge system used in this study is termed the HOETERV system. The HOETERV deluge system uses a horizontal-tube, vertical-plate-finned heat exchanger. The delugeate is distributed at the top of the heat exchanger and is allowed to fall by gravity in a thin film on the face of the plate fin. Ammonia is used as the indirect heat transfer medium between the turbine exhaust steam and the ambient air. Steam is condensed by boiling ammonia in a condenser/reboiler. The ammonia is condensed in the heat exchanger by inducing airflow over the plate fins. Various design parameters of the cooling system have been studied to evaluate their impact on the optimum cooling system design and the power-plant/utility-system interface. Annual water availability was the most significant design parameter. Others included site meteorology, heat exchanger configuration and air flow, number and size of towers, fan system design, and turbine operation. It was concluded from this study that the HOETERV deluge system of dry/wet cooling, using ammonia as an intermediate heat transfer medium, offers the potential for significant cost savings compared with all-dry cooling, while achieving substantially reduced water consumption as compared to an evaporatively cooled power plant. (LCL)

Wiles, L.E.; Bamberger, J.A.; Braun, D.J.; Braun, D.J.; Faletti, D.W.; Willingham, C.E.

1978-06-01T23:59:59.000Z

95

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Desiccant Enhanced Evaporative Air Conditioning Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system. DEVAP uses 90 percent less electricity and up to 80 percent less

96

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

97

On the evaporation of ammonium sulfate solution  

SciTech Connect

Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

2009-07-16T23:59:59.000Z

98

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

99

JILA Physicists Achieve Elusive 'Evaporative Cooling' of ...  

Science Conference Proceedings (OSTI)

... new X-Wing, which opened earlier this year. ... pulses that tweak the molecules' energy states to ... are affected, and which molecular energies to cull. ...

2013-01-08T23:59:59.000Z

100

Direct Evaporative Precooling Model and Analysis  

SciTech Connect

Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

Shen, Bo [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL; Craddick, William G [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A model-based predictive supervisory controller for multi-evaporator HVAC systems  

Science Conference Proceedings (OSTI)

Multi-evaporator vapor compression cooling systems are representative of the complex, distributed nature of modern HVAC systems. Earlier research efforts focused on the development of a decentralized control architecture for individual evaporators that ...

Matthew S. Elliott; Bryan P. Rasmussen

2009-06-01T23:59:59.000Z

102

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

103

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

DOE Green Energy (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

104

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

105

Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

106

Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

107

Energy Efficient, Evaporative Desalination Using ...  

Energy Efficient, Evaporative Desalination Using Superhydrophobic (SH) Technology Evaporative desalination is a simple and easy way to convert salt ...

108

Numerical Investigations of the Roles of Radiative and Evaporative Feedbacks in Stratocumulus Entrainment and Breakup  

Science Conference Proceedings (OSTI)

When the surface buoyancy flux is small and the shear is weak, turbulence circulations within a stratus-topped boundary layer are driven by two buoyancy-generating processes at cloud top: radiative cooling and evaporative cooling. These two ...

Chin-Hoh Moeng; Don H. Lenschow; David A. Randall

1995-08-01T23:59:59.000Z

109

Indirection and computer security.  

SciTech Connect

The discipline of computer science is built on indirection. David Wheeler famously said, 'All problems in computer science can be solved by another layer of indirection. But that usually will create another problem'. We propose that every computer security vulnerability is yet another problem created by the indirections in system designs and that focusing on the indirections involved is a better way to design, evaluate, and compare security solutions. We are not proposing that indirection be avoided when solving problems, but that understanding the relationships between indirections and vulnerabilities is key to securing computer systems. Using this perspective, we analyze common vulnerabilities that plague our computer systems, consider the effectiveness of currently available security solutions, and propose several new security solutions.

Berg, Michael J.

2011-09-01T23:59:59.000Z

110

An Analysis of the Effect of Local Heat Advection on Evaporation over Wet and Dry Surface Strips  

Science Conference Proceedings (OSTI)

The effect of local advection on evaporation and Bowen ratio over alternating crosswind infinite dry-warm and wet-cool surface strips (patches), by redistribution of surface heat, is analysed. The analysis shows that evaporation over the region ...

Ya Guo; Peter H. Schuepp

1994-05-01T23:59:59.000Z

111

Design of a Solar Thermal Powered Cooling System.  

E-Print Network (OSTI)

??Abstract The main objective of the thesis was to design a mechanical structure for a desiccant evaporative cooling, to apply solar thermal powered air conditioning (more)

Hurri, Olli

2011-01-01T23:59:59.000Z

112

Passive cooling system for a vehicle - Energy Innovation Portal  

The passive cooling system includes one or more heat pipes (112) having an evaporator section ... Building Energy Efficiency; ... Solar Thermal; Startup America;

113

Comparative evaluation of cooling tower drift eliminator performance  

E-Print Network (OSTI)

The performance of standard industrial evaporative cooling tower drift eliminators is analyzed using experiments and numerical simulations. The experiments measure the

Chan, Joseph Kwok-Kwong

114

Solar Desiccant Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Desiccant Cooling Solar Desiccant Cooling Speaker(s): Paul Bourdoukan Date: December 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil The development of HVAC systems is a real challenge regarding its environmental impact. An innovative technique operating only by means of water and solar energy, is desiccant cooling. The principle is evaporative cooling with the introduction of a dehumidification unit, the desiccant wheel to control the humidity levels. The regeneration of the desiccant wheel requires a preheated airstream. A solar installation is a very interesting option for providing the preheated airstream. In France, at the University of La Rochelle, and at the National Institute of Solar Energy (INES), the investigation of the solar desiccant cooling technique has been

115

User's Manual: Cooling-Tower-Plume Prediction Code  

Science Conference Proceedings (OSTI)

Utilities planning to build generating plants that use evaporative cooling are required to estimate potential seasonal and annual environmental effects of cooling-tower plumes. An easy-to-use computerized method is now available for making such estimates.

1984-04-01T23:59:59.000Z

116

Soluble Substances and Evaporation  

NLE Websites -- All DOE Office Websites (Extended Search)

Soluble Substances and Evaporation Soluble Substances and Evaporation Name: JD Status: student Grade: 9-12 Location: FL Country: New Zealand Date: Winter 2011-2012 Question: Do soluble substances evaporate with the water? Replies: JD, As a general rule, no. If the soluble substance is a solid, then its boiling point is well above that of water, so it cannot possibly boil off. If the substance is a liquid, it may have a boiling point that is below that of water and will boil off at a lower temperature than water. If the boiling point is higher than that of water, than it will boil off after the water has evaporated. Some substances, like ethanol for example, form an "azeotrope" with water. The combination of ethanol and water form a tight intermolecular connection that makes the two substances boil off at the same time.

117

A New Assessment of the Aerosol First Indirect Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

New Assessment of the Aerosol First Indirect Effect New Assessment of the Aerosol First Indirect Effect Shao, Hongfei Florida State University Liu, Guosheng Florida State University Category: Aerosols The aerosol first indirect effect is known to cool the Earth radiatively. However, its magnitude is very uncertain; large discrepancies exist among the observed values published in the literature. In this study, we first survey the published values of those parameters used for describing the first indirect effect. By analyzing the discrepancies among these values, we show that the first indirect effect has been overestimated by many investigators due to an improper parameter being used. Therefore, we introduce a more meaningful parameter to measure this effect. We estimated the first indirect effect using the new parameter based on observational

118

Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: A report from California  

E-Print Network (OSTI)

performance analysis tool Evaporative condenser cooling Optimized air conditioners Indirect/direct evaporative coolers Daylighting tools and controls Commercial

Vine, Edward L.

2000-01-01T23:59:59.000Z

119

Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: A report from California  

E-Print Network (OSTI)

condenser cooling Optimized air conditioners Indirect/direct evaporative coolers Daylighting tools and controls Commercial

Vine, Edward L.

2000-01-01T23:59:59.000Z

120

Hot air drum evaporator  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Personal cooling apparatus and method  

DOE Patents (OSTI)

A portable lightweight cooling apparatus for cooling a human body is disclosed, having a channeled sheet which absorbs sweat and/or evaporative liquid, a layer of highly conductive fibers adjacent the channeled sheet; and, an air-moving device for moving air through the channeled sheet, wherein the layer of fibers redistributes heat uniformly across the object being cooled, while the air moving within the channeled sheet evaporates sweat and/or other evaporative liquid, absorbs evaporated moisture and the uniformly distributed heat generated by the human body, and discharges them into the environment. Also disclosed is a method for removing heat generated by the human body, comprising the steps of providing a garment to be placed in thermal communication with the body; placing a layer of highly conductive fibers within the garment adjacent the body for uniformly distributing the heat generated by the body; attaching an air-moving device in communication with the garment for forcing air into the garment; removably positioning an exchangeable heat sink in communication with the air-moving device for cooling the air prior to the air entering the garment; and, equipping the garment with a channeled sheet in communication with the air-moving device so that air can be directed into the channeled sheet and adjacent the layer of fibers to expell heat and moisture from the body by the air being directed out of the channeled sheet and into the environment. The cooling system may be configured to operate in both sealed and unsealed garments.

Siman-Tov, Moshe (Knoxville, TN); Crabtree, Jerry Allen (Knoxville, TN)

2001-01-01T23:59:59.000Z

122

Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant  

DOE Patents (OSTI)

A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

2006-02-07T23:59:59.000Z

123

Mapping evaporate minerals by ASTER  

Science Conference Proceedings (OSTI)

Evaporate minerals are important industrial raw materials that have been used in diverse industries for many years. As one of the most extensively used evaporate minerals, gypsum is an important raw material in the construction, agriculture, textile, ...

N. Serkan Oztan; M. Lutfi Suzen

2011-03-01T23:59:59.000Z

124

Falling film evaporator  

DOE Patents (OSTI)

A falling film evaporator including a vertically oriented pipe heated exteriorly by a steam jacket and interiorly by a finned steam tube, all heating surfaces of the pipe and steam tube being formed of a material wet by water such as stainless steel, and packing within the pipe consisting of Raschig rings formed of a material that is not wet by water such as polyvinylidene fluoride.

Bruns, Lester E. (Kennewick, WA)

1976-01-01T23:59:59.000Z

125

Air-Cooled Condenser Design, Specification, and Operation Guidelines  

Science Conference Proceedings (OSTI)

In contrast to once-through and evaporative cooling systems, use of the air-cooled condenser (ACC) for heat rejection in steam electric power plants has historically been very limited, especially in the United States. However, greater industry focus on water conservation - combined with continued concern over the environmental effects of once-through and evaporative cooling - will almost certainly increase interest in ACC applications. While operating experience and performance data are, to some extent, ...

2005-12-05T23:59:59.000Z

126

Bioechnology of indirect liquefaction  

DOE Green Energy (OSTI)

The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

1990-05-07T23:59:59.000Z

127

Best Management Practice: Cooling Tower Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management October 8, 2013 - 9:39am Addthis Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower primarily through evaporation. Therefore, by design, cooling towers consume significant amounts of water. Overview The thermal efficiency and longevity of the cooling tower and equipment used to cool depend on the proper management of water recirculated through the tower. Water leaves a cooling tower system in any one of four ways: Evaporation: This is the primary function of the tower and is the method that transfers heat from the cooling tower system to the

128

Oriented spray-assisted cooling tower  

Science Conference Proceedings (OSTI)

Apparatus useful for heat exchange by evaporative cooling when employed in conjunction with a conventional cooling tower. The arrangement includes a header pipe which is used to divert a portion of the water in the cooling tower supply conduit up stream of the cooling tower to a multiplicity of vertical pipes and spray nozzles which are evenly spaced external to the cooling tower so as to produce a uniform spray pattern oriented toward the central axis of the cooling tower and thereby induce an air flow into the cooling tower which is greater than otherwise achieved. By spraying the water to be cooled towards the cooling tower in a region external to the cooling tower in a manner such that the spray falls just short of the cooling tower basin, the spray does not interfere with the operation of the cooling tower, proper, and the-maximum increase in air velocity is achieved just above the cooling tower basin where it is most effective. The sprayed water lands on a concrete or asphalt apron which extends from the header pipe to the cooling tower basin and is gently sloped towards the cooling tower basin such that the sprayed water drains into the basin. By diverting a portion of the water to be cooled to a multiplicity of sprays external to the cooling tower, thermal performance is improved. 4 figs.

Bowman, C.F.

1995-04-18T23:59:59.000Z

129

A computer simulation appraisal of non-residential low energy cooling systems in California  

E-Print Network (OSTI)

evaporative pre-cool on a vapor compression system. H eatingventilation with vapor compression system. Heating Coilschematic of the baseline vapor compression built-up system.

Bourassa, Norman; Haves, Philip; Huang, Joe

2002-01-01T23:59:59.000Z

130

Stochastic Cooling  

Science Conference Proceedings (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

131

Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.  

SciTech Connect

Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

2006-11-27T23:59:59.000Z

132

Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning  

SciTech Connect

NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

2011-01-01T23:59:59.000Z

133

Effects of Diabatic Cooling in a Shear Flow with a Critical Level  

Science Conference Proceedings (OSTI)

The response of a two-dimensional, stably stratified shear flow to diabatic cooling, which represents the evaporative cooling of falling precipitation in the subcloud layer, is examined using both a linear analytical theory and a nonlinear ...

Yuh-Lang Lin; Hye-Yeong Chun

1991-12-01T23:59:59.000Z

134

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

135

Vacuum flash evaporated polymer composites  

DOE Patents (OSTI)

A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

1997-01-01T23:59:59.000Z

136

Passive Cooling System for a Vehicle  

DOE Patents (OSTI)

A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

Hendricks, T. J.; Thoensen, T.

2005-11-15T23:59:59.000Z

137

Response of a Stably Stratified Flow to Cooling  

Science Conference Proceedings (OSTI)

The spreading of the low-level cold pool produced by evaporation of precipitation is generally acknowledged to be an important mechanism for the regeneration of moist convection. We show that cooling a stably stratified nocturnal boundary layer ...

David J. Raymond; Richard Rotunno

1989-09-01T23:59:59.000Z

138

Cooling of Entrained Parcels in a Large-Eddy Simulation  

Science Conference Proceedings (OSTI)

The relative importance, for cloud-top entrainment, of the cooling rates due to longwave radiation, evaporation, and mixing was assessed through analysis of the results produced by a Lagrangian parcel-tracking model (LPTM) incorporated into a ...

Takanobu Yamaguchi; David A. Randall

2012-03-01T23:59:59.000Z

139

2011 CERN Waste Heat EN-CV February 28th 2011 Power Dissipated by the Cooling Towers  

E-Print Network (OSTI)

2011 CERN Waste Heat EN-CV February 28th 2012 1 2011 Power Dissipated by the Cooling Towers The cooling circuits at CERN use evaporative open cooling towers to discharge into the atmosphere the heat towers per complex depend on the amount of cooling power required. LHC one cooling tower per even LHC

Wu, Sau Lan

140

Feasibility of a hybrid cooling system in a thermal power plant  

Science Conference Proceedings (OSTI)

The feasibility of introducing a hybrid cooling system in a thermal power plant is investigated with an aim to reduce water use with a minimum impact on plant performance. A number of cooling systems have been modelled including existing evaporative ... Keywords: cooling, hybrid cooling, power station, sustainable water consumption

C. R. Williams; M. G. Rasul

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Indirect measurement of the electrocaloric effect  

E-Print Network (OSTI)

Zr0.95Ti0.05O 3 𝑞 heat ?𝑞𝐼𝑆𝑂 heat change during isothermal process 𝑄 charge 𝑄𝑣𝑎𝑐 charge on electrode of empty capacitor 𝜌 material density / charge density 𝜌𝑓𝑟𝑒𝑒 free-charge density 𝑆 entropy 𝑠 entropy per unit... in the electrocaloric effect. However, in 2006, Alex Mischenko et al. [5] published a paper that made use of the indirect method and suggested cooling in zirconium-rich PZT 95/05 (PbZr0.95Ti0.05O 3) of up to 12 C, starting from 226 C. This reignited enthusiasm...

Young, James Scott

2012-03-06T23:59:59.000Z

142

Passive cooling program element. [Skytherm system  

DOE Green Energy (OSTI)

An outline of the Passive Cooling R and D program element is presented with significant technical achievements obtained during FY 1978. Passive cooling mechanisms are enumerated and a survey of ongoing projects is made in the areas of cooling resource assessment and system development. Results anticipated within the next fiscal year are discussed and the direction of the R and D effort is indicated. Passive cooling system development has centered primarily about the Skytherm system. Two projects are underway to construct such systems in regions having a higher cooling load than the original Skytherm site at Atascadero, California. Component development and commercialization studies are major goals of these two projects and a third project at Atascadero. A two-story passive cooling test module has been built to study radiative, evaporative and convective cooling effects in a structure making use of the thermosiphon principle, but not equipped with a roof pond.

Wahlig, M.; Martin, M.

1978-09-01T23:59:59.000Z

143

Program on Technology Innovation: Review of Advanced Cooling Tower Technologies with Reduced Cooled Water Temperature and Evaporatio  

Science Conference Proceedings (OSTI)

This report reviews current technologies and solutions for advanced cooling towers with reduced cooled water temperature and evaporation losses. This is the first report for the dew-point cooling tower fill development project, funded by the Electric Power Research Institute (EPRI) Program on Technology Innovation, Water Conservation program. It is prepared by the Gas Technology Institute (GTI).This review is based on a literature and patent survey; it summarizes advancements in cooling ...

2013-03-29T23:59:59.000Z

144

The evaporative gas turbine (EGT) cycle  

SciTech Connect

Humidification of the flow through a gas turbine has been proposed in a variety of forms. The STIG plant involves the generation of steam by the gas turbine exhaust in a heat recovery steam generator (HRSG), and its injection into or downstream of the combustion chamber. This increases the mass flow through the turbine and the power output from the plant, with a small increase in efficiency. In the evaporative gas turbine (or EGT) cycle, water is injected in the compressor discharge in a regenerative gas turbine cycle (a so-called CBTX plant--compressor [C], burner [B], turbine [T], heat exchanger [X]); the air is evaporatively cooled before it enters the heat exchanger. While the addition of water increases the turbine mass flow and power output, there is also apparent benefit in reducing the temperature drop in the exhaust stack. In one variation of the basic EGT cycle, water is also added downstream of the evaporative aftercooler, even continuously in the heat exchanger. There are several other variations on the basic cycle (e.g., the cascaded humidified advanced turbine [CHAT]). The present paper analyzes the performance of the EGT cycle. The basic thermodynamics are first discussed, and related to the cycle analysis of a dry regenerative gas turbine plant. Subsequently some detailed calculations of EGT cycles are presented. The main purpose of the work is to seek the optimum pressure ratio in the EGT cycle for given constraints (e.g., fixed maximum to minimum temperature). It is argued that this optimum has a relatively low value.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1998-04-01T23:59:59.000Z

145

Dual manifold heat pipe evaporator  

DOE Patents (OSTI)

An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

Adkins, D.R.; Rawlinson, K.S.

1994-01-04T23:59:59.000Z

146

Dual manifold heat pipe evaporator  

DOE Patents (OSTI)

An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

1994-01-01T23:59:59.000Z

147

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

148

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

149

Radar Measurement of Cooling Tower Drift  

Science Conference Proceedings (OSTI)

A method of radar measurement of drift, generated by the wet cooling towers of power plants, is proposed. The water given off by the evaporative towers consists of two kinds of droplets: the recondensation dropletsgenerally less than 20 ?m in ...

Henri Sauvageot

1989-09-01T23:59:59.000Z

150

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network (OSTI)

Over the past decade, the water requirements for cooling industrial manufacturing processes have changed dramatically. Once-through cooling has been largely replaced by open recirculating cooling water methods. This approach reduces water consumption by increasing the use of recycled water. Simplistically, the circulating cooling water flows through heat exchanger equipment and is cooled by passing through a cooling tower. The recycled water is cooled by evaporation of some of the circulating water as it passes through the tower. As a result of the evaporation process, the dissolved solids in the water become concentrated. The evaporated water is replaced by fresh makeup water. The dissolved solids content of the water is maintained by the rate of water discharge (blowdown). As the amount of dissolved solids increases, their solubility is exceeded and the solids tend to precipitate from the cooling water. The precipitated scale adheres to heat transfer surfaces and reduces heat transfer efficiency. In order to achieve zero discharge of water, it is paramount that the potential for scale formation and deposition be minimized. This can be accomplished through physical separation of scale-forming ions and particulate matter. Two widely used mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion.

Boffardi, B. P.

1996-04-01T23:59:59.000Z

151

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

152

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

Weldon, William F. (Austin, TX)

1996-01-01T23:59:59.000Z

153

FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects  

Science Conference Proceedings (OSTI)

The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.

Koch, D

2011-09-21T23:59:59.000Z

154

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

155

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

156

Abstract Radiative Cooling in Hot Humid Climates  

E-Print Network (OSTI)

Passive radiative cooling of buildings has been an underachieving concept for decades. The few deployments have generally been in dry climates with low solar angles. The greatest need for cooling is in the tropics. The high humidity endemic to many of these regions severely limits the passive cooling available per radiative area. To wrest temperature relief from humid climates, not just nocturnal cooling but solar irradiance, both direct and indirect, must be addressed. This investigation explores the extent to which thermal radiation can be used to cool buildings in the tropics. It concludes that inexpensive materials could be fabricated into roof panels providing passive cooling day and night in tropical locations with an unobstructed view of sky.

Aubrey Jaffer

2006-01-01T23:59:59.000Z

157

Applications of Mechanical Vapor Recompression to Evaporation and Crystallization  

E-Print Network (OSTI)

Over the past 10-15 years, mechanical vapor recompression (MVR) has become the preferred system in many industrial evaporation and crystallization applications, because of its economy and simplicity of operation. In most instances, the need for steam to provide heat for the evaporation and cooling water for condensing the overhead vapors is virtually eliminated; and, at the same time, a wide range of turndown is available. An MVR is generally found to be the most economical choice when there is no boiler plant available or when electrical power is priced competitively in comparison to steam. Vapor recompression is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity, steam turbine or a gas turbine. The use of an MVR Evaporator/Crystallizer provides a comparatively low cost means of expanding the production capability of an existing evaporation plant either by adding a "stand alone" unit or by reconfiguring a multiple-effect system into several single-effect MVR's.

Outland, J. S.

1995-04-01T23:59:59.000Z

158

Micro loop heat pipe evaporator coherent pore structures  

E-Print Network (OSTI)

Loop heat pipes seem a promising approach for application in modern technologies where such thermal devices as cooling fans and radiators cannot satisfy overall requirements. Even though a loop heat pipe has a big potential to remove the thermal energy from a high heat flux source, the heat removal performance of heat pipes cannot be predicted well since a first principles of evaporation has not been established. An evaporation model based on statistical rate theory has been recently suggested by Ward and developed for a single pore by Oinuma. A loop heat pipe with coherent pore wick structure has been proposed as a design model. To limit product development risk and to enhance performance assurance, design model features and performance parameters have been carefully reviewed during the concept development phase and have been deliberately selected so as to be well-founded on the limited existing loop heat pipe knowledge base. A first principles evaporation model has been applied for evaporator geometry optimization. A number of iteration calculations have been performed to satisfy design and operating limitations. A set of recommendations for design optimization has been formulated. An optimal model has been found and proposed for manufacture and experimental investigation.

Alexseev, Alexandre Viktorovich

2003-08-01T23:59:59.000Z

159

Practical Estimates of Lake Evaporation  

Science Conference Proceedings (OSTI)

Practical estimates of lake evaporation must rely on data that can be observed in the land environment. This requires the ability to take into account the changes in the temperature and humidity that occur when the air passes from the land to the ...

F. I. Morton

1986-03-01T23:59:59.000Z

160

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants with little or no internal loads. The evaporative roof cooling system keeps the building from heating up during the day by misting the roof surface with a fine spray of water -just enough to evaporate. This process keeps the roof surface at 90 levels instead of 150 and knocks out the radiant heat transfer from the roof into the building. The system is controlled by a thermostat and automatically shuts off at night or when the roof surface cools below the set point. The same control system turns on exhaust fans to load the building with cool night air. Air circulators are installed to provide air movement on workers during the day. Best results are achieved by closing dock doors and minimizing hot air infiltration during the day. The typical application will maintain inside temperatures that will average 84 -86 when outside ambient temperatures range from 98 -100. Many satisfied users will attest to marked improvements in employee moral and productivity, along with providing safe storage temperatures for many products. Installed "Flywheel" systems' costs are usually less than 20% of comparable air-conditioning equipment. By keeping a built up roof cooler, the system will eliminate thermal shock and extend roof life while reducing maintenance.

Abernethy, D.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Indirect liquefaction processes. Technical report  

SciTech Connect

This report examines the technology feasibility of the various coal gasification and indirect liquefaction technologies. Also included is the best-estimate costs for methanol and gasoline using the various technologies with three different coal/feedstocks by critically analyzing publicly available design studies and placing them on a common technical/financial basis. The following conclusion is that methanol from coal is cheaper than gasoline via either the Mobile MTG process or the Fisher/Tropsch process.

McGuckin, J.

1982-02-01T23:59:59.000Z

162

A review of desiccant cooling systems  

SciTech Connect

This paper describes recent published design advances that have been made in desiccant cooling systems. In desiccant cooling cycles, the desiccant reduces the humidity of the air by removing moisture from the air. Then the temperature is reduced by other components such as heat exchangers, evaporative coolers, or conventional cooling coils. The main advantage that desiccant cooling systems offer is the capability of using low-grade thermal energy. Desiccant cooling systems for residential and commercial applications are now being used to reduce energy-operating costs. However, the initial costs are comparatively high. The focus of research for the past decade has been to develop desiccant systems with a high coefficient of performance. Recent studies have emphasized computer modeling and hybrid systems that combine desiccant dehumidifiers with conventional systems.

Waugaman, D.G.; Kini, A.; Kettleborough, C.F. (Texas A and M Univ., College Station (United States))

1993-03-01T23:59:59.000Z

163

A cool disk in the Galactic Center?  

E-Print Network (OSTI)

We study the possibility of a cool disk existing in the Galactic Center in the framework of the disk-corona evaporation/condensation model. Assuming an inactive disk, a hot corona should form above the disk since there is a continuous supply of hot gas from stellar winds of the close-by massive stars. Whether the cool disk can survive depends on the mass exchange between the disk and corona. If the disk-corona interaction is dominated by evaporation and the rate is larger than the Bondi accretion rate in the Galactic Center, the disk will be depleted within a certain time period and no persistent disk will exist. On the other hand, if the interaction results in hot gas steadily condensing into the disk, an inactive cool disk might survive. For this case we further investigate the Bremsstrahlung radiation from the hot corona and compare it with the observed X-ray luminosity. Our model shows that, for standard viscosity in the corona (alpha=0.3), the mass evaporation rate is much higher than the Bondi accretion rate and the coronal density is much larger than that inferred from Chandra observations. An inactive disk can not survive such strong evaporation. For small viscosity (alphanature.

B. F. Liu; F. Meyer; E. Meyer-Hofmeister

2004-03-18T23:59:59.000Z

164

Cooled railplug  

DOE Patents (OSTI)

The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

Weldon, W.F.

1996-05-07T23:59:59.000Z

165

Iodine retention during evaporative volume reduction  

DOE Patents (OSTI)

An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

1975-11-18T23:59:59.000Z

166

Direct numerical simulation of evaporating droplets  

Science Conference Proceedings (OSTI)

A model for the three-dimensional direct numerical simulation of evaporating, deforming droplets in incompressible flow is presented. It is based on the volume-of-fluid method and is therefore capable of capturing very strong deformations. The evaporation ... Keywords: DNS, Deformed droplets, Evaporation, Multiphase flow, Stefan flow, VOF

Jan Schlottke; Bernhard Weigand

2008-05-01T23:59:59.000Z

167

The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner  

E-Print Network (OSTI)

This paper discusses the measured degradation in performance of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short-tube orifice expansion device. Results are presented here for a series of tests in which the evaporator air flow was reduced from 25 to 90% below what is normally recommended for this air conditioner. At present, very little information is available which quantifies the performance of a residential cooling system operating under degraded conditions such as reduced evaporator air flow. Degraded performance measurements can provide information which could help electric utilities evaluate the potential impact of system-wide maintenance programs.

Palani, M.; O'Neal, D.; Haberl, J.

1992-05-01T23:59:59.000Z

168

Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space  

E-Print Network (OSTI)

We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.

Kourosh Nozari; Behnaz Fazlpour

2006-05-11T23:59:59.000Z

169

Evaporation  

E-Print Network (OSTI)

The Office of Science (SC) is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for the Nations research programs in high-energy physics, nuclear physics, and fusion energy sciences.

An Esnet Perspective; Joint Techs; William E. Johnston; Esnet Department Head; Senior Scientist; Snow Melt

2007-01-01T23:59:59.000Z

170

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network (OSTI)

Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking advantage of seasonal wet bulb temperature fluctuations. The maximum plant output occurs at the average winter wet bulb temperature. Floating cooling is especially suited to base load power plants located in regions with large daily and seasonal wet bulb temperature variations. An example for a geothermal power plant is included in this paper.

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

171

Global Indirect Cost of Corrosion  

Science Conference Proceedings (OSTI)

Table 9   Indirect cost of corrosion for the USA (1998 basis)...76.64 ? ? ? Mining 27.86 ? ? ? Petroleum refining 32.22 ? ? ? Chemical, petrochemical, and pharmaceutical 111.04 ? ? ? Pulp and paper 148.05 ? ? ? Agricultural 126.28 ? ? ? Food processing 123.66 ? ? ? Electronics ? ? ? ? Home appliances 25.25 ? ? ? Subtotal 671.00 Production loss 2.5??5.5 26.84...

172

Diffusion-Controlled Evaporating Completely Wetting Meniscus in a Channel  

E-Print Network (OSTI)

coefficient of grooved heat pipe evaporator walls. Int. J.ranging from micro heat pipes to grooved evaporators. In

Njante, Jean-Pierre

2012-01-01T23:59:59.000Z

173

Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates  

SciTech Connect

This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

Huang, Y.J.; Hanford, J.W.; Wu, H.F.

1992-09-01T23:59:59.000Z

174

Alternatives to compressor cooling in California climates  

SciTech Connect

This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

1991-01-01T23:59:59.000Z

175

Psychrometric Bin Analysis for Alternative Cooling Strategies in Data Centers  

SciTech Connect

Data centers are significant energy users and require continuous cooling to maintain high levels of computing performance. The majority of data centers have direct-expansion cooling which typically accounts for approximately 50% of the energy usage of data centers. However, using typical meteorological year 3 (TMY3) weather data and a simple psychometric bin analysis, alternative cooling strategies using a combination of economizer, evaporative, and supplemental DX cooling have been shown to be applicable in all climate zones in the United States. Average data center cooling energy savings across the U.S. was approximately 80%. Analysis of cooling energy savings is presented for various ASHRAE climate zones. The psychometric bin analysis is conducted for the ASHRAE recommended and allowable operating environment zones, as well as, a modified allowable operating environment. Control strategies are discussed. Finally, examples of energy efficient data centers using alternative cooling strategies are presented.

Metzger, I.; VanGeet, O.; Rockenbaugh, C.; Dean, J.; Kurnik, C.

2011-01-01T23:59:59.000Z

176

"Hot" for Warm Water Cooling  

E-Print Network (OSTI)

liquid cooling, dry cooler, cooling tower 1. INTRODUCTIONsolutions for cooling. Substituting cooling towers,hybrid cooling towers, or dry coolers that provide warmer

Coles, Henry

2012-01-01T23:59:59.000Z

177

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

178

Portable brine evaporator unit, process, and system  

DOE Patents (OSTI)

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

179

A Microcomputer Model of Crossflow Cooling Tower Performance  

E-Print Network (OSTI)

The energy use characteristics of evaporative cooling towers are of interest because, although such towers are widely used in industry, they do require a substantial amount of energy. Evaporative cooling towers are basically large heat exchangers that use both sensible heat transfer and mass transfer to cool. The heat and mass transfer process for a crossflow cooling tower has been modeled on an Apple II microcomputer. Various heat loads or weather conditions can be imposed on a given tower to evaluate its response; moreover, a subprogram can evaluate pressure drop and motor/fan characteristics. Determination of the energy required to operate the tower enables its performance to be compared against energy-saving operations such as variable speed drive or changes in fill height or type.

Reichelt, G. E; Jones, J. W.

1984-01-01T23:59:59.000Z

180

Biofuels and indirect land use change  

E-Print Network (OSTI)

Biofuels and indirect land use change The case for mitigation October 2011 #12;About this study), Malaysian Palm Oil Board, National Farmers Union, Novozymes, Northeast Biofuels Collaborative, Patagonia Bio contributed views on a confidential basis. #12;1Biofuels and indirect land use change The case for mitigation

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Parameterization of the Evaporation of Rainfall  

Science Conference Proceedings (OSTI)

In this study we develop theoretical expressions for the rainfall rate, P(z), and the total evaporation rate from cloud base to a level z below cloud base, E(z). The resultant parameterization for the total evaporation is given by E(z) = CP?(0)?(...

Michael E. Schlesinger; Jai-Ho Oh; Daniel Rosenfeld

1988-10-01T23:59:59.000Z

182

Advanced evaporator technology progress report FY 1992  

SciTech Connect

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

183

Ion-Drop Interaction During Drop Evaporation  

Science Conference Proceedings (OSTI)

As a basic experiment in warm cloud electrification, evaporating large drops were studied as they floated in an ion-rich environment in a vertical wind tunnel. The drops were found to acquire a positive charge during their evaporation, a result ...

Tsutomu Takahashi; Tatsuo Endoh

1983-02-01T23:59:59.000Z

184

Energy Star Building Upgrade Manual Heating and Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

185

Cooling-Tower Performance Prediction and Improvement: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

New data and methods enable engineers to predict and improve the thermal performance of evaporative cooling towers. Current EPRI research focuses on analytic tools that will help utilities avoid costly operating penalties associated with cooling towers that do not meet thermal performance specifications.

1989-12-01T23:59:59.000Z

186

Black Hole Evaporation as a Nonequilibrium Process  

E-Print Network (OSTI)

When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.

Hiromi Saida

2008-11-11T23:59:59.000Z

187

College of Engineering Request for Institutional Waiver of Indirect Cost  

E-Print Network (OSTI)

Investigator Sponsor Project Title Total Direct Costs Total Modified Direct Costs Full Indirect Costs Rate Full Indirect Costs Amount Total Project Costs (with Full IDC) Requested Indirect Costs Rate Requested Indirect Costs Amount Total Project Costs (with req'd IDC) Principal Investigator's Justification for Indirect

Eustice, Ryan

188

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

at the 3rd Annual Solar Heating and Cooling R&D Contractors'been supported by the Solar Heating and Cooling Research andof Energy. 3rd Annual Solar Heating and Cooling R&D

Martin, M.

2011-01-01T23:59:59.000Z

189

On Sea Surface Salinity Skin Effect Induced by Evaporation and Implications for Remote Sensing of Ocean Salinity  

Science Conference Proceedings (OSTI)

The existence of a cool and salty sea surface skin under evaporation was first proposed by Saunders in 1967, but few efforts have since been made to perceive the salt component of the skin layer. With two salinity missions scheduled to launch in ...

Lisan Yu

2010-01-01T23:59:59.000Z

190

Study of Aerosol Indirect Effects in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile...

191

Tankless Coil and Indirect Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system.

192

Indirect and Semi-direct Aerosol Campaign  

Science Conference Proceedings (OSTI)

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's ...

Greg M. McFarquhar; Steven Ghan; Johannes Verlinde; Alexei Korolev; J. Walter Strapp; Beat Schmid; Jason M. Tomlinson; Mengistu Wolde; Sarah D. Brooks; Dan Cziczo; Manvendra K. Dubey; Jiwen Fan; Connor Flynn; Ismail Gultepe; John Hubbe; Mary K. Gilles; Alexander Laskin; Paul Lawson; W. Richard Leaitch; Peter Liu; Xiaohong Liu; Dan Lubin; Claudio Mazzoleni; Ann-Marie Macdonald; Ryan C. Moffet; Hugh Morrison; Mikhail Ovchinnikov; Matthew D. Shupe; David D. Turner; Shaocheng Xie; Alla Zelenyuk; Kenny Bae; Matt Freer; Andrew Glen

2011-02-01T23:59:59.000Z

193

Addressing Water Consumption of Evaporative Coolers with Greywater  

E-Print Network (OSTI)

Refrigeration and Air Conditioning Engineers, Inc. 2009.1999. Evaporative Air-Conditioning: Applications forDirect Evaporative Air Conditioning, Final Report . Davis,

Sahai, Rashmi

2013-01-01T23:59:59.000Z

194

An Indirect Route for Ethanol Production  

DOE Green Energy (OSTI)

The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

Eggeman, T.; Verser, D.; Weber, E.

2005-04-29T23:59:59.000Z

195

An Indirect Route for Ethanol Production  

SciTech Connect

The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

Eggeman, T.; Verser, D.; Weber, E.

2005-04-29T23:59:59.000Z

196

The Temperature of Evaporating Sea Spray Droplets  

Science Conference Proceedings (OSTI)

Evaporating sea spray droplets are often assumed to be at the temperature of a well-ventilated wet-bulb thermometer, Twet. Although this assumption may be accurate enough in practice, it is incorrect on theoretical grounds. Spray droplets have ...

Edgar L. Andreas

1995-04-01T23:59:59.000Z

197

Optimization of hybrid-water/air-cooled condenser in an enhanced turbine  

Open Energy Info (EERE)

Optimization of hybrid-water/air-cooled condenser in an enhanced turbine Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Air-Cooling Project Description The technical approaches are: -UTRC shall develop a lab-based analysis of hybrid-water/air-cooled condensers with minimal water consumption, focusing on combined mist evaporative pre-cooling and mist deluge evaporative cooling technology applied to microchannel heat exchangers. Models to predict evaporative cooling performance will be validated by sub-scale testing. The predicted performance will be compared to that of state-of-the-art commercial evaporative coolers. -UTRC shall analyze the interaction of turbine design and cooling needs and specifically address how an enhanced turbine, which features variable nozzles and diffuser boundary layer suction, would further improve the ORC system performance and enable full utilization of the hybrid-cooled system. UTRC shall design, procure and test the enhanced turbine in an existing 200 kW geothermal ORC system for a technology demonstration. -UTRC shall complete a detailed design of the hybrid-cooled geothermal ORC system with an enhanced turbine that complies with its performance, cost, and quality requirements, and use this system design to prescribe subsystem/component technology requirements and interfaces. UTRC shall optimize UTC's PureCycle® geothermal ORC system integrated with a hybrid-water/air-cooled condenser and an enhanced turbine for net power output, efficiency and water consumption. -UTRC shall analyze the feasibility of addressing pure water supply for hybrid-water/aircooled condenser by using geothermal-driven Liquid-Gap-Membrane-Distillation (LGMD) technology, as an alternative to conventional Reverse Osmosis/De-Ionized treatment.

198

A Wind-Tunnel Study of Wind Effects on Air-Cooled Condensers  

Science Conference Proceedings (OSTI)

Due to increasing competition for fresh water supplies in the future, development of power plants that use a minimum of water is crucial. When minimizing water use in a water-constrained environment, direct dry cooling systems are a good alternative to once-through cooling systems with an evaporative wet cooling tower. The core of any direct dry cooling system is an air-cooled condenser (ACC). A number of studies have shown that wind can negatively impact ACC system performance. Based on these observati...

2011-12-15T23:59:59.000Z

199

'Radio Wave Cooling' Offers New Twist on Laser Cooling  

Science Conference Proceedings (OSTI)

'Radio Wave Cooling' Offers New Twist on Laser Cooling. From NIST Tech Beat: September 13, 2007. ...

2013-07-08T23:59:59.000Z

200

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Flex power perspectives of indirect power system control through...  

Open Energy Info (EERE)

power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect...

202

OCCUPATIONAL COOLING TOWERS  

E-Print Network (OSTI)

HEALTH SCIENCES LIBRARY COOLING TOWERS EMPLOYEE HEALTH B C D F E CHILDREN'S ELEVATORS MEDICAL SCHOOL

Crews, Stephen

203

Hybrid Cooling Systems  

Science Conference Proceedings (OSTI)

Water consumption by power plants has become an increasingly contentious siting issue. In nearly all fossil-fired and nuclear plants, water for plant cooling is by far the greatest water requirement. Therefore, the use of water-conserving cooling systems such as dry or hybrid cooling is receiving increasing attention. This technology overview from the Electric Power Research Institute (EPRI) provides a brief introduction to hybrid cooling systems. As defined in the report, the term "hybrid cooling" refer...

2011-11-23T23:59:59.000Z

204

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

205

STATEMENT OF CONSIDERATIONS REQUEST BY SPX COOLING TECHNOLOGIES, INC. FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPX COOLING TECHNOLOGIES, INC. FOR AN ADVANCE WAIVER OF SPX COOLING TECHNOLOGIES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-NT0005647; W(A)-09-049, CH-1512 The Petitioner, SPX Cooling Technologies, Inc. (SPX), was awarded a cooperative agreement for the performance of work entitled, "Improvement to Air2Air Technology to Reduce Freshwater Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants." In its response to questions 2 and 3 of the petition, SPX states that the purpose of the cooperative agreement is to re-work and test technology of the petitioner related to the Reduction of Freshwater Evaporative Cooling Loss at Coal-Base Thermoelectric Power Plants. Petitioner has filed a patent application entitled, "Fill Pack Assembly and Method with Bonded Sheet Pairs,"

206

Ball feeder for replenishing evaporator feed  

DOE Patents (OSTI)

Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

Felde, D.K.; McKoon, R.H.

1993-03-23T23:59:59.000Z

207

Ball feeder for replenishing evaporator feed  

DOE Patents (OSTI)

Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

Felde, David K. (Oak Ridge, TN); McKoon, Robert H. (San Ramon, CA)

1993-01-01T23:59:59.000Z

208

A Control Scheme of Enhanced Reliability for Multiple Chiller Plants Using Mergerd Building Cooling Load Measurements  

E-Print Network (OSTI)

This paper presents a control scheme which utilizes the enhanced instantaneous cooling load measurements to improve the reliability of chiller sequencing control. The enhanced measurement is obtained by merging two different measurements of building cooling load using data fusion technique. One is the direct cooling load measurement, which is obtained directly using the differential water temperature and water flow rate measurements. The other is the indirect cooling load measurement, which estimates the cooling load using chiller models based on the instantaneous chiller electrical power input and condition measured variables. The control performance of the proposed scheme is validated in this paper.

Wang, S.; Sun, Y.; Huang, G.; Zhu, N.

2008-10-01T23:59:59.000Z

209

Hot air drum evaporator. [Patent application  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, R.L.

1980-11-12T23:59:59.000Z

210

Gas cooling for large commercial buildings  

SciTech Connect

Energy costs typically account for 10% to 20% of the operating costs for commercial buildings. These costs have continued to rise over the past several years notwithstanding the implementation of energy conservation programs. Increasing electric demand charges have been a major cause of the problem, and as capital-intensive nuclear and coal plants under construction are rolled into the rate base, these demand penalties are likely to become more severe. Electric cooling is the major contributor to seasonal and daily electric peaks. The use of natural gas for cooling can provide relief from high peak period electric prices either directly through absorption systems and engine-driven chillers or indirectly via cogeneration and recovered heat-driven absorption cooling. Although a window of opportunity exists for gas cooling in some parts of the country today, technological advancement and cost reduction are required in order for gas cooling to realize widespread applicability. The Gas Research Institute has implemented a comprehensive development program in cooperation with industry to evolve engine-driven chiller systems in the 100-ton and larger size range with gas coefficients of performance of 2.4, first-cost premiums of less than $100/ton, and service intervals of 4000 hours. Maintenance records of several engine-driven systems installed in the early 1970's were studied. System reliability was found to be in-line with HVAC market requirements.

Davidson, K.; Brattin, H.D.

1986-01-01T23:59:59.000Z

211

Compiling for an indirect vector register architecture  

Science Conference Proceedings (OSTI)

The iVMX architecture contains a novel vector register file of up to 4096 vector registers accessed indirectly via a mapping mechanism, providing compatibility with the VMX architecture, and potential for dramatic performance benefits [7]. The large ... Keywords: compiler controlled cache, data reuse, rotating register file, simd, subword parallelism, vectorization, viterbi

Dorit Nuzman; Mircea Namolaru; Ayal Zaks; Jeff H. Derby

2008-05-01T23:59:59.000Z

212

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...  

Office of Scientific and Technical Information (OSTI)

Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler...

213

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

214

Cooling System Functions  

Science Conference Proceedings (OSTI)

...size Flow restrictions Heat exchanger size and design All of these factors must be considered. Every component in the cooling

215

Cooling load estimation methods  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

216

Cooling Water System Optimization  

E-Print Network (OSTI)

During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower performance. To understand the importance of the optimization techniques, cooling tower theory will be discussed first.

Aegerter, R.

2005-01-01T23:59:59.000Z

217

Stochastic cooling in RHIC  

SciTech Connect

After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

2009-05-04T23:59:59.000Z

218

Natural Cooling Retrofit  

E-Print Network (OSTI)

Substantial numbers of existing plants and buildings are found to depend solely upon Mechanical Cooling even though Natural Cooling techniques could be employed utilizing ambient air. Most of these facilities were constructed without Natural Cooling capability due to 'first cost' budget constraints when the cost and availability of energy were of little concern.

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

219

Tank 26F-2F Evaporator Study  

Science Conference Proceedings (OSTI)

Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

Adu-Wusu, K.

2012-12-19T23:59:59.000Z

220

Cooling water distribution system  

DOE Patents (OSTI)

A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

Orr, Richard (Pittsburgh, PA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel  

E-Print Network (OSTI)

With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer in micro-channels. Based on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have indicated that the evaporator and condenser of air conditioner would be more efficient and more compact by using microchannels, and hence it could improve the coefficient of performance of air conditioners to meet the new energy conversion standards in China. The relationship between condensation heat transfer of refrigerants and surface physical characteristics of the evaporator are pointed out and analyzed in order to achieving the corresponding heat transfer coefficients.

Su, J.; Li, J.

2006-01-01T23:59:59.000Z

222

Suncatcher and cool pool. Project report  

DOE Green Energy (OSTI)

The Suncatcher is a simple, conical solar concentrating device that captures light entering clerestory windows and directs it onto thermal storage elements at the back of a south facing living space. The cone shape and inclination are designed to capture low angle winter sunlight and to reflect away higher angle summer sunlight. It is found that winter radiation through a Suncatcher window is 40 to 50% higher than through an ordinary window, and that the average solar fraction is 59%. Water-filled steal culvert pipes used for thermal storage are found to undergo less stratification, and thus to be more effective, when located where sunlight strikes the bottom rather than the top. Five Suncatcher buildings are described. Designs are considered for 32/sup 0/, 40/sup 0/ and 48/sup 0/ north latitude, and as the latitude increases, the inclination angle of the cone should be lowered. The Cool Pool is an evaporating, shaded roof pond which thermosiphons cool water into water-filled columns within a building. Preliminary experiments indicate that the best shade design has unimpeded north sky view, good ventilation, complete summer shading, a low architectural profile, and low cost attic vent lowers work. Another series of experiments established the satisfactory performance of the Cool Pool on a test building using four water-filled cylinders, two cylinders, and two cylinders connected to the Cool Pool through a heat exchanger. Although an unshaded pool cools better at night than a shaded one, daytime heat gain far offsets this advantage. A vinyl waterbag heat exchanger was developed for use with the Cool Pool. (LEW)

Hammond, J.

1981-03-01T23:59:59.000Z

223

SOLERAS solar cooling project  

Science Conference Proceedings (OSTI)

In view of the increasing demand for cooling in both the United States and Saudi Arabia, solar cooling systems are being considered as serious alternatives to the energy intensive conventional systems, especially when confronted with rising fossil fuel costs. Saudi Arabia and the hot, southern regions of the United States, having abundant sunshine and high cooling demand, are obvious candidates for solar active cooling systems and passive cooling design. Solar active cooling has yet to be shown to be either technologically mature or economically feasible, but efforts have been, and are presently being made within the United States National Solar Cooling Program to develop reliable systems which can compete economically with conventional cooling systems. Currently, the program is funding research and development projects in the areas of absorption, Rankine, dessicant, and advanced technologies. Saudi Arabia has a long and successful tradition of building cooling using passive architectural designs. Combining these past achievements with a program of research and development in both active and passive solar cooling should permit an early economical introduction of entirely solar cooled buildings to Saudi Arabia and the southern United States.

Corcoleotes, G.; Williamson, J.S.

1982-01-01T23:59:59.000Z

224

Indirect liquefaction of biomass: A fresh approach  

DOE Green Energy (OSTI)

Indirect liquefaction of biomass is accomplished by first gasifying it to produce a synthesis gas consisting of hydrogen and oxides of carbon, which in turn are converted to any one of a number of liquid fuels and/or chemicals by suitable choice of catalyst, synthesis gas composition and reaction conditions. This approach to producing synthetic fuels and chemicals has been extensively investigated where coal is the carbonaceous feed material, but less so for biomass or other feedstocks. It is generally recognized that the gasification to produce the synthesis gas posses one of the major technical and economic challenges to improving this technology. Herein, is reported a different slant on the indirect liquefaction that could lead to improvements in the efficiency and economics of the process.

Cox, J.L.; Tonkovich, A.Y.; Elliott, D.C. [and others

1995-08-01T23:59:59.000Z

225

Cost study application of the guidebook on integrated community energy systems: indirect economic and energy impacts  

SciTech Connect

An ICES is being considered for a community located in a small New England city. (MCW) It is part of the city's newer development. It is a commercial park of offices, shopping center, bank, hospital, and hotel. The ICES for this community is designed to meet all heating, cooling, steam, and hot water needs. Electricity from the cogeneration unit is to be sold to the local utility, and electricity for the community will be purchased as at present. However, future electrical demand will be reduced, since absorption chillers, which will be powered by heat recovered from the central ICES unit, will partially replace electric air conditioners. In addition, hot-water heating from ICES will, in some cases, lower electrical use. Thus, the ICES involves substitution of energy forms as well as modification of fuel requirements. Examination of the integrated system, in comparison with existing energy systems, includes both indirect economic impacts (employment and fiscal effects on the city) and indirect energy impacts. The indirect economic analysis proceeds from an initial description of conditions that determine employment and fiscal results through specific estimates of employment and then revenues and costs to municipal government and finally to an evaluation of ICES's worth to the city. The indirect energy analysis compares energy resource requirements of the ICES with those for gas, oil, and electric systems now serving the community. (MCW)

1978-11-01T23:59:59.000Z

226

On the Evaporation Duct for Inhomogeneous Conditions in Coastal Regions  

Science Conference Proceedings (OSTI)

Evaporation ducts are ubiquitous phenomena over the oceans, and they are responsible for much of the over-the-horizon propagation occurring with millimeter and microwave radars. The height of the evaporation duct depends on meteorological ...

G. L. Geernaert

2007-04-01T23:59:59.000Z

227

New Approach to the Measurement of Interception Evaporation  

Science Conference Proceedings (OSTI)

Evaporation of water intercepted by vegetation represents an important (sometimes major) part of evapotranspiration in temperate regions. Interception evaporation is an important process where insufficient measurement techniques hamper progress ...

A. Lundberg; M. Eriksson; S. Halldin; E. Kellner; J. Seibert

1997-10-01T23:59:59.000Z

228

Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics  

Science Conference Proceedings (OSTI)

Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. ...

J. L. Heitman; R. Horton; T. J. Sauer; T. M. DeSutter

2008-02-01T23:59:59.000Z

229

Global Atmospheric Evaporative Demand over Land from 1973 to 2008  

Science Conference Proceedings (OSTI)

Pan evaporation (EP), an index of atmospheric evaporative demand, has been widely reported to have weakened in the past decades. However, its interpretation remains controversial because EP observations are not globally available and observations ...

Kaicun Wang; Robert E. Dickinson; Shunlin Liang

2012-12-01T23:59:59.000Z

230

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

231

Chemical Potential Jump during Evaporation of a Quantum Bose Gas  

E-Print Network (OSTI)

The dependence of the chemical potential jump coefficient on the evaporation coefficient is analyzed for the case in which the evaporating component is a Bose gas. The concentration of the evaporating component is assumed to be much lower than the concentration of the carrier gas. The expression for the chemical potential jump is derived from the analytic solution of the problem for the case in which the collision frequency of molecules of the evaporating component is constant.

E. A. Bedrikova; A. V. Latyshev

2013-01-07T23:59:59.000Z

232

Stochastic cooling in RHIC  

SciTech Connect

The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

Brennan J. M.; Blaskiewicz, M.; Mernick, K.

2012-05-20T23:59:59.000Z

233

Tankless Coil and Indirect Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is...

234

A multi-regression analysis of airline indirect operating costs  

E-Print Network (OSTI)

A multiple regression analysis of domestic and local airline indirect costs was carried out to formulate cost estimating equations for airline indirect costs. Data from CAB and FAA sources covering the years 1962-66 was ...

Taneja, Nawal K.

1968-01-01T23:59:59.000Z

235

Cool pool development. Quarterly technical report No. 1, April-June 1979  

DOE Green Energy (OSTI)

The Cool Pool is a passive cooling system consisting of a shaded, evaporating roof pond which thermosiphons cool water into water-filled, metal columns (culvert pipes) located within the building living space. The water in the roof pond is cooled by evaporation, convection and radiation. Because the water in the pool and downcomer is colder and denser than the water in the column a pressure difference is created and the cold water flows from the pool, through the downcomer and into the bottom of the column. The warm column water rises and flows through a connecting pipe into the pool. It is then cooled and the cycle repeats itself. The system requires no pumps. The water column absorbs heat from the building interior primarily by convection and radiation. Since the column is radiating at a significantly lower temperature than the interior walls it plays a double role in human comfort. Not only does it cool the air by convection but it provides a heat sink to which people can radiate. Since thermal radiation is important to the cooling of people, the cold water column contributes substantially to their feelings of comfort. Research on the Cool Pool system includes the following major tasks: control of biological organisms and debris in the roof pond and water cylinders; development of a heat exchanger; experimental investigation of the system's thermal performance; and development of a predictive computer simulation of the Cool Pool. Progress in these tasks is reported.

Crowther, K.

1979-10-15T23:59:59.000Z

236

The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on LandAtmosphere Interaction  

Science Conference Proceedings (OSTI)

Although the global partitioning of evapotranspiration (ET) into transpiration, soil evaporation, and canopy evaporation is not well known, most current land surface schemes and the few available observations indicate that transpiration is the ...

David M. Lawrence; Peter E. Thornton; Keith W. Oleson; Gordon B. Bonan

2007-08-01T23:59:59.000Z

237

Information Loss in Black Hole Evaporation  

E-Print Network (OSTI)

Parikh-Wilczek tunnelling framework is investigated again. We argue that Parikh-Wilczek's treatment, which satisfies the first law of black hole thermodynamics and consists with an underlying unitary theory, is only suitable for a reversible process. Because of the negative heat capacity, an evaporating black hole is a highly unstable system. That is, the factual emission process is irreversible, the unitary theory will not be satisfied and the information loss is possible.

Jingyi Zhang; Yapeng Hu; Zheng Zhao

2005-12-11T23:59:59.000Z

238

Colloidal Shape Effects in Evaporating Drops  

E-Print Network (OSTI)

We explore the influence of particle shape on the behavior of evaporating drops. A first set of experiments discovered that particle shape modifies particle deposition after drying. For sessile drops, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. Experiments elucidate the kinetics of ellipsoids and spheres at the drop's edge. A second set of experiments examined evaporating drops confined between glass plates. In this case, colloidal particles coat the ribbon-like air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase, which in turn introduces a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres after drying. A final set of experiments investigates the effect of surfactants in evaporating drops. The radially outward flow that pushes particles to the drop's edge also pushes surfactants to the drop's edge, which leads to a radially inward flow on the drop surface. The presence of radially outward flows in the bulk fluid and radially inward flows at the drop surface creates a Marangoni eddy, among other effects, which also modifies deposition after drying.

Peter J. Yunker; Tim Still; A. G. Yodh

2013-08-08T23:59:59.000Z

239

Evaporated lithium surface coatings in NSTX.  

Science Conference Proceedings (OSTI)

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

Zakharov, L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gates, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Menard, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Schneider, H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mueller, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wampler, William R.; Roquemore, A. L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kallman, Jeffrey K. (Princeton Plasma Physics Laboratory, Princeton, NJ); Sabbagh, S. (Columbia University, New York, NY); LeBlanc, B. (Princeton Plasma Physics Laboratory, Princeton, NJ); Raman, R. (University of Washington, Seattle, WA); Ono, M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wilgren, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Allain, J.P. (Purdue University, West Lafayette, IN); Timberlake, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Stevenson, T. (Princeton Plasma Physics Laboratory, Princeton, NJ); Ross, P. W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Majeski, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kugel, Henry W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Skinner, C. H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gerhardt, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Paul, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Bell, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaye, S. M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaita, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Soukhanovskii, V. (Lawrence Livermore National Laboratory, Livermore, CA); Bell, Michael G. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mansfield, D. (Princeton Plasma Physics Laboratory, Princeton, NJ)

2008-08-01T23:59:59.000Z

240

Nuclear evaporation process with simultaneous multiparticle emission  

E-Print Network (OSTI)

The nuclear evaporation process is reformulated by taking into account simultaneous multiparticle emission from a hot compound nucleus appearing as an intermediate state in many nuclear reaction mechanisms. The simultaneous emission of many particles is particularly relevant for high excitation energy of the compound nucleus.These channels are effectively open in competition with the single particle emissions and fission in this energy regime. Indeed, the inclusion of these channels along the decay evaporating chain shows that the yield of charged particles and occurrence of fission are affected by these multiparticle emission processes of the compounded nucleus, when compared to the single sequential emission results. The effect also shows a qualitative change in the neutron multiplicity of different heavy compound nucleus considered. This should be an important aspect for the study of spallation reaction in Acceleration Driven System (ADS) reactors. The majority of neutrons generated in these reactions come from the evaporation stage of the reaction, the source of neutron for the system. A Monte Carlo simulation is employed to determine the effect of these channels on the particle yield and fission process. The relevance of the simultaneous particle emission with the increasing of excitation energy of the compound nucleus is explicitly shown.

Leonardo P. G. De Assis; Sergio B. Duarte; Bianca M. Santos

2012-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

242

REQUEST FOR INDIRECT COST WAIVER I. Project Director  

E-Print Network (OSTI)

REQUEST FOR INDIRECT COST WAIVER I. Project Director: Department: Project Title: Project Sponsor without fully recovering the institutional indirect costs which will be incurred in conducting the project COSTS 1. FULL: OF I. A. C. 2. PARTIAL: OF H. B. K. TOTAL PROJECT COSTS L. INDIRECT COSTS TO BE WAIVED, J

Krovi, Venkat

243

Indirect heating pyrolysis of oil shale  

DOE Patents (OSTI)

Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

Jones, Jr., John B. (Grand Junction, CO); Reeves, Adam A. (Grand Junction, CO)

1978-09-26T23:59:59.000Z

244

Unitary solar heating/cooling system package development. Progress report, June 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

During this period, a 3 ton residential system hardware package has been developed and is operating in an Arkla owned solar house in Evansville. The Arkla tower-cooled WF36 chiller has been substituted for the evaporatively cooled chiller under development in the package. The residential software and manufacturing programs are underway. Only preliminary thinking has been done on the commercial 25 ton program which will soon be getting major attention.

Merrick, R.H.

1978-01-01T23:59:59.000Z

245

Energy Basics: Absorption Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption...

246

Power electronics cooling apparatus  

DOE Patents (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

247

Process Cooling Systems  

E-Print Network (OSTI)

Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention is paid to the cooling-tower and its effect on plant operating efficiency and production. This paper will describe the value of working with a cooling tower specialist to establish the physical and thermal potential of an existing cooling tower. It also demonstrates that a repair and thermal upgrade project to improve efficiency will have a better than average return on investment.

McCann, C. J.

1983-01-01T23:59:59.000Z

248

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network (OSTI)

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

249

PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER  

SciTech Connect

Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

2009-02-10T23:59:59.000Z

250

Experimental study of a R-407C drop-in test on an off-the-shelf air conditioner with a counter-cross-flow evaporator  

SciTech Connect

An off-the-shelf 2-ton window air conditioner having an energy efficiency ratio of 10 was used to perform a drop-in test with R-407C. Laboratory tests were performed using a parallel-cross-flow (PCF) evaporator and a counter-cross-flow (CCF) evaporator. The CCF configuration is designed to take advantage of the temperature glide of R-407C so that the warm evaporator inlet air will be in contact with the higher temperature part of the evaporator coils first. The test results indicated that, at the Air Conditioning and Refrigeration Institute-rated indoor and outdoor conditions, the cooling capacity was 8% higher and system coefficient of performance about 3.8% higher for the CCF evaporator than for the PCF evaporator. The test results also showed that the latent load for CCF was 30.6% higher than for PCF. The far better dehumidification effect provided by the CCF evaporator design is desirable for areas where the latent load is high. The experimental findings should be useful for future efforts to design a dehumidifier that uses a zeotropic refrigerant that provides a significant temperature glide. R-22 test data from a previous project are included as a reference.

Mei, V.C.; Domitrovic, R.; Chen, F.C.

1998-03-01T23:59:59.000Z

251

Liquid metal cooled nuclear reactors with passive cooling system  

SciTech Connect

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

252

Bioechnology of indirect liquefaction. Final report  

DOE Green Energy (OSTI)

The project on biotechnology of indirect liquefaction was focused on conversion of coal derived synthesis gas to liquid fuels using a two-stage, acidogenic and solventogenic, anaerobic bioconversion process. The acidogenic fermentation used a novel and versatile organism, Butyribacterium methylotrophicum, which was fully capable of using CO as the sole carbon and energy source for organic acid production. In extended batch CO fermentations the organism was induced to produce butyrate at the expense of acetate at low pH values. Long-term, steady-state operation was achieved during continuous CO fermentations with this organism, and at low pH values (a pH of 6.0 or less) minor amounts of butanol and ethanol were produced. During continuous, steady-state fermentations of CO with cell recycle, concentrations of mixed acids and alcohols were achieved (approximately 12 g/l and 2 g/l, respectively) which are high enough for efficient conversion in stage two of the indirect liquefaction process. The metabolic pathway to produce 4-carbon alcohols from CO was a novel discovery and is believed to be unique to our CO strain of B. methylotrophicum. In the solventogenic phase, the parent strain ATCC 4259 of Clostridium acetobutylicum was mutagenized using nitrosoguanidine and ethyl methane sulfonate. The E-604 mutant strain of Clostridium acetobutylicum showed improved characteristics as compared to parent strain ATCC 4259 in batch fermentation of carbohydrates.

Datta, R.; Jain, M.K.; Worden, R.M.; Grethlein, A.J.; Soni, B.; Zeikus, J.G.; Grethlein, H.

1990-05-07T23:59:59.000Z

253

Tankless Coil and Indirect Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters Tankless Coil and Indirect Water Heaters May 16, 2013 - 7:21pm Addthis An indirect water heater. An indirect water heater. How does it work? Tankless coil and indirect water heaters use your home's heating system to heat water. Tankless coil and indirect water heaters use a home's space heating system to heat water. They're part of what's called integrated or combination water and space heating systems. How They Work A tankless coil water heater provides hot water on demand without a tank. When a hot water faucet is turned on, water is heated as it flows through a heating coil or heat exchanger installed in a main furnace or boiler. Tankless coil water heaters are most efficient during cold months when the heating system is used regularly but can be an inefficient choice for many

254

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

255

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

256

Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-one papers presented at a 2003 conference in Charleston, South Carolina discussed industrial experience and provided case histories of cooling tower problems and solutions.

2003-08-12T23:59:59.000Z

257

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

258

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

259

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

260

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

262

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

263

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

264

Indirect health effects of relative humidity in indoor environments  

SciTech Connect

A review of the health effects of relative humidity in indoor environments suggests that relative humidity can affect the incidence of respiratory infections and allergies. Experimental studies on airborne-transmitted infectious bacteria and viruses have shown that the survival or infectivity of these organisms is minimized by exposure to relative humidities between 40 and 70%. Nine epidemiological studies examined the relationship between the number of respiratory infections or absenteeism and the relative humidity of the office, residence, or school. The incidence of absenteeism or respiratory infections was found to be lower among people working or living in environments with mid-range versus low or high relative humidities. The indoor size of allergenic mite and fungal populations is directly dependent upon the relative humidity. Mite populations are minimized when the relative humidity is below 50% and reach a maximum size at 80% relative humidity. Most species of fungi cannot grow unless the relative humidity exceeds 60%. Relative humidity also affects the rate of offgassing of formaldehyde from indoor building materials, the rate of formation of acids and salts from sulfur and nitrogen dioxide, and the rate of formation of ozone. The influence of relative humidity on the abundance of allergens, pathogens, and noxious chemicals suggests that indoor relative humidity levels should be considered as a factor of indoor air quality. The majority of adverse health effects caused by relative humidity would be minimized by maintaining indoor levels between 40 and 60%. This would require humidification during winter in areas with cold winter climates. Humidification should preferably use evaporative or steam humidifiers, as cool mist humidifiers can disseminate aerosols contaminated with allergens.

Arundel, A.V.; Sterling, E.M.; Biggin, J.H.; Sterling, T.D.

1986-03-01T23:59:59.000Z

265

Stochastic Optimization Approach to Water Management in Cooling-Constrained Power Plants  

E-Print Network (OSTI)

constraints and weather conditions on generation capacity. In a pulverized coal power plant study we have source of freshwater withdrawals in the United States [10]. In base-load power plants (i.e., coal of evaporation. A 500 MW coal-fired power plant that employs once-through cooling can use more than 10 million

266

Cooling concept integration. Phase I final technical report, October 1, 1979-July 31, 1981. [For pre-engineered metal buildings  

DOE Green Energy (OSTI)

Before specific test prototypes were developed, six potential evaporative roof cooling configurations with alternative storage and heat transfer mechanisms were examined, and preliminary cost estimates were made. Each system uses a wet roof system which sprays or floods the roof, allowing evaporative heat transfer to the environment. Finite difference thermal network methods were used for the evaluation of the systems. Detailed results including charts of the hourly heat flows during particular days are presented, and the performance is summarized for Las Vegas. (LEW)

Fraker, H.; Glennie, W.; Snyder, M.K.

1981-08-19T23:59:59.000Z

267

Radion clouds around evaporating black holes  

E-Print Network (OSTI)

A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

J. R. Morris

2009-09-03T23:59:59.000Z

268

Study of falling-jet flash evaporators  

DOE Green Energy (OSTI)

Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which was found to increase with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

Kreith, F.; Olson, D.A.; Bharathan, D.; Green, H.J.

1982-11-01T23:59:59.000Z

269

Crystallization Temperature of Aqueous Lithium Bromide Solutions at Low Evaporation Temperature  

Science Conference Proceedings (OSTI)

Water- aqueous Lithium Bromide (LiBr) solutions have shown superior performance as working fluid pairs for absorption refrigeration cycles. Most of the available literature (e.g. ASHRAE Handbook of Fundamentals, etc.) provide crystallization behavior down to only 10 C. The typical evaporating temperature for an absorption chiller system is usually lower than 10 C. Hence, it is essential to have an accurate prediction of the crystallization temperature in this range in order to avoid crystallization during the design phase. We have therefore conducted a systematic study to explore the crystallization temperatures of LiBr/Water solutions that fall below an evaporating temperature of 10 C. Our preliminary studies revealed that the rate of cooling of the sample solution influences the crystallization temperature; therefore we have performed a quasi steady test where the sample was cooled gradually by reducing the sample temperature in small steps. Results from this study are reported in this paper and can be used to extend the data available in open literature.

Kisari, Padmaja [ORNL; Wang, Kai [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2010-01-01T23:59:59.000Z

270

Indirect and Semi-Direct Aerosol Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

271

Overview: Home Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than earlier models. Dehumidifying heat pipes can help an air conditioner remove humidity and more efficiently cool the air. Radiant Cooling Radiant cooling cools a floor or...

272

A Comparison of Australian Open Water Body Evaporation Trends for Current and Future Climates Estimated from Class A Evaporation Pans and General Circulation Models  

Science Conference Proceedings (OSTI)

Trends of decreasing pan evaporation around the world have renewed interest in evaporation and its behavior in a warming world. Observed pan evaporation around Australia has been modeled to attribute changes in its constituent variables. It is ...

Fiona Johnson; Ashish Sharma

2010-02-01T23:59:59.000Z

273

LBNL's Novel Approach to Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

systems department, chilled water, cooling water tower, double exchanger cooling, dual heat exchanger, high tech and industrial systems group, inrow, lawrence berkeley national...

274

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

275

Optimization of Cooling Water  

E-Print Network (OSTI)

A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems.

Matson, J.

1985-05-01T23:59:59.000Z

276

RADIATIVE AND PASSIVE COOLING  

E-Print Network (OSTI)

and Passive Cooling Marlo Martin and Paul Berdahl SeptemberNTIS. 3. P. Berdahl and M. Martin, "The Resource for Radia-1978) p. 684. 4. M. Martin and P. Berdahl, "Description of a

Martin, M.

2011-01-01T23:59:59.000Z

277

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

278

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

279

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

280

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Stimulated radiative laser cooling  

E-Print Network (OSTI)

Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host, into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.

Muys, Peter

2007-01-01T23:59:59.000Z

282

Sisyphus Cooling of Lithium  

E-Print Network (OSTI)

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Mller

2013-08-08T23:59:59.000Z

283

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

284

Development of a Direct Evaporator for the Organic Rankine Cycle  

Science Conference Proceedings (OSTI)

Presentation Title, Development of a Direct Evaporator for the Organic Rankine Cycle. Author(s), Donna Post Guillen, Helge Klockow, Matthew Lehar, Sebastian

285

Addressing Water Consumption of Evaporative Coolers with Greywater  

E-Print Network (OSTI)

5 3. Water Consumption of Evaporative7 3.1.2. Water Consumption Due to9 3.1.4. Water Consumption due to

Sahai, Rashmi

2013-01-01T23:59:59.000Z

286

Electron Beam Evaporator Systems for Thin Film Deposition  

Science Conference Proceedings (OSTI)

The Thin Film and Nanostructure Processing Group has two high-vacuum, electron beam evaporator systems for fabrication of single and multilayer ...

2012-10-23T23:59:59.000Z

287

Reaction mechanism and reaction rate of Sn evaporation from liquid ...  

Science Conference Proceedings (OSTI)

Although Sn is not easily removed by oxidation, Sn can be evaporated as Sn(g) and SnS(g), respectively. Increasing [%S] thus accelerates detinning rate.

288

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

E-Print Network (OSTI)

+ ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

Koh, Christine J.

2013-01-01T23:59:59.000Z

289

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

290

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

291

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

292

WATER COOLED RETORT COVER  

DOE Patents (OSTI)

A retort cover is designed for use in the production of magnesium metal by the condensation of vaporized metal on a collecting surface. The cover includes a condensing surface, insulating means adjacent to the condensing surface, ind a water-cooled means for the insulating means. The irrangement of insulation and the cooling means permits the magnesium to be condensed at a high temperature and in massive nonpyrophoric form. (AEC)

Ash, W.J.; Pozzi, J.F.

1962-05-01T23:59:59.000Z

293

Cool-down and frozen start-up behavior of a grooved water heat pipe  

SciTech Connect

A grooved water heat pipe was tested to study its characteristics during the cool-down and start-up periods. The water heat pipe was cooled down from the ambient temperature to below the freezing temperature of water. During the cool-down, isothermal conditions were maintained at the evaporator and adiabatic sections until the working fluid was frozen. When water was frozen along the entire heat pipe, the heat pipe was rendered inactive. The start-up of the heat pipe from this state was investigated under several different operating conditions. The results show the existence of large temperature gradients between the evaporator and the condenser, and the moving of the melting front of the working fluid along the heat pipe. Successful start-up was achieved for some test cases using partial gravity assist. The start-up behavior depended largely on the operating conditions.

Jang, J.H.

1990-12-01T23:59:59.000Z

294

Passive heating and cooling strategies for single family housing in Fresno, California: a case study  

E-Print Network (OSTI)

This study focuses on the integration of passive heating, cooling, and ventilating techniques for detached single family housing in Fresno, California. The energy use and patterns of energy use were simulated for a typical tract house in Fresno, and serves as a case study, to which energy saving strategies were applied and evaluated using Ener-Win software. The effectiveness of each strategy was assessed based on the annual savings, the initial cost, and a life-cycle cost analysis. Specific areas of evaluation include: shading, improving the R-value and infiltration rate of the building envelope, thermal mass, natural ventilation, and evaporative cooling. The optimum strategies selected utilize only traditional building techniques. Evaporative cooling used in conjunction with an air conditioner was the most effective energy reducing strategy, but a combination of purely passive strategies yield competitive results. Although the typical Fresno home is already energy efficient, small alterations provide energy savings up to 75% for space conditioning.

Winchester, Nathan James

1995-01-01T23:59:59.000Z

295

Federal Energy Subsidies Direct and Indirect Interventions in Energy Markets  

Reports and Publications (EIA)

A one-time study defining direct and indirect Federal energy subsidies, methods of valuation of such subsidies, and a survey of existing subsidies.

Information Center

1992-01-01T23:59:59.000Z

296

Performance prediction of cryogenically cooled silicon crystal monochromator  

SciTech Connect

To predict the performance of the cryogenically cooled silicon crystal, intensive studies have been carried out to sort out the influences of various parameters, such as heat load power and power distribution, cooling coefficient, and beam size. The thermal slope error of the crystal is calculated by finite element modeling. Quadratic law was applied to calculate the rocking-curve width. Heat load tests were also performed with a channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility (ESRF). The silicon crystal is indirectly cooled from the sides by liquid nitrogen. Measured rocking-curve widths are compared with those calculated by finite element modeling. When we include the broadening from the intrinsic rocking-curve width and mounting strain, the calculated rocking-curve width versus heat load is in excellent agreement with experiment.

Zhang Lin; Wulff, Michael; Eybert, Laurent [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Lee, Wah-Keat [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)

2004-05-12T23:59:59.000Z

297

Benefits of evaporating FGD purge water  

SciTech Connect

In the US and the European Union, scrubbers are installed on all new coal-fired power plants because their technology is considered the best available for removing SO{sub 2}. A zero liquid discharge (ZLD) system is the best technology for treating wet scrubber wastewate. With the future promising stricter limits on power plants' water use, ZLD systems that concentrate scrubber purge streams are sure to become as common as ZLD cooling tower blowdonw systems. 7 figs.

Shaw, W.A. [HPD, Plainfield, IL (United States)

2008-03-15T23:59:59.000Z

298

Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat  

Science Conference Proceedings (OSTI)

The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

Donna Post Guillen

2013-09-01T23:59:59.000Z

299

Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications  

Science Conference Proceedings (OSTI)

There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

Edwin A. Harvego; Michael G. McKellar

2011-11-01T23:59:59.000Z

300

Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant  

DOE Green Energy (OSTI)

A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

Bamberger, J.A.; Allemann, R.T.

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar heating and cooling results for the Los Alamos study center  

DOE Green Energy (OSTI)

The solar energy system for the Study Center consists of an 8000 ft/sup 2/ array of selectively coated, single-glazed collectors, a 5000 gallon pressurized tank for hot storage in the cooling mode, and a 10,000 gallon tank, which is used for hot storage in the heating mode and cold storage in the cooling mode. Either of two chillers may be used in series with the cold storage tank, an 85 ton absorption unit, or a 77 ton Rankine cycle unit. Night evaporative cooling is also used to cool the 10,000 gallon tank. A heat recovery unit is used to preheat fresh air in the winter, and, by means of spraying the exhaust air, to pre-cool fresh air in the summer. Daily, monthly, and seasonal energy summaries are presented for the system. Performance data for the two chillers include tabulation of thermal and system coefficients of performance.

Hedstrom, J.C.; Murray, H.S.; Balcomb, J.D.

1978-01-01T23:59:59.000Z

302

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

303

Gas-cooled reactors  

SciTech Connect

Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing.

Schulten, R.; Trauger, D.B.

1976-01-01T23:59:59.000Z

304

Cooling Towers, The Debottleneckers  

E-Print Network (OSTI)

Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units are large structures, Illustration 1. Big budget money and engineering time goes into gleaming stainless steel equipment and exotic process apparatus, the poor cooling tower is the ignored orphan of the system. Knowledgeable Engineers, however, are now looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more cells in a row. With cells up to 42 feet long so immense in aspect, with fans rotating, operators assume, just by appearances, that all is well, and usually pay no attention to the quality of cold water returning from the cooling tower. The boxes look sturdy, but the function of the cooling tower is repeated ignored production of water as cold as possible.

Burger, R.

1998-04-01T23:59:59.000Z

305

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

306

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

307

Tankless Coil and Indirect Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coil and Indirect Water Heater Basics Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of a tankless coil water heater. The heater is box-shaped, and has two pipes sticking out one end: one a cold water inlet, and one a hot water outlet. These pipes lead into the heater to a cylindrical coil called a heat exchanger. Long tubes surrounding the heat exchanger are labeled the heated water jacket. At the bottom of the box is a row of small flames, called the boiler heat source. Tankless coil and indirect water heaters use a home or building's space heating system to heat water as part of an integrated or combination water and space heating system. How Tankless Coil and Indirect Water Heaters Work A tankless coil water heater uses a heating coil or heat exchanger

308

Analysis of climatic conditions and preliminary assessment of alternative cooling strategies for houses in California transition climate zones  

SciTech Connect

This is a preliminary scoping study done as part of the {open_quotes}Alternatives to Compressive Cooling in California Transition Climates{close_quotes} project, which has the goal of demonstrating that houses in the transitional areas between the coast and the Central Valley of California do not require air-conditioning if they are properly designed and operated. The first part of this report analyzes the climate conditions within the transitional areas, with emphasis on design rather than seasonal conditions. Transitional climates are found to be milder but more variable than those further inland. The design temperatures under the most stringent design criteria, e.g. 0.1 % annual, are similar to those in the Valley, but significantly lower under more relaxed design criteria, e.g., 2% annual frequency. Transition climates also have large day-night temperature swings, indicating significant potential for night cooling, and wet-bulb depressions in excess of 25 F, indicating good potential for evaporative cooling. The second part of the report is a preliminary assessment using DOE-2 computer simulations of the effectiveness of alternative cooling and control strategies in improving indoor comfort conditions in two conventional Title-24 houses modeled in various transition climate locations. The cooling measures studied include increased insulation, light colors, low-emissivity glazing, window overhangs, and exposed floor slab. The control strategies studied include natural and mechanical ventilation, and direct and two-stage evaporative cooling. The results indicate the cooling strategies all have limited effectiveness, and need to be combined to produce significant improvements in indoor comfort. Natural and forced ventilation provide similar improvements in indoor conditions, but during peak cooling periods, these will still be above the comfort zone. Two-stage evaporative coolers can maintain indoor comfort at all hours, but not so direct evaporative coolers.

Huang, Y.J.; Zhang, H.

1995-07-01T23:59:59.000Z

309

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

310

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

1994-01-01T23:59:59.000Z

311

Passive containment cooling system  

DOE Patents (OSTI)

A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

Billig, P.F.; Cooke, F.E.; Fitch, J.R.

1994-01-25T23:59:59.000Z

312

Water-lithium bromide double-effect absorption cooling analysis  

SciTech Connect

A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very-important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

1980-12-01T23:59:59.000Z

313

Disk evaporation in a planetary nebula  

E-Print Network (OSTI)

We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.

Gesicki, K; Szyszka, C; Hajduk, M; Lagadec, E; Ramirez, L Guzman

2010-01-01T23:59:59.000Z

314

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

315

Turbomachine rotor with improved cooling  

SciTech Connect

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

316

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

317

Five solar cooling projects  

Science Conference Proceedings (OSTI)

The jointly funded $100 million five-year international agreement (SOLERAS) between Saudi Arabia and the United States was undertaken to promote the development of solar energy technologies of interest to both nations. Five engineering field tests of active solar cooling systems funded under the SOLERAS agreement for installation and operation in the U.S. southwest are described.

Davis, R.E.; Williamson, J.S.

1980-01-01T23:59:59.000Z

318

The Importance of Spring and Autumn Atmospheric Conditions for the Evaporation Regime of Lake Superior  

Science Conference Proceedings (OSTI)

Feedbacks between ice extent and evaporation have long been suspected to be important for Lake Superior evaporation because it is during autumn and winter when latent heat fluxes are highest. Recent direct measurements of evaporation made at the ...

C. Spence; P. D. Blanken; J. D. Lenters; N. Hedstrom

319

Toward a Robust Phenomenological Expression of Evaporation Efficiency for Unsaturated Soil Surfaces  

Science Conference Proceedings (OSTI)

The evaporation rates of water from several soil types were measured under controlled conditions. When the layer of soil is sufficiently thin, the evaporation efficiency ?, the ratio of the evaporation rate from the soil surface relative to that ...

Teruhisa S. Komatsu

2003-09-01T23:59:59.000Z

320

The Importance of Spring and Autumn Atmospheric Conditions for the Evaporation Regime of Lake Superior  

Science Conference Proceedings (OSTI)

Feedbacks between ice extent and evaporation have long been suspected to be important for Lake Superior evaporation because it is during autumn and winter when latent heat fluxes are highest. Recent direct measurements of evaporation made at the ...

C. Spence; P. D. Blanken; J. D. Lenters; N. Hedstrom

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hybrid and Advanced Air Cooling Geothermal Lab Call Project | Open Energy  

Open Energy Info (EERE)

and Advanced Air Cooling Geothermal Lab Call Project and Advanced Air Cooling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid and Advanced Air Cooling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description Many geothermal power plants in the U.S. are air-cooled because of water limitations. NREL has worked with industry to explore various strategies for boosting the performance of air coolers in hot weather. Computer modeling and experimental measurements have been done on the use of evaporative media upstream of the air-cooled condensers at the Mammoth Lakes Power Plant. NREL has also analyzed the use of an air-cooled condenser in series with (i.e., upstream of) a water-cooled condenser and found that this can be beneficial for power cycles requiring desuperheating of the turbine exhaust vapor. Recently, the conventional power industry has developed an interest in operating water- and air-cooled condensers in parallel. This arrangement allows a small water cooler to reduce the heat transfer duty on the air cooler on hot summer days thereby allowing the condensing working fluid to make a much closer approach to the air dry bulb temperature.

322

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!

Smith, M.

1991-06-01T23:59:59.000Z

323

A Self-consistent Model of the Black Hole Evaporation  

E-Print Network (OSTI)

We construct a self-consistent model which describes a black hole from formation to evaporation including the back reaction from the Hawking radiation. In the case where a null shell collapses, at the beginning the evaporation occurs, but it stops eventually, and a horizon and singularity appear. On the other hand, in the generic collapse process of a continuously distributed null matter, the black hole evaporates completely without forming a macroscopically large horizon nor singularity. We also find a stationary solution in the heat bath, which can be regarded as a normal thermodynamic object.

Hikaru Kawai; Yoshinori Matsuo; Yuki Yokokura

2013-02-19T23:59:59.000Z

324

Experimental investigation of a solar desiccant cooling installation  

Science Conference Proceedings (OSTI)

Desiccant cooling is a technique based on evaporative cooling and air dehumidification using desiccant regenerated by thermal energy. It is particularly interesting when it is driven by waste or solar heat making this technique environmentally friendly. In this paper, an experimental investigation is carried on a desiccant air handling unit powered by vacuum-tube solar collectors. First, the components are studied under various operating conditions. Then overall performance of the installation is evaluated over a day for a moderately humid climate with regeneration solely by solar energy. In these conditions the overall efficiency of the solar installation is 0.55 while the thermodynamic coefficient of performance is 0.45 and the performance indicator based on the electrical consumption is 4.5. Finally, the impact of outside and regeneration conditions on the performance indicators is studied. (author)

Bourdoukan, P.; Wurtz, E. [LOCIE Laboratoire Optimisation de la Conception et Ingenierie de l'Environnement, Campus Scientifique Universite de Savoie, 73376 Le Bourget du Lac (France); Joubert, P. [LEPTIAB Laboratoire d'Etude des Phenomenes de Transfert et de l'Instantaneite Agro-Industrie et Batiment Pole Sciences et Technologies, Universite La Rochelle, Avenue Marillac 17000 La Rochelle (France)

2009-11-15T23:59:59.000Z

325

Dynamic Model of Facial Cooling  

Science Conference Proceedings (OSTI)

Recent modifications to windchill forecasting have motivated the development of a rate-of-tissue-cooling model for the purpose of predicting facial cooling times. The model assumes a hollow cylindrical geometry with a fixed internal boundary ...

Peter Tikuisis; Randall J. Osczevski

2002-12-01T23:59:59.000Z

326

Indirect impacts in Illinois from a renewable portfolio standard  

SciTech Connect

Indirect impacts associated with Illinois' RPS include a change in the laws concerning the planning and zoning for wind development, a market for renewable energy credits, and awareness of problems with the transmission grid. (author)

Ohler, Adrienne M.; Radusewicz, Kristi

2010-08-15T23:59:59.000Z

327

Indirect Coulomb energy for two-dimensional atoms  

SciTech Connect

In this paper we provide a family of lower bounds on the indirect Coulomb energy for atomic and molecular systems in two dimensions in terms of a functional of the single particle density with gradient correction terms.

Benguria, Rafael D.; Tusek, Matej [Departamento de Fisica, P. Universidad Catolica de Chile Casilla 306, Santiago 22 (Chile)

2012-09-15T23:59:59.000Z

328

A Critical Examination of the Observed First Aerosol Indirect Effect  

Science Conference Proceedings (OSTI)

The relative change in cloud droplet number concentration with respect to the relative change in aerosol number concentration, ?, is an indicator of the strength of the aerosol indirect effect and is commonly used in models to parameterize this ...

Hongfei Shao; Guosheng Liu

2009-04-01T23:59:59.000Z

329

DOE - Office of Legacy Management -- Swenson Evaporator Co - IL 23  

NLE Websites -- All DOE Office Websites (Extended Search)

Swenson Evaporator Co - IL 23 Swenson Evaporator Co - IL 23 FUSRAP Considered Sites Site: SWENSON EVAPORATOR CO. (IL.23 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Harvey , Illinois IL.23-1 Evaluation Year: 1987 IL.23-1 Site Operations: Scheduled a raffinate spray drying test that was later cancelled. IL.23-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at this site IL.23-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to SWENSON EVAPORATOR CO. IL.23-1 - Memorandum/Checklist; D.Levine to the File; Subject:

330

Monitoring Free-Water Evaporation at Automated Weather Stations  

Science Conference Proceedings (OSTI)

The automation of weather stations necessitates an alternative approach to the traditional manual measure of free-water evaporation made using a class A pan. This study compared commercially available water-level sensing transducers mounted on ...

S. M. McGinn; H. D. J. McLean

1995-12-01T23:59:59.000Z

331

Decadal Trends in Evaporation from Global Energy and Water Balances  

Science Conference Proceedings (OSTI)

Satellite and gridded meteorological data can be used to estimate evaporation (E) from land surfaces using simple diagnostic models. Two satellite datasets indicate a positive trend (first time derivative) in global available energy from 1983 to ...

Yongqiang Zhang; Ray Leuning; Francis H. S. Chiew; Enli Wang; Lu Zhang; Changming Liu; Fubao Sun; Murray C. Peel; Yanjun Shen; Martin Jung

2012-02-01T23:59:59.000Z

332

Arctic Precipitation and Evaporation: Model Results and Observational Estimates  

Science Conference Proceedings (OSTI)

Observational estimates of precipitation and evaporation over the Arctic Ocean and its terrestrial watersheds are compared with corresponding values from the climate model simulations of the Atmospheric Model Intercomparison Project (AMIP). ...

John E. Walsh; Vladimir Kattsov; Diane Portis; Valentin Meleshko

1998-01-01T23:59:59.000Z

333

Correcting Microwave Precipitation Retrievals for near-Surface Evaporation  

E-Print Network (OSTI)

This paper compares two methods for correcting passive or active microwave surface precipitation estimates based on hydrometeors sensed aloft that may evaporate before landing. These corrections were derived using two years ...

Surussavadee, Chinnawat

334

Potential Evaporation and Soil Moisture in General Circulation Models  

Science Conference Proceedings (OSTI)

The parameterization of continental evaporation in many atmospheric general circulation models (GCMS) used for simulation of climate is demonstrably inconsistent with the empirical work upon which the parameterization is based. In the turbulent ...

P. C. D. Milly

1992-03-01T23:59:59.000Z

335

Evaporation of Nonequilibrium Raindrops as a Fog Formation Mechanism  

Science Conference Proceedings (OSTI)

To gain insights into the poorly understood phenomenon of precipitation fog, this study assesses the evaporation of freely falling drops departing from equilibrium as a possible contributing factor to fog formation in rainy conditions. The study ...

Robert Tardif; Roy M. Rasmussen

2010-02-01T23:59:59.000Z

336

Removal of Sulfate Ion From AN-107 by Evaporation  

Science Conference Proceedings (OSTI)

Hanford low-activity waste solutions contain sulfate, which can cause accelerated corrosion of the vitrification melter and unacceptable operating conditions. A method is needed to selectively separate sulfate from the waste. An experiment was conducted to evaluate evaporation for removing sulfate ion from Tank AN-107 low-activity waste. Two evaporation steps were performed. In the first step, the volume was reduced by 55% while in the second step, the liquid volume was reduced another 22%. Analysis of the solids precipitated during these evaporations revealed that large amounts of sodium nitrate and nitrite co-precipitated with sodium sulfate. Many other waste components precipitated as well. It can be concluded that sulfate removal by precipitation is not selective, and thus, evaporation is not a viable option for removing sulfate from the AN-107 liquid.

GJ Lumetta; GS Klinger; DE Kurath; RL Sell; LP Darnell; LR Greenwood; CZ Soderquist; MJ Steele; MW Urie; JJ Wagner

2000-08-02T23:59:59.000Z

337

HEPTAFLUOROPROPANE WITH WATER SPRAY COOLING ...  

Science Conference Proceedings (OSTI)

HEPTAFLUOROPROPANE WITH WATER SPRAY COOLING SYSTEM AS A TOTAL ... and evaluation studies on active and passive fire protection ...

2011-10-13T23:59:59.000Z

338

Development and Analysis of Desiccant Enhanced Evaporative Air...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL National Renewable Energy Laboratory OA outdoor air P amb ambient pressure (psi) P fan fan power (kW) v PP polypropylene Q cooling total cooling (kW or Btuh) Q latent latent...

339

AIR COOLED NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

Fermi, E.; Szilard, L.

1958-05-27T23:59:59.000Z

340

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

72 5.1.2 Memory thermal and cooling model . . . . . . . . 75Energy, Thermal and Cooling Management . . . . . . . .Conclusion . . Chapter 4 Thermal and Cooling Management in

Ayoub, Raid

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forsberg, Charles W. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

342

Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements  

DOE Green Energy (OSTI)

Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

Chuang, C; Penner, J E; Kawamoto, K

2002-03-08T23:59:59.000Z

343

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

344

Cooling your home naturally  

SciTech Connect

This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

NONE

1994-10-01T23:59:59.000Z

345

SCINTILLATION DETECTOR COOLING SYSTEM  

SciTech Connect

A well logging apparatus for irradiating earth formations with neutrons and recording the gamma rays emitted therefrom is designed which hss a scintillation decay time of less than 3 x 10/sup -8/ sec and hence may be used with more intense neutron sources. The scintillation crystal is an unactivated NaI crystal maintained at liquid N/sub 2/ temperature. The apparatus with the cooling system is described in detail. (D.L.C.)

George, W.D.; Jones, S.B.; Yule, H.P.

1962-08-14T23:59:59.000Z

346

Spacetime Structure of an Evaporating Black Hole in Quantum Gravity  

E-Print Network (OSTI)

The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant.

Bonanno, A

2006-01-01T23:59:59.000Z

347

Open Cooling Water Chemistry Guideline  

Science Conference Proceedings (OSTI)

State-of-the-art chemistry programs help to ensure the continued operation of open cooling water systems while mitigating corrosion and fouling mechanisms. This document, Open Cooling Water Chemistry Guideline, prepared by a committee of industry experts, reflects field and laboratory data on corrosion and fouling issues of open cooling systems.BackgroundService Water System Chemical Addition Guideline (Electric Power Research Institute ...

2012-09-17T23:59:59.000Z

348

Proceedings: Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affect availability and heat rate in fossil and nuclear power plants. Twenty-two papers presented at the 1997 Cooling Tower Technology Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions.

1997-08-13T23:59:59.000Z

349

Conduction cooling: multicrate fastbus hardware  

SciTech Connect

Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

Makowiecki, D.; Sims, W.; Larsen, R.

1980-11-01T23:59:59.000Z

350

Method and apparatus for flash evaporation of liquids  

DOE Patents (OSTI)

A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, Desikan (Lakewood, CO)

1984-01-01T23:59:59.000Z

351

Method and apparatus for flash evaporation of liquids  

DOE Patents (OSTI)

A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

Bharathan, D.

1984-01-01T23:59:59.000Z

352

Solar heating and cooling in the Los Alamos National Security and Resources Study Center  

DOE Green Energy (OSTI)

A description is given of the solar energy system for the National Security and Resources Study Center, a conference center and library at the Los Alamos Scientific Laboratory, Los Alamos, New Mexico. The solar heating and cooling system makes use of selectively coated collectors, hot storage, cold storage, night evaporative cold storage, heat recovery, a lithium bromide chiller, and a Rankine-cycle chiller. Data are given for the performance of the system for the years 1978 and 1979. The solar energy system has provided 76% of the energy required to heat the building and 97% of the thermal energy required to cool the building.

Hedstrom, J.C.; Murray, H.S.

1980-12-01T23:59:59.000Z

353

Passive cooling system for top entry liquid metal cooled nuclear reactors  

SciTech Connect

This patent describes a passive cooling system for liquid metal cooled, top entry loop nuclear fission reactors. It comprises: a liquid metal cooled nuclear reactor plant; a passive cooling system; and a secondary passive cooling system.

Boardman, C.E.; Hunsbedt, A.; Hui, M.M.

1992-10-27T23:59:59.000Z

354

NWCF Evaporator Tank System 2001 Offgas Emissions Inventory  

SciTech Connect

An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

2002-02-27T23:59:59.000Z

355

NWCF Evaporator Tank System 2001 Offgas Emissions Inventory  

SciTech Connect

An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

2002-02-01T23:59:59.000Z

356

Upward-facing Lithium Flash Evaporator for NSTX-U  

SciTech Connect

NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

Roquemore, A. L.

2013-07-09T23:59:59.000Z

357

Investigation of Aerosol Indirect Effects on Simulated Flash-flood Heavy Rainfall over Korea  

Science Conference Proceedings (OSTI)

This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed autoconversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5 % decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.

Lim, Kyo-Sun; Hong, Songyou

2012-11-01T23:59:59.000Z

358

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

with four cooling fans of different designs available on thedesign, installation, and use, the performance of cooling fans

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

359

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

360

Superconducting magnet cooling system  

DOE Patents (OSTI)

A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

Vander Arend, Peter C. (Center Valley, PA); Fowler, William B. (St. Charles, IL)

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cooled, temperature controlled electrometer  

DOE Patents (OSTI)

A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

Morgan, John P. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

362

Cooling apparatus and method  

DOE Patents (OSTI)

A device and method provide for cooling of a system having an energy source, one or more devices that actively consume energy, and one or more devices that generate heat. The device may include one or more thermoelectric coolers ("TECs") in conductive engagement with at least one of the heat-generating devices, and an energy diverter for diverting at least a portion of the energy from the energy source that is not consumed by the active energy-consuming devices to the TECs.

Mayes, James C. (Sugar Land, TX)

2009-05-05T23:59:59.000Z

363

Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report  

SciTech Connect

This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

Phillips, Vaughan T. J.

2013-10-18T23:59:59.000Z

364

Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones  

E-Print Network (OSTI)

The direct and indirect effects of aerosols on the hurricane Katrina have been investigated using the WRF model with a two-moment bulk microphysical scheme and modified Goddard shortwave radiation scheme. Simulations of the hurricane Katrina are conducted under the three aerosol scenarios: 1) the clean case with an aerosol number concentration of 200 cm-1, 2) the polluted case with a number concentration of 1000 cm-1, and 3) the aerosol radiative effects (AR) case with same aerosol concentration as polluted case but with a modified shortwave radiation scheme. The polluted and AR cases have much larger amounts of cloud water and water vapor in troposphere, and the increased cloud water can freeze to produce ice water paths. A tropical cyclone in dirty and dusty air has active rainbands outside the eyewall due to aerosol indirect effects. The aerosol direct effect can lead to the suppressing of convection and weakening of updraft intensity by warming the troposphere and cooling the surface temperature. However, these thermal changes in atmosphere are concerned with the enhanced amounts of cloud hydrometeors and modification of downdraft and corresponding the low level winds in rainband regions. Thus, the AR case can produce the enhanced precipitation even in the weakest hurricane. When comparing the model performance between aerosol indirect and direct effect by ensemble experiments, the adjustment time of the circulation due to modification of the aerosol radiative forcing by aerosol layers may take a longer time than the hurricane lifetime, and the results from the simulated hurricane show that it is more sensitive to aerosol indirect effects which are related to the cloud microphysics process changes. From this aerosol study, we can suggest that aerosols can influence the cloudiness, precipitation, and intensity of hurricanes significantly, and there may be different results in the meso-scale convective clouds cases. The hurricane system is a large and complex convective system with enormous heating energy and moistures. Moreover, relationships between various hydrometeors in hurricane systems are difficult to isolate and thus, it needs further study with more realistic cloud microphysical processes, aerosol distributions, and parameterizations.

Lee, Keun-Hee

2011-12-01T23:59:59.000Z

365

Spray Cooling Enhancement of Air-Cooled Condensers  

Science Conference Proceedings (OSTI)

Dry cooling of power plants may be an attractive alternative to wet cooling, particularly where water conservation and environmental protection pose critical siting issues. However, dry cooling technology may be unable to maintain design plant output during the hottest periods of the year, which are often periods of peak system demand. This studycosponsored by EPRI, the California Energy Commission, and Crockett Cogeneration Co.evaluated the use of a low-pressure spray enhancement system to...

2003-09-29T23:59:59.000Z

366

Emergency core cooling system  

DOE Patents (OSTI)

A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

1983-01-01T23:59:59.000Z

367

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

368

SIMULATING THE COOLING FLOW OF COOL-CORE CLUSTERS  

SciTech Connect

We carry out high-resolution adaptive mesh refinement simulations of a cool core cluster, resolving the flow from Mpc scales down to pc scales. We do not (yet) include any active galactic nucleus (AGN) heating, focusing instead on cooling in order to understand how gas reaches the supermassive black hole at the center of the cluster. We find that, as the gas cools, the cluster develops a very flat temperature profile, undergoing a cooling catastrophe only in the central 10-100 pc of the cluster. Outside of this region, the flow is smooth, with no local cooling instabilities, and naturally produces very little low-temperature gas (below a few keV), in agreement with observations. The gas cooling in the center of the cluster rapidly forms a thin accretion disk. The amount of cold gas produced at the very center grows rapidly until a reasonable estimate of the resulting AGN heating rate (assuming even a moderate accretion efficiency) would overwhelm cooling. We argue that this naturally produces a thermostat which links the cooling of gas out to 100 kpc with the cold gas accretion in the central 100 pc, potentially closing the loop between cooling and heating. Isotropic heat conduction does not affect the result significantly, but we show that including the potential well of the brightest cluster galaxy is necessary to obtain the correct result. Also, we found that the outcome is sensitive to resolution, requiring very high mass resolution to correctly reproduce the small transition radius.

Li Yuan; Bryan, Greg L. [Department of Astronomy, Pupin Physics Laboratories, Columbia University, New York, NY 10027 (United States)

2012-03-01T23:59:59.000Z

369

Flex power perspectives of indirect power system control through dynamic  

Open Energy Info (EERE)

Flex power perspectives of indirect power system control through dynamic Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect power system control through dynamic power price Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Comparison of indirect cost multipliers for vehicle manufacturing  

SciTech Connect

In the process of manufacturing and selling vehicles, a manufacturer incurs certain costs. Among these costs are those incurred directly as a part of manufacturing operations and those incurred indirectly in the processes of manufacturing and selling. The indirect costs may be production-related, such as R and D and engineering; business-related, such as corporate staff salaries and pensions; or retail-sales-related, such as dealer support and marketing. These indirect costs are recovered by allocating them to each vehicle. Under a stable, high-volume production process, the allocation of these indirect costs can be approximated as multipliers (or factors) applied to the direct cost of manufacturing. A manufacturer usually allocates indirect costs to finished vehicles according to a corporation-specific pricing strategy. Because the volumes of sales and production vary widely by model within a corporation, the internal corporate percent allocation of various accounting categories (such as profit or corporate overheat) can vary widely among individual models. Approaches also vary across corporations. For these purposes, an average value is constructed, by means of a generic representative method, for vehicle models produced at high volume. To accomplish this, staff at Argonne National Laboratory's (ANL's) Center for Transportation Research analyzed the conventional vehicle cost structure and developed indirect cost multipliers for passenger vehicles. This memorandum summarizes the results of an effort to compare and put on a common basis the cost multipliers used in ANL's electric and hybrid electric vehicle cost estimation procedures with those resulting from two other methodologies. One of the two compared methodologies is derived from a 1996 presentation by Dr. Chris Borroni-Bird of Chrysler Corporation, the other is by Energy and Environmental Analysis, Inc. (EEA), as described in a 1995 report by the Office of Technology Assessment (OTA), Congress of the United States. The cost multipliers are used for scaling the component costs to retail prices.

Vyas, A.; Santini, D.; Cuenca, R.

2000-05-16T23:59:59.000Z

371

Beam cooling: Principles and achievements  

SciTech Connect

After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

Mohl, Dieter; Sessler, Andrew M.

2003-05-18T23:59:59.000Z

372

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

373

Development of a Direct Evaporator for the Organic Rankine Cycle  

Science Conference Proceedings (OSTI)

This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The projects technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

2011-02-01T23:59:59.000Z

374

Open cycle OTEC system with falling jet evaporator and condenser  

DOE Green Energy (OSTI)

A configuration for the open cycle (OC) Ocean Thermal Energy Conversion (OTEC) system is presented incorporating a countercurrent falling jet evaporator and a concurrent falling jet condenser. The parameters governing performance of the proposed configuration are discussed and the sizing of equipment for a 100-MWe net power output OC OTEC plant is performed, based on recent experimental falling jet heat and mass transfer results. The performance of an OC OTEC plant with falling jet evaporator-condenser is compared with the Westinghouse conceptual design that uses an open-channel evaporator and a surface condenser. Preliminary calculations indicate that falling jet heat and mass transfer, when applied in the proposed configuration, leads to a very simple and compact plant assembly resulting in substantial capital cost savings.

Kogan, A.; Johnson, D. H.; Green, H. J.; Olson, D. A.

1980-07-01T23:59:59.000Z

375

Muon Cooling R&D  

E-Print Network (OSTI)

International efforts are under way to design and test a muon ionization cooling channel. The present R&D program is described, and future plans outlined.

Steve Geer

2001-08-15T23:59:59.000Z

376

"Hot" for Warm Water Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Published 112011 Conference Location Seattle, WA Call Number LBNL-5128E Abstract Liquid cooling is key to reducing energy consumption for this generation of supercomputers and...

377

Influence of Cooling on Distortion  

Science Conference Proceedings (OSTI)

Table 11   Factors that influence the cooling intensity of liquid quenchants...the vapor pressure is, the more difficult the

378

Laser Cooling of Trapped Ions.  

Science Conference Proceedings (OSTI)

... period, so it can be assumed to give an in- stantaneous impulse to the ... In sympathetic laser cooling, two different ion species are loaded into a trap. ...

2002-11-15T23:59:59.000Z

379

Theory of Semiconductor Laser Cooling .  

E-Print Network (OSTI)

??Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order (more)

Rupper, Greg

2010-01-01T23:59:59.000Z

380

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Direct cooled power electronics substrate  

DOE Patents (OSTI)

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

Wiles, Randy H. (Powell, TN), Wereszczak, Andrew A. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN); Lowe, Kirk T. (Knoxville, TN)

2010-09-14T23:59:59.000Z

382

GAS COOLED NUCLEAR REACTORS  

DOE Patents (OSTI)

A gas-cooled nuclear reactor consisting of a graphite reacting core and reflector structure supported in a containing vessel is described. A gas sealing means is included for sealing between the walls of the graphite structure and containing vessel to prevent the gas coolant by-passing the reacting core. The reacting core is a multi-sided right prismatic structure having a pair of parallel slots around its periphery. The containing vessel is cylindrical and has a rib on its internal surface which supports two continuous ring shaped flexible web members with their radially innermost ends in sealing engagement within the radially outermost portion of the slots. The core structure is supported on ball bearings. This design permits thermal expansion of the core stracture and vessel while maintainirg a peripheral seal between the tvo elements.

Long, E.; Rodwell, W.

1958-06-10T23:59:59.000Z

383

Classical black hole evaporation in Randall-Sundrum infinite braneworld  

E-Print Network (OSTI)

After the gravity induced on the brane in the Randall-Sundrum (RS) infinite braneworld is briefly reviewed, we discuss the possibility that black holes evaporate as a result of classical evolution in this model based on the AdS/CFT correspondence. If this possibility is really the case, the existence of long-lived solar mass black holes will give the strongest constraint on the bulk curvature radius. At the same time, we can propose a new method to simulate the evaporation of a 4D black hole due to the Hawking radiation as a 5D process.

Takahiro Tanaka

2002-03-24T23:59:59.000Z

384

Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues  

SciTech Connect

Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.

Knight, K; Kita, N; Mendybaev, R; Richter, F; Davis, A; Valley, J

2009-06-18T23:59:59.000Z

385

Simultaneous multiparticle emissions in hot nuclei evaporation process  

SciTech Connect

This work presents a new mechanism for the evaporation with simultaneous particles emission mechanism in the evaporation chain as new channels opened to high excitation energy regime of the compound nucleus. The probability of multiple simultaneous emissions is determined based on phase space approach. A Monte Carlo simulation is employed to compute the final average yield of emitted particles after the decay chain. The neutron, proton, alpha and fission yields are obtained and compared to the conventional calculation with sequential simple particles emission and the relevance of the different channels in competition is also analyzed.

Santos, B. M. [Instituto de Fisica - Universidade Federal Fluminense Av. Gal. Milton Tavares de Souza, 24210-346 Niteroi. RJ (Brazil); De Assis, L. P.; Duarte, S. B. [Centro Brasileiro de Pesquisas Fisicas - CBPF Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro. RJ (Brazil)

2013-03-25T23:59:59.000Z

386

Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls  

Science Conference Proceedings (OSTI)

A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.

D.P. Stotler, C.H. Skinner, W.R. Blanchard, P.S. Krstic, H.W. Kugel, H. Schneider, and L.E. Zakharov

2010-12-09T23:59:59.000Z

387

Decentralized model predictive control of a multiple evaporator HVAC system.  

E-Print Network (OSTI)

??Vapor compression cooling systems are the primary method used for refrigeration and air conditioning, and as such are a major component of household and commercial (more)

Elliott, Matthew Stuart

2009-01-01T23:59:59.000Z

388

Film cooling for a closed loop cooled airfoil  

DOE Patents (OSTI)

Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

2003-01-01T23:59:59.000Z

389

Thermally Indirect Motions in the Convective Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

The energetics of the dry convective boundary layer is studied by partitioning the turbulent heat flux into thermally indirect (w???thermally direct (w???>0) components as a function of z/Zi. It is found that except for the inversion ...

J. M. Wilczak; Joost A. Businger

1983-02-01T23:59:59.000Z

390

Fishing for sustainability: the effects of indirect and direct persuasion  

Science Conference Proceedings (OSTI)

Websites and technologies that promote sustainable behavior often employ direct persuasion by being open about persuasive intent. We examined the use of indirect persuasion, methods that do not make persuasive intent clear. We built two variants of a ... Keywords: consumer actions, consumer attitudes, information design, persuasive technology, sustainability

Turadg Aleahmad; Aruna D. Balakrishnan; Jeffrey Wong; Susan R. Fussell; Sara Kiesler

2008-04-01T23:59:59.000Z

391

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

Forsberg, Charles W. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

392

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

393

Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

394

Laser cooling to quantum degeneracy  

E-Print Network (OSTI)

We report on Bose-Einstein condensation (BEC) in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1\\muK on a narrow-linewidth transition. The critical phase-space density for BEC is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10^5 atoms can be repeatedly formed on a timescale of 100ms, with prospects for the generation of a continuous atom laser.

Stellmer, Simon; Grimm, Rudolf; Schreck, Florian

2013-01-01T23:59:59.000Z

395

Keeping cool in the job  

Science Conference Proceedings (OSTI)

Describes cooling garments used at nuclear plants to keep workers cooler for longer periods of time, safeguard health, boost efficiency, and elevate morale. Examines 2 cooling concepts tested by EPRI in laboratory and field conditions: using circulating liquids for cooling (represented by 2 commercially available personal cooling systems); and using frozen water for cooling (represented by 2 prototype garments recently developed by EPRI). Explains that pipes and pressure vessels inside nuclear power plants give off significant amounts of waste heat, with temperatures reaching up to 55C (131F)-not very comfortable for maintenance workers who are swathed in radiation protection gear and doing repair work. Finds that the frozen-water concept may considerably extend working time in the power plant. Concludes that the right research can overcome heat, humidity, and close quarters which conspire to make maintenance work in power plants a tough task.

Lihach, N.; O'Brien, J.

1982-09-01T23:59:59.000Z

396

Process Control Plan for 242A Evaporator Campaign  

SciTech Connect

The wastes in tanks 107-AP and 108-AP are designated as feed for 242-A Evaporator Campaign 2000-1, which is currently scheduled for the week of April 17, 2000. Waste in tanks 107-AP and 108-AP is predominantly comprised of saltwell liquor from 200 West Tank Farms.

LE, E.Q.

2000-04-06T23:59:59.000Z

397

Laboratory Measurements of Particle Capture by Evaporating Cloud Drops  

Science Conference Proceedings (OSTI)

The capture efficiencies of evaporating cloud drops (5693 ?m radius) for particles of manganese hypophosphite (0.583.2 ?m radius) were obtained experimentally. In each experimental run, a large number of widely spaced uniform size drops fell ...

K. H. Leong; K. V. Beard; Harry T. Ochs III

1982-05-01T23:59:59.000Z

398

Low-Cost Wind Speed Measurements Using Naphthalene Evaporation  

Science Conference Proceedings (OSTI)

Six 125-cm3 metal mesh cages, filled with 99% pure naphthalene mothballs, were suspended near anemometers during 8 winter weeks. Each week the cages were weighed to determine how much evaporation had occurred. A least-squares linear regression of ...

Pierre Y. Bernier

1988-10-01T23:59:59.000Z

399

Restart oversight assessment of Hanford 242-A evaporator: Technical report  

SciTech Connect

An assessment team from the Office of Environment, Safety and Health (EH), US Department of Energy (DOE), conducted an independent assessment of the 242-A Evaporator at the Hanford Site during January 17--28, 1994. An EH team member remained on-site following the assessment to track corrective actions and resolve prestart findings. The primary objective of this assessment was independent assurance that the DOE Office of Environmental Management (EM), the DOE Richland Operations Office (DOE-RL), and Westinghouse Hanford Company (WHC) can safely restart the evaporator. Another objective of the EH team was to assess EM`s Operational Readiness Evaluation (ORE) to determine if the programs, procedures, and management systems implemented for operation of the 241-A Evaporator ensure the protection of worker safety and health. The following section of this report provides background information on the 242-A Evaporator and Operational Readiness Review (ORR) activities conducted to date. The next chapter is divided into sections that address the results of discrete assessment activities. Each section includes a brief statement of conclusions for the functional area in question, descriptions of the review bases and methods, and a detailed discussion of the results. Concerns identified during the assessment are listed for the section to which they apply, and the specific findings upon which the concern is based can be found immediately thereafter.

Lagdon, R.; Lasky, R.

1994-08-01T23:59:59.000Z

400

Is Virga Rain That Evaporates before Reaching the Ground?  

Science Conference Proceedings (OSTI)

The visual phenomenon called virga, a sudden change in the brightness of a precipitation shaft below a cloud, is commonly attributed to evaporation of raindrops. It is said to be rain that does not reach the ground. The optical thickness of an ...

Alistair B. Fraser; Craig F. Bohren

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaporation of iodine-containing off-gas scrubber solution  

DOE Patents (OSTI)

Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

Partridge, J.A.; Bosuego, G.P.

1980-07-14T23:59:59.000Z

402

A Parameterization of Evaporation from Bare Soil Surfaces  

Science Conference Proceedings (OSTI)

A simple model of evaporation from a bare soil surface is developed. This model combines two processes of water vapor transport: one is the vapor transport in air expressed by the bulk formula, and the other is molecular diffusion of vapor in the ...

Junsei Kondo; Nobuko Saigusa; Takeshi Sato

1990-05-01T23:59:59.000Z

403

Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram  

E-Print Network (OSTI)

Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

Paris-Sud XI, Université de

404

Analysis of design tradeoffs for diplay case evaporators  

SciTech Connect

A model for simulating a display case evaporator under frosting conditions has been developed, using a quasi-steady and finite-volume approach and a Newton-Raphson based solution algorithm. It is capable of simulating evaporators with multiple modules having different geometries, e.g. tube and fin thicknesses and pitch. The model was validated against data taken at two-minute intervals from a well-instrumented medium-temperature vertical display case, for two evaporators having very different configurations. The data from these experiments provided both the input data for the model and also the data to compare the modeling results. The validated model has been used to generate some general guidelines for coil design. Effects of various geometrical parameters were quantified, and compressor performance data were used to express the results in terms of total power consumption. Using these general guidelines, a new prototype evaporator was designed for the subject display case, keeping in mind the current packaging restrictions, tube and fin availabilities. It is an optimum coil for the given external load conditions. Subsequently, the validated model was used in a more extensive analysis to design prototype coils with some of the current tube and fin spacing restrictions removed. A new microchannel based suction line heat exchanger was installed in the display case system. The performance of this suction line heat exchanger is reported.

Bullard, CLARK

2004-08-11T23:59:59.000Z

405

3D Imaging of Evaporating Fuel Droplets by Stereoscopic PIV  

Science Conference Proceedings (OSTI)

A gun-type burner is a widely used oil burner for industrial and domestic applications. The oil is pressure-atomized and mixed with air generating a recirculating, swirling flow. Because of the surrounding flame, fuel droplets evaporate, being difficult ... Keywords: 3D PIV, Stereoscopic PIV, droplet dynamics, spray combustion

V. Palero; Y. Ikeda

2002-08-01T23:59:59.000Z

406

Film cooling air pocket in a closed loop cooled airfoil  

SciTech Connect

Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

2002-01-01T23:59:59.000Z

407

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

408

New Cool Roof Coatings and Affordable Cool Color Asphalt  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

409

Acoustic cooling engine  

DOE Patents (OSTI)

An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

Hofler, Thomas J. (Los Alamos, NM); Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM)

1988-01-01T23:59:59.000Z

410

Analysis of an improved solar-powered cooling system utilizing open-cycle absorbent regeneration  

DOE Green Energy (OSTI)

A solar-powered cooling system which promises high system C.O.P.'s and low collector costs is analyzed. It consists of a desiccant and an absorption cooling system operating in series to both dry and cool the air. A common solution of lithium chloride is used as the absorbant. The lithium chloride solution is regenerated by evaporating the excess water to the atmosphere in an ''open'' collector. This collector consists merely of a blackened flat surface. The weak solution of lithium chloride is introduced at the top of the collector and then flows by gravity over the entire collector surface where it is subsequently heated and dried. The daily performance of this combined system is compared by computer simulation to that of either an absorption or desiccant system alone using actual weather data for five typical U.S. cities. The performance improvement of the combined system ranged from 25% to 95%, the greatest improvement being for humid, windy conditions.

Collier, R.K.

1978-01-01T23:59:59.000Z

411

Predictive pre-cooling control for low lift radiant cooling using building thermal mass  

E-Print Network (OSTI)

Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

Gayeski, Nicholas (Nicholas Thomas)

2010-01-01T23:59:59.000Z

412

Non-intrusive cooling system  

DOE Patents (OSTI)

A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

Morrison, Edward F. (Burnt Hills, NY); Bergman, John W. (Barrington, NH)

2001-05-22T23:59:59.000Z

413

Stochastic cooling in muon colliders  

SciTech Connect

Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10{sup 30} cm{sup {minus}2}s{sup {minus}1} as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to {approximately}10{sup 3} for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW.

Barletta, W.A.; Sessler, A.M.

1993-09-01T23:59:59.000Z

414

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

l U CONTROL SYSTEM FOR SOLAR HEATING AND COOLING* M.Wahlig,be capable of operating solar heating and cooling systemsand now transferred to ERDA, on solar heating and cooling of

Dols, C.

2010-01-01T23:59:59.000Z

415

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

between the cooling effect (measured with a thermal manikin)output is the body cooling effect [5]. Thermal manikins withThermal manikins can be used to measure the fan cooling

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

416

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

of the cooling effect measured with the thermal manikin andThe mea- sured cooling effect with the thermal manikin isby a thermal manikin to quantify the cooling effects of air

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

417

MUCOOL: Ionization Cooling R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory MUCOOL Muon Ionization Cooling R&D Welcome to the muon ionization cooling experimental R&D page. The MuCool collaboration has been formed to pursue the development of a...

418

Cooling arrangement for a tapered turbine blade  

SciTech Connect

A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

Liang, George (Palm City, FL)

2010-07-27T23:59:59.000Z

419

Indirect detections and analyses of GRBs by ionospheric response  

SciTech Connect

We report on the independent and indirect detection of GRBs by their ionospheric response (SID--Sudden Ionospheric Disturbance) observed at VLF (Very Low Frequency), and discus its possible impact on GRB science and investigations in general. Although few such detections have been already reported in the past, the capability of such alternative and indirect investigations of GRBs still remains to be investigated in more details. We present and discuss examples of such VLF/SID detection of GRBs 060124A, GRB080319D a GRB080320A. A network of SID monitors has been created and is operated to detect more GRBs. The importance of these detections for GRB analyses and GRB science in general is still to be further and in full detail exploited. Some possible outcomes in this direction will be outlined and discussed.

Slosiar, R. [Partizanske Observatory, Amateur Astronomer, Bojnice (Slovakia); Hudec, R. [Astronomical Institute, Academy of Sciences of the Czech Republic, 251 65 Ondrejov, Czech Republic and Czech Technical University in Prague, Faculty of Elctrical Engineering, Prague (Czech Republic)

2009-05-25T23:59:59.000Z

420

Indirect detections and analyses of GRBs by ionospheric response  

SciTech Connect

We present and discuss the independent and indirect detection of GRBs by their ionospheric response (SID--Sudden Ionospheric Disturbance) observed at VLF (Very Low Frequency), and evaluate its possible impact on GRB science and investigations in general. Although few such detections have been already reported in the past, the capability of such alternative and indirect investigations of GRBs still remains to be investigated in more details. We present and discuss examples of such VLF/SID detection of GRBs 060124A, GRB080319D a GRB080320A. A network of SID monitors has been created and is operated to detect more GRBs. The importance of these detections for GRB analyses and GRB science in general is still to be further and in full detail exploited.

Hudec, Rene [Astronomical Institute, AS CR, 25165 Ondrejov (Czech Republic); Czech Technical University in Prague, Faculty of Electrical Engineering, Prague (Czech Republic); Slosiar, Rudolf [Bojnice and Partizanske Observatory (Slovakia)

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reconstruction of a Daily Large-Pan Evaporation Dataset over China  

Science Conference Proceedings (OSTI)

Land surface evaporation is an important component of the earths surface hydrological cycle, as well as in the atmospheric energy and water balances. In China, different instruments have been used over time to measure evaporation. A small pan ...

An-Yuan Xiong; Jie Liao; Bin Xu

2012-07-01T23:59:59.000Z

422

Evaporation-Limited Tropical Temperatures as a Constraint on Climate Sensitivity  

Science Conference Proceedings (OSTI)

Studies of paleoclimate and modern observations indicate that evaporative effects limit thermal response in equatorial regions. We develop a latitude-resolved, steady-state energy balance model which incorporates the effect of an evaporative ...

Martin I. Hoffert; Brian P. Flannery; Andrew J. Callegari; C. T. Hsieh; Warren Wiscombe

1983-07-01T23:59:59.000Z

423

Modeling the Hydroclimatology of Kuwait: The Role of Subcloud Evaporation in Semiarid Climates  

Science Conference Proceedings (OSTI)

A new subcloud layer evaporation scheme is incorporated into Regional Climate Model, version 3 (RegCM3), to better simulate the rainfall distribution over a semiarid region around Kuwait. The new scheme represents subcloud layer evaporation of ...

Marc P. Marcella; Elfatih A. B. Eltahir

2008-06-01T23:59:59.000Z

424

A Simple Model of Evaporatively Driven Dowadraft: Application to Microburst Downdraft  

Science Conference Proceedings (OSTI)

A simple one-dimensional, time-dependent model of an evaporatively driven downdraft is presented. The model is described by equations for raindrop evaporation, raindrop concentration, water substance, thermodynamic energy and vertical air ...

R. C. Srivastava

1985-05-01T23:59:59.000Z

425

A Rapid-Circulation Evaporation Chamber for Measuring Bulk Stomatal Resistance  

Science Conference Proceedings (OSTI)

A relatively simple method is described for determining evaporation of short vegetation at any moment of time. The method is based on the measurement of bulk stomatal resistance of the crop with an evaporation chamber. Once this quantity is known,...

W. Kohsiek

1981-01-01T23:59:59.000Z

426

Wind Run Changes: The Dominant Factor Affecting Pan Evaporation Trends in Australia  

Science Conference Proceedings (OSTI)

The Class A pan evaporation rates at many Australian observing stations have reportedly decreased between 1970 and 2002. That pan evaporation rates have decreased at the same time that temperatures have increased has become known as the pan ...

D. P. Rayner

2007-07-01T23:59:59.000Z

427

Evaporation from Nonvegetated Surfaces: Surface Aridity Methods and Passive Microwave Remote Sensing  

Science Conference Proceedings (OSTI)

The use of remotely sensed near-surface soil moisture for the estimation of evaporation is investigated. Two widely used parameterizations of evaporation, the so-called ? and ? methods, which use near-surface soil moisture to reduce some measure ...

Anthony T. Cahill; Marc B. Parlange; Thomas J. Jackson; Peggy ONeill; T. J. Schmugge

1999-09-01T23:59:59.000Z

428

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures  

E-Print Network (OSTI)

a porous wick between the condenser and the evaporation. Theat the evaporator and condenser sections.. 26 Fig. 3.3a heat pipe Length of the condenser section in a heat pipe

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

429

A Model of Intense Downdrafts Driven by the Melting and Evaporation of Precipitation  

Science Conference Proceedings (OSTI)

A ono-dimensioral time-dependent model of a downdraft driven by the melting and evaporation of precipitation and precipitation loading is formulated. Equations for particle melting, particle evaporation, particle concentration, precipitation ...

R. C. Srivastava

1987-07-01T23:59:59.000Z

430

EvaporationPrecipitation Variability over the Mediterranean and the Black Seas from Satellite and Reanalysis Estimates  

Science Conference Proceedings (OSTI)

Satellite retrievals of surface evaporation and precipitation from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) dataset are used to document the distribution of evaporation, precipitation, and freshwater flux ...

A. Romanou; G. Tselioudis; C. S. Zerefos; C-A. Clayson; J. A. Curry; A. Andersson

2010-10-01T23:59:59.000Z

431

Temperature Dependence of Evaporation Coefficient for Water Measured in Droplets in Nitrogen under Atmospheric Pressure  

Science Conference Proceedings (OSTI)

The evaporation and the thermal accommodation coefficients for water in nitrogen were investigated by means of the analysis of evaporation of pure water droplet as a function of temperature. The droplet was levitated in an electrodynamic trap ...

D. Jakubczyk; M. Zientara; K. Kolwas; M. Kolwas

2007-03-01T23:59:59.000Z

432

Economic Evaluation of Alternative Cooling Technologies  

Science Conference Proceedings (OSTI)

Water use and conservation at electric power plants are becoming increasingly important siting issues. At most plants, the requirement for condensing exhaust steam from the steam turbine, generically known as power plant cooling, is the major use of water. Alternative cooling systems exist, including once-through cooling, wet-recirculating cooling, dry cooling, and hybrid (or wet/dry cooling), some of which offer significant opportunity for water conservation. These water savings normally, but perhaps no...

2012-01-25T23:59:59.000Z

433

IEP - Water-Energy Interface: Cooling Water Intake Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

The types of cooling water systems to be evaluated are: Wet Cooling Tower - The condenser is cooled with water recirculated to a mechanical draft cooling tower. Because there...

434

Thermally Activated Cooling: A Regional Approach for Estimating Building Adoption  

E-Print Network (OSTI)

Distributed Generation, Absorption Cooling, Space Cooling,use heat to drive an absorption cooling cycle, and the heatlargest drivers for absorption cooling technology adoption

Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

435

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

The present invention relates generally to an integrated fuel cell power plant, and more specifically to a combination of cycles wherein a first fuel cell cycle tops an indirect-fired gas turbine cycle and a second fuel cell cycle bottoms the gas turbine cycle so that the cycles are thermally integrated in a tandem operating arrangement. The United States Government has rights in this invention pursuant to the employer-employee relationship between the United States Department of Energy and the inventors.

Micheli, P.L.; Williams, M.C.; Sudhoff, F.A.

1998-04-01T23:59:59.000Z

436

Indirect search for New Physics: complementarity to direct searches  

E-Print Network (OSTI)

We present an overview on the interplay between direct searches for new physics at the LHC and indirect constraints from the flavour sector, with an emphasis on the implications of the recent LHCb results. The complementarity with the Higgs search results will also be addressed. We show the correlation and complementarity between the different sectors in the context of a few specific examples in supersymmetry.

F. Mahmoudi

2013-10-09T23:59:59.000Z

437

CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER  

Science Conference Proceedings (OSTI)

Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.

Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

2008-03-03T23:59:59.000Z

438

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

439

Temperature and cooling management in computing systems  

E-Print Network (OSTI)

78 5.2 Combined Energy, Thermal and CoolingOne reason for thermal and energy variations betweenWe propose a combined energy, thermal and cooling management

Ayoub, Raid

2011-01-01T23:59:59.000Z

440

Vehicle Cooling Systems - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and ... The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a ...

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, Paul L. (Morgantown, WV); Williams, Mark C. (Morgantown, WV); Parsons, Edward L. (Morgantown, WV)

1995-01-01T23:59:59.000Z

442

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1993-12-31T23:59:59.000Z

443

Indirect-fired gas turbine bottomed with fuel cell  

DOE Patents (OSTI)

An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

Micheli, P.L.; Williams, M.C.; Parsons, E.L.

1995-09-12T23:59:59.000Z

444

Bench-Scale Evaporation of a Large Hanford Envelope C Sample (Tank 241-AN-102)  

Science Conference Proceedings (OSTI)

This report contains the results of the Bench Scale evaporation of a large sample of pretreated Envelope C (AN102).

Crowder, M.L.

2001-07-13T23:59:59.000Z

445

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

This document describes passive decay-heat removal system for a water-cooled nuclear reactor which employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated evaporator located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forseberg, C.W.

1990-01-01T23:59:59.000Z

446

Passive decay heat removal system for water-cooled nuclear reactors  

DOE Patents (OSTI)

This document describes passive decay-heat removal system for a water-cooled nuclear reactor which employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated evaporator located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

Forseberg, C.W.

1990-12-31T23:59:59.000Z

447

Cooling Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Power Plant Cooling Technologies Cooling Technologies Cooling tower at Steamboat Springs geothermal power plant in Steamboat Springs, NV. Power generation facilities that rely on thermal sources as their energy inputs such as Coal, Natural Gas, Geothermal, Concentrates Solar Power, and Nuclear require cooling technologies to reject the heat that is created. The second law of thermodynamics states: "No process can convert heat absorbed from a reservoir at one temperature directly into work without also rejecting heat to a cooler reservoir. That is, no heat engine is 100% efficient"[1] In the context of power generation from thermal energy, this means that any heat that is created must be rejected. Heat is most commonly rejected in

448

Multi-Photon Laser Cooling  

Science Conference Proceedings (OSTI)

... used traditional cooling beams at 852 nm in the x-y plane, but replaced the usual two beams along z with lasers at 795 nm. This laser only couples ...

2011-10-04T23:59:59.000Z

449

Success Stories: Cool Color Roofs  

NLE Websites -- All DOE Office Websites (Extended Search)

instead of absorbing, solar heat. So the question for scientists interested in increasing energy efficiency is, can one make a roof that is both cool and dark? Hashem Akbari, Paul...

450

Convective Cooling of Lightning Channels  

Science Conference Proceedings (OSTI)

We report experimental data which trace the time development of electric discharge channels in air and which demonstrate the turbulent cooling of such channels. These data provide qualitative confirmation of the model proposed and used by Hill, ...

J. M. Picone; J. P. Boris; J. R. Greig; M. Raleigh; R. F. Fernsler

1981-09-01T23:59:59.000Z

451

Energy Savers: Cool Summer Tips  

SciTech Connect

A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed.

Miller, M.

2001-06-18T23:59:59.000Z

452

Cooling Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and...

453

Advance in MEIC cooling studies  

Science Conference Proceedings (OSTI)

Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

454

Absorption Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial...

455

CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS  

Science Conference Proceedings (OSTI)

Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some degree of flow communications between adjacent cells through the 9-in gap at the bottom of the tower cells as shown in Fig. 2. Detailed geometrical dimensions for the H-Area tower configurations are presented in the figure. The model was benchmarked and verified against off-site and on-site test results. The verified model was applied to the investigation of cooling fan and wind effects on water cooling in cells when fans are off and on. This report will discuss the modeling and test results.

Lee, S.; Garrett, A.; Bollinger, J.

2009-09-02T23:59:59.000Z

456

Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads  

SciTech Connect

Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

2004-01-01T23:59:59.000Z

457

Cooling Towers, Energy Conservation Machines  

E-Print Network (OSTI)

Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water returning from the cooling tower, greater chemical product volume can be condensed and less energy is required to run compressors. This paper will discuss two case histories and the rapid cost-effective savings thereby accruing through retrofit.

Burger, R.

1980-01-01T23:59:59.000Z

458

Quantum limit of photothermal cooling  

E-Print Network (OSTI)

We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force. Contrary to previous attempts to model this system, we take into account the noise effects due to the granular nature of photon absorption. This allows us to tackle the cooling problem down to the noise dominated regime and to find reasonable estimates for the lowest achievable phonon occupation in the cantilever.

De Liberato, Simone; Nori, Franco

2010-01-01T23:59:59.000Z

459

Experimental Research of the Falling-Film Evaporation Characteristic outside Horizontal Heat Pipe in the Vacuum  

Science Conference Proceedings (OSTI)

Face the energy crisis in the world, it is important to improve the utilization efficiency of the energy conversion. The evaporation characteristic of the falling film outside heat pipe in the vacuum as a good evaporation method was studied in the paper. ... Keywords: Falling film, Evaporation, Vacuum

Penghui Gao; Lixi Zhang; Hefei Zhang

2009-10-01T23:59:59.000Z

460

Optimal design of a micro evaporator with lateral gaps Taijong Sung a  

E-Print Network (OSTI)

­compression refrigeration sys- tem. The experimental design is adopted to determine the optimal parameters of the evaporatorOptimal design of a micro evaporator with lateral gaps Taijong Sung a , Daesik Oh b , Sangrok Jin online 1 March 2009 Keywords: Micro evaporator Optimal design Design of experiment Lateral gaps Two

Kim, Jongwon

Note: This page contains sample records for the topic "indirect evaporative cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

List of Evaporative Coolers Incentives | Open Energy Information  

Open Energy Info (EERE)

Coolers Incentives Coolers Incentives Jump to: navigation, search The following contains the list of 35 Evaporative Coolers Incentives. CSV (rows 1 - 35) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Arizona Commercial Industrial Institutional Local Government Retail Supplier Schools State Government Building Insulation Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators LED Exit Signs Evaporative Coolers Vending Machine Controls Food Service Equipment Yes Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Commercial

462

Solid material evaporation into an ECR source by laser ablation  

Science Conference Proceedings (OSTI)

In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10{sup 7} W/cm{sup 2} has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source.

Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

1993-09-01T23:59:59.000Z

463

Energy Efficient Electronics Cooling Project  

SciTech Connect

Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

2012-02-17T23:59:59.000Z

464

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

465

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

466

"Hot" for Warm Water Cooling  

Science Conference Proceedings (OSTI)

Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

2011-08-26T23:59:59.000Z

467

Phases of information release during black hole evaporation  

E-Print Network (OSTI)

In a recent article, we have shown how quantum fluctuations of the background geometry modify Hawking's density matrix for black hole (BH) radiation. Hawking's diagonal matrix picks up small off-diagonal elements whose influence becomes larger with the number of emitted particles. We have calculated the "time-of-first-bit", when the first bit of information comes out of the BH, and the "transparency time", when the rate of information release becomes order unity. We have found that the transparency time is equal to the "Page time", when the BH has lost half of its initial entropy to the radiation, in agreement with Page's results. Here, we improve our previous calculation by keeping track of the time of emission of the Hawking particles and their back-reaction on the BH. Our analysis reveals a new time scale, the radiation "coherence time", which is equal to the geometric mean of the evaporation time and the light crossing time. We find, as for our previous treatment, that the time-of-first-bit is equal to the coherence time, which is much shorter than the Page time. But the transparency time is now much later than the Page time, just one coherence time before the end of evaporation. Close to the end, when the BH is parametrically of Planckian dimensions but still large, the coherence time becomes parametrically equal to the evaporation time, thus allowing the radiation to purify. We also determine the time dependence of the entanglement entropy of the early and late-emitted radiation. This entropy is small during most of the lifetime of the BH, but our qualitative analysis suggests that it becomes parametrically maximal near the end of evaporation.

Ram Brustein; A. J. M. Medved

2013-10-22T23:59:59.000Z

468

Evaporation Time of Ho?ava Gravity Black Holes  

Science Conference Proceedings (OSTI)

Recently it has been a lot of interest in the theory proposed by Ho?ava because is a remormalizable theory of gravity and may be a candidate for the UV completion of Einstein gravity. In the present work we study thermodynamical properties of black hole type solutions in this setup. In particular we are able to obtain times of evaporation for black hole solution in this formalism.

S. Prez?Payn; M. Sabido

2011-01-01T23:59:59.000Z

469

Mesoporous-silica films, fibers, and powders by evaporation  

SciTech Connect

This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

Bruinsma, Paul J. (Kennewick, WA); Baskaran, Suresh (Kennewick, WA); Bontha, Jagannadha R. (Richland, WA); Liu, Jun (West Richland, WA)

1999-01-01T23:59:59.000Z

470

Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype  

SciTech Connect

This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

Kozubal, E.; Woods, J.; Judkoff, R.

2012-04-01T23:59:59.000Z

471

Definition: Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Water Cooling Water Cooling Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process.[1] View on Wikipedia Wikipedia Definition Water cooling is a method of heat removal from components and industrial equipment. As opposed to air cooling, water is used as the heat conductor. Water cooling is commonly used for cooling automobile internal combustion engines and large industrial facilities such as steam electric power plants, hydroelectric generators, petroleum refineries and chemical plants. Other uses include cooling the barrels of machine guns, cooling of

472

Heavy quark production in the black hole evaporation at LHC  

SciTech Connect

The understanding of Quantum Chromodynamics (QCD) and Quantum Gravity are currently two of the main open questions in Physics. In order to understand these problems some authors proposed the existence of extra dimensions in the Nature. These extra dimensions would be compacted and not visible on the macroscopic world, but the effects would be manifest in ultrarelativistic colision process. In particular, black holes (BH) could be produced in proton-proton colisions in the Large Hadron Collider (LHC) and in future colliders. The BH is an object characterized by its mass and temperature wich also characterizes the evaporation process. All kind of particle should be produced in this process. Our goal in this contribution is to study the BH production in proton - proton collisions at LHC and its evaporation rate in heavy quarks. We present our estimate considering two scenarios (with and without trapped energy corrections) and compare our predictions with those obtained using perturbative QCD. Our results demonstrate that in both scenarios the charm and bottom production in the BH evaporation are smaller than the QCD prediction at LHC. In contrast, the top production is similar or larger than the QCD prediction, if the trapped energy corrections are disregarded.

Thiel, M.; Goncalves, V. P.; Sauter, W. K. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas (Brazil)

2013-03-25T23:59:59.000Z

473

Evaporation of a Large Decontaminated Hanford Tank Sample  

SciTech Connect

A radioactive sample (approximately 15 L) from Hanford tank 241-AN-102 was concentrated via evaporation at reduced pressure and temperature, to support flowsheet development and regulatory approval for the Hanford River Protection Project Waste Treatment Plant (RPP-WTP). The received sample (Envelope C) had been pretreated at the Savannah River Technology Center (SRTC) for removal of strontium and transuranic ions by precipitation and removal of cesium and technetium via ion exchange. The resulting pretreated Low Activity Waste (LAW) stream was the feed material for this evaporation test. The goals of this evaporation were to: (1) provide operating data -- including foaming and scaling tendencies -- for scale-up purposes, (2) obtain liquid and off-gas samples during steady-state operation for regulatory analysis, (3) conduct a ''final boildown'' after the steady-state operation to determine the solubility endpoint of the solution and the major precipitants, and (4) provide concentrated feed for a melter vitrification study to produce several kilograms of immobilized LAW glass product.

Crawford, C.L.

2001-03-22T23:59:59.000Z

474

Moduli Vacuum Bubbles Produced by Evaporating Black Holes  

E-Print Network (OSTI)

We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4d effective potential with one-loop contributions due to the Casimir effect, along with a 5d cosmological constant. The forms of the effective potential at low and high temperatures indicates a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D74, 024004 (2006), arXiv:hep-th/0605047]. The black hole bubble can be highly opaque to lower energy particles and photons, and thereby entrap them within. For high temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I.G. Moss, Phys. Rev. D32,1333 (1985)], tending to reflect low energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.

J. R. Morris

2007-08-14T23:59:59.000Z

475

Indirectly heated fluidized bed biomass gasification using a latent heat ballast  

DOE Green Energy (OSTI)

The objective of this study is to improve the heating value of gas produced during gasification of biomass fuels using an indirectly heated gasifier based on latent heat ballasting. The latent heat ballast consists of lithium fluoride salt encased in tubes suspended in the reactor. The lithium fluoride has a melting point that is near the desired gasification temperature. With the ballast a single reactor operating in a cyclic mode stores energy during a combustion phase and releases it during a pyrolysis phase. Tests were carried out in a fluidized bed reactor to evaluate the concept. The time to cool the reactor during the pyrolysis phase from 1,172 K (1,650 F) to 922 K (1,200 F) increased 102% by use of the ballast system. This extended pyrolysis time allowed 33% more biomass to be gasified during a cycle. Additionally, the total fuel fraction pyrolyzed to produce useful gas increased from 74--80%. Higher heating values of 14.2 to 16.6 MJ/Nm{sup 3} (382--445 Btu/scf) on a dry basis were obtained from the ballasted gasifier.

Pletka, R.; Brown, R.; Smeenk, J. [Iowa State Univ., Ames, IA (United States). Center for Coal and the Environment

1998-12-31T23:59:59.000Z

476

Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water  

E-Print Network (OSTI)

Evaporation is a fundamental physical phenomenon, of which many challenging questions remain unanswered. Enhanced evaporation of liquids in some occasions is of enormous practical significance. Here we report the enhanced evaporation of the nearly permanently stable silicone oil by dispersing with nanopariticles including CaTiO3, anatase and rutile TiO2. The results can inspire the research of atomistic mechanism for nanoparticle enhanced evaporation and exploration of evaporation control techniques for treatment of oil pollution and restoration of dirty water.

Wenbin Zhang; Rong Shen; Kunquan Lu; Ailing Ji; Zexian Cao

2012-10-23T23:59:59.000Z

477

Indirect Combustion Noise: Experimental Investigation of the Vortex Sound Generation in a Choked  

E-Print Network (OSTI)

Indirect Combustion Noise: Experimental Investigation of the Vortex Sound Generation in a Choked-27 April 2012, Nantes, France 2315 #12;Combustion noise in gas turbines consists of direct noise related to the unsteady combustion process itself and indirect noise. As known, indirect noise is produced when entropy

Paris-Sud XI, Université de

478

Dry Cooling: Perspectives on Future Needs  

Science Conference Proceedings (OSTI)

The total number of dry-cooled power plants in the United States has increased significantly in recent years. This is because nonutility generators are using dry-cooling systems to meet environmental protection and water conservation requirements. A survey shows that utility planners expect that dry cooling could become an important cooling-system option for new utility plants.

1991-08-19T23:59:59.000Z

479

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: