Sample records for india sector wind

  1. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    the need to reassess wind potential estimates in India andDivision Reassessing Wind Potential Estimates for India:July 2011 Reassessing Wind Potential Estimates for India:

  2. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Estimates for India: Economic and Policy Implications AmolEstimates for India: Economic and Policy Implications Amolpolicies, and programs, wind energy can be a core component of India’

  3. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01T23:59:59.000Z

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  4. Multiple Structural Breaks in India's GDP: Evidence from India's Service Sector

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    of economists and policy makers. India was designated as an agricultural country with a highest share1 Multiple Structural Breaks in India's GDP: Evidence from India's Service Sector Purba Roy Choudhury1 Abstract: This paper takes a comprehensive investigation into India's service sector, the main

  5. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

  6. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

  7. Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India

    E-Print Network [OSTI]

    Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

  8. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    SciTech Connect (OSTI)

    Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet

    2011-09-15T23:59:59.000Z

    We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios – one with no farmland included, the other with all farmland included. Under the “no farmland included” case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the “all farmland included” case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.

  9. India 19602010: Structural Change, the Rural Nonfarm Sector, and the Prospects for Agriculture

    E-Print Network [OSTI]

    India 19602010: Structural Change, the Rural Nonfarm Sector, and the Prospects for Agriculture. The analytical work was also supported by Integrated Research and Development (IRADE), New Delhi, India for agriculture and rural development can nevertheless be achieved if government policy is supportive of the ways

  10. Devices for Carpet and Other Rural Sectors of India: An Opportunity for New Research

    E-Print Network [OSTI]

    Saha, Subir Kumar

    that practicing MuDRA will save or generate money for the rural people either by saving energy consumptionDevices for Carpet and Other Rural Sectors of India: An Opportunity for New Research Subir Kumar@mech.iitd.ac.in, http://web.iitd.ac.in/~saha August 17, 2010 Abstract There are a lot of non-organized sectors in rural

  11. The suitability of coal gasification in India's energy sector

    E-Print Network [OSTI]

    Simpson, Lori Allison

    2006-01-01T23:59:59.000Z

    Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

  12. List of Companies in Wind Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109.Lindley,LipscombWind Sector Jump to:

  13. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15T23:59:59.000Z

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  14. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Wind Project Performance,”WindPower 2010, pp. 10-11. ErnestWind Project Performance,”WindPower 2010, pp. 10- Table 6:

  15. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Analysis of Impacts of Wind Integration in the Tamil Nadu2009). Large-Scale Wind Integration Studies in the Unitedon topics such as wind integration, transmission planning,

  16. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    this study, wind energy potential for turbines at 80m, 100m,wind energy potential due to better technology in the form of higher efficiency, hub heights, and sizes of wind turbines.wind energy potential is higher than currently believed. Those aspects are 1) the rapidly improving wind turbine

  17. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    and India – in terms of their outlook, objectives, policysuch as India that have started providing pull policies forthe policies of these seven countries (including India) in

  18. The Impact Of Trade Liberalization And Information Technology On India's Manufacturing Sector

    E-Print Network [OSTI]

    Sharma, Shruti

    2013-01-01T23:59:59.000Z

    on together for the India Policy Forum in June 2012. I havematter ? Evidence from India,” Policy Research Working Paperabout economic policy for both India and otherwise. He has

  19. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Report of Wind Energy Resource Assessment in China. Chinaindependent 3 party wind resource assessment of at least awind_june07.pdf for Wind Resource Assessment and mapping for

  20. Productivity and Firm Size Distribution: Evidence from India's Organized and Unorganized Manufacturing Sectors

    E-Print Network [OSTI]

    Nataraj, Shanthi

    2010-01-01T23:59:59.000Z

    Arvind Panagariya, eds. , India Policy Forum 2008/09, Vol.Industrial and Trade Policies in India,” February 2008.s (1996) argument that India’s tariff policy was largely set

  1. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17T23:59:59.000Z

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  2. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    SciTech Connect (OSTI)

    Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

    2014-09-01T23:59:59.000Z

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

  3. "The cream on the pudding..." : An analysis of the Clean Development Mechanism in the Indian wind power sector.

    E-Print Network [OSTI]

    Turkanovic, Zlata

    2010-01-01T23:59:59.000Z

    ??The thesis examines the effects of the Clean Development Mechanism (CDM), a flexible mechanism under the Kyoto Protocol, on the Indian wind power sector. Indian… (more)

  4. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    India Country Report 2005-06. Deutsch Bank Report 2006.India, 2007, “Energy Statistics, 2005-06”, New Delhi, web:generated by steel plants in 2005-06 are currently used to

  5. Perform, Achieve and Trade (PAT): An Innovative Mechanism for Enhancing Energy Efficiency in India's Industrial Sector

    E-Print Network [OSTI]

    Garnik, S. P.; Martin, M.

    2014-01-01T23:59:59.000Z

    by Energy Conservation Act, 2001 of India and National Mission on Enhanced Energy Efficiency (NMEEE) under National Action Plan on Climate Change (NAPCC). The Energy Conservation Act, 2001 which is the first legislative initiative by Govt. of India to give...

  6. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    SciTech Connect (OSTI)

    Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

    2011-08-10T23:59:59.000Z

    Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

  7. Financial Innovation Among the Community Wind Sector in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark

    2011-01-19T23:59:59.000Z

    In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community wind projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the 'partnership flip structure' - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adapted by the broader wind market. More recently, a handful of community wind projects built in the United States over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures. These projects include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into 'New Markets Tax Credits' using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind financing structures that could serve as useful examples for other projects - both community and commercial wind alike. This new wave of financial innovation occurring in the community wind sector has been facilitated by policy changes, most of them recent. Most notably, the American Recovery and Reinvestment Act of 2009 ('the Recovery Act') enables, for a limited time, wind power (and other types of) projects to elect either a 30% investment tax credit ('ITC') or a 30% cash grant (the 'Section 1603 grant') in lieu of the federal incentive that has historically been available to wind projects in the U.S. - a 10-year production tax credit ('PTC'). This flexibility, in turn, enables wind power projects to pursue lease financing for the first time - leasing is not possible under the PTC. Because they are based on a project's cost rather than energy generation, the 30% ITC and Section 1603 grant also reduce performance risk relative to the PTC - this, too, is an important enabler of lease financing. Finally, by providing a cash rather than ta

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

  9. Managing political risk through increased local participation : innovations in water sector PSP from Tirupur, India

    E-Print Network [OSTI]

    Brown, Michael D. (Michael David)

    2006-01-01T23:59:59.000Z

    Using primary data from an innovative water project in Tirupur, India with findings from two well-documented water projects in Latin America, this thesis asks: How might greater equity participation and decision-making ...

  10. Carbon Offsetting: An Efficient Way to Reduce Emissions or to Avoid Reducing Emissions? An Investigation and Analysis of Offsetting Design and Practice in India and China

    E-Print Network [OSTI]

    Haya, Barbara

    2010-01-01T23:59:59.000Z

    2008), of which wind and small hydro dominate (Ministry oflarge & small) Wind in India Biomass in India Hydro in India

  11. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    Operations: A Review of Wind Integration Studies to Date. ”Analysis of Impacts of Wind Integration in the Tamil Nadu2009. “Calculating Wind Integration Costs: Separating Wind

  12. AIJ in the Non-Energy Sector in India: Opportunities and Concerns

    SciTech Connect (OSTI)

    Ravindranath, N.H.; Meili, A.; Anita, R.

    1998-11-01T23:59:59.000Z

    Although the U.N. Framework Convention on Climate Change (FCCC) has been signed and ratified by 168 countries, global greenhouse gas (GHG) emissions have increased substantially since the 1992 Rio Summit. In both developing countries (DCs) and industrialized countries (ICs), there has been a need to find mechanisms to facilitate environmentally sound mitigation strategies. This need led to the formation of Activities Implemented Jointly (AIJ) at the first Conference-of the Parties (COP) in 1995. In Article 4A, para 2D, the COP established an AIJ pilot phase in which Annex I (IC) countries would enter into agreements to implement activities jointly with non-Annex I parties. DCs would engage in AIJ on a purely voluntary basis and all AIJ projects should be compatible with and supportive of national environment and development goals. AIJ does not imply GHG reduction commitments by DCs. Neither do all projects undertaken during the pilot phase qualify as a fulfillment of current commitment s of Annex I parties under the COP. The current pilot phase for AIJ ends in the year 2000, a date which may be extended. Current AIJ activities are largely focused on the energy sector. The Nordic countries, for example, feel that the most important potential areas for cooperation in AIJ are fuel conversion, more effective energy production, increased energy efficiency, and reforms in energy-intensive industry (Nordic Council of Ministers, 1995). Denmark does not want to include non-energy sector projects such as carbon sink enhancement projects in the pilot phase (Nordic Council of Ministers, 1995). However, other countries, including the US, have already funded a number of forestry sector projects (Development Alternatives, 1997). Moreover, energy-sector projects involving high technology or capital-intensive technology are often a source of controversy between DCs and ICs regarding the kind of technology transferred and sharing of costs and benefits. Further, the pilot phase provide s an opportunity for capacity-building and learning about methods of planning, implementation, and monitoring of GHG abatement in land-based non-energy sector projects.

  13. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    and V. Neimane. 2005. 4000 MW Wind Power in Sweden-Impact on2009. “The Evolution of Wind Power Integration Studies:and Michael Milligan. 2011. “Wind Power Forecasting Error

  14. The role of wind generation in European power sector decarbonization : a general equilibrium analysis

    E-Print Network [OSTI]

    Karkatsouli, Ioanna

    2013-01-01T23:59:59.000Z

    Wind generation has been growing fast, with onshore wind having a 27% average annual growth rate over the past decade. Motivated by this growth, a comprehensive analysis of both the economic and engineering implications ...

  15. Design And Development Of Small Wind Energy Systems Is A Soft Path For Power Generation And Environment Conservation For Off Grid Applications In India.

    E-Print Network [OSTI]

    unknown authors

    ABSTRACT: This paper describes the design a new evolving electrical power generation system with small wind turbine. Which offer solutions to meet local energy requirements of a specific location. Energy conservation decreases energy requirements, promotes energy efficiency and facilitates development of renewable. Wind energy dominates as an immediate viable cost effective option which promotes energy conservation and avoids equivalent utilization of fossil fuels and avoids million ton of green house gas emission causing ozone depletion and other environmental impacts like global warming. This paper gives an over view about the current status and a possible development for small wind turbines for off – grid applications in India. KEY WORDS: wind energy, wind power generation system, wind sensor, Energy resources, and wind

  16. Regional Pathways to Technological Upgrading: The Impact of Agglomeration Economies and its Regional Covariates on Upgrading in Post-reforms India's Manufacturing Sector

    E-Print Network [OSTI]

    Mallavarapu, Bravishwar

    2013-01-01T23:59:59.000Z

    under the ‘License Raj’ policies India’s economy grew at abase. Development policy in India needs to recognize theUrban development policy in India seems to be obsessed with

  17. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.

    2009-05-01T23:59:59.000Z

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  19. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  20. Essays on India’s Economic Growth

    E-Print Network [OSTI]

    Singh, Nirvikar

    2009-01-01T23:59:59.000Z

    overview of monetary policy in India, including its historyto be angelic. India’s competition policies and theirdominated recent policy discussions in India, namely, how to

  1. Assessment of Vessel Requirements for the U.S. Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Sector: Executive Summary Assessment of Vessel Requirements for the U.S. Offshore Wind Sector: Executive Summary Executive summary of the Assessment of Vessel Requirements for...

  2. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

  3. Advanced controls for floating wind turbines

    E-Print Network [OSTI]

    Casanovas, Carlos (Casanovas Bermejo)

    2014-01-01T23:59:59.000Z

    Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

  4. Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited...

    Open Energy Info (EERE)

    Company) Place: Jiaozuo, Henan Province, China Sector: Wind energy Product: Wind turbine blades provider. References: Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng...

  5. Carbon Offsetting: An Efficient Way to Reduce Emissions or to Avoid Reducing Emissions? An Investigation and Analysis of Offsetting Design and Practice in India and China

    E-Print Network [OSTI]

    Haya, Barbara

    2010-01-01T23:59:59.000Z

    for wind, biomass and hydropower projects in India, Iat wind power, biomass energy and hydropower projects inassumptions 43 Hydropower projects: inappropriate

  6. Climate change and forests in India: note from the guest editors

    E-Print Network [OSTI]

    Ravindtranath, N.H.

    2011-01-01T23:59:59.000Z

    approaches to analysis of climate change impacts on forestsand adaptation to climate change in the forest sector.ABORATORY LBNL Pending Climate change and forests in India:

  7. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  8. Community Wind: Once Again Pushing the Envelope of Project Finance

    E-Print Network [OSTI]

    bolinger, Mark A.

    2011-01-01T23:59:59.000Z

    lease financing has been popular in the commercial solarlease financing in the wind sector due to wind power’s greater inter-year variability relative to solar (

  9. Should India open foreign direct investment in multi-brand retail : a case study using the Wal-Mart effect

    E-Print Network [OSTI]

    Das, Ashish Kumar, M.B.A. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    As India grows, driven by its success in information technology and services, there is another revolution waiting to happen in the Retail sector dependent on whether the Government of India can unshackle the various ...

  10. Can Co-ops Become Energy Producers Too? Challenges and Prospects for Efficient Co-generation in India's

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -generation in India's Co-operative Sugar Sector by Malini Ranganathan Submitted in partial satisfaction Professor, Goldman School of Public Policy Approved: _______________________________________ Date #12;Abstract Electricity supply in India has not kept pace with rapid urbanization

  11. A comparative study of maritime operations in India

    E-Print Network [OSTI]

    Mukundan, Harish

    2007-01-01T23:59:59.000Z

    This thesis studies the maritime sector of India, specifically using China as a basis for comparison. Chinese economic impact is studied under the two major headings: the effective use of non-living and living resources. ...

  12. Energy-GDP decoupling in a second best world -A case study on India Cline Guivarcha,*

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Energy-GDP decoupling in a second best world - A case study on India Céline Guivarcha best world ­ A case study on India. Climatic Change, Volume 113, Number 2, pages 339­ 356. Abstract India, energy intensity, second-best world, power sector, reference scenario. Introduction Reference

  13. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Phillippines and Tanzania

    E-Print Network [OSTI]

    Sathaye, J.

    2008-01-01T23:59:59.000Z

    potential for carbon sequestration and emission reductionForestry Options on Carbon Sequestration in India, Workinggas emissions and carbon sequestration in the forest sector

  14. Foreign direct investment in the electricity sector: the Indian perspective

    SciTech Connect (OSTI)

    Sharma, A.K.; Vohra, Ekta

    2008-08-15T23:59:59.000Z

    So far, India is losing out in the competition against other emerging economies to attract more foreign direct investment to its electricity sector. This is in large part because the Indian approach towards power sector reforms is more haphazard than the more orderly and sensitive growth model of Singapore and Latin American economies. (author)

  15. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30T23:59:59.000Z

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  16. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  17. Essays on India’s Economy: Perspectives on Policy Reform

    E-Print Network [OSTI]

    Singh, Nirvikar

    2014-01-01T23:59:59.000Z

    presented at the recent India Policy Forum) teach us? Thebiggest positive policy step for India is implementing themonetary policy is ineffective in India, given structural

  18. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect (OSTI)

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01T23:59:59.000Z

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  19. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    SciTech Connect (OSTI)

    Krishna Sapru

    2005-11-15T23:59:59.000Z

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

  20. Technological learning and the evolution of the Indian pharmaceutical and biopharmaceutical sectors

    E-Print Network [OSTI]

    Srinivas, Smita

    2004-01-01T23:59:59.000Z

    The Indian pharmaceutical and biopharmaceutical sectors have been characterised by three features considered analogous to technological stagnation: low R&D investments, "copying" on-patent drugs (legal in India if a novel ...

  1. Modelling Wind in the Electricity Sector

    E-Print Network [OSTI]

    Neuhoff, Karsten; Cust, J; Keats, Kim

    ). For a HVDC “grid” concept scheme, the cost estimate rises to between €2500m and €3400m. Neuhoff (2001) estimates the cost of a new interconnection to be between €190,000/km and €500,000/km with additional converter costs of around €57m... environmental impacts of transmission expansions and the trade offs between onshore and offshore transmission lines in the planning process. € Harmer 2GW (offshore) Harmer HVDC (offshore) Neuhoff (onshore) 200km 1170m 2500m 700km 2500m 3400m...

  2. India’s Grand Strategy: Some Preliminary Thoughts

    E-Print Network [OSTI]

    HOYT, Timothy D.

    2012-01-01T23:59:59.000Z

    twenty-first century. India’s policies, however, appear toPakistan’s policies, which treats India as an imminent andchanging Indian policy, in general India is not yet willing

  3. Yellow helmets : work and worth of women workers on construction sites in northern India

    E-Print Network [OSTI]

    Suri, Sabina, 1973-

    2000-01-01T23:59:59.000Z

    The participation of women in the building sector is an exception rather than a rule. Inmost countries of the world the building industry is almost exclusively the domain of men. In India a large number of women are actively ...

  4. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

  5. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect (OSTI)

    Schumacher, K.; Sathaye, J.

    1999-07-01T23:59:59.000Z

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  6. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the tests and 2) summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector...

  7. Wind derivatives: hedging wind risk:.

    E-Print Network [OSTI]

    Hoyer, S.A.

    2013-01-01T23:59:59.000Z

    ??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

  8. global warming's six indias

    E-Print Network [OSTI]

    Haller, Gary L.

    global warming's six indias: An Audience Segmentation Analysis #12;Global Warming's Six Indias 1............................................................................................................................................20 2. Global Warming Beliefs and Attitudes................................................................................ 21 Knowledge about global warming varies widely by group

  9. "Market Watch 2010" The Timber Sector in Malaysia

    E-Print Network [OSTI]

    sectors are palm oil & palm oil-based products, crude petroleum, liquefied natural gas and timber Major export countries for Malaysian goods are Singapore, Japan, China, India, Korea as well, the Republic of Singapore, the European Union, the People's Republic of China and Japan. Malaysian FDI reached

  10. First Generation Indian External Sector Reforms in Context

    E-Print Network [OSTI]

    Bhala, Raj

    2013-01-01T23:59:59.000Z

    India's first generation external sector reforms are a fascinating case study of emergence from a post-Independence socialist-style economy to the world’s largest free market democracy. Part I of this article reviews the Indian license Raj system...

  11. ICTs and Rural Development in India

    E-Print Network [OSTI]

    Singh, Nirvikar

    2006-01-01T23:59:59.000Z

    A Sustainable Fiscal Policy for India: An Internationalareas for policy attention. ICTs and India’s Development –policy aspects of providing rural ICTs in India –

  12. KANSAS WIND POWERING AMERICAN STATE OUTREACH: KANSAS WIND WORKING GROUP

    SciTech Connect (OSTI)

    HAMMARLUND, RAY

    2010-10-27T23:59:59.000Z

    The Kansas Wind Working Group (WWG) is a 33-member group announced by former Governor Kathleen Sebelius on Jan. 7, 2008. Formed through Executive Order 08-01, the WWG will educate stakeholder groups with the current information on wind energy markets, technologies, economics, policies, prospects and issues. Governor Mark Parkinson serves as chair of the Kansas Wind Working Group. The group has been instrumental in focusing on the elements of government and coordinating government and private sector efforts in wind energy development. Those efforts have moved Kansas from 364 MW of wind three years ago to over 1000 MW today. Further, the Wind Working Group was instrumental in fleshing out issues such as a state RES and net metering, fundamental parts of HB 2369 that was passed and is now law in Kansas. This represents the first mandatory RES and net metering in Kansas history.

  13. The Dynamics of Reform of India’s Federal System

    E-Print Network [OSTI]

    Singh, Nirvikar

    2007-01-01T23:59:59.000Z

    very different set of policies, India has followed China inIssues in Tax Policy and Reform in India, paper presented atWater Disputes in India: Institutions and Policies,” in

  14. WTERT-India Observations from India's Crisis Ranjith Annepu Observations from India's Crisis

    E-Print Network [OSTI]

    as the city could not find a new landfill site. Author Ranjith Annepu, WTERT ­ India Date February 04, 2013WTERT- India Observations from India's Crisis Ranjith Annepu Observations from India's Crisis Waste-to-Energy Research and Technology Council (WTERT) ­ India, 89-B, NEERI Mumbai Zonal Lab, Worli

  15. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. WĂ€chter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

  16. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01T23:59:59.000Z

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  17. Women’s Pathways to Mental Health in India

    E-Print Network [OSTI]

    Sood, Anubha

    2008-01-01T23:59:59.000Z

    settings? How can India’s mental health policy frameworkhealth policy making and implementation in India in recentthat India’s current mental health policies are detrimental

  18. Energy Usage Attitudes of Urban India IBM Research India

    E-Print Network [OSTI]

    Toronto, University of

    Energy Usage Attitudes of Urban India Mohit Jain IBM Research India mohitjain@in.ibm.com Deepika@cs.cmu.edu Amarjeet Singh IIIT Delhi, India amarjeet@iiitd.ac.in Abstract-- Though rapid increase in energy factors affecting energy consumption in urban India. However, the small numbers of participants in those

  19. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect (OSTI)

    Schumacher, Katja

    1999-07-01T23:59:59.000Z

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  20. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  1. India Sectoral Study on Climate and Refrigeration Technology in Developing

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDSDloomis's pictureThrough the Use of

  2. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  3. Regulatory and technical barriers to wind energy integration in northeast China

    E-Print Network [OSTI]

    Davidson, Michael (Michael Roy)

    2014-01-01T23:59:59.000Z

    China leads the world in installed wind capacity, which forms an integral part of its long-term goals to reduce the environmental impacts of the electricity sector. This primarily centrally-managed wind policy has concentrated ...

  4. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  5. Wasted Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

  6. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  7. Growing a Wind Workforce: The National Wind Energy Skills Assessment Report (Poster)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-05-01T23:59:59.000Z

    This poster summarizes results from the first published investigation into the detailed makeup of the wind energy workforce as well as a glance at the educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce allow the private sector, educational institutions, and federal and state governments to make better informed workforce-related decisions based on the current data and future projections.

  8. China's industrial sector in an international context

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01T23:59:59.000Z

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  9. Private power development and environmental protection in India

    SciTech Connect (OSTI)

    Das, S.; Wilbanks, T.J.

    1997-12-01T23:59:59.000Z

    This report assesses relationships between private power development in India and environmental protection in that country. The central question is whether private firms generating and distributing electricity in developing countries will do a better or a worse job in environmental protection, as a part of their overall corporate responsibility, than public-sector institutions. After reviewing the fundamental question, why it is asked, and the context in which it operates in the nation of India, this report continues with an analysis of available information, quantitative and qualitative, that can help to resolve the issues in the particular case of India. Finally, it ends with conclusions from the analysis and recommendations for reducing remaining uncertainties in the future.

  10. Is the Weibull distribution really suited for wind statistics modeling and wind power evaluation?

    E-Print Network [OSTI]

    Drobinski, Philippe

    2012-01-01T23:59:59.000Z

    Wind speed statistics is generally modeled using the Weibull distribution. This distribution is convenient since it fully characterizes analytically with only two parameters (the shape and scale parameters) the shape of distribution and the different moments of the wind speed (mean, standard deviation, skewness and kurtosis). This distribution is broadly used in the wind energy sector to produce maps of wind energy potential. However, the Weibull distribution is based on empirical rather than physical justification and might display strong limitations for its applications. The philosophy of this article is based on the modeling of the wind components instead of the wind speed itself. This provides more physical insights on the validity domain of the Weibull distribution as a possible relevant model for wind statistics and the quantification of the error made by using such a distribution. We thereby propose alternative expressions of more suited wind speed distribution.

  11. The Political Economy of India’s Fiscal Federal System and its Reform

    E-Print Network [OSTI]

    Rao, M. Govinda; Singh, Nirvikar

    2006-01-01T23:59:59.000Z

    Public Finance: Policy Issues for India, New Delhi: OxfordBank conference on India: Fiscal Policies to Acceleratepolicies and own investments have also determined resource flows across India’

  12. Services-Led Industrialization in India: Assessment and Lessons

    E-Print Network [OSTI]

    Singh, Nirvikar

    2006-01-01T23:59:59.000Z

    in the Indian Economy,” India Policy Forum, forthcoming.of the economic policies followed by India from independencefor Development Policy In reviewing India’s experience with

  13. Economic modeling of intermittency in wind power generation

    E-Print Network [OSTI]

    Cheng, Alan Yung Chen

    2005-01-01T23:59:59.000Z

    The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Over the past decade wind energy has steadily emerged as a potential source for large-scale, low carbon energy. ...

  14. Department of Energy Wind Vision: An Industry Preview (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

  15. Program Program Organization Country Region Topic Sector Sector

    Open Energy Info (EERE)

    Industrial Energy Efficiency Deployment Project United States Department of Energy USDOE Oak Ridge National Laboratory ORNL Alliance for Energy Efficient Economy India...

  16. Wind turbine

    SciTech Connect (OSTI)

    Abe, M.

    1982-01-19T23:59:59.000Z

    The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

  17. Techno-economic Assessment of Wind Energy to Supply the Demand of Electricity for a Residential Community in Ethiopia.

    E-Print Network [OSTI]

    Yebi, Adamu

    2011-01-01T23:59:59.000Z

    ?? The electricity sector is a major source of carbon dioxide emission that contributes to the global climate change. Over the past decade wind energy… (more)

  18. Wind Powering America FY06 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2007-02-01T23:59:59.000Z

    The Wind Powering America FY06 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 29 state wind working groups (welcoming New Jersey, Indiana, Illinois, and Missouri in 2006) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 120 members of national and state public and private sector organizations from 34 states attended the 5th Annual WPA All-States Summit in Pittsburgh in June.

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  20. Process Intensification - Chemical Sector Focus

    Office of Environmental Management (EM)

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ......

  1. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

  2. Climate policies in a second-best world a case study on India Sandrine Mathya,*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to cut carbon dioxide emissions per unit of GDP by a notable margin by 2020 from the 2005 level [...] We - A case study on India', Energy Policy 38:3, 1519-1528. Abstract The aim of this article is to analyze on the power sector sub- optimalities. To do so, we use IMACLIM-R, a dynamic recursive energy-economy model

  3. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  4. Review of Wind Turbine Wake Models and Future Directions (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.

    2013-08-01T23:59:59.000Z

    This presentation gives a brief overview to wind turbine wake modeling, ranging from models used in the 1980s up to the present. The presentation shows the strengths and weaknesses of various models and discusses the needs of the wind energy industry and research sectors. Both power production and loads analysis are discussed.

  5. Contribution to the Chapter on Wind Power Energy Technology

    E-Print Network [OSTI]

    energy development, therefore it could be likely to cover as much as 20% of the world's electricity mainly in Europe, USA and China. The market is maturing, therefore achieving more stable economies in the wind energy sector. As a result, better electrical grids suited for wind power are being developed

  6. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  7. India Walking a Tightrope : A case study of the U.S. influence on India’s policies towards Iran.

    E-Print Network [OSTI]

    Dufva, Inger Elise Houge

    2013-01-01T23:59:59.000Z

    ??In this thesis I have investigated the degree of U.S. influence on India’s room of manoeuvre with regard to Iran. India has several incentives to… (more)

  8. India: Asia-Pacific energy series country report

    SciTech Connect (OSTI)

    Gazdar, M.N.

    1992-03-01T23:59:59.000Z

    As part of our continuing assessment of Asia-Pacific energy markets, the Resources Programs of the East-West Center series of country studies that discuss in detail the structure of the energy sector. To date, our reports to the US Department of Energy, Assistant Secretary for International Affairs and Energy Emergencies, have covered Australia, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, the Philippines, Singapore, South Korea, Taiwan, and Thailand. The country studies provide an overview of the economic and political situation in the various countries. We have highlighted petroleum and gas issues in the country studies and have attempted to show the foreign trade implications of oil and gas trade. To the greatest extent possible, we have provided the latest available statistics. Staff members have traveled extensively in-and at times have lived in-the countries under review and have held discussions with senior policymakers in government and industry. Thus, these reports provide not only information but also the latest thinking on energy issues in the various countries. Over the next few years these country studies can be updated and will provide a continuous, long-term source of energy sector analysis for the Asia-Pacific region. This India Asia-Pacific Energy Series Country Report is the follow-on to a study by Victor Lobo, Energy in India: The Oil Sector, which was published by the East-West Center in December 1989. The study focused on the petroleum industry, particularly refining, infrastructure, marketing and distribution, specifications of products, demand structure and pricing. This current study, must be seen as a supplement to our 1989 study and, as such, does not cover the petroleum sector in depth.

  9. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01T23:59:59.000Z

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  10. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  11. Fiscal Policy in India: Lessons and Priorities

    E-Print Network [OSTI]

    Singh, Nirvikar; Srinivasan, T. N.

    2004-01-01T23:59:59.000Z

    Fiscal Policy in India, N. Singh and T.February 2004 Fiscal Policy in India: Lessons andReview, 7-26. Fiscal Policy in India, N. Singh and T. N.

  12. Fiscal Federalism and Decentralization in India?

    E-Print Network [OSTI]

    Singh, Nirvikar

    2007-01-01T23:59:59.000Z

    Issues in Tax Policy and Reform in India, paper presented atA Sustainable Fiscal Policy for India: An InternationalA Sustainable Fiscal Policy for India: An International

  13. Wind Powering America FY07 Activities Summary

    SciTech Connect (OSTI)

    Not Available

    2008-02-01T23:59:59.000Z

    The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.

  14. Effects of Topography on Assessing Wind Farm Impacts Using

    E-Print Network [OSTI]

    Zhou, Liming

    Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China power as an alternative clean energy source to fossil fuels supports envi- ronmental sustainability, Germany, Spain, and India has experienced continuous growth in recent years. Wind energy currently amounts

  15. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01T23:59:59.000Z

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  16. Obtaining data for wind farm development and management: the EO-WINDFARM project

    E-Print Network [OSTI]

    , there are huge wind resources and European companies are world leaders at converting it into electric power. Wind). That sector has a mean growth rate of 30% for the last two years. The total installed wind power capacity objective for 2010 in Europe amounts to 75 GW (EWEA, 2004). The total power currently installed (mid 2004

  17. Wind Energy Opportunities, Challenges, and Progress Within the Federal Government (Poster)

    SciTech Connect (OSTI)

    Robichaud, R.

    2009-05-01T23:59:59.000Z

    Wind Powering America (WPA) works with Federal agencies to increase their understanding of wind resources and assessment; facilitate project development activities through Met tower loans, wind data analysis, and technical assistance; and provide advice on RFP development and financing options. This poster provides an overview of WPA's activities with the federal sector.

  18. DAMAGE DETECTION IN A WIND TURBINE BLADE BASED ON TIME SERIES Simon Hoell, Piotr Omenzetter

    E-Print Network [OSTI]

    Boyer, Edmond

    DAMAGE DETECTION IN A WIND TURBINE BLADE BASED ON TIME SERIES METHODS Simon Hoell, Piotr Omenzetter, the consequences are growing sizes of wind turbines (WTs) and erections in remote places, such as off in the past years, thus efficient energy harvesting becomes more important. For the sector of wind energy

  19. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15T23:59:59.000Z

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  20. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  1. Carbon taxes and India

    SciTech Connect (OSTI)

    Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

    1994-07-01T23:59:59.000Z

    Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

  2. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01T23:59:59.000Z

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  5. A resource and technology assessment of coal utilization in India

    SciTech Connect (OSTI)

    Chikkatur, A.P. [Harvard University, Cambridge, MA (United States). Kennedy School of Government

    2008-10-15T23:59:59.000Z

    Electricity production in India is projected to expand dramatically in the near term to energize new industrial development, while also easing the energy shortages throughout the country. Much of the new growth in electricity production will be fueled by domestic coal resources; however, there is worldwide concern about increased coal use, as greater carbon dioxide emissions from coal combustion will exacerbate climate change. At the same time, there are now a number of different existing and emerging technological options for coal conversion and greenhouse gas (GHG) reduction worldwide that could potentially be useful for the Indian coal-power sector. This paper reviews coal utilization in India and examines current and emerging coal power technologies with near- and long-term potential for reducing greenhouse gas emissions from coal power generation. 107 refs., 8 figs., 6 tabs.

  6. Balancing of Wind Power.

    E-Print Network [OSTI]

    Ülker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

  7. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  9. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

  10. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, JĂžrgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  11. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  12. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists InSearchsuperconduct* FindDark Sector

  13. Sector1 Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1

  14. Sector4 FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

  15. Sector4 redirect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

  16. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  17. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

  18. Behavioral Assumptions Underlying California Residential Sector...

    Broader source: Energy.gov (indexed) [DOE]

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

  19. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31T23:59:59.000Z

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  20. RCUK India timeline Since 2008 RCUK India has facilitated over 80 million of UK-India research funding, with 7 different research funders in India.

    E-Print Network [OSTI]

    Berzins, M.

    health and crop sciences. UK partner: BBSRC India partner: DBT Solar Energy Two multimillion poundRCUK India timeline Since 2008 RCUK India has facilitated over Ł80 million of UK-India research ENERGY CLIMATE CHANGE Department of Science and Technology (DST) Science Bridges Three multimillion pound

  1. Buddist Architecture in India

    E-Print Network [OSTI]

    Deva, Krishna

    sites like S"nchi and Taxila (Pakistan) have Euch fine Buddhist monuments, even though they were not visited by Buddha. The earliest Buddhist monuments in India are attributable to Asoka (273-32 B.C.) who exerted his eneigies and the resources of his... of Paharpur in Bangladesh and Borobudur in Java, both dating from circa A.D. 800. V3is3li (Di~trict Muzaffarpur), which was a favourite resort of Buddha and one of the eight holy places of Buddhism has an uninscribed Mauryan pillar, besides extensive...

  2. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01T23:59:59.000Z

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  3. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector Wind energy

  4. Gauging Improvements in Urban Building Energy Policy in India

    E-Print Network [OSTI]

    Williams, Christopher

    2013-01-01T23:59:59.000Z

    Urban Building Energy Policy in India Christopher WilliamsUrban Building Energy Policy in India Christopher Williamsefficiency policies and programs in India are in an active

  5. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2009-05-15T23:59:59.000Z

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India’s nuclear fuel cycle inclusive of nuclear materials and facilities. This agreement proposes...

  6. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It isRockwall,SectorIA) Jump

  7. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 SectorWind forturbine:

  8. Public Sector Electric Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  9. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01T23:59:59.000Z

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  10. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Activity, 2005-06 8India's GDP, with 54% in 2005-06 (MOSPI, 2007b) and is alsoby Economic Activity, 2005-06 GDP Share AAGR (billion of GDP

  11. Scoping and Framing Social Opposition to U.S. Wind Projects (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Flowers, L.

    2010-05-01T23:59:59.000Z

    Historical barriers to wind power include cost and reliability. However, rapid growth has increased the footprint of wind power in the United States, and some parts of the country have begun to observe conflicts between local communities and wind energy development. Thus, while questions of economic viability and the ability of grid operators to effectively manage wind energy have become less significant, community acceptance issues have emerged as a barrier to wind and associated transmission projects. Increasing community acceptance is likely to be a growing challenge as the wind industry seeks electricity sector penetration levels approaching 20%.

  12. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  13. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  14. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

  15. Wind pro?le assessment for wind power purposes.

    E-Print Network [OSTI]

    Sointu, Iida

    2014-01-01T23:59:59.000Z

    ??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional… (more)

  16. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

  17. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

  18. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  19. State Finances in India: A Case for Systemic Reform

    E-Print Network [OSTI]

    Singh, Nirvikar

    2006-01-01T23:59:59.000Z

    T.N. Srinivasan (2005b), Fiscal Policy in India: Lessons andPriorities, in Fiscal Policy in India, Peter Heller, ed. ,in India,” in Fiscal Policy in India, Peter Heller, ed. ,

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  1. Ridgewind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector Wind

  2. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:SectorRim Rock Wind Farm

  3. San Jacinto Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms Sector Wind energyFarms

  4. Elm Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soils and RocksElementII Sector Wind

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  8. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

  9. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

  10. Entegrity Wind Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy SectorEnertechEntegrity Wind

  11. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  12. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  13. Government of India Department of Science & Technology

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    Grant & Scholarship Programs The Australia-India Council Australia India Institute Endeavour and Marker-assisted Breeding Nutraceuticals and Functional Foods Bioremediation Bioenergy and Biofuels, immunomodulators and immunotherapeutics Biotechnological interventions for improved agricultural productivity

  14. Commonwealth Wind Incentive Program – Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  15. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  16. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01T23:59:59.000Z

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  17. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  18. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

  19. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  20. Enabling Efficient, Responsive, and Resilient Buildings: Collaboration Between the United States and India

    SciTech Connect (OSTI)

    Basu, Chandrayee; Ghatikar, Girish

    2013-09-25T23:59:59.000Z

    The United States and India have among the largest economies in the world, and they continue to work together to address current and future challenges in reliable electricity supply. The acceleration to efficient, grid-responsive, resilient buildings represents a key energy security objective for federal and state agencies in both countries. The weaknesses in the Indian grid system were manifest in 2012, in the country’s worst blackout, which jeopardized the lives of half of India’s 1.2 billion people. While both countries are investing significantly in power sector reform, India, by virtue of its colossal growth rate in commercial energy intensity and commercial floor space, is better placed than the United States to integrate and test state-of-art Smart Grid technologies in its future grid-responsive commercial buildings. This paper presents a roadmap of technical collaboration between the research organizations, and public-private stakeholders in both countries to accelerate the building-to-grid integration through pilot studies in India.

  1. Changtu Liaoneng Xiexin Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroup IndiaChangtu Liaoneng Xiexin Wind

  2. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

  3. Electric vehicles and renewable energy in the transport sector energy system

    E-Print Network [OSTI]

    energy resources, such as wind power. Economic aspects for electric vehicles interactingElectric vehicles and renewable energy in the transport sector ­ energy system consequences Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles Lars Henrik Nielsen and Kaj

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Price Reduction Offsetting demand for natural gas in the electricity sector by increasing wind energy’price reductions, and water savings. Index Terms—power system modeling, wind energywind energy to offset coal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  5. Responding to a Changing Energy Industry : 2007 Wind Energy Business Plan

    E-Print Network [OSTI]

    Jacobson, Ryan J.

    2007-12-14T23:59:59.000Z

    This EMGT 835 project is a wind energy business plan for Midwest Engineering, an engineering and construction company active in the energy sector. This plan was created to develop a roadmap for the company to increase its market share in wind...

  6. The energy sector is comprised of a wide range of businesses involved in the exploration, extraction, production, refining, distribution, and sale of energy. The primary

    E-Print Network [OSTI]

    , extraction, production, refining, distribution, and sale of energy. The primary industries within this sector of ways. Some examples include: · Using global surface hourly data for studies of wind energy potentialOVERVIEW The energy sector is comprised of a wide range of businesses involved in the exploration

  7. San Gorgonio Farms Wind Farm III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms Sector Wind energyFarms Wind

  8. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  9. Community Wind: Once Again Pushing the Envelope of Project Finance

    SciTech Connect (OSTI)

    bolinger, Mark A.

    2011-01-18T23:59:59.000Z

    In the United States, the 'community wind' sector - loosely defined here as consisting of relatively small utility-scale wind power projects that sell power on the wholesale market and that are developed and owned primarily by local investors - has historically served as a 'test bed' or 'proving grounds' for up-and-coming wind turbine manufacturers that are trying to break into the U.S. wind power market. For example, community wind projects - and primarily those located in the state of Minnesota - have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010), Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Thus far, one of these turbine manufacturers - Suzlon - has subsequently achieved some success in the broader U.S. wind market as well. Just as it has provided a proving grounds for new turbines, so too has the community wind sector served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the special allocation partnership flip structure (see Figure 1 in Section 2.1) - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adopted by the broader wind market. More recently, a handful of community wind projects built over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures involving strategic tax equity investors. These include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into New Markets Tax Credits using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind structures that could serve as useful examples for other projects - both community and commercial wind alike. This report describes each of these innovative new financing structures in some detail, using a case-study approach. The purpose is twofold: (1) to disseminate useful information on these new financial structures, most of which are widely replicable; and (2) to highlight the recent policy changes - many of them temporary unless extended - that have facilitated this innovation. Although the community wind market is currently only a small sub-sector of the U.S. wind market - as defined here, less than 2% of the overall market at the end of 2009 (Wiser and Bolinger 2010) - its small size belies its relevance to the broader market. As such, the information provided in this report has relevance beyond its direct application to the community wind sector. The next two sections of this report briefly summarize how most community wind projects in the U.S. have been financed historically (i.e., prior to this latest wave of innovation) and describe the recent federal policy changes that have enabled a new wave of financial innovation to occur, respectively. Section 4 contains brief case studies of how each of the five projects mentioned above were financed, noting the financial significance of each. Finally, Section 5 concludes by distilling a number of general observations or pertinent lessons learned from the experiences of these five projects.

  10. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  11. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  12. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  13. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  14. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  15. China, India demand cushions prices

    SciTech Connect (OSTI)

    Boyle, M.

    2006-11-15T23:59:59.000Z

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  16. Surface wind speed distributions| Implications for climate and wind power.

    E-Print Network [OSTI]

    Capps, Scott Blair

    2010-01-01T23:59:59.000Z

    ?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until… (more)

  17. NREL: Wind Research - Boosting Wind Plant Power Output by 4%...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

  18. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  19. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  20. Next-Generation Wind Technology

    Broader source: Energy.gov [DOE]

    The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  2. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

  3. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    About Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University2002) Economic Impacts of Wind Power in Kittitas County, Wa.

  4. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  5. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  9. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  11. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  13. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  14. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  18. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  1. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  2. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  3. Conservation potential of compact fluorescent lamps in India and Brazil

    SciTech Connect (OSTI)

    Gadgil, A.; Martino Jannuzzi, G. de (Lawrence Berkeley Lab., CA (USA); Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia)

    1989-07-01T23:59:59.000Z

    We evaluate the conservation potential of compact fluorescent lamps (CFLs) for managing the rapidly increasing electrical energy and peak demand in India and Brazil. Using very conservative assumptions, we find that the cost of conserved energy using 16 W CFLs is 4 and 6 times less than the long range marginal cost of electricity for the two countries. The cost of avoided peak installed capacity is 6 and 9.5 times less than the cost of new installed capacity for India and Brazil. The analysis is undertaken from the three separate perspectives of the national economies, the consumers, and the utilities. We find that because residential electricity is subsidized, the consumers have little or no incentive to purchase and install the CFLs, unless they too are subsidized. However, the benefits of CFL installation to the utility are so large that subsidizing them is a paying proposition for the utility are so large that subsidizing them is a paying proposition for the utility in almost all cases. As an illustration of a gradual introduction strategy for CFLs, we calculate a scenario where national savings of the order of US $1.2 million per day for India and US $2.5 million per day for Brazil are reached in 10 years by a small and gradual transfer of subsidy from residential electricity to CFLs. We then explore the barriers to immediate large scale introduction of these lamps in the two countries. Specific technical and marketing problems are identified and discussed, which would require solution before such an introduction can be attempted. Lastly, we discuss the range of policy instruments, in addition to a subsidy scheme, that can be used for promoting the diffusion of these lamps in the domestic and commercial sector. 47 refs., 15 figs., 2 tabs.

  4. The Ministry of Health's Effort to Regulate Tobacco Use in Movies in India, 2005-6

    E-Print Network [OSTI]

    Polansky, Jonathan; Glantz, Stanton A. Ph.D.

    2006-01-01T23:59:59.000Z

    for an effective policy in India’s constitutional and policywin any policy point outlined in WHO’s 2003 India report. Ause by India’s young people or create a policy in name only

  5. Electronic Waste Management in India: A Stakeholder’s Perspective

    E-Print Network [OSTI]

    Borthakur, Anwesha; Sinha, Kunal

    2013-01-01T23:59:59.000Z

    E-waste Management Policy in India: Stakeholder’s Perceptionand Policy Implications of Electronic Waste in India. M.PhilTake-Back” policies are also in practice in India, although

  6. Federalism and Economic Development in India: An Assessment

    E-Print Network [OSTI]

    Singh, Nirvikar; SRINIVASAN, T N

    2006-01-01T23:59:59.000Z

    Issues in Tax Policy and Reform in India, paper presented atA Sustainable Fiscal Policy for India: An InternationalA Sustainable Fiscal Policy for India: An International

  7. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  8. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30T23:59:59.000Z

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  9. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  10. Understanding Regional Economic Growth in IndiaUnderstanding Regional Economic Growth in India Understanding Regional Economic

    E-Print Network [OSTI]

    Understanding Regional Economic Growth in IndiaUnderstanding Regional Economic Growth in India Understanding Regional Economic Growth in India* Jeffrey D. Sachs Director The Earth Institute at Columbia_ramiah@yahoo.co.uk Asian Economic Papers 1:3 © 2002 The Earth Institute at Columbia University and the Massachusetts

  11. Competitive Wind Grants (Vermont)

    Broader source: Energy.gov [DOE]

    The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

  12. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  13. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  14. Talbot County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

  15. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration Study—Final Report.EnerNex Corp. 2006. Wind Integration Study for Public

  19. Corporate Clean Energy Investment Trends in Brazil, China, India...

    Open Energy Info (EERE)

    Brazil, China, India and South Africa Jump to: navigation, search Name Corporate Clean Energy Investment Trends in Brazil, China, India and South Africa AgencyCompany...

  20. Secretary Bodman in India Highlights Clean Energy Investment...

    Office of Environmental Management (EM)

    - India Energy Working Group including India's new membership in the International Thermonuclear Experiment Reactor (ITER), their participation in the FutureGen Initiative, and...

  1. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

  3. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  4. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  5. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  6. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  7. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01T23:59:59.000Z

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  8. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  9. Wind: wind speed and wind power density maps at 10m and 50m above...

    Open Energy Info (EERE)

    files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

  10. Wind: wind speed and wind power density GIS data at 10m and 50m...

    Open Energy Info (EERE)

    files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

  11. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

  12. Private Sector Outreach and Partnerships | Department of Energy

    Energy Savers [EERE]

    Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

  13. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

  14. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

  15. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27T23:59:59.000Z

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  16. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27T23:59:59.000Z

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

  17. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  18. Ruthton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm ItRoscoeRusSUNHydroSectorRuthton

  19. Sand Bluff Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms SectorMateo,Rafael,Bluff

  20. Wind Resource Map: Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxaca

  1. Falmouth Wind 2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProject Jump to:2 Sector Wind energy

  2. Farmer's Cooperatives Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProject Jump to:2 Sector WindFarmer's

  3. Wind Program: Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

  4. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  5. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  6. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    PolitĂšcnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  7. Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute

    E-Print Network [OSTI]

    Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

    2012-01-01T23:59:59.000Z

    May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

  8. PVWatts (R) Calculator India (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.

  9. Powering the people: India's capacity expansion plans

    SciTech Connect (OSTI)

    Patel, S.

    2009-05-15T23:59:59.000Z

    India has become a global business power even though hundreds of millions of its citizens still live in poverty. To sustain economic growth and lift its people out of poverty, India needs more and more reliable power. Details of government plans for achieving those goals demonstrate that pragmatism may be in shorter supply than ambition and political will. 1 ref., 12 figs., 1 tab.

  10. Understanding Regional Economic Growth in India

    E-Print Network [OSTI]

    Understanding Regional Economic Growth in India Jeffrey D. Sachs, Nirupam Bajpai and Ananthi Ramiah Papers #12;Understanding Regional Economic Growth in India Jeffrey D. Sachs Center for International Development (CID) Harvard University Ananthi_Ramiah@harvard.edu This paper was prepared for the Asian Economic

  11. ENGINEERING EDUCATION IN INDIA Draft Final report

    E-Print Network [OSTI]

    Banerjee, Rangan

    ENGINEERING EDUCATION IN INDIA Draft Final report Rangan Banerjee Vinayak P. Muley Sponsored by Observer Research Foundation Energy Systems Engineering, IIT Bombay Powai, Mumbai ­ 400076 September 14, 2007 #12;i Preface In India engineering is one of the preferred choices for good students at the 10

  12. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  13. The Changing US Electric Sector Business Model

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01T23:59:59.000Z

    The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. • Fundamentals of the US Electric Sector Business Model • Today’s Challenges Faced by U.S. Electric Sector • The Math Does Not Lie: A Look into the Sector’s Future • Disruption to Today...

  14. Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can play a vital role in future U.S. energy markets.

  15. NREL: Wind Research - WindPACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are...

  16. Federal Sector Renewable Energy Project Implementation: "What's Working and Why"Implementation: What s Working and Why

    E-Print Network [OSTI]

    for Sustainable Energy, LLC #12;Innovation for Our Energy Future Contents Federal Sector Renewable Energy Project (Large scale) Photovoltaics (PV) Concentrating Solar Power (CSP) (with storage) Wind Biomass power/year Federal Tax Credits CO (Xcel Energy) CO (Xcel Energy) 30% ITC, ACRS "Behind the meter" Sale of Power

  17. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01T23:59:59.000Z

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  18. Private Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPrior Lake,Sector Jump to:

  19. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part 2) |IOCriticalCross-Sector Sign

  20. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  1. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  2. Winding vacuum energies in a deformed O(4) sigma model

    E-Print Network [OSTI]

    Vladimir V. Bazhanov; Gleb A. Kotousov; Sergei L. Lukyanov

    2014-09-01T23:59:59.000Z

    We consider the problem of calculating the Casimir energies in the winding sectors of Fateev's SS-model, which is an integrable two-parameter deformation of the O(4) non-linear sigma model in two dimensions. This problem lies beyond the scope of all traditional methods of integrable quantum field theory including the thermodynamic Bethe ansatz and non-linear integral equations. Here we propose a solution based on a remarkable correspondence between classical and quantum integrable systems and express the winding energies in terms of certain solutions of the classical sinh-Gordon equation.

  3. Ridgetop Energy Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector Wind energy Facility

  4. Ridgetop Energy Wind Farm III | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector Wind energy

  5. Ridgetop Energy Wind Farm IV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector Wind energyIV

  6. Rigby High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby High

  7. Rigby Midway School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm Jump to:Sector WindRigby HighMidway

  8. San Gorgonio Farms Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms Sector Wind energy Facility

  9. San Gorgonio Farms Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms Sector Wind energy

  10. San Juan Mesa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey WindSamsungFarms Sector WindJoaquinowns

  11. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01T23:59:59.000Z

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  12. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Energy (PJ) Total Final Energy (PJ) Coal Electricity CementInvestment Energy Recovered Fuel (Coal) Saved / AnnumEnergy Use (PJ) Final Energy Use (PJ) Coal Electricity Fuel

  13. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    of medium / poor coking coals (i.e. Partial Briquetting andNevertheless, the Indian non-coking coals, suitable for SSI,blast furnaces require coking coal that is mostly imported.

  14. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Cell 2006. Detailed Energy Audit Report for Udyog Bhawan,Cell 2006. Detailed Energy Audit Report for NationalCell 2006. Detailed Energy Audit Report for Vigyan Bhawan,

  15. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    scale solar capacity being announced, mainly in Californiasolar capacity installation has largely been dominated by California.

  16. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    71 Figure 25. Refinery Throughput, Exports and77 Figure 27. Indian Refinery78 Figure 28. Conservation Supply Curve for Refinery

  17. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    Implications for US renewable energy policy”, Energy Policy,2010. 28 REN21, Renewable Energy Policy Network for the 21stexploiting renewable energy sources with concerns of policy

  18. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    World Others Share Source: Murthy, 2007 3.3.3 Energy data The productionthe World Bank. 4.2.2 Industrial Production Intensity EnergyEnergy) Production Of crude steel Mt SEC GJ/t cs Coal Elect FO LPG Gas SEC World

  19. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    of commodity produced and carbon intensity as CO 2 emissionsubsectors in 2007 and carbon intensity. The table alsowhich represents a carbon intensity of 0.82 tCO 2 /t cement.

  20. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    on lowering the levelized cost of solar energy through R&D.on the cost of renewable energy generation, often levelized

  1. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    and GTM Research (2010), “U.S. solar energy trade assessment2010), “U.S. solar energy trade assessment 2010: Trade flows2010: Trade flows and domestic content for solar energy-

  2. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    for compressing air and syngas. In energy efficient plants,heat Air compressor turbine Syngas compressor turbine Flue-

  3. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    economy is highly dependent on imported energy sources, with 80 percent of its coal, 100 percent of its natural gas,

  4. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    consumption, total electricity demand of each building type is calibrated to governmentElectricity Consumption in Hospitals Hospital No. of Beds Estimated (kWh/Bed/year) Government

  5. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    solar PV in China was in off- grid installations for remote rural communities,to its remote communities. The contribution of solar powersolar PV deployment through its Brightness Rural Electrification and the Township Electrification Programs to provide energy to its remote communities,

  6. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    of crude oil in the future. 3.6.3 Energy Consumption Thecrude oil throughput (Sathaye et al, 2005). Energy consumptioncrude oil throughput 15 (Sathaye et al, 2005). We estimated this consumption

  7. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Management Cell Electrical Power Survey Energy Use IntensityAs per the 17th Electrical Power Survey (EPS) of the Central

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    uses heat and yields black liquor that can potentially be2007). However, the black liquor recovery in agro-residueHigh concentration of black liquor Continuous digester

  9. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    by California. The California Solar Initiative (CSI) targetsCommission, “The California Solar Initiative”, available atdemand-pull: Lessons from California’s solar policy”, Energy

  10. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    S. and Yuan, L.Y. (2007), “China’s Solar Energy Industry:the examples of China and Taiwan that Solar PV saw a largetariffs Figure 7: China’s annual solar PV installation and

  11. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    of inputs (e.g. ‘rare’ earth elements necessary for thin-Cindy. 2010. “China’s Rare Earth Elements Industry: What Can

  12. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    learning and renewable energy costs: Implicationsfor US renewable energy policy”, Energy Policy, 34 (13), pp.Learning Investments for Renewable Energy Technology”, EMF/

  13. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    biomass, compared to solar power to meet their objectives ofmake it diffi cult for solar power to compete in the marketswhich would enable solar power to penetrate a large part of

  14. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    best practices and demonstrates that large energy efficiencyscope for energy efficiency improvements. Best practices forbest practices subsists, which suggests that room for energy efficiency

  15. Issues in International Energy Consumption Analysis: Electricity Usage in Indias Housing Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity

  16. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    encourage smaller scale PV plants by offering higher feed-inencourage smaller scale PV plants by offering higher feed-inencourage smaller scale PV plants by offering higher feed-in

  17. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    report analyzed the potential for increasing energy efficiencyreport analyzed the potential for increasing energy efficiency

  18. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01T23:59:59.000Z

    The Market Value and Cost of Solar Photovoltaic ElectricityCosts Capacities, Global Perspectives through 2012”, Bernreuter Research, Photovoltaicto the cost of solar power. 5 European Photovoltaic Industry

  19. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    a second facility at the Jamnagar site, which is expected to2008. When finished, Jamnagar will be the largest refining

  20. India-NAMA Programme for the Construction Sector in Asia | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429 Throttled (bot load)Information Buildings

  1. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    43 Energy efficiency and CO2 emission reduction measures and58 CO2 emission reduction measures and associated68 CO2 emission reduction measures and associated

  2. Liberalizing Capital Flows in India: Financial Repression, Macroeconomic Policy and Gradual Reforms

    E-Print Network [OSTI]

    Kletzer, Kenneth

    2004-01-01T23:59:59.000Z

    2004], “Fiscal Policy in India: Lessons and Priorities,”analyses of fiscal policy in India include, Pinto andtaxes and regulatory policies in India and across the states

  3. The Management of International Rivers as Demands Grow and Supplies Tighten: India, China, Nepal, Pakistan, Bangladesh

    E-Print Network [OSTI]

    Crow, Ben; Singh, Nirvikar

    2009-01-01T23:59:59.000Z

    point, here we focus on India's policy of bilateralism, andRose, L. (1987). India's regional policy: nonmilitarypolicy interests by improving cooperation between India and

  4. Where the Runners Went: British Motivations Behind Postal Policy and Allocation in Colonial India

    E-Print Network [OSTI]

    Bharat, Sheetal

    2012-01-01T23:59:59.000Z

    Britain’s economic policy in India, Morris clarifies that “Behind Postal Policy and Allocation in Colonial India APostal Policy and Allocation in Colonial India by Sheetal

  5. Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India

    E-Print Network [OSTI]

    Badrinarayan, Deepa

    2011-01-01T23:59:59.000Z

    particularly because of India's foreign policy on nuclearis argued that India's nuclear policy represents an upcomingthe government of India will adopt policies that will lead

  6. Wind energy conversion system

    SciTech Connect (OSTI)

    Longrigg, P.

    1987-03-17T23:59:59.000Z

    This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

  7. WINDExchange Offshore Wind Webinar: Transmission Planning and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

  8. India’s R&D for Energy Efficient Buildings: Insights for U.S. Cooperation with India

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd

    2010-06-01T23:59:59.000Z

    This report outlines India’s current activities and future plans in building energy efficiency R&D and deployment, and maps them with R&D activities under the Department of Energy’s Building Technologies Program. The assessment, conducted by the Pacific Northwest National Laboratory in FY10, reviews major R&D programs in India including programs under the 11th Five-Year Plan, programs under the NEF, R&D and other programs under state agencies and ongoing projects in major research institutions .

  9. Macroscopic theory of dark sector

    E-Print Network [OSTI]

    Boris E. Meierovich

    2014-10-06T23:59:59.000Z

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

  10. Microfinance regulation in China and India

    E-Print Network [OSTI]

    Gowrie-Smith, Lachlan Ian

    2010-01-01T23:59:59.000Z

    The regulatory responses of Governments in different countries to emerging microfinance sectors have varied dramatically and as a result so have the outcomes for these sectors. As two of the fastest growing developing ...

  11. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  12. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  13. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  14. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov Purpose, Objectives, & Integration Project...

  15. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  16. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  17. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  18. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  19. State Successes: Using Outreach and Eduction to Transcend Barriers to Wind Energy (Poster)

    SciTech Connect (OSTI)

    Kelly, M.; Flowers, L.

    2010-05-01T23:59:59.000Z

    Many states projected to contribute significantly to the United States' 20% wind energy by 2030 goal have not yet achieved a first wind farm, and many more have not yet hit the 100-MW mark. These states are struggling with basic barriers of the need for understanding of the wind resource; wind energy benefits and impacts; economic development, water, and carbon impacts; issues such as transmission, utility integration, siting, and wildlife; involvement of key constituents such as the electrical sector, the ag sector, and county commissioners; effective policy; and an educated public and an educated workforce. Other states have partially transcended these barriers and are encountering organized pushback; NIMBYism; siting problems such as zoning, permitting, and environmental issues; and interstate barriers such as transmission.

  20. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  1. American Wind Energy Association Wind Energy Finance and Investment...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

  2. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an...

  3. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

  4. National Skills Assessment of the U.S. Wind Industry in 2012

    SciTech Connect (OSTI)

    Levanthal, M.; Tegen, S.

    2013-06-01T23:59:59.000Z

    A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

  5. Captive power plants and industrial sector in the developing countries

    SciTech Connect (OSTI)

    Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

    1996-12-31T23:59:59.000Z

    The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

  6. LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION

    E-Print Network [OSTI]

    Andrea Kircsi

    The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

  7. Energy age wind ltd Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector ManagementCentreage wind ltd

  8. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

  9. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

  10. Yucca MountainTransportation: Private Sector Perspective

    Broader source: Energy.gov (indexed) [DOE]

    Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC)...

  11. Decoupling limits in multi-sector supergravities

    SciTech Connect (OSTI)

    Achúcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

    2013-03-01T23:59:59.000Z

    Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Kähler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the naïve global superpotential. We show that this requires non-canonical scaling in the naïve supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

  12. DOE Issues Energy Sector Cyber Organization NOI

    Broader source: Energy.gov (indexed) [DOE]

    sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is...

  13. Geothermal: Sponsored by OSTI -- Industrial Sector Technology...

    Office of Scientific and Technical Information (OSTI)

    Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

  14. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  15. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

  16. Public Sector New Construction and Retrofit Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  17. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

  18. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  19. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  1. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  5. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  8. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  9. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  11. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  12. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind EnergyWind

  13. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

  14. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    devoted to the power sector, electricity deficits continuethe sector by the sector’s electricity consumption. In thewhile data on electricity consumption by sector are taken

  15. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  16. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

  17. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  18. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  19. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  20. Regimes of Dispossession: Special Economic Zones and the Political Economy of Land in India

    E-Print Network [OSTI]

    Levien, Michael James

    2013-01-01T23:59:59.000Z

    and Rehabilitation Policy for India. ” Pp. 39- 49 in India1997. Rehabilitation Policy and Law in India: A Right toBank. World Bank. 2007. India: Land Policies for Growth and

  1. Empirical essays on firm behavior in India

    E-Print Network [OSTI]

    Ryan, Nicholas (Nicholas James)

    2012-01-01T23:59:59.000Z

    In this thesis, I study the behavior of industrial firms in India in the electricity market and with respect to locational choice and environmental regulation. In the first chapter, I study the competitive effects of ...

  2. INDIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScience at ALCF Allocation Programs

  3. INDIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure link to2,/ WInstruments

  4. INDIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure link to2,/

  5. INDIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure link to2,/

  6. INDIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure link to2,/ARM instruments

  7. Wind Wildlife Research Meeting X

    Broader source: Energy.gov [DOE]

    The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

  8. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  9. Wind and Solar Curtailment: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

  10. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid “noise”

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

  14. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  15. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia [Program on Science and Global Security, Princeton University, Princeton, New Jersey (United States)

    2014-05-09T23:59:59.000Z

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  16. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  17. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30T23:59:59.000Z

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  18. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

  19. Managing Technical Risk: Understanding Private Sector

    E-Print Network [OSTI]

    action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

  20. Wind Energy R&D Collaboration between NIRE and NREL: Cooperative Research and Development Final Report, CRADA Number CRD-11-437

    SciTech Connect (OSTI)

    Moriarty, P.

    2015-01-01T23:59:59.000Z

    This work includes, but is not limited to, research and development of joint technology development and certification efforts in the wind power sector; providing access to commercial wind farm and federal facilities to enhance R&D; identification of workforce development best practices. This work will be done at Contractor and Participant facilities.

  1. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2008-10-10T23:59:59.000Z

    ........................................................16 II.G. Current State of Indian Nuclear Program.........................................................17 III INDIAN NUCLEAR FACILITIES .................................................................18 IV FUEL CYCLE... pattern for TBR-1 .........................................100 Fig. 16. India’s proposed nuclear power production strategy........................................103 Fig. 17. Comparison for uranium utilization in electricity generation...

  2. Wind Energy Kit | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Kit Wind Energy Kit Wind Energy :: Kit Materials List Below is a list of the different Wind Energy kits available. For more details, download the Wind Energy Kit List....

  3. Wind Energy Program: Top 10 Program Accomplishments

    Broader source: Energy.gov [DOE]

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  4. Utilizing Wind: Optimal Wind Farm Placement in the United States

    E-Print Network [OSTI]

    Powell, Warren B.

    Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

  5. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  6. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  7. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  8. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

  9. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

  10. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01T23:59:59.000Z

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  11. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

  12. Assessment of the National Wind Coordinating Collaborative: Addressing Environmental and Siting Issues Associated with Wind Energy Development

    SciTech Connect (OSTI)

    Van Cleve, Frances B.; States, Jennifer C.

    2010-11-09T23:59:59.000Z

    The National Wind Coordinating Collaborative (NWCC) is a consensus-based stakeholder group comprised of representatives from the utility, wind industry, environmental, consumer, regulatory, power marketer, agricultural, tribal, economic development, and state and federal government sectors. The purpose of the NWCC is to support the development of an environmentally, economically, and politically sustainable commercial market for wind power (NWCC 2010). The NWCC has been funded by the U.S. Department of Energy (DOE) since its inception in 1994. In order to evaluate the impact of the work of the NWCC and how this work aligns with DOE’s strategic priorities, DOE tasked Pacific Northwest National Laboratory (PNNL) to conduct a series of informal interviews with a small sample of those involved with NWCC.

  13. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. ” Wind Energy (9:1–2); pp. 141–161.

  14. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Broader source: Energy.gov (indexed) [DOE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  15. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Broader source: Energy.gov (indexed) [DOE]

    This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

  16. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  17. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  18. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01T23:59:59.000Z

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  19. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN SÞrensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  1. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  2. Wind Power in Alaska

    Broader source: Energy.gov [DOE]

    In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

  3. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

  4. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  5. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  6. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  7. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    ''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  8. Solar and Wind Rights

    Broader source: Energy.gov [DOE]

    Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use...

  9. Wind Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

  10. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  11. County Wind Ordinance Standards

    Broader source: Energy.gov [DOE]

    [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

  12. Wind Energy Teachers Guide

    SciTech Connect (OSTI)

    anon.

    2003-01-01T23:59:59.000Z

    This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

  13. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative SolarVehiclesWind Wind EERE

  14. Three empirical essays on trade and development in India

    E-Print Network [OSTI]

    Topalova, Petia

    2005-01-01T23:59:59.000Z

    This thesis is a collection of three empirical essays on economic development and trade in India. Chapter 1 uses the sharp trade liberalization in India in the early 1990s, spurred to a large extent by external factors, ...

  15. Environmental Regulations, Air and Water Pollution, & Infant Mortality in India

    E-Print Network [OSTI]

    Greenstone, Michael

    2011-07-01T23:59:59.000Z

    Using the most comprehensive data file ever compiled on air pollution, water pollution, environmental regulations, and infant mortality from a developing country, the paper examines the effectiveness of India’s environmental ...

  16. Design and implementation of multi-asset funds in India

    E-Print Network [OSTI]

    Singh, Yuvraj

    2011-01-01T23:59:59.000Z

    India, over the past decade, has steadily emerged as a center of attractive investment opportunities, owing to high GDP growth rates and rising levels of per capita income. Asset management in India is going through a ...

  17. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01T23:59:59.000Z

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  18. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  19. Information Technology Australia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia China India Italy Malaysia South Africa

    E-Print Network [OSTI]

    Albrecht, David

    Information Technology Australia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia China India Italy Malaysia South Africa CRICOS provider: Monash University

  20. Fertility Limits on Local Politicians in India Abhishek Chakravarty

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    .g., sterilization incentives in India). This paper examines a novel policy experiment that imposes fertility limitsFertility Limits on Local Politicians in India S Anukriti Abhishek Chakravarty September 19, 2014: political leaders. Keywords: India, Local Elections, Fertility Limits, Sex Ratios, Population Control We

  1. Committed to national interest The Times of India Bangalore Edition ,

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    can do things that no one else can even dream of," says Pai. The public policy discourse in India."In India, from independence till the very recent postliberalization era, policy was only about ideologyTimes City Committed to national interest The Times of India Bangalore Edition , Shrabonti Bagchi

  2. SAT-WIND project Final report

    E-Print Network [OSTI]

    -2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

  3. MAPping Foehn Winds in the Austrian Alps

    E-Print Network [OSTI]

    Gohm, Alexander

    and the flow above mountain-top level 3. Study the vertical and cross-gap distribution of wind speed-valley horizontal wind speed ("measured") vertical wind speed (calculated) total wind speed & streamlines -20 -10 0 October 1999 ­ TEACO2 calculated 2D winds down-valley horizontal wind speed ("measured") vertical wind

  4. Energy Department Announces New Private Sector Partnership to...

    Office of Environmental Management (EM)

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  5. Energy Department Announces New Private Sector Partnership to...

    Office of Environmental Management (EM)

    Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable...

  6. Combined Heat & Power Technology Overview and Federal Sector...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

  7. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  8. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

  9. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    values. Figure 7. Global Primary Energy by End-Use Sector,Scenario Figure 8. Global Primary Energy by End-Use Sector,

  10. Changes Sweeping Through the Electricity Sector: Moving toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century...

  11. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  12. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Broader source: Energy.gov (indexed) [DOE]

    Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

  13. Energy-Sector Stakeholders Attend the Department of Energy's...

    Broader source: Energy.gov (indexed) [DOE]

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  14. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  15. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01T23:59:59.000Z

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  16. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  17. The Economics of Public Sector Information

    E-Print Network [OSTI]

    Pollock, Rufus

    result in incentives for over-investment in quality and capacity improvements because, by over-investing, the PSIH stimulates demand and obtains a larger subsidy. In terms of responsiveness an organization operating a more ‘commercial’ pricing policy (e... area (building especially), or keeping up to date with the decisions of their elected representatives. While much data is supplied from outside the public sector, compared to many other areas of the economy, the public sector plays an unusually...

  18. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risűloads on wind turbines. ” European Wind Energy Conference

  19. Information Technology Australia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008C

    E-Print Network [OSTI]

    Albrecht, David

    Technology Australia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008C General; Australia China India Italy Malaysia South Africa CRICOS provider: Monash University 00008CAustralia

  20. Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code

    SciTech Connect (OSTI)

    Yu, Sha; Evans, Meredydd; Delgado, Alison

    2014-03-26T23:59:59.000Z

    India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC’s enactment, only two states and one territory out of 35 Indian states and union territories formally adopted ECBC and six additional states are in the legislative process of approving ECBC. There are several barriers that slow down the process. First, stakeholders, such as architects, developers, and state and local governments, lack awareness of building energy efficiency, and do not have enough capacity and resources to implement ECBC. Second, institution for implementing ECBC is not set up yet; ECBC is not included in local building by-laws or incorporated into the building permit process. Third, there is not a systematic approach to measuring and verifying compliance and energy savings, and thus the market does not have enough confidence in ECBC. Energy codes achieve energy savings only when projects comply with codes, yet only few countries measure compliance consistently and periodic checks often indicate poor compliance in many jurisdictions. China and the U.S. appear to be two countries with comprehensive systems in code enforcement and compliance The United States recently developed methodologies measuring compliance with building energy codes at the state level. China has an annual survey investigating code compliance rate at the design and construction stages in major cities. Like many developing countries, India has only recently begun implementing an energy code and would benefit from international experience on code compliance. In this paper, we examine lessons learned from the U.S. and China on compliance assessment and how India can apply these lessons to develop its own compliance evaluation approach. This paper also provides policy suggestions to national, state, and local governments to improve compliance and speed up ECBC implementation.

  1. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

  2. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Energy Savers [EERE]

    and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

  3. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  4. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  5. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  8. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  9. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  10. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Figure 12. Effect of Wind Integration and Resource Adequacy62 Table E-2. Estimates of Wind IntegrationAugust. Utility Wind Integration Group (UWIG), 2006. “

  11. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind Energy

  12. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1 Wind

  13. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStar (07) Wind FarmND

  14. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall Wind

  15. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR IMMEDIATEPreviewing theMembers | Home |Wind

  16. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:Wind Farm Jump to:

  17. Offshore Wind Farms – the Impact on Wind Farm Planning and Cost of Generation

    E-Print Network [OSTI]

    Jacob Ladeburg; Sanja Lutzeyer

    rates of planning and construction of new wind farms. Offshore wind farms typically offer the benefits

  18. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01T23:59:59.000Z

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  19. Combating the Privatization of Life in a Neo-Liberal Regime: The Fight for Water Democracies in India

    E-Print Network [OSTI]

    Raders, Gavin

    2009-01-01T23:59:59.000Z

    of India’s Traditional Water Harvesting Systems. New Delhi:C. 1996 Traditional Water Harvesting Systems: An EcologicalSouth India. In Traditional Water Harvesting Systems. Barah,

  20. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis [Technical Contact

    2013-06-29T23:59:59.000Z

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  1. Wind for Schools: A Wind Powering America Project

    SciTech Connect (OSTI)

    Not Available

    2007-12-01T23:59:59.000Z

    This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

  2. NREL: Wind Research - Collegiate Wind Competition Set to Blow...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2014 The United States is among the world's largest and fastest growing wind energy markets. In fact, wind energy is now the number one source of new U.S. electricity...

  3. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01T23:59:59.000Z

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  4. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Environmental Management (EM)

    Secretary Ernest Moniz. The proposed Cape Wind project would use 3.6-MW offshore wind turbines that would provide a majority of the electricity needed for Cape Cod, Nantucket,...

  5. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01T23:59:59.000Z

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  6. Development of Regional Wind Resource and Wind Plant Output Datasets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

  7. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  8. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  9. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  10. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  11. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  12. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01T23:59:59.000Z

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  13. Wind Success Stories

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06 Wind Success

  14. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  15. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

  16. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

  17. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews Wind CollegiateOffshore wind

  18. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    Quantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic site at Horns Rev is given based on satellite SAR observa- tions.The comparison of offshore satellite

  19. Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary

    E-Print Network [OSTI]

    windings occurs at the level of individual turns, the method could be applied, but its advantages are lessComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics

  20. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01T23:59:59.000Z

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.