National Library of Energy BETA

Sample records for index hq hazard

  1. Hazard index for underground toxic material

    SciTech Connect (OSTI)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  2. HQ F 580

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...... ... Accountable Property Representative (APR) Date Digital Signature HQ F 580 (04-13) This form replaces form HQ F 1400.25

  3. HQ Mediation Program Brochure

    Broader source: Energy.gov [DOE]

    This document is the HQ Mediation Program's brochure.  It generally discusses the services the program offers.

  4. DOE HQ F 3790.8 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 DOE HQ F 3790.8 Form used to report a safety or health hazard to the Safety Inspector and/or the Safety and Occupational Health Manager PDF icon Report of Safety or Health Hazard More Documents & Publications DOE HQ F 3790.7 DOE F 3420.2 Federal Employee Occupational Safety And Health (FEOSH) Program Overview

  5. HQ F 580

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (12-08) Print This Form May Be Saved With the Acrobat Reader DOE HQ F 580.3 Page 2of 2 Section 17 This section to be completed by the Organizational Property Management Office ...

  6. The View from HQ

    National Nuclear Security Administration (NNSA)

     NA-ASC-500-07 Issue 2 January 2007 The View from HQ Sitting in airports and planes is risky beyond the obvious dangers now in the news. Uninter- rupted time to think may lead to new ideas. Instinct instructs us that when we hear Wash- ington has some new ideas, the result must be bad. After all, ideas suggest change, which is inherently disruptive. Today the notion of predictivity is on my mind as I am leaving the V&V 2007 meeting in Los Alamos. Predictivity is on my short list of

  7. The View from HQ

    National Nuclear Security Administration (NNSA)

    A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs NA-ASC-500-07-Issue 3 May 2007 The View from HQ by Dimitri Kusnezov I have been spending much of my time these days thinking about science, technology and engineering and the role of the laboratories and how that will be reflected in the Complex of the future. This is on my mind for two reasons: one is my responsibility to produce a science and technology roadmap for Complex 2030-Defense Program's vision

  8. HQ F 580

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ F 580. 3 U.S. DEPARTMENT OF ENERGY Page 1 of 2 All Other Editions are Obsolete RETIREMENT WORK ORDER 1 Sections 4-12 to be filled in by person reporting loss (user or APR) 4. Name of Reporting Person 5. Office Telephone No. 6. Program Office/Routing Symbol 7. Office Address (Include building and room) 8. Date of Occurrence 9. Time 10. Place 11. Description of Asset (If reporting multiple assets include printout from Sunflower the DOE property system including following information): DOE Tag

  9. 2015 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ |

    Energy Savers [EERE]

    Department of Energy NNSA HQ 2015 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense nuclear facility and related operational hazards. Individual site summaries developed at the

  10. DOE HQ F 580 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE HQ F 580 Certificate of Property/Property Removal Authorization Form PDF icon HQ F 580_CoP_Property Removal Authorization.pdf More Documents & Publications DOE HQ F 580-2 Property Transfer or Turn In Form, HQ F 1400.18 Personal Property Retirement Work Order, HQ Form 1400.20

  11. DOE HQ Occupational Safety and Health Program | Department of...

    Energy Savers [EERE]

    DOE HQ Occupational Safety and Health Program DOE HQ Occupational Safety and Health Program HQ Occupational Safety and Health Program Procedures PDF icon DOE HQ Occupational Safety...

  12. E-Commerce Policies for Hq

    Broader source: Energy.gov [DOE]

    HQ Procurement Services Policies & Operating Proceduresfor Program Office Buyers Use of the Strategic Integrated Procurement Enterprise System (STRIPES)...

  13. HQ F 331.1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Delegation of Awards Approval PRIVACY ACT STATEMENT ON REVERSE SIDE HQ F 331.1 (04-01) Certification Review of Regulations Approval of Justification 1. Employee Name: 2. Title, Series and Grade: 3. Type of Award: (Monetary or Nonmonetary) 4. Date: 5. Initiator: (Please print or type name) 11. Approving Official: (Please print or type name) 12. Title: 7. Immediate Supervisor of Employee: (If different from line 5, please print or type name) 9. Authorizing Official: (For

  14. HQ

    Energy Savers [EERE]

    through High Performance Computing | Department of Energy HPC4Mfg: Boosting American Competiveness in Clean Energy Manufacturing through High Performance Computing HPC4Mfg: Boosting American Competiveness in Clean Energy Manufacturing through High Performance Computing February 23, 2016 - 3:50pm Addthis Supercomputers like these at the Energy Department's national laboratories will play a key role in solving ‪‎manufacturing challenges and building clean ‪‎energy

  15. OCPR - HQ Mediation Program Mediator Reminders

    Energy Savers [EERE]

    5) OCPR - HQ MEDIATION PROGRAM MEDIATOR REMINDERS You have been selected to mediate the resolution of a concern between the Department of Energy and an employee. The parties have voluntarily chosen to mediate their dispute. To enhance the chances of settlement, you should focus on developing the parties' trust in the process and each other. Below are several issues you should keep in mind as you serve as a HQ Mediation Program mediator. 1. Facilitative Mediation. The HQ Mediation Program uses

  16. High Impact Technology HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Technology Catalyst » High Impact Technology HQ High Impact Technology HQ High Impact Technology HQ Home Resources for Evaluators -- Site Evaluation Checklists, General M&V Plans, General Templates Host a Site -- Current Opportunities for Owners and Operators Provide Information About Technologies -- Open Opportunities, Upcoming Events, Prioritization Tool Input Form Results -- Technology Highlights, Case Studies, Final Technical Reports, Market Stimulation Activities The High Impact

  17. RespbsforHQ-POCS-REDESIGN.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT PROGRAM RECORDS OFFICIAL (PRO) ... Oversee preparation of HQ RIDS, coordinate PRO approval, and maintain copies o Sole ...

  18. HQ-2011-01822-FOIA Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 1000 Independence Avenue, SW Washington, DC 20585 RE: HQ-2011-01822-FTom Clements Dear Ms. Ogbazghi: Please find enclosed the information you requested in your Freedom...

  19. HQ Engineering Srl | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: HQ Engineering Srl Place: Milano, Italy Zip: 20124 Product: Italian engineering company. Coordinates: 45.468945, 9.18103 Show Map Loading map......

  20. DOE HQ F 580-2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2 DOE HQ F 580-2 Employee Personal Property Removal Authorization PDF icon HQ F 580 2 Employee Personal Property Removal Authorization.pdf More Documents & Publications DOE HQ F 580 Certificate of Property Receipt HQ Form 4420.1 DOE HQ F 4420.1

  1. DOE HQ F 4420.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE HQ F 4420.1 DOE HQ F 4420.1 DOE HQ F 4420.1 Form used by the Logistics Management Division to track property items provided per requests. PDF icon CERTIFICATE OF PROPERTY ...

  2. Special Inquiry: IO1HQ005 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Review of the Yucca Mountain Project, IO1HQ005 Special Inquiry: IO1HQ005 More Documents & Publications Special Inquiry: I01HQ003 Inquiry Report: I01IG001 Special Inquiry: SI-11-2...

  3. HQ_F_1500_5.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQF15005.pdf HQF15005.pdf PDF icon HQF15005.pdf More Documents & Publications DOE HQ F 1500.5 DOE HQ F 331.1 (fillable pdf) DOE HQ F 1400.18

  4. Energy Reduction at HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ Energy Reduction at HQ The Department of Energy (DOE) is setting an example for the entire Federal Government with aggressive but achievable goals for energy reduction at all DOE facilities, including its headquarters facilities in the Forrestal Building in downtown Washington, DC, and Germantown, MD. Tips for Saving Energy Employees at the Department's Headquarters facilities are advised to be aware of several actions that can add up to significant energy and monetary savings and help the

  5. OCPR - HQ Mediation program Agreement to mediate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page | 1 (OCPR-HQ-008) OCPR - HQ MEDIATION PROGRAM AGREEMENT TO MEDIATE _________________________________________________________________ (individually referred to as a "Party" and collectively as the "Parties"). The Parties have agreed to engage in mediation with the following understandings and expectations. 1. I understand that mediation is voluntary and that I may withdraw at any time for any reason. 2. I understand that mediation does not extend, suspend or alter the

  6. HQ EMS Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMS Policy HQ EMS Policy Office of Administration Environmental Management System (EMS) Policy for Managing Department of Energy HQ Facilities This policy statement sets forth the commitments and basic structure of the Department of Energy (DOE) Headquarters Facility Environmental Management System (EMS). The scope of this EMS includes facility operations and support activities for the DOE Forrestal facility in Washington, DC and the Germantown facility in Germantown, Maryland. The DOE

  7. OCPR - HQ Mediation Program mediation process

    Energy Savers [EERE]

    3) OCPR - HQ MEDIATION PROGRAM MEDIATION PROCESS The following guidance is the process that a party to a mediation should expect to follow under the Headquarters Mediation Program. I. DECISION TO PARTICIPATE IN MEDIATION a. In December 2014, the Secretary of Energy issued an Alternative Dispute Resolution (ADR) Secretarial Statement encouraging employees and managers to consider using "ADR at the earliest opportunity to resolve or prevent conflict." To that end, the HQ Mediation

  8. Property Representatives Lists - HQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Property Representatives Lists - HQ Property Representatives Lists - HQ These are the current lists of Headquarters Property Representatives. If you have any questions please contact: Ellen Hall, Office of Logistics Operations, (301) 903-2613. PDF icon Authorized Property Pass Signers List and Accountable Property Representatives List, Effective April 1, 2016 More Documents & Publications Directory Listings AU Functional Area Points of Contact by Office Directors Headquarters Facilities

  9. DOE HQ Occupational Safety and Health Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety and Health Program DOE HQ Occupational Safety and Health Program HQ Occupational Safety and Health Program Procedures PDF icon DOE HQ Occupational Safety and Health Program More Documents & Publications HQ Confined Space Program, Policy 2010-001 Independent Oversight Review, Department of Energy Contractor - August 2000 FAQS Qualification Card - Occupational Safety

  10. HQ Leave Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ Leave Guide HQ Leave Guide The purpose of this guide is to provide you, as a Headquarters employee, advice and guidance concerning issues related to hours of duty, time & attendance, and matters related to taking time off (e.g., annual and sick leave). However, this guide can not provide all encompassing guidance for all situations. In many cases, the answer is subject to office policy and/or supervisory judgment. For these reasons, any questions about how matters in this guide apply to

  11. HQ Human Resources - Points of Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ Human Resources - Points of Contact HQ Human Resources - Points of Contact Name Division Phone Room # Email Address ARPA-E Burkley, Tania Executive Resources 202-586-7657 4E-084 Tania.Burkley@hq.doe.gov Robinson, Peggy Labor and Employee Relations 202-586-2591 8E-092 Peggy.Robinson@hq.doe.gov Kennedy, Rhonda HR Business Partner (HRBP) 202-586-3544 4E-084 Rhonda.Kennedy@hq.doe.gov ARRA Burkey Tania Executive Resources 202-586-7657 4E-084 Tania.Burkley@hq.doe.gov Hawkins, Renee HR Operations

  12. Certificate of Property Receipt HQ Form 4420.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificate of Property Receipt HQ Form 4420.1 Certificate of Property Receipt HQ Form 4420.1 Certificate of Property Receipt HQ Form 4420.1 PDF icon Certificate of Property Receipt HQ Form 4420.1 More Documents & Publications DOE HQ F 4420.1 DOE HQ F 580-2 DOE HQ F 580

  13. DOE HQ F 1400.18 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 DOE HQ F 1400.18 PDF icon Property Transfer form hqf1400-18.pdf More Documents & Publications Property Transfer or Turn In Form, HQ F 1400.18 DOE F 414 DOE F 570

  14. DOE HQ F 1500.5 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE HQ F 1500.5 DOE HQ F 1500.5 Office of Headquarters Accounting Operations Travel Authorization and Program Manager Signature PDF icon 1500-5 Signature Card blk Changes -...

  15. Cancellation of DOE HQ O 442.1

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-12

    The notice cancels DOE HQ O 442.1, Headquarters Occupational Safety and Health Program, dated 11-3-01.

  16. DOE HQ F 1400.12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE HQ F 1400.12 Form used by the Parking Management Office to track parking permit applications. PDF icon PARKING PERMIT APPLICATION More Documents & Publications Parking Permit Application, Form HQ F 1400.12 DOE HQ F 3780.2 DOE Guidance on the Use of the SSN

  17. DOE HQ F 1410.2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE HQ F 1410.2 Form used to confirm receipt of controlled mail parcel service items. PDF icon RECEIPT FOR CONTROLLED MAIL PARCEL SERVICE More Documents & Publications DOE HQ F 1410.8 DOE F 1324.5 DOE HQ F 1410.4

  18. DOE HQ F 3293.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    293.1 DOE HQ F 3293.1 PDF icon HQ F 3293 1 FINAL 132412.pdf More Documents & Publications Employee Separation: Completing HQ F 3293.1, Sec. 7c Headquarters Facilities Master Security Plan - Chapter 15, Outprocessing REQUEST FOR LOST/STOLEN BADGE REPLACEMENT

  19. Purchase Card Policies for Hq | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Procurement Services » Purchase Card Policies for Hq Purchase Card Policies for Hq HQ Procurement Services Policies & Operating Procedures Table of Contents PURPOSE RESPONSIBILITIES PERSONAL PROPERTY MANAGEMENT AND PROPERTY ACCOUNTABILITY ADDITIONAL PROHIBITIONS AND RESTRICTIONS PURCHASE CARD FINANCIAL PROCEDURES EMPLOYEES TRANSFERRING WITHIN HEADQUARTERS PROGRAM SUPPORT ADDITIONAL CARDHOLDER AND APPROVING OFFICIAL TRAINING USE OF PRIVATE SECTOR TEMPORARIES STRIPES Purpose To

  20. OCPR - HQ Mediation Program employee Reminders

    Energy Savers [EERE]

    4) OCPR - HQ MEDIATION PROGRAM EMPLOYEE REMINDERS Thank you for agreeing to participate in the DOE Headquarters Mediation Program. Here is some information to assist you in preparing for the mediation process. 1. Mediation Process. Mediation is a type of an Alternative Dispute Resolution (ADR) technique to resolve workplace disputes. A neutral third party or mediator assists the parties in discussing their concerns in a productive manner. Mediation is available any time during the EEO

  1. OCPR - HQ Mediation Program management Reminders

    Energy Savers [EERE]

    6) OCPR - HQ MEDIATION PROGRAM MANAGEMENT REMINDERS Thank you for agreeing to participate in the DOE Headquarters Mediation Program. Here is some information to assist you in preparing for the mediation process. 1. Mediation Process. Mediation is a type of an Alternative Dispute Resolution (ADR) technique to resolve workplace disputes. A neutral third party or mediator assists the parties in discussing their concerns in a productive manner. Mediation is available any time during the EEO

  2. OCPR - HQ Mediation Program mediation confidentiality agreement

    Energy Savers [EERE]

    7) OCPR - HQ MEDIATION PROGRAM MEDIATION CONFIDENTIALITY AGREEMENT In order to foster an open environment during the mediation where parties may freely and frankly discuss issues, the parties to this mediation (including their representatives and the mediator) hereby agree to the following terms of confidentiality: 1. All statements during the mediation session are confidential settlement discussions. The mediation participants agree not to disclose any information discussed during the mediation

  3. HQ Operations Division (HC-32) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Division (HC-32) HQ Operations Division (HC-32) Functions Deliver employment operational and advisory services, including position management, recruitment, staffing and ...

  4. High Impact Technology HQ - Resources for Evaluators - General...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ - Resources for Evaluators - General Measurement and Verification Plans High Impact ... Microsoft Office document icon Advanced Lighting Controls More Documents & Publications ...

  5. Cancellation of DOE HQ O 344.1A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-10-08

    Effectively immediately, HQ O 344.1, Parking, dated 11-2-01, is canceled as is Chg. 1 dated 11-19-04.

  6. Personal Property Retirement Work Order, HQ Form 1400.20 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Retirement Work Order, HQ Form 1400.20 Personal Property Retirement Work Order, HQ Form 1400.20 Retirement Work Order PDF icon Personal Property Retirement Work Order, HQ Form 1400.20 More Documents & Publications DOE F 1400.20 DOE HQ F 580-2 DOE HQ F 580

  7. DOE HQ F 4420.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    420.1 DOE HQ F 4420.1 Form used by the Logistics Management Division to track property items provided per requests. PDF icon CERTIFICATE OF PROPERTY RECEIPT More Documents & Publications Certificate of Property Receipt HQ Form 4420.1 DOE F 4250.4 DOE F 4250.3

  8. DOE HQ F 472.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    72.1 DOE HQ F 472.1 Fair Credit Reporting Act Authorization PDF icon DOE F 472 1 FINAL 2013.pdf More Documents & Publications DOE HQ F 472.1 DOE F 472.1 DOE F 473.2

  9. DOE HQ F 1410.4 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE HQ F 1410.4 Form used to track how long it takes a recipient to receive a mail item. PDF icon MAIL TIME SURVEY FORM More Documents & Publications DOE HQ F 1410.8 Correspondence Style Guide Acquisition Letters No. AL 2013-05

  10. DOE HQ F 1410.8 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 DOE HQ F 1410.8 Form used to notify mail recipients that they have mail to be picked up. PDF icon Notification of Incoming Mail More Documents & Publications DOE HQ F 1410.2 Headquarters Facilities Master Security Plan - Chapter 5, Classified Matter Protection and Control DOE F 1500.4

  11. DOE HQ F 3335.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    35.1 DOE HQ F 3335.1 Form is used by DOE employees seeking a new position via merit promotion. PDF icon REQUEST FOR MERIT PROMOTION CONSIDERATION More Documents & Publications DOE HQ F 3305.7 Excepted Service EJ and EK Desk Reference CBA.PDF�

  12. DOE HQ F 3780.2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80.2 DOE HQ F 3780.2 Form used by DOE employees to apply for a subsidy for using public transportation for commuting to work. PDF icon Subsidy for Energy Employees' Transit Application More Documents & Publications DOE HQ F 1400.12 Ridefinders Application Commute Mode Switching Impact Tool

  13. DOE HQ F 3790.7 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 DOE HQ F 3790.7 Form documents inspections that find unsafe or unhealthful working conditions and provide information on location, description of the condition, and correction date. PDF icon NOTICE OF UNSAFE OR UNHEALTHFULWORKING CONDITIONS More Documents & Publications DOE HQ F 3790.8 Federal Employee Occupational Safety And Health (FEOSH) Program Overview 10 CFR 851 Construction Safety Program

  14. HQ Operations Division (HC-32) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Division (HC-32) HQ Operations Division (HC-32) Functions Deliver employment operational and advisory services, including position management, recruitment, staffing and classification, reduction in force in Headquarters; Provide operational and advisory support for competitive sourcing initiatives and impacted serviced population; Provide information to HQ employee population on employee benefit programs (retirement; health, dental, vision, long-term care, and life insurance; thrift

  15. Property Transfer or Turn In Form, HQ F 1400.18 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 PDF icon Property Transfer or Turn In Form, HQ F 1400.18 More Documents & Publications DOE HQ F 1400.18 DOE F 1400.8 DOE HQ F 580

  16. FOIA Requests received by DOE Headquarters (HQ) since December...

    Energy Savers [EERE]

    ... to Robert Charles Wisor's work with nuclear energy as a Project Engineer for the Dupont Corporation 2122009 Closed at HQ and transferred to the Oak Ridge Office on 226...

  17. Asian American Pacific Islander Heritage Month - HQ | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambassador to the Minorities in Energy Initiative; and Rosie Abriam, President and CEO of the Center for Asian Pacific American Women. Contact Gloria.Smith@hq.doe.gov; 202-586-8383

  18. DOE HQ F 472.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fair Credit Reporting Act Authorization PDF icon DOE F 472 1 FINAL.pdf More Documents & Publications DOE HQ F 472.1 DOE F 472.1 Stop. Think. Click.: 7 Practices for Safer Computing

  19. DOE HQ F 1500.5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1500.5 DOE HQ F 1500.5 Office of Headquarters Accounting Operations Travel Authorization and Program Manager Signature PDF icon 1500-5 Signature Card blk Changes - FILLABLE.pdf ...

  20. Special Inquiry: I01HQ003 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Special Inquiry: IO1HQ005 Audit Special Inquiry: OAS-SR-10-04 EERE Report, Special Inquiry: "Review of Allegations RegardingHiring and...

  1. C:\Forms\HQ F 1410.8.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Notification of Incoming Mail Receipt for Incoming Personal Mail Sender Name: Date Processed: Processed by: (Signature and Date of Person Picking up Mail) Employee Name: Routing Symbol: Room Number: Date Received: HQ F 1410.8 (8-84) HQ F 1410.8 (8-84) Date Contacted: MESSAGE To Sender: Mail must be picked up by: or item will be returned to sender. Part 1 Part 2

  2. Presentation 2014 AAPI Heritage Month, Department of Energy HQ | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Presentation 2014 AAPI Heritage Month, Department of Energy HQ Presentation 2014 AAPI Heritage Month, Department of Energy HQ Download the presentation from James Meng, Deputy Secretary of the Navy, on leadership, diversity, and assets of Asian American Pacific Islanders serving in government, presented on May 15, 2014 at the Department of Energy's AAPI Heritage Month in Washington DC. File Meng AAPI 2014 More Documents & Publications Diversity and Inclusion Related Documents

  3. EA-182-C H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C H.Q Energy Services (U.S) EA-182-C H.Q Energy Services (U.S) Order authorizing H.Q Energy Services (U.S) to export electric energy to Canda. PDF icon EA-182-C H.Q Energy Services ...

  4. Parking Permit Application, Form HQ F 1400.12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parking Permit Application, Form HQ F 1400.12 Parking Permit Application, Form HQ F 1400.12 Parking Permit Form, Headquarters, Forrestal. Form is a fillable Acrobat file. Revised 09-2015. PDF icon Parking Permit Application, Headquarters (Forrestal), Form HQ F 1400.12 rev 09-2015 More Documents & Publications DOE HQ F 1400.12 Ridefinders Application DOE HQ F 580

  5. EA-182-A H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A H.Q Energy Services (U.S) EA-182-A H.Q Energy Services (U.S) Order authorizing H.Q Energy Services (U.S) Inc to export electric energy to Canada. PDF icon EA-182-A More Documents & Publications EA-182-B H.Q Energy Services (U.S) EA-182-C H.Q Energy Services (U.S) EA-216-B TransAlta Energy Marketing (U.S) Inc

  6. EA-182-B H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B H.Q Energy Services (U.S) EA-182-B H.Q Energy Services (U.S) Order authorizing H.Q Energy Services (U.S) to export electric energy to Canada. PDF icon EA-182-B H.Q Energy Services (U.S) More Documents & Publications EA-182-A H.Q Energy Services (U.S) EA-182-C

  7. HQ Voluntary Leave Transfer Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ Voluntary Leave Transfer Program HQ Voluntary Leave Transfer Program Under the Voluntary Leave Transfer Program you can apply, based on a medical emergency, to receive annual leave donated by other employees. A medical emergency is generally defined as a medical condition of the employee or family member that is likely to keep you (the employee) away from work and cause a lost of pay of at least 24 hours. PDF icon VOLUNTARY-LEAVE-TRANSFER-PROGRAM LISTING-5-9-2016.pdf Responsible Contacts

  8. Subject: Proposed 216(h) Regulations To: Brian.Mills@hq.doe.gov and Lot.Cooke@hq.doe.gov.

    Energy Savers [EERE]

    Date: February 12, 2012 Subject: Proposed 216(h) Regulations To: Brian.Mills@hq.doe.gov and Lot.Cooke@hq.doe.gov. We appreciate the opportunity to review the Proposed Regulation for 216(h) of the FPA (16 U.S.C. 824p(h)) and provide comments. After review of the proposed rule, we believe a few changes to the text could greatly improve in the likelihood of reducing the time and cost of necessary environmental reviews, consultations, and permit processing for electric transmission facilities

  9. DOE HQ F 1450.2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50.2 DOE HQ F 1450.2 Form is used for all directory changes, additions or deletions. PDF icon EMPLOYEE LOCATOR NOTIFICATION More Documents & Publications DOE F 1450.6 DOE F 1325.7 DOE F 1325.7A

  10. DOE HQ F 3305.7 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05.7 DOE HQ F 3305.7 Form used to inform SES applicants of the status of their applications. PDF icon NOTIFICATION OF SENIOR EXECUTIVE SERVICES EMPLOYMENT CONSIDERATION More Documents & Publications DOE F 3305.8 DOE F 3305.2 DOE F 3305.10

  11. DOE HQ F 5631.2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    631.2 DOE HQ F 5631.2 Form is used to request a DOE security clearance. PDF icon HEADQUARTERS CLEARANCE REQUEST AND NOTIFICATION More Documents & Publications Headquarters Facilities Master Security Plan - Chapter 3, Personnel Security The DOE Security Plan for the Energy Employees Occupational Illness Compensation Program SECURITY TERMINATION STATEMENT

  12. Letter Report: HQ-L-00-02 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ-L-00-02 Letter Report: HQ-L-00-02 July 19, 2000 Polling by Lawrence Livermore National Laboratory This is a follow up to my discussion with the Deputy Secretary yesterday ...

  13. Letter Report: HQ-L-00-01 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ-L-00-01 Letter Report: HQ-L-00-01 March 14, 2000 Charitable Giving Requirements in Department of Energy Contracts It recently came to our attention thas several contracts...

  14. HQ Confined Space Program, Policy 2010-001 | Department of Energy

    Office of Environmental Management (EM)

    HQ Confined Space Program, Policy 2010-001 HQ Confined Space Program, Policy 2010-001 Confinmed Space Entry Program for Department of Energy (DOE) Headquarters, Office of Safety,...

  15. FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008 FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008 FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008, FOIA_Requests_received_by_DOE_Headquarter_as_of_8-7-09.pdf PDF icon FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008 More Documents & Publications Chief Freedom of Information Act (FOIA) Officer Report for FY2009 Special Report:

  16. Employee Separation: Completing HQ F 3293.1, Sec. 7c | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee Separation: Completing HQ F 3293.1, Sec. 7c Employee Separation: Completing HQ F 3293.1, Sec. 7c Employee Separation: Completing HQ F 3293.1, Sec. 7c PDF icon GUIDANCE - Completing HQ F 3293 1 Sec 7c FINAL 140320.pdf More Documents & Publications Records Management Exit Procedures Social Media Records and You Social Media Records and You

  17. EA-182 H.Q Energy Services (U.S) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H.Q Energy Services (U.S) EA-182 H.Q Energy Services (U.S) Order authorizing H.Q Energy Services (U.S) to export electric energy to Canada. PDF icon EA-182 H.Q Energy Services (U.S) More Documents & Publications EA-232 OGE Energy Resources Inc EA-220-A NRG Power Marketing, Inc EA-213 Coral Power,

  18. EA-181 H.Q Energy Services (U.S) Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-181 H.Q Energy Services (U.S) Inc order authorizing H.Q Energy Services (U.S) Inc to export electric energy to Mexico. PDF icon EA-181 H.Q Energy Services (U.S) Inc More ...

  19. NEI Request for Extension of Public Comment Period DOE-HQ-201.... |

    Energy Savers [EERE]

    Department of Energy Request for Extension of Public Comment Period DOE-HQ-201.... NEI Request for Extension of Public Comment Period DOE-HQ-201.... PDF icon 2015 01 28 NEI Request for Extension of Public Comment Period DOE-HQ-201... More Documents & Publications NOPR NEI Nuclear Energy Institute (NEI) Ex Parte NOPR Fluor

  20. C:\Forms\HQ F 1450.2.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ F 1450.2 (7-82) AUTHORIZED BY (Signature) NAME Do not enter Miss, Mrs. or Mr. (Last, first, middle initial) (Include professional or military title) TELEPHONE NUMBER ROOM NUMBER BUILDING CODE A C T I O N ORGANIZATION ROUTING SYMBOL Instructions: This form is to be used for all directory changes, additions or deletions. Information should be submitted without delay. Type or print all information. Do not use dittos. See reverse side of this form for instructions. ORGANIZATIONAL ROUTING SYMBOL

  1. DOE Headquarters (HQ) Environmental Management System (EMS) Policy

    Energy Savers [EERE]

    April, 2016 DOE HQ Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific

  2. High Impact Technology HQ - Resources for Evaluators - General Measurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Verification Plans | Department of Energy Measurement and Verification Plans High Impact Technology HQ - Resources for Evaluators - General Measurement and Verification Plans The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Plans were developed in collaboration with third party evaluators, the Energy Department and

  3. High Impact Technology HQ - Resources for Evaluators - General Templates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Templates High Impact Technology HQ - Resources for Evaluators - General Templates The HIT Catalyst conducts technology demonstrations in three main phases: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan Development. The following Templates were developed in collaboration with third party evaluators, the Energy Department, and technology providers as a part of recent demonstration projects. PDF icon GSA Green Proving Ground

  4. DOE HQ Shuttle Bus Route and Schedule, April 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April, 2016 DOE HQ Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific

  5. DOE HQ F 1420.7 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20.7 DOE HQ F 1420.7 Form used to track graphics work requests by asking for information regarding materials furnished, services requested, details of graphics and/or photography, printing and/or copying, and distribution and/or mailing. PDF icon Print Requisition More Documents & Publications Customer Services Handbook, 2010, Office of Administration DOE F 1340.3A DOE F 1340.3

  6. DOE HQ F 1511.1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    511.1 DOE HQ F 1511.1 Form is used to identify individuals using the DOE Shuttle service. It is not retrievable by a personal identifier and is, therefore, not being kept in a Privacy Act system of records. PDF icon Shuttle Bus Passenger List More Documents & Publications PIA - GovTrip (DOE data) General Privacy Act Guidance Customer Services Handbook, 2010, Office of Administration

  7. DOE HQ Shuttle Bus Schedule and Route | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. The shuttle bus departure and arrival times may be impacted by traffic, weather, or other logistical interruptions.

  8. OCPR - HQ Mediation program ADR PRINCIPLES OF CONFLICT RESOLUTION

    Energy Savers [EERE]

    10) OCPR - HQ MEDIATION PROGRAM ADR PRINCIPLES OF CONFLICT RESOLUTION 1. Listen Actively Listening is the most important part of communication. If we do not hear what the other parties are communicating we cannot resolve a conflict. Active listening also includes noticing what the other person is saying with intonation and body language. 2. Think Before Reacting The tendency in a conflict situation is to react immediately. In emergencies, fast physical reaction can save lives. In workplace

  9. W. E. Mott, Director, Division of Environmental Control Technology, HQ

    Office of Legacy Management (LM)

    Eyergy pak t??pEOperatlons dak Ridge, Tennessee 37830 December 12, 1977 W. E. Mott, Director, Division of Environmental Control Technology, HQ Germantown, M.S. E-201 REPORT OF FINDINGS: ALLIED CHEMICAL CORPORATION SITES AT NORTH CLAYMONT, DELAWARE; MARCUS HOOK, PENNSYLVANIA, AND BALTIMORE, MARYLAND The following information summarizes our findings and conclusions relative to the reassessment of the subject sites. Information supplied from files of the former Atomic Energy Commission, Division of

  10. HQ Emergency Management Team (EMT) | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration HQ Emergency Management Team (EMT) NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility emergency. It is also the nation's premier responder to any nuclear or radiological incident within the United States or abroad and provides operational planning and training to counter both domestic and international nuclear terrorism. NNSA ensures that capabilities are in place to respond to any NNSA and Department of Energy facility

  11. Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy

    Energy Savers [EERE]

    Services (U.S.) Inc. | Department of Energy 2-D H.Q. Energy Services (U.S.) Inc. Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy Services (U.S.) Inc. Application from HQUS to export electric energy to Canada. PDF icon EA-182-D H.Q. Energy Svcs (CN).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy Services (U.S.) Inc.: Federal Register Notice, Volume 80, No. 133 - July 13, 2015 EA-182-D HQ Energy Services

  12. EA-182-D HQ Energy Services (U.S.) Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -D HQ Energy Services (U.S.) Inc. EA-182-D HQ Energy Services (U.S.) Inc. Order authorizing HQUS to export electric energy to Canada. PDF icon EA-182-D H.Q. Energy Svcs. (US).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy Services (U.S.) Inc. Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy Services (U.S.) Inc.: Federal Register Notice, Volume 80, No. 133 - July 13, 2015 EA-392 Emera Energy Services

  13. Office of the Chief Information Officer DOERM@hq.doe.gov

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at least one Records Liaison Officers (RLOs) for each program, staff or support office (in DOE HQ and the Field) to provide day-to-day administration of an organization's RM program and to act as liaison with their organization's Program Records Official (PRO) or Records management Field Officer (RMFO), as appropriate. RLOs are officials at the HQ and Field level who provide administrative and technical assistance and guidance to Federal and contractor RM programs for HQ and Field organizations.

  14. Office of the Chief Information Officer DOERM@hq.doe.gov

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information architecture plans Ensuring RM efforts are coordinated with HQ and Field sites, including litigation holds Reviewing and approving Federal Records Center ...

  15. C:\Forms\HQ F 3790.8.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 (7-82) Date: From Location of Hazard Nature of Hazard Action Taken Action by Safety Officer Date Hazard Corrected Copy Distribution: WHITE - Safety Inspector CANARY - Safety and Occupational Health Manager PINK - Suspense Followed up Action if Required Anonymity Requested YES NO U.S. Department of Energy Report of Safety or Health Hazard MEMORANDUM FOR: SAFETY AND OCCUPATIONAL HEALTH MANAGER SAFETY INSPECTOR ROOM

  16. C:\Forms\HQ F 1410.4.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HQ-F-1410.4 (11-79) 2 . SENT F ROM ( NAME OF OFFI CE) 5. RECEI VED BY ( NAME OR OFFI CE) Thank you for your cooperation. Please return promptly. SECTI ON A ( O P T I O N A L F O L D ) ( O P T I O N A L F O L D ) 3 . DAT E 6 . DAT E ORI GI NAT I NG OF F I CE USE 8 . DAT E DI SPAT CHED FOR RETURN 4 . T I ME 7 . T I ME T I ME RETURNED - - DAT E 9 . T I ME A M A M A M A M P M P M P M P M 1 . CONTROL NO. TO: RETURN TO: ORIGINATOR FILL IN: ORIGINATOR FILL IN: RECIPIENT FILL IN: U.S. DEPARTMENT OF

  17. DOE HQ F 331.1 (fillable pdf) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.1 (fillable pdf) DOE HQ F 331.1 (fillable pdf) Delegation of Awards Approval PDF icon hqf3311.pdf More Documents & Publications DOE F 3450.3 DOE HQ F 473.1 (fillable pdf) DOE F 3450.2

  18. DOE HQ F 473.1 (fillable pdf) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    473.1 (fillable pdf) DOE HQ F 473.1 (fillable pdf) Lost or Stolen Badge Replacement PDF icon HQ Form 473.1.pdf More Documents & Publications REQUEST FOR LOST/STOLEN BADGE REPLACEMENT Headquarters Facilities Master Security Plan - Chapter 1, Physical Security DOE F 206.4 (fillable pdf)

  19. DOE HQ Special Needs Assistance in an Emergency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Special Needs Assistance in an Emergency DOE HQ Special Needs Assistance in an Emergency Special Needs brochure, employee and supervisor actions in the event of an emergency PDF icon DOE HQ Special Needs Assistance in an Emergency More Documents & Publications Employee Assistance Self-ID Form DOE Emergency Exercise Feedback Form DOE Emergency Special Needs Self-Identification Form

  20. HQ Confined Space Program, Policy 2010-001 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Confined Space Program, Policy 2010-001 HQ Confined Space Program, Policy 2010-001 Confinmed Space Entry Program for Department of Energy (DOE) Headquarters, Office of Safety, Health and Security. PDF icon HQ Confined Space Program, Policy 2010-001 More Documents & Publications F-Tank Farm Performance Assessment, Rev 1 Federal Acquisition Circular 2005-52 FAIR Act Inventory - FY12

  1. Directives Checklist and Cross-Reference Index as of 2-12-91

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-02-26

    The order transmits a checklist of current Department of Energy (DOE) and Headquarters (HQ) directives and a cross-reference index of DOE and HQ Orders published on or before 2-12-91. Cancels DOE O 0000.2c. Canceled by DOE N 1321.139.

  2. Regulatory Burden RFI - Docket No. DOE-HQ-2011-0014-0001 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy - Docket No. DOE-HQ-2011-0014-0001 Regulatory Burden RFI - Docket No. DOE-HQ-2011-0014-0001 Response to Request for Information on "Reducing Regulatory Burden," 76 Fed. Reg. 6123 (Feb. 3, 2011) PDF icon Regulatory Burden RFI - Docket No. DOE-HQ-2011-0014-0001 More Documents & Publications Regulatory Burden RFI: Revitalization of DOE's Role as a Regulatory Watchdog DOE Preliminary Plan for Retrospective Analysis of Existing Rules DOE_05_18_2011.pdf

  3. Audit Report: HQ-B-98-01 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Audit Report: HQ-B-98-01 July 17, 1998 The U.S. Department of Energy's Value Engineering Program Value Engineering (VE) is defined as the organized analysis of the functions of a ...

  4. From: Sent: To: Subject: FOIA-Central@hq.doe.gov Wednesday,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hi.Joan From: Sent: To: Subject: FOIA-Central@hq.doe.gov Wednesday, January 13,20105:09 PM FOIA-Central DOE Headquarters FOIA Request JAN. 1. 4 ':- , ( ...,i(JI DI Name: Mel...

  5. Comments on Docket ID: DOE-HQ-2011-0014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Docket ID: DOE-HQ-2011-0014 Comments on Docket ID: DOE-HQ-2011-0014 This letter comprises the comments of the Pacific Gas and Electric Company (PG&E), Southern California Gas Company (SCGC), San Diego Gas and Electric (SDG&E), and Southern California Edison (SCE) in response to the U.S. Department of Energy's (DOE) Request for Information on Regulatory Burden. The signatories of this letter, collectively referred to herein as the California Investor Owned Utilities (CA IOUs) represent

  6. FOIA Requests received by DOE Headquarters (HQ) since December 31, 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 FOIA Requests Received by DOE HQ in 2008 Following are the FOIA requests received by DOE HQ in 2008. Files received by month in PDF format PDF icon FOIA Request - January 2008 PDF icon FOIA Request - February 2008 PDF icon FOIA Request - March 2008 PDF icon FOIA Request - April 2008 PDF icon FOIA Request - May 2008 PDF icon FOIA Request - June 2008 PDF icon FOIA Request - July 2008 PDF icon FOIA Request - August 2008 PDF icon FOIA Request - September 2008 PDF icon FOIA Request - October 2008

  7. FOIA Requests Received by DOE HQ in 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 FOIA Requests Received by DOE HQ in 2008 Following are the FOIA requests received by DOE HQ in 2008. Files received by month in PDF format PDF icon FOIA Request - January 2008 PDF icon FOIA Request - February 2008 PDF icon FOIA Request - March 2008 PDF icon FOIA Request - April 2008 PDF icon FOIA Request - May 2008 PDF icon FOIA Request - June 2008 PDF icon FOIA Request - July 2008 PDF icon FOIA Request - August 2008 PDF icon FOIA Request - September 2008 PDF icon FOIA Request - October 2008

  8. Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services (U.S.) Inc.: Federal Register Notice, Volume 80, No. 133 - July 13, 2015 | Department of Energy Export Electric Energy OE Docket No. EA-182-D H.Q. Energy Services (U.S.) Inc.: Federal Register Notice, Volume 80, No. 133 - July 13, 2015 Application to Export Electric Energy OE Docket No. EA-182-D H.Q. Energy Services (U.S.) Inc.: Federal Register Notice, Volume 80, No. 133 - July 13, 2015 Application from HQUS to export electric energy to Canada. Federal Register Notice. PDF icon

  9. Office of the Chief Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    140320 Office of the Chief Information Officer DOERM@hq.doe.gov Office of IT Planning, Architecture and E-government Records Management Division (IM-23) Employee Separation: Completing HQ F 3293.1, Section 7c This guidance is provided for use with completing HQ F 3293.1, Headquarters Employee Final Separation Clearance 1 , Section 7c. RLO Action. For guidance relative to other aspects of the form or selected sections, contact the Office of Human Capital or a Human Resources (HR) official

  10. FOIA Requests Received by DOE HQ in 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 FOIA Requests Received by DOE HQ in 2009 Files received by month in PDF format PDF icon FOIA_Jan09_Req.pdf PDF icon FOIA_Feb09_Req.pdf PDF icon FOIA_March09_Req.pdf PDF icon FOIA_April09_Req.pdf PDF icon FOIA_May09_Req.pdf PDF icon FOIA_June09_Req.pdf PDF icon FOIA_July09_Req.pdf PDF icon FOIA_Aug09_Req.pdf PDF icon FOIA_Sept09_Req.pdf More Documents & Publications Nationwide Professional Skills Training Program - Presolicitation #DE-SOL-0000109 FOIA Requests Received by DOE HQ in 2008

  11. FOIA Responses processed by DOE HQ in 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responses processed by DOE HQ in 2009 FOIA Responses processed by DOE HQ in 2009 Files processed by month in PDF format PDF icon FOIA_Jan09_Resp.pdf PDF icon FOIA_Feb09_Resp.pdf PDF icon FOIA_Mar09_Resp.pdf PDF icon FOIA_April09_Resp.pdf PDF icon FOIA_May09_Resp_309-330.pdf PDF icon FOIA_May09_Resp_331-358.pdf PDF icon FOIA_May09_Resp_360_Part-1.pdf PDF icon FOIA_May09_Resp_360_Part-2.pdf PDF icon FOIA_May09_Resp_360_Part-3.pdf PDF icon FOIA_May09_Resp_360_Part-4.pdf PDF icon

  12. HQ Employee/Labor Management Relations Division (HC-33) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Employee/Labor Management Relations Division (HC-33) HQ Employee/Labor Management Relations Division (HC-33) Functions Provide labor/employee management relations advisory services to Headquarters staff, including union negotiations, adverse actions, grievances, and performance management; Represent management in third party situations or union negotiations; Provide work life information, referral and support services to Headquarters employees covering such areas as child care, elder

  13. HQ1224

    Energy Savers [EERE]

    Routing Phone Fax Symbol Name Number Number Location OFFICE OF THE SECRETARY OF ENERGY S Office of the Secretary of Energy Ernest J. Moniz, Secretary of Energy ...................................................202-586-6210 202-586-4403 7A-257/FORS DS Office of the Deputy Secretary Elizabet Sherwood-Randall, Deputy Secretary of Energy..................202-586-5500 202-586-7210 7B-252/FORS US Office of the Under Secretary for Science and Energy Franklin M. Orr Jr, Under Secretary for Science and

  14. HQ NTEU

    Broader source: Energy.gov [DOE]

    Located primarily in Washington D.C. and Germantown, MD, the operational offices of the Department of Energy headquarters, houses several program and staff offices, all working to meet the...

  15. To: Mansueti, Lawrence <Lawrence.Mansueti@hq.doe.gov>

    Energy Savers [EERE]

    <ecchimento@comcast.net> To: Mansueti, Lawrence <Lawrence.Mansueti@hq.doe.gov> Sent: Fri Nov 18 10:58:43 2005 Subject: Letter (9/12/05) for filing in DOE DCPSC Docket #EO-05-01 Mr. Mansueti, Would you please file for consideration the attached letter, originally sent to FERC, in DOE's Docket No. EO-05-01 regarding the DCPSC complaint? Thank you. Elizabeth Chimento and Poul Hertel 1200 North Pitt Street 1217 Michigan Court Alexandria, VA 22314 Alexandria, VA 22314 September 12, 2005

  16. Office of the Chief Information Officer DOERM@hq.doe.gov

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Program Records Official (PRO) 1 to support their respective RM processes. PROs are senior-level officials with HQ and Field oversight, budgetary, and signature authority to approve records issues. PROs are appointed using DOE F 243.3, Records Contact Appointment, and are tracked and reported by the DOE RM Program. AUTHORITIES  Title 36, Chapter XII, Subchapter B, Part 1220, Subpart B, Section 1220.34(d)  DOE O 243.1B, Records Management Program, Paragraph 5d(3)(a) DUTIES &

  17. Protocol EM-HQ Review Field Self Assessment Site Specific QAP-QIP February 2010

    Office of Environmental Management (EM)

    Protecting the Grid from All Hazards Protecting the Grid from All Hazards October 31, 2014 - 2:10pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability The Energy Department takes the security and reliability of our power grid very seriously. We work closely with our federal, state and industry partners around the clock to protect the nation's energy infrastructure from all hazards, including cyber incidents. As this year's

  18. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Hazardous (Classified) Location IDENTIFIER Y-2000-OR-BJCETTP-0101 DATE January 6, 2000 LESSONS LEARNED STATEMENT- Radios that were not certified as approved for Class I,...

  19. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  20. VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley U.S. Department of Energy

    Energy Savers [EERE]

    July 17, 2015 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley U.S. Department of Energy Office of General Counsel 1000 Independence Avenue SW., Room 6A245 Washington, DC 20585 RE: DOE Regulatory Burden RFI INTRODUCTION The Information Technology Industry Council (ITI) appreciates the opportunity to submit comments in response to the Regulatory Burden RFI. 1 ITI represents the leading global innovators of information and communications technology (ICT), an industry committed to

  1. Attachment J-16 Portfolio Management Task Order 13-002 Title: DOE-HQ Security System Review and Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section J Contract No. DE-AC06-09RL14728 Modification 280 Attachment J-16 Portfolio Management Task Order 13-002 Title: DOE-HQ Security System Review and Assessment Revision Number: 0 Date: 04/11/2013 Start: 05/01/2013 Finish: 07/30/2013 1.0 DESCRIPTION The DOE Office of Environmental Management (EM) Headquarters Security System (HQSS) is installed at the EM Consolidated Business Center (CBC) in Cincinnati, OH and administered from DOE Headquarters in Washington, DC. HQSS has been running as a

  2. Motion to intervene and comments of the energy services group of Hydro-Quebec and H.Q. Energy Services (U.S.) Inc, on FE 99-1

    Broader source: Energy.gov [DOE]

    Motion to intervene and comments of the energy services group of Hydro-Quebec and H.Q. Energy Services, Inc on FE99-1. 

  3. Fire Hazards Listing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazards Listing Fire Hazards Listing Focusing on fire prevention and protection. Contact Fire Management Officer Manuel J. L'Esperance Emergency Management (505) 667-1692 Email Currently reported fire hazards Below are the currently reported fire hazards. The list is updated each day by the close of business. Current fire hazards Hazard Description Date Submitted Status No hazards currently reported. Legend: R=Resolved, P=Pending, NAR=No Action Required

  4. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  5. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  6. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  7. O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2011\DOE-HQ-2011-0014 - Daniel Cohen - GC\Comments from FDMS\Charles W Adams DRAFT-0005.html

    Energy Savers [EERE]

    %20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Charles%20W%20Adams%20DRAFT-0005.html[3/23/2011 2:17:13 PM] PUBLIC SUBMISSION As of: March 23, 2011 Received: March 21, 2011 Status: Pending_Post Tracking No. 80c0d05f Comments Due: April 04, 2011 Submission Type: Web Docket: DOE-HQ-2011-0014 Reducing Regulatory Burden Comment On: DOE-HQ-2011-0014-0001 Reducing Regulatory Burden Document: DOE-HQ-2011-0014-DRAFT-0005 Comment on FR Doc # 2011-02368 Submitter Information Name: Charles W Adams

  8. O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2011\DOE-HQ-2011-0014 - Daniel Cohen - GC\Comments from FDMS\Dan Manole DRAFT-0004.html

    Energy Savers [EERE]

    14%20-%20Daniel%20Cohen%20-%20GC/Comments%20from%20FDMS/Dan%20Manole%20DRAFT-0004.html[3/23/2011 2:21:55 PM] PUBLIC SUBMISSION As of: March 23, 2011 Received: March 21, 2011 Status: Pending_Post Tracking No. 80c0d039 Comments Due: April 04, 2011 Submission Type: Web Docket: DOE-HQ-2011-0014 Reducing Regulatory Burden Comment On: DOE-HQ-2011-0014-0001 Reducing Regulatory Burden Document: DOE-HQ-2011-0014-DRAFT-0004 Comment on FR Doc # 2011-02368 Submitter Information Name: Dan Manole Address:

  9. Hazard Communication Training - Upcoming Implementation Date...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Hazard Communication Training - Upcoming Implementation Date for New Hazard ...

  10. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SU-16 Equipment technology and office automation IR-15 Equipment types IR-15 Equipment, electronic communications IR-16 Equipment, excess SU-14-15 Equipment, generation RP-21-23...

  11. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "All award fee letters to Management and Operations Contractors at Department of Energy facilities in which an award fee was reduced or eliminated as a result of a...

  12. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to BPA and to the region. The WIT 2.0 Work Plan (http:www.bpa.govcorporateWindPowerdocsWIT-2-0-Work-Plan-V2.pdf) builds on the success of our June 2009 WIT work plan....

  13. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enter access code: 6352333). Information about the meeting will be posted at www.bpa.govcorporateFinance. At the meeting, we will focus on the key drivers of rate levels we...

  14. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    determination of those remaining documents. You have requested the following: All emails, letters, memos, meetings, meeting notes and presentations from July 2009 to July 2010:...

  15. Handicapped Parking Procedures (HQ)

    Broader source: Energy.gov [DOE]

    It is the policy of the Department of Energy (DOE) that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees....

  16. HQ Leave Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... know and discuss this with himher once you arrive. ... Form (SF) 71. The leave is only considered approved when ... regardless of where you live (e.g., Washington, Virginia ...

  17. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The QBR will continue with a focus on Bonneville Power Administration's (BPA) finances with a review of current fiscal year actual financial results compared to financial...

  18. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    should be sent to the Director, Office of Hearings and Appeals, HG-1, U.S. L'Enfant Plaza Building, U.S. Department of Energy, 1000 Independence Avenue, SW, Washington, DC...

  19. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a result of that letter. Also, any documents that show BPA's intent to condemn private property to connect the Maple Valley-Rocky Reach line to the TSR site. Response: BPA has...

  20. OCPR - HQ Mediation program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with intonation and body language. 2. Think Before Reacting The tendency in a conflict ... I'm concerned about the project. YOU don't think I care about the project. c. I want to ...

  1. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would recognize the ongoing independent actions of customers complying with state law. Second, as a result of the conservation being achieved independently by customers, BPA's need...

  2. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dialogue Contracts: Progress has been made toward meeting the goal of signing new power sales contracts since my last letter to you in June. Customer representatives are working...

  3. OCPR - HQ Mediation Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Offices of General Counsel, Civil Rights and Human Capital Management review settlement agreements for legal sufficiency before a final settlement agreement is signed by the ...

  4. OCPR - HQ Mediation Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... review before signing it at a later date. The Offices of General Counsel, Civil Rights and Human Capital Management review settlement agreements for legal sufficiency before a ...

  5. HQ F 580

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certi cate of Property/Property Removal Authorization NAME(Last, First, MI) Org Code Phone # Item Descrip n Make Model Tag Number Serial Number Exp. Date RECEIPT ACKNOWLEDGMENT I hereby acknowledge receipt for the listed item and will hold myself accountable for its safety. DOE Federal employees will be responsible and may be inancially liable for loss, damage, destruction, and unauthorized use of government personal property in their possession and control. Loss or stolen property should be

  6. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2010 In reply refer to: DK-7 Dan Seligman Attorney at Law Columbia Research Corporation PO Box 99249 Seattle, WA 98139 RE: BPA-2010-01049-F Dear Mr. Seligman: This is a final...

  7. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    82 million. The correlation seems simple and direct. This year, the extraordinarily high water and sustained low natural gas prices drove the power market to negative prices...

  8. HQ FNVA Questionnaire

    Broader source: Energy.gov [DOE]

    Please note that foreign nationals participating in the public meeting are subject to advance security screening procedures which require advance notice prior to attendance at the public meeting. If a foreign national wishes to participate in the public meeting, please inform DOE as soon as possible by contacting Ms. Regina Washington at (202) 586-1214 or by e-mail: Regina.Washington@ee.doe.gov so that the necessary procedures can be completed.

  9. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration's (BPA) proposed schedule for the 2007 Supplemental Wholesale Power (WP-07) Rate Case that will revise its power rates for Fiscal Year 2009 in...

  10. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RE: FOIA BPA-2011-00056-F Dear Mr. van Dijk: Thank you for your request for information that you made to the Bonneville Power Administration (BPA) under the Freedom of...

  11. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2011 In reply refer to: DK-7 Richard van Dijk Another Way BPA Ex 6 FOIA BPA-2012-00236-F Dear Mr. van Dijk: Thank you for your request for records that you made to the...

  12. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    call Mark Symonds at 503-230-3027 or Heidi Helwig of the Public Affairs Office at 503-230-3458. Sincerely, s Allen L. Burns Allen L. Burns, Vice President, Bulk Marketing...

  13. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustained low natural gas prices drove the power market to negative prices during light load hours for much of the spring and summer. Between May 11 and June 30, we sold about...

  14. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed to address many elements of conservation that cannot be captured in a general business case analysis. 3. Addressing both the retail and end-use consumer perspectives,...

  15. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thank you for your interest in maintaining reliable power system operation and fish protection during occasional periods of high water in the Columbia River system. More...

  16. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BPA) and its public power customers have been leaders in reducing electric energy use and making conservation the region's second largest resource. Since the spring...

  17. Portland HQ Letterhead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information because it does not shed any light on how BPA has performed its statutory duties. Therefore, the individual privacy interest outweighs the public interest in the...

  18. HQ Work Control Permit

    Broader source: Energy.gov [DOE]

    To ensure safe operations when undertaking work at DOE Headquarters, the Office of Headquarters Health and Safety has developed a Work Permit document (doc) to help ensure the safety of all workers...

  19. HQ Mediation Program

    Broader source: Energy.gov [DOE]

    The DOE Headquarters Mediation Program began in 1995.  We believe that most workplace conflicts are based on miscommunication, and that it is best to resolve them as early as possible before they...

  20. Automated Hazard Analysis

    Energy Science and Technology Software Center (OSTI)

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control andmore » job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the work planning process.« less

  1. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  2. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  3. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  4. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  5. ALTERNATE APPROACH TO HAZARD CATEGORIZATION FOR SALTSTONE FACILITY AT SRS

    SciTech Connect (OSTI)

    Roy, B.

    2009-04-28

    The Saltstone Facility at Savannah River Site (SRS) was originally segmented into two segments: the Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). Based on the inventory of radionuclides available for release the SPF and SDF were categorized as Nonreactor Hazard Category (HC)-3. The hazard categorization recognized the SDF will contain contributions of radionuclides which would exceed the HC-2 Threshold Quantity (TQ) in the form of grout. However it was determined not to impact the facility hazard categorization based on the grout being in a solid, monolithic form which was not easily dispersible. But, the impact of a quantity of unset grout expected to be present at the vault following operation of the process was not addressed. A Potential Inadequacy in Safety Analysis (PISA) was later issued based on the hazard categorization determination for the facility not addressing unset grout. This initiated a re-evaluation of the accident scenarios within the hazards analysis. During this re-evaluation, the segmentation of the facility was challenged based on the potential interaction between facility segments; specifically, the leachate return line and the grout transfer line, which were considered separate segments, are located in close proximity at one point. such that for certain events (NPH as well as External Vehicle Impact) both could be damaged simultaneously and spill contents on the ground that could commingle. This would violate the guideline for segmentation. Therefore, the Hazard Categorization (HC) was reevaluated based on the facility being a single segment and including the additional unset grout as part of total inventory. This total inventory far exceeded the limit for HC-2 TQ and made the facility's initial categorization as HC-2. However, alternative analysis methodology based on credible release fractions allowed in DOE-STD-1027-92 (Ref.1) showed that the Saltstone facility could still be categorized as Hazard Category 3 Nuclear Facility with no segmentation. Since it was the first time any facility at SRS tried this alternate approach safety analyst had to face substantial resistance and reservations from both the facility and local DOE customers which were eventually overcome with approval and acceptance from DOE-HQ.

  6. Nucleic acid indexing

    DOE Patents [OSTI]

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  7. Nucleic acid indexing

    DOE Patents [OSTI]

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  8. Report Wildland Fire Area Hazard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sighting (check box if animal poses serious threat) Trails (accessegress) Hazard Trees (falling, fire hazard) Utilities (Lab employees: use Form 1821 (pdf) to report utility...

  9. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazard Assessments The Oak Ridge Institute for Science and Education (ORISE) analyzes accumulated data to identify potential workplace hazards to which individuals or groups of workers may be exposed. ORISE assesses both chemical and radiation exposures, and conducts both internal and external radiation dose assessments. Our capabililities include: Linkage of exposure data to site rosters Assessment of retrospective exposures Preparation of assessment protocols Design and testing of dose

  10. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  11. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  13. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  14. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  15. Sandia National Laboratories Hazardous Waste (RCRA) Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index Hazardous Waste (RCRA) Information Repository Index Reading List Subject / Description Zimmerman ID There are no items on your reading list Print Instructions for Zimmerman Library Zimmerman Library is located near Roma Avenue and Yale Boulevard on the University of New Mexico main campus in Albuquerque. We strongly recommend making an appointment for document review, but you are not required to do so. To make an appointment, please contact Monica Dorame in the Government Information

  16. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  17. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  18. Hazard Communication Training- Upcoming Implementation Date for New Hazard Communication Standard

    Broader source: Energy.gov [DOE]

    Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard - OSHA's 29 CFR 1910.1200, Hazard Communication Standard.

  19. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  20. Hazard classification process at LLNL

    SciTech Connect (OSTI)

    Hildum, J. S., LLNL

    1998-05-01

    An essential part of Integrated Safety Management is the identification of hazards in the workplace and the assessment of possible consequences of accidents involving those hazards. The process of hazard classification suggested by the DOE orders on Safety Analysis is the formalization of this identification and assessment for hazards that might cause harm to the public or workers external to the operation. Possible injury to workers in the facility who are exposed to the hazard is not considered in the designation of the hazard classification for facilities at LLNL, although worker safety is discussed in facility Safety Basis documentation.

  1. Hazard Communications Training Deadline Approaches

    Broader source: Energy.gov [DOE]

    All DOE Federal and contractor employees with hazardous chemicals in their workplace MUST complete the new Hazard Communications Standard Training, per 10 CFR 851, Worker Safety and Health Program, by DECEMBER 1, 2013.

  2. Electronic Document Master Index

    Energy Science and Technology Software Center (OSTI)

    2003-05-15

    This is a web-based records index search engine. Through a simple or advanced search, users can find data sources and records of interest.

  3. Hazard Class Category

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive Material sample holder catalog 01/05/2015 Hazard Class Category Containment # 3 Layer containment for Very High and High Radiotoxicity (Group 1 and 2) 1.a LBNL Lexan or aluminum sample holder with kapton tape surrounded by 2 each individual heat sealed plastic bag. Layer 1- Kapton Tape, sealed Layer 2- Heat sealed plastic bag Layer 3- Heat sealed plastic bag Physical Approvals: Ambient temperature 1.b LANL cryostat sample holder Sample holder with kapton windows and indium seam Layer

  4. O:\IM-20\E-Government Program Office\FDMS\FDMS database\DOE\2012\Document List 03-02-2012 10-10-11-600\Document List 03-02-2012 10-10-11-600_docs\DOE-HQ-2012-0004-DRAFT-0005.html

    Energy Savers [EERE]

    5.html[2/3/2012 12:41:43 PM] PUBLIC SUBMISSION As of: February 03, 2012 Received: January 17, 2012 Status: Pending_Post Tracking No. 80f99189 Comments Due: January 20, 2012 Submission Type: Web Docket: DOE-HQ-2012-0004 U.S. Department of Energy Audit Guidance: For-Profit Recipients Comment On: DOE-HQ-2012-0004-0001 Audit Guidance: For-Profit Recipients Document: DOE-HQ-2012-0004-DRAFT-0005 Comment on FR Doc # 2011-32622 Submitter Information Name: Carol Hellmann Address: US Dept of Energy 1617

  5. The global coastal hazards data base

    SciTech Connect (OSTI)

    Gornitz, V. . Goddard Inst. for Space Studies Columbia Univ., New York, NY ); White, T.W. )

    1989-01-01

    A rise of sea level between 0.5 and 1.5 m, caused by predicted climate warming in the next century, could jeopardize low-lying radioactive waste disposal sites near the coast, due to permanent and episodic inundation, increased shoreline retreat, and changes in the water table. The effects of global sea level rise on the shoreline will not be spatially uniform. Therefore, site selection will depend on assessment of these differential vulnerabilities, in order to avoid high-risk coasts. The coastal hazards data base described here could provide an appropriate framework. The coastal hazards data base integrates relevant topographic, geologic, geomorphologic, erosional and subsidence information in a Geographic Information System (GIS), to identify high-risk shorelines characterized by low coastal relief, an erodible substrate, present and past evidence of subsidence, extensive shoreline retreat, and high wave/tide energies. Data for seven variables relating to inundation and erosion hazards are incorporated into the ORNL ARC/INFO Geographic Information System (GIS). Data compilation has been completed for the US and is being extended to North America, and ultimately the world. A coastal vulnerability index (CVI) has been designed to flag high risk coastal segments. 17 refs., 2 figs., 2 tabs.

  6. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  7. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents 10.0 Hazard Calculations and Results .................................................................................................. 10.1 10.1 Hazard Software and Hazard Runs ...................................................................................... 10.1 10.1.1 Hazard Calculations and Quality Assurance of Hazard Calculations ...................... 10.5 10.2 Seismic Hazard Results and Sensitivity at Priority Sites ..................................................... 10.5

  8. An evaluation of approximations of acute hazard indices based on chronic hazard indices for California fossil-fuel power stations

    SciTech Connect (OSTI)

    Gratt, L.B.; Levin, L.

    1998-12-31

    The measures for evaluating risk under the Clean Air Act Amendments of 1990 are yet to be defined. Many risk assessments have used only chronic risk measures (lifetime cancer probability and chronic hazard index) based on yearly averages of long-term dispersion of substances into ambient air. In California, many facilities prepared risk assessments using hourly meteorological data and short-term emission rates, allowing the calculation of an acute hazard index. These risk assessments are more costly and labor-intensive than those using the annualized meteorological data. A simple scheme to estimate the acute hazard index from the chronic index is proposed. This scheme is evaluated for four electric power stations in Southern California. The simple scheme was found lacking due to the inability to reasonably estimate both the hourly emission rates from annual averages and hourly concentrations from annual concentrations. The need for the acute risk measure for stack emission can be questioned based on the more detailed risk assessments performed in California.

  9. High Impact Technology HQ- Results

    Broader source: Energy.gov [DOE]

    Advanced Rooftop Unit Campaign: Replace. Retrofit. Reap Rewards.Older, inefficient commercial rooftop unit (RTU) air conditioning systems are common and can waste from $1,000 to $3,700 per unit...

  10. Indexes of Consumption and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    and backward-index estimates; that is, the two-way indexed estimate is the weighted average of the estimates obtained by forward and backward indexing, with higher weight...

  11. Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2015-12-10

    A search for flavour-changing neutral current decays of a top quark to an uptype quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb¯, is presented. The analysis searches for top quark pair events in which one top quark decays to Wb, with the W boson decaying leptonically, and the other top quark decays to Hq. The search is based on pp collisions at √s = 8 TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb-1. Data are analysedmore » in the lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of b-quark jets characteristic of signal events, and employs a likelihood discriminant that uses the kinematic differences between the signal and the background, which is dominated by tt¯→ WbWb decays. No significant excess of events above the background expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%) are derived for the t → Hc and t → Hu branching ratios respectively. The combination of this search with other ATLAS searches in the H → γγ and H → WW*, ττ decay modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper limits on the t → Hc and t → Hu branching ratios of 0.46% (0.25%) and 0.45% (0.29%) respectively. The corresponding combined observed (expected) upper limits on the |λ tcH | and |λ tuH | couplings are 0.13 (0.10) and 0.13 (0.10) respectively. As a result, these are the most restrictive direct bounds on tqH interactions measured so far.« less

  12. Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at √s = 8 TeV with the ATLAS detector

    SciTech Connect (OSTI)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D’Auria, S.; D’Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell’Acqua, A.; Dell’Asta, L.; Dell’Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn’ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O’grady, F.; O’Neil, D. C.; O’Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-12-10

    A search for flavour-changing neutral current decays of a top quark to an uptype quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb¯, is presented. The analysis searches for top quark pair events in which one top quark decays to Wb, with the W boson decaying leptonically, and the other top quark decays to Hq. The search is based on pp collisions at √s = 8 TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb-1. Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of b-quark jets characteristic of signal events, and employs a likelihood discriminant that uses the kinematic differences between the signal and the background, which is dominated by tt¯→ WbWb decays. No significant excess of events above the background expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%) are derived for the t → Hc and t → Hu branching ratios respectively. The combination of this search with other ATLAS searches in the H → γγ and H → WW*, ττ decay modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper limits on the t → Hc and t → Hu branching ratios of 0.46% (0.25%) and 0.45% (0.29%) respectively. The corresponding combined observed (expected) upper limits on the |λ tcH | and |λ tuH | couplings are 0.13 (0.10) and 0.13 (0.10) respectively. As a result, these are the most restrictive direct bounds on tqH interactions measured so far.

  13. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D - Final Hazard Input Documents Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 D.1 Appendix D Final Hazard Input Documents Appendixes D.1 and D.2, respectively, contain the final hazard input documents (HIDs) for the seismic source and ground motion characterization models for the Hanford sitewide Probabilistic Seismic Hazard Analysis project. Each provides sufficient information for the hazard analyst to input the characterization models into the hazard code for calculations. Each

  14. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  15. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PPRP Closure Letter Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.1 Appendix B PPRP Closure Letter 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis B.2 Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.3 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis B.4 Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.5

  16. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  17. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  18. Fiber optic refractive index monitor

    DOE Patents [OSTI]

    Weiss, Jonathan David (Albuquerque, NM)

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  19. Natural Phenomena Hazards Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Phenomena Hazards Program Natural Phenomena Hazards Program Natural Phenomena Hazards Overview The Department of Energy (DOE) Natural Phenomena Hazards Program develops and maintains state-of-the-art program standards and guidance for DOE facilities exposed to natural phenomena hazards (NPHs). This program applies to both conventional, nuclear hazard category 1, 2, and 3, and radiological facilities. Direction and guidance is given for seismic, extreme wind, tornado, precipitation,

  20. Potential Health Hazards of Radiation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Health Hazards of Radiation Potential Health Hazards of Radiation Potential Health Hazards of Radiation PDF icon Potential Health Hazards of Radiation More Documents & ...

  1. Hazardous Materials Packaging and Transportation Safety - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Ashok Kapoor Functional areas: Hazardous Materials, Packaging and Transportation, Safety and Security, Work...

  2. Vermont Hazardous Waste Management Regulations | Open Energy...

    Open Energy Info (EERE)

    Hazardous Waste Management Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Hazardous Waste Management...

  3. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  4. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. PDF icon Enhancing Railroad Hazardous...

  5. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  6. MGR External Events Hazards Analysis

    SciTech Connect (OSTI)

    L. Booth

    1999-11-06

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses.

  7. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  8. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on

  9. PNNL: Site index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z # # 3-D Body Holographic Scanner # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Advanced Computing, Mathematics, and Data Alerts - PNNL Staff Information Applied Process Engineering Laboratory Asymmetric Resilient Cybersecurity (External website) Atmospheric Radiation Measurement (ARM) Program Atmospheric Sciences & Global Change Division Available Technologies Awards Awards - Science and Engineering External

  10. Project Definition Rating Index Workbook

    Broader source: Energy.gov [DOE]

    The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...

  11. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  12. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  13. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  14. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  15. NRS 459 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    59 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS 459 Hazardous WasteLegal Abstract Nevada statute setting...

  16. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A.; Paik, I.R.

    1998-04-01

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  17. Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  18. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  19. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  20. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  1. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  2. Solar Glare Hazard Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2013-04-17

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximummore »energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.« less

  3. Solar Glare Hazard Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2014-08-25

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximummore »energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.« less

  4. Solar Glare Hazard Analysis Tool

    SciTech Connect (OSTI)

    2014-08-25

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.

  5. Solar Glare Hazard Analysis Tool

    SciTech Connect (OSTI)

    2013-04-17

    SGHAT predicts the occurrence and intensity of glare caused by a user-specified solar panel array when viewed from one or more observation points. An interactive mapping interface is used to determine the latitude, longitude and elevation of the array and observation points. The presence and intensity of glare is then calculated along a given time interval throughout the year, based on the position of the sun. The potential ocular hazard is also reported. The maximum energy production of the solar array is also estimated so that alternative designs can be compared to determine the design that yields the most energy production while mitigating glare.

  6. Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization...

    Office of Environmental Management (EM)

    STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Presentation from...

  7. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement ...

  8. Operating Experience Level 3, OSHA's Revised Hazard Communication...

    Broader source: Energy.gov (indexed) [DOE]

    Publications Hazard Communication Training - Upcoming Implementation Date for New Hazard Communication Standard Operating Experience Level 3, Safe Management of Mercury...

  9. Project Definition Rating Index (PDRI)

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management (EM) Project Definition Rating Index (EM-PDRI) is a modification of a commercially developed planning tool that has been tested by an EM team specifically for...

  10. Index Ventures | Open Energy Information

    Open Energy Info (EERE)

    capital firm that invests in companies in the fields of information technology and the life sciences. References: Index Ventures1 This article is a stub. You can help OpenEI...

  11. Hazard evaluation for 244-AR vault facility

    SciTech Connect (OSTI)

    BRAUN, D.J.

    1999-08-25

    This document presents the results of a hazard identification and evaluation performed on the 244-AR Vault Facility to close a USQ (USQ No.TF-98-0785, Potential Inadequacy in Authorization Basis (PIAB): To Evaluate Miscellaneous Facilities Listed In HNF-2503 And Not Addressed In The TWRS Authorization Basis) that was generated as part of an evaluation of inactive TWRS facilities. A hazard evaluation for the Hanford Site 244-AR Vault Facility was performed. The process and results of the hazard evaluation are provided in this document. A previous hazard evaluation was performed for the 244-AR Vault Facility in 1996 in support of the Basis for Interim Operation (BIO) (HNF-SD-WM-BIO-001, 1998, Revision 1) of the Tank Waste Remediation System (TWRS). The results of that evaluation are provided in the BIO. Upon review of those results it was determined that hazardous conditions that could lead to the release of radiological and toxicological material from the 244-AR vaults due to flooding was not addressed in the original hazards evaluation. This supplemental hazard evaluation addresses this oversight of the original hazard evaluation. The results of the hazard evaluation were compared to the current TWRS BIO to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. This document is not part of the AB and is not a vehicle for requesting changes to the AB. It is only intended to provide information about hazardous conditions associated with the condition and configuration of the 244-AR vault facility. The AB Control Decision process could be used to determine the applicability and adequacy of existing AB controls as well as any new controls that may be needed for the identified hazardous conditions associated with 244-AR vault flooding. This hazard evaluation does not constitute an accident analysis.

  12. Hazardous waste management in the Pacific basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  13. AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU AND WASTE ISOLATION PILOT PLANT PERMITTEES REGARDING A TIME EXTENSION FOR DISPUTE RESOLUTION RELATED TO FINAL AUDIT...

  14. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Bulk Packaging Placarding Requirements - Placarding of Packages vs. Placarding Vehicle * LSASCO Scenarios - 7 - U.S. Department of Transportation Pipeline and Hazardous Materials...

  16. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  17. Hazards Control, 3/9/35

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and...

  18. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  19. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  20. Seismic & Natural Phenomena Hazards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to withstand the hazards. CNS maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE...

  1. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  2. Energy Development Index (EDI) | Open Energy Information

    Open Energy Info (EERE)

    Index (EDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Development Index (EDI) AgencyCompany Organization: International Energy Agency (IEA) Sector:...

  3. Forest Carbon Index | Open Energy Information

    Open Energy Info (EERE)

    Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index AgencyCompany Organization: Resources for the Future Partner: United Nations...

  4. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J Digital Seismic Hazard Products J.1 Appendix J Digital Seismic Hazard Products This appendix contains the digital data associated with the seismic hazard results presented in Chapter 10 for use in subsequent development of soil hazard curves for various facilities. These results include mean and fractile baserock hazard curves, mean and fractile baserock uniform hazard response spectra (UHRS), magnitude and distance deaggregation of the mean rock hazard, and deaggregation earthquake (DE)

  5. INDEX

    Office of Environmental Management (EM)

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 CLAUSE 6 - COST ACCOUNTING STANDARDS (CAS) LIABILITY . . . . . . . . . . . 9 CLAUSE 7 - DISCLOSURE AND USE...

  6. Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Baseline Tool - 2004 Home CRA - 2004 Final Recertification Decision CRA Comments & Responses CCA - 1996 CRA CARDs & TSDs CCA CARDs & TSDs Regulatory Tools The Environmental Protection Agency (EPA) on May 18, 1998, certified the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, as the nations first geologic repository for the disposal of transuranic (TRU) wastes generated by atomic energy defense activities. The EPA next Recertified the WIPP's continuing

  7. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Shipments GET (General Employee Training): General Information: Materials and Transportation personnel perform domestic and international shipping activities associated with hazardous materials transported onsite and offsite. All activities are performed by personnel who have been trained for their respective transportation functions, as required by the Code of Federal Regulations (CFR) and International Air Transport Association (IATA). Shipments are made for the research and

  8. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  9. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  10. Lawrence Berkeley Lab Indexing Toolbox

    Energy Science and Technology Software Center (OSTI)

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of themore » crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.« less

  11. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A.; Cox, Robert

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  12. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  13. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  14. Hazardous waste cleanup: the preliminaries

    SciTech Connect (OSTI)

    Amos, K.

    1985-08-01

    This article describes the lengthiness and cost of the preliminary steps in a hazardous waste cleanup. The article describes the S-Area lawsuit, an area near Niagara Falls, New York which was an inactive chemical dump. Contaminated sludge was found at a nearby water treatment plant and was traced back to S-Area. In the past five years, S-Area negotiations have cost the U.S. Environmental Protection Agency two million dollars for advice on how work should proceed for the plant and the landfill. This lawsuit was one of the first in the U.S. against a chemical company for endangering the public through unsound waste disposal practices. Negotiation was selected instead of a trial for several reasons which are outlined. S-Area may serve as a model for other such settlements, as it provides for a flexible plan, open to consideration of alternate technologies that may be developed in the future. It contains a phased approach to both defining and evaluating existing problems, then suggesting remedies. It also requires monitoring for at least 35 years or until no danger remains.

  15. Laboratory Equipment Donation Program - Site Index

    Office of Scientific and Technical Information (OSTI)

    Site Index Home About Us FAQ Application Contact Us Administrative Login RSS Widget

  16. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  17. DOE HQ Occupational Safety and Health Program

    Energy Savers [EERE]

    1 DOE F 741 Form is used in nuclear material accountability and control. See also Forms DOE/NRC F 742 and 742C. PDF icon NUCLEAR MATERIAL TRANSACTION REPORT More Documents & Publications o:\informs\fixforms\nrc740m.wpf NUCLEAR MATERIALTRANSACTION REPORT

    9 DOE F 749 Forms used for internal ADP project transfers. PDF icon ADP TRANSCRIPTION SHEET INTERNAL PROJECT TRANSFERS More Documents & Publications NUCLEAR MATERIALTRANSACTION REPORT DOE/NRC F 742

    10 THROUGH 09/30/2011 The

  18. High Impact Technology HQ- Host a Site

    Broader source: Energy.gov [DOE]

    We are always looking for partners to host technology demonstrations.  Host site participants receive recognition by the Department of Energy, site applicability analysis as well as the opportunity...

  19. Compliance, HQ GILMAD J&ILL STUDY

    Office of Legacy Management (LM)

    ... z : 1 an d , California 34612 Dear Fr. klu: Pt your request, representatives from LLL and LBL surveyed several areas ;,? Gilman Hall on the University of California, Berkeley ...

  20. RespbsforHQ-POCS-REDESIGN.doc

    Energy Savers [EERE]

    POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT PROGRAM RECORDS OFFICIAL (PRO) (Activities that require Senior Official oversight or approval) Headquarters * Approve List...

  1. DOE HQ F 5631.2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5631.2 (01-99) All Other Editions Are Obsolete U.S. DEPARTMENT OF ENERGY HEADQUARTERS CLEARANCE REQUEST AND NOTIFICATION PART I - REQUEST FOR CLEARANCE ACTION PART I I - CLEARANCE NOTIFICATION (Forward completed PART 1 with enclosures to Office of Safeguards and Security (OSS)) PRIVACY ACT STATEMENT ON REVERSE OF BLUE COPY 1. REQUESTOR 8. CLEARANCE REQUESTED 1. DOE clearance has been: 4. Applicant's current clearance status: Note: For DOE employees/consultants, it is the responsibility of the

  2. DOE HQ Special Needs in an Emergency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ) Go to Stairwell or Area of Refuge 2) Contact Emergency Responders 3) Follow Instructions Key Points to remember During an Emergency What an employee should do during an emergency: 1) Go to the nearest stairwell or area of refuge. 2) Contact emergency responders using the emergency call butt on or a telephone. Provide responders with your name, the name of anyone with you, your locati on and the assistance you need. 3) Follow the instructi ons provided. You may be told:  Remain in your

  3. One Cool Change at Energy HQ

    Broader source: Energy.gov [DOE]

    The Energy Department walks the walk and makes its operations more efficient to the tune of $600,000 per year.

  4. DOE HQ Shuttle Bus Route and Schedule

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at 1201 Maryland Ave., S.W. > L'Enfant Plaza - Opposite side of the roadway in front of ... leaving from the Forrestal and L'Enfant Plaza facilities should contact (202) 586-5235. ...

  5. HQ-2011-01822-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title Attachments I hereb request the following documents: 6oples of all lists, electro nic files, brochures, directories, and compilations in any hard copy or digital form held...

  6. Microsoft Word - HQ ISM System Description Final

    National Nuclear Security Administration (NNSA)

    NA-1 SD 450.4-1 Approved: 10-23-07 National Nuclear Security Administration Headquarters Integrated Safety Management System Description This NNSA Headquarters Integrated Safety Management System Description describes the NNSA Headquarters role in establishing expectations and accomplishing work in a safe and environmentally sound manner to successfully execute the NNSA mission and strategic goals. NNSA senior managers strongly support and are personally committed to implementation of the policy

  7. HQ Mediation Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Depending on the availability and the nature of the dispute, the program uses in-house ... ADR Program Administrators" April 2006 Confidentiality: Guide to "Confidentiality ...

  8. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  9. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J.

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  10. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  11. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H.; Ganoe, Carl W.

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  12. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    index Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. cs-ref-shelf-3.jpg The Carbon Storage Newsletter Subscribe to Newsletter Newsletter Archive Carbon Storage Educational Resources Atlas V - Whole Document (Sept 2015) [PDF] The North American Carbon Storage Atlas 2012 [PDF] Atlas IV - Whole Document (Dec

  13. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste ...

  14. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis

    Office of Environmental Management (EM)

    Committee (SSHAC) Level 1 Seismic Hazard Analysis | Department of Energy The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Seismic Hazard Definition: SSHAC Level 1 PSHA at MFC More Documents & Publications The INL Seismic Risk

  15. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with ...

  16. The Adequacy of DOE Natural Phenomena Hazards Performance Goals...

    Office of Environmental Management (EM)

    Hazards Performance Goals from an Accident Analysis Perspective The Adequacy of DOE Natural Phenomena Hazards Performance Goals from an Accident Analysis Perspective The Adequacy ...

  17. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there were no actual or potential hazards to human health or the environment due to exposure to hazardous waste or waste constituents. Further assessment of actual or...

  18. Draft STD-1027 Supplemental Directive (Alternate Hazard Categorization...

    Office of Environmental Management (EM)

    STD-1027 Supplemental Directive (Alternate Hazard Categorization) Methodology Patrick Cahalane NNSA NA-00-10 Revised Hazard Category 2 value for tritium (water) Revised value based...

  19. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar installations. ...

  20. DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities ...

  1. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  2. Sandia Energy - Solar Glare Hazard Analysis Tool Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Available for Download Home Renewable Energy Energy News News & Events Photovoltaic Solar Solar Newsletter Solar Glare Hazard Analysis Tool...

  3. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

  4. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  5. Review of Natural Phenomena Hazards (NPH) Requirements Currently...

    Office of Environmental Management (EM)

    Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH)...

  6. Hawaii HEPCRA Hazardous Chemical Storage and Tier II Reporting...

    Open Energy Info (EERE)

    HEPCRA Hazardous Chemical Storage and Tier II Reporting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii HEPCRA Hazardous Chemical...

  7. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 ...

    Office of Scientific and Technical Information (OSTI)

    HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 You are ...

  8. Utah Department of Environmental Quality Hazardous Waste Permits...

    Open Energy Info (EERE)

    Hazardous Waste Permits Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Department of Environmental Quality Hazardous Waste Permits...

  9. Hawaii DOH Hazardous Waste Section Webpage | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Section Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii DOH Hazardous Waste Section Webpage Abstract This webpage...

  10. Title 40 CFR 260: Hazardous Waste Management System: General...

    Open Energy Info (EERE)

    : Hazardous Waste Management System: General Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR 260: Hazardous...

  11. Hawaii Department of Health Solid and Hazardous Waste Branch...

    Open Energy Info (EERE)

    and Hazardous Waste Branch Jump to: navigation, search Name: Hawaii Department of Health Solid and Hazardous Waste Branch Address: 919 Ala Moana Boulevard 212 Place: Honolulu,...

  12. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, ... Site Solid (Radioactive and Hazardous) Waste Program Environmental 3 Impact Statement ...

  13. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis Presentation from the May 2015 Seismic Lessons-Learned Panel ...

  14. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona ...

  15. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On ...

  16. Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Rucker J. ...

  17. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  18. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  19. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-04-01

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish a lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.

  20. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  1. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Biographies of Project Participants A.1 Appendix A Biographies of Project Participants A.1 Technical Integrator Leads Kevin J Coppersmith, PhD, of Coppersmith Consulting, Inc., is the Project Technical Integrator and the Technical Integration (TI) Lead of the Seismic Source Characterization (SSC) Team for the Hanford Probabilistic Seismic Hazard Analysis (PSHA) Project. He has 33 years of consulting experience, with primary emphasis in probabilistic hazard analyses (seismic, volcanic, and

  2. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Earthquake Catalog Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 C.1 Appendix C Earthquake Catalog This appendix describes the uniform moment magnitude catalogs of crustal and subduction earthquakes, and the databases of earthquakes that were assembled as part of the Hanford Probabilistic Seismic Hazard Analysis (PSHA) project to obtain these catalogs. Section C.4 describes the database of earthquakes used to derive the magnitude conversion relations used to obtain a uniform

  3. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F - Seismicity Relocation Analyses Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 F.1 Appendix F Seismicity Relocation Analyses Final Report: High-Resolution Seismicity Study of the Yakima Fold and Thrust Belt Region, Washington Prepared by Clifford H. Thurber Department of Geoscience University of Wisconsin-Madison 1215 W. Dayton St. Madison, WI 53706 January 31, 2014 Final Report: Hanford Site-Wide Probabilistic Seismic Hazard Analysis (PSHA): High-Resolution Seismicity Analysis

  4. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  5. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  6. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  7. WIPP Hosts All-Hazards Planning Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 26, 2015 WIPP Hosts All-Hazards Planning Meeting On February 20, 2015 WIPP hosted the first annual All- Hazards, Offsite Interface Briefing and Regional Radiological Response Planning Meeting to provide information on changes and enhancements to WIPP's Emergency Management Program and how these changes would be coordinated with WIPP's offsite partners. The meeting was attended by local, state and federal agencies with emergency response roles related to incidents or accidents at the

  8. Ardour Global Indexes LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Ardour Global Indexes LLC Place: New York City, New York Zip: 10016 Product: New-York based company that manages the Ardour Global Indexes, a set of alternative energy...

  9. Index2.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Index2.doc Index2.doc PDF icon Index2.doc More Documents & Publications Sylvania Corporation, Hicksville, NY and Bayside, NY - Addendum to July 8, 2004 O:\HOMEPAGE\FOIA\report99.PDF&#0; U.S. Department of Energy 2004 Annual Report

  10. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  11. 49 CFR Parts 171-177: Hazardous Materials Regulations (DOT)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  12. Locking mechanism for indexing device

    DOE Patents [OSTI]

    Lindemeyer, Carl W. (Aurora, IL)

    1984-01-01

    Disclosed is a locking mechanism for an indexing spindle. A conventional r gear having outwardly extending teeth is affixed to the spindle. Also included is a rotatably mounted camshaft whose axis is arranged in skewed relationship with the axis of the spindle. A disk-like wedge having opposing camming surfaces is eccentrically mounted on the camshaft. As the camshaft is rotated, the camming surfaces of the disc-like member are interposed between adjacent gear teeth with a wiping action that wedges the disc-like member between the gear teeth. A zero backlash engagement between disc-like member and gear results, with the engagement having a high mechanical advantage so as to effectively lock the spindle against bidirectional rotation.

  13. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  14. Advanced Materials Laboratory hazards assessment document

    SciTech Connect (OSTI)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  15. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  16. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  17. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  18. Natural Phenomena Hazards Modeling Project: Flood hazard models for Department of Energy sites

    SciTech Connect (OSTI)

    Savy, J.B.; Murray, R.C.

    1988-05-01

    For eight sites, the evaluation of flood hazards was considered in two steps. First, a screening assessment was performed to determine whether flood hazards may impact DOE operations. The screening analysis consisted of a preliminary flood hazard assessment that provides an initial estimate of the site design basis. The second step involves a review of the vulnerability of on-site facilities by the site manager; based on the results of the preliminary flood hazard assessment and a review of site operations, the manager can decide whether flood hazards should be considered a part of the design basis. The scope of the preliminary flood hazard analysis was restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does not involve an assessment of the potential of encroachment of flooding at specific on-site locations. Furthermore, the screening analysis does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues were reserved for consideration by the DOE site manager. 9 refs., 18 figs.

  19. Developing an operational capabilities index of the emergency services sector.

    SciTech Connect (OSTI)

    Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D.

    2012-02-20

    In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the capabilities of a jurisdiction to protect itself from, mitigate, respond to, and recover from a potential incident. On the basis of this metric, an interactive tool - the ESSCI Dashboard - can identify scenarios for enhancement that can be implemented, and it can identify the repercussions of these scenarios on the jurisdiction. It can assess the capabilities of law enforcement, fire fighting, search and rescue, emergency medical services, hazardous materials response, dispatch/911, and emergency management services in a given jurisdiction and it can help guide those who need to prioritize what limited resources should be used to improve these capabilities. Furthermore, this tool can be used to compare the level of capabilities of various jurisdictions that have similar socioeconomic characteristics. It can thus help DHS define how it can support risk reduction and community preparedness at a national level. This tool aligns directly with Presidential Policy Directive 8 by giving a jurisdiction a metric of its ESS's capabilities and by promoting an interactive approach for defining options to improve preparedness and to effectively respond to a disruptive event. It can be used in combination with other CI performance metrics developed at Argonne National Laboratory, such as the vulnerability index and the resilience index for assessing regional resilience.

  20. Topic Index to the DOE Administrative Records Disposition Schedules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

  1. Robots, systems, and methods for hazard evaluation and visualization

    DOE Patents [OSTI]

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  2. Image indexing using color correlograms

    DOE Patents [OSTI]

    Huang, Jing; Kumar, Shanmugasundaram Ravi; Mitra, Mandar; Zhu, Wei-Jing

    2001-01-01

    A color correlogram is a three-dimensional table indexed by color and distance between pixels which expresses how the spatial correlation of color changes with distance in a stored image. The color correlogram may be used to distinguish an image from other images in a database. To create a color correlogram, the colors in the image are quantized into m color values, c.sub.i . . . c.sub.m. Also, the distance values k.epsilon.[d] to be used in the correlogram are determined where [d] is the set of distances between pixels in the image, and where dmax is the maximum distance measurement between pixels in the image. Each entry (i, j, k) in the table is the probability of finding a pixel of color c.sub.i at a selected distance k from a pixel of color c.sub.i. A color autocorrelogram, which is a restricted version of the color correlogram that considers color pairs of the form (i,i) only, may also be used to identify an image.

  3. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E Structural Analyses and Quaternary Investigations in Support of the Hanford PSHA Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 iii Structural Analyses and Quaternary Investigations in Support of the Hanford PSHA Mr. Ryan Coppersmith Coppersmith Consulting, Inc. Ms. Kathryn Hanson AMEC Environment & Infrastructure, Inc. Dr. Jeff Unruh Lettis Consultants International, Inc. Mr. Christopher Slack AMEC Environment & Infrastructure, Inc. September 2014 Hanford Sitewide

  4. Hazard Evaluation for 244-CR Vault

    SciTech Connect (OSTI)

    GRAMS, W.H.

    1999-08-19

    This document presents the results of a hazards identification and evaluation performed on the 244-CR Vault to close a USQ (USQ No.TF-98-0785, Potential Inadequacy in Authorization Basis (PIAB): To Evaluate Miscellaneous Facilities Listed In HNF-2503 And Not Addressed In The TWRS Authorization Basis) that was generated as part of an evaluation of inactive TWRS facilities.

  5. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  6. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  7. Relative Hazard and Risk Measure Calculation Methodology

    SciTech Connect (OSTI)

    Stenner, Robert D.; Strenge, Dennis L.; Elder, Matthew S.

    2004-03-20

    The relative hazard (RH) and risk measure (RM) methodology and computer code is a health risk-based tool designed to allow managers and environmental decision makers the opportunity to readily consider human health risks (i.e., public and worker risks) in their screening-level analysis of alternative cleanup strategies. Environmental management decisions involve consideration of costs, schedules, regulatory requirements, health hazards, and risks. The RH-RM tool is a risk-based environmental management decision tool that allows managers the ability to predict and track health hazards and risks over time as they change in relation to mitigation and cleanup actions. Analysis of the hazards and risks associated with planned mitigation and cleanup actions provides a baseline against which alternative strategies can be compared. This new tool allows managers to explore “what if scenarios,” to better understand the impact of alternative mitigation and cleanup actions (i.e., alternatives to the planned actions) on health hazards and risks. This new tool allows managers to screen alternatives on the basis of human health risk and compare the results with cost and other factors pertinent to the decision. Once an alternative or a narrow set of alternatives are selected, it will then be more cost-effective to perform the detailed risk analysis necessary for programmatic and regulatory acceptance of the selected alternative. The RH-RM code has been integrated into the PNNL developed Framework for Risk Analysis In Multimedia Environmental Systems (FRAMES) to allow the input and output data of the RH-RM code to be readily shared with the more comprehensive risk analysis models, such as the PNNL developed Multimedia Environmental Pollutant Assessment System (MEPAS) model.

  8. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the recommended approach

  9. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Revision 1) Example Application of Approach 3 to Develop Soil Hazard Curves Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 K.1 Appendix K - Example Application of Approach 3 to Develop Soil Hazard Curves The seismic hazard results presented in Chapter 10.0 represent the hazard at the baserock horizon defined to be at the top of the Wanapum basalts, which is encountered at depths of between 332 and 446 m at the hazard calculation Sites A-E. As discussed in Section 10.5, the

  10. Berkeley Lab Research Review Magazine Index

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Review Magazine A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Public Information Department News Archive Listing by Subject...

  11. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect (OSTI)

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  12. Project Project HQ City HQ State ARRA Funding Total Value Additional

    Open Energy Info (EERE)

    NSTAR Electric Gas Corporation Smart Grid Demonstration Project NSTAR Electric Gas Corporation Smart Grid Demonstration Project Westwood Massachusetts National Rural...

  13. HQ State HQ City Primary Awardee Brief Project Description Project Locations

    Energy Savers [EERE]

    Primary Awardee Brief Project Description Project Locations Recovery Act Funding* Participant Share Total Project Value Including Cost Share Los Angeles Los Angeles Department of Water and Power Implement a smart grid demonstration at university campus properties and technology transfer laboratories to establish a fully-integrated Smart Grid system and suite of technologies as applied to demand response, conduct a comprehensive portfolio of behavioral studies, demonstrate next- generation cyber

  14. HQ State HQ City Name of Primary Selectee Project Type Project...

    Energy Savers [EERE]

    ... company), JEA, Northeast Utilities, PECO (an Exelon company), and PJM Interconnection. ... Recovery Act Funding* Participant Share Total Project Value Including Cost Share ...

  15. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  16. ORISE Resources: Hospital All-Hazards Self-Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help...

  17. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect (OSTI)

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  18. 6 CCR 1007-3: Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    CCR 1007-3: Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 6 CCR 1007-3: Hazardous WasteLegal Abstract...

  19. EPA Hazardous Waste TSDF Guide | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA Hazardous Waste TSDF GuideLegal Abstract Guidance document prepared by the EPA for hazardous waste...

  20. Hazardous Waste Facility Permit Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Facility Permit Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Facility Permit Fact...

  1. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste...

  2. ADEQ Managing Hazardous Waste Handbook | Open Energy Information

    Open Energy Info (EERE)

    Managing Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal...

  3. NMED Hazardous Waste Bureau website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Bureau website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NMED Hazardous Waste Bureau websiteLegal Abstract The...

  4. ADEQ Hazardous Waste Management website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Management website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal...

  5. Oregon DEQ Hazardous Waste Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    DEQ Hazardous Waste Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Oregon DEQ Hazardous Waste Fact...

  6. NMAC 20.4 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    4 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.4 Hazardous WasteLegal Abstract Regulations...

  7. ARM 17-53 - Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    3 - Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-53 - Hazardous WasteLegal Abstract Sets forth...

  8. EPA Citizens Guide to Hazardous Waste Permitting Process | Open...

    Open Energy Info (EERE)

    Citizens Guide to Hazardous Waste Permitting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Citizens Guide to Hazardous Waste Permitting...

  9. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  10. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P.; Purohit, Jwalit J.; Fazio, John M.

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  11. Method of identifying features in indexed data

    DOE Patents [OSTI]

    Jarman, Kristin H. [Richland, WA; Daly, Don Simone [Richland, WA; Anderson, Kevin K. [Richland, WA; Wahl, Karen L. [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  12. Microelectromechanical reciprocating-tooth indexing apparatus

    DOE Patents [OSTI]

    Allen, James J. (Albuquerque, NM)

    1999-01-01

    An indexing apparatus is disclosed that can be used to rotate a gear or move a rack in a precise, controllable manner. The indexing apparatus, based on a reciprocating shuttle driven by one or more actuators, can be formed either as a micromachine, or as a millimachine. The reciprocating shuttle of the indexing apparatus can be driven by a thermal, electrostatic or electromagnetic actuator, with one or more wedge-shaped drive teeth of the shuttle being moveable to engage and slide against indexing teeth on the gear or rack, thereby moving the gear or rack. The indexing apparatus can be formed by either surface micromachining processes or LIGA processes, depending on the size of the apparatus that is to be formed.

  13. Upcoming Implementation Date for New Hazard Communication Standard |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Upcoming Implementation Date for New Hazard Communication Standard Upcoming Implementation Date for New Hazard Communication Standard May 1, 2015 - 10:30am Addthis The upcoming implementation date for the new Hazard Communication Standard requires all Federal and Contractor employees with hazardous chemicals in their workplace must be in compliance with all modified revisions of this final rule, except: The distributors shall not ship containers labeled by the chemical

  14. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  15. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos

  16. Seismic hazard methodology for the Central and Eastern United...

    Office of Scientific and Technical Information (OSTI)

    ... EARTHQUAKES; HAZARDS; SEISMICITY; MATHEMATICAL MODELS; GROUND MOTION; PROBABILITY; RISK ASSESSMENT; MOTION; SEISMIC EVENTS 200203* -- Fossil-Fueled Power Plants-- Waste ...

  17. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNNL-23361 Hanford Sitewide Probabilistic Seismic Hazard Analysis November 2014 Prepared for the U.S. Department of Energy, Under Contract DE-AC06076RL01830, and Energy Northwest 2 Printed versions of the front matter, including the Executive Summary, and Appendixes A and B of this document are receiving limited distribution to the client. The full report is being delivered on a CD, copies of which are included in the back cover of each truncated printed deliverable. PNNL-23361 Hanford Sitewide

  18. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G - SSC Data Summary Tables Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 G.1 Appendix G SSC Data Summary Tables This appendix presents the data summary tables that were developed by the seismic source characterization (SSC) Technical Integration Team. As discussed in Section 8.1.2.1, data tables are used to assist in the documentation of the SSC data evaluation process. The data tables begin with the basic reference information for data that were identified by the TI Team and

  19. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo Park Drive, Building 1 Santa Fe, NM 87502 Subject: Requesllo Invoke Dispute Resolution Related to Final Audit Report A-09 - 08 of the Idaho National Laboratory/Central Characterization Project Reference: Letter From Mr. James Bearzi to Dr. Dave Moody and Mr. Farok Sharif dated May 18, 2009 Dear Mr. Bearzi: This letter is

  20. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of

  1. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  2. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  3. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  4. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  5. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  6. Hazards evaluation of plutonium metal opening and stabilization

    SciTech Connect (OSTI)

    JOHNSON, L.E.

    1999-08-31

    Hazards evaluation is the analysis of the significance of hazardous situations associated with an activity OK process. The HE used qualitative techniques of Hazard and Operability (HazOp) analysis and What-If analysis to identify those elements of handling and thermal stabilization processing that could lead to accidents.

  7. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  8. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  9. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  10. Formation of bulk refractive index structures

    DOE Patents [OSTI]

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  11. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  12. Project Definition Rating Index Workbook Instructions

    Broader source: Energy.gov [DOE]

    This document provides instructions for use of the Project Definition Rating Index (PDRI) Workbook, a tool that automates the calculation of scores in the PDRI master spreadsheet in Appendix D,...

  13. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect (OSTI)

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  14. Hazard Analysis Reports for Nuclear Explosive Operations

    Energy Savers [EERE]

    NA-STD-3016-2006 May 2006 DOE LIMITED STANDARD HAZARD ANALYSIS REPORTS FOR NUCLEAR EXPLOSIVE OPERATIONS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-NA-STD-3016-2006 iii FORWARD This Department of Energy (DOE)/National Nuclear Security Administration (NNSA)

  15. U.S. Army Toxic and Hazardous

    Office of Legacy Management (LM)

    JUL 2 3 1982 Col. John 0. Spence - U.S. Army Toxic and Hazardous Katerials Agency (DRxTH-AS) Department of the Army Aberdeen Roving Ground, Kd. 21010 .I' r\. Dear Col. Spence: In response to your letter of May 17, 1982. requesting the identification of sites where radiological materials amy have been left or burl& on U.S. Anny Installations, I am enclosing littlngs of military installatlans that may have been involved with the Manhattan Engineer District/Atomic Energy Camnlssion (KED/AEC)

  16. Seismic hazard analysis for Jayapura city, Papua

    SciTech Connect (OSTI)

    Robiana, R. Cipta, A.

    2015-04-24

    Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock type and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 – 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.

  17. Natural Phenomena Hazards (NPH) Meeting- October 2011

    Broader source: Energy.gov [DOE]

    On October 25-26, 2011, the DOE Chief of Nuclear Safety (CNS) hosted a Natural Phenomena Hazards (NPH) working meeting in Germantown, Maryland. The meeting brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact critical facilities. The meeting was valuable for sharing and discussing research in NPH analysis and mitigation, as well as best practices and lessons learned. Representatives from DOE Headquarters and site offices, four National Laboratories, the Defense Nuclear Facilities Safety Board, the U.S. Nuclear Regulatory Commission (NRC), and several DOE prime contractors and other private sector firms participated in the meeting. The meeting featured thirty five discussion topics over the two days. Presentation slides from most of these topics are available here, as well as papers on several topics from those speakers who chose to provide them. Questions about the NPH meeting can be directed to Dr. Steve McDuffie of the CNS staff at 509-373-6766, or stephen.mcduffie@rl.doe.gov.

  18. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  19. Determining risks for hazardous material operations

    SciTech Connect (OSTI)

    Cournoyer, M. E.; Dare, J. H.

    2002-01-01

    Integrated Safety Management (ISM) is structured to manage and control work at the activity level. Fundamental to ISM is that all work will be performed safely while meeting the applicable institutional-, facility-, and activity-level expectations. High and medium initial risk activities require certain levels of independent peer and/or Environmental, Health & Safety subject matter expert reviews prior to authorization. A key responsibility of line management and chemical workers is to assign initial risk adequately, so that the proper reviews are obtained. Thus, the effectiveness of an ISM system is largely dependent upon the adequacy and accuracy of this initial risk determination. In the following presentation, a Risk Determination Model (RDM) is presented for physical, health and ecological hazards associated with materials. Magnitude of exposure (Le., dose or concentration), frequency, duration, and quantity are the four factors most difficult to capture in a research and development setting. They are factored into the determination, as a function of the quantity of material. Quantity and magnitude of exposure components are simplified by using boundary criteria. This RDM will promote conformity and consistency in the assignment of risk to hazardous material activities. In conclusion, the risk assessors (line manager and chemical worker) should be capable of more accurately assessing the risk of exposure to a specific chemical with regard to the employee, public, and the environment.

  20. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  1. Final Report: Seismic Hazard Assessment at the PGDP

    SciTech Connect (OSTI)

    Wang, Zhinmeng

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  2. Hazards Assessment Document of the New Waste Transfer Facility (NWTF)

    SciTech Connect (OSTI)

    Pareizs, J.M.

    1993-06-01

    This Hazards Assessment Document for the New Waste Transfer Facility (NWTF) has been prepared in accordance with the Interim Hazards Classification Guide for Non-Reactor Facilities at Savannah River Site. The conclusion of this assessment is that the facility is a High Hazard Nuclear Facility. The NWTF consists of all facilities installed by Project S-3122. The NWTF contains three segments. Segment 1 consists of the cells containing the diversion box and pump pits, with a Facility Segment Use Category (FSUC) determined to be High Hazard. Segment 2 is the building that encloses the cells. The FSUC of Segment 2 has been determined to be Low Hazard. Segment 3 consists of all parts of the facility external to the main building; this segment contains the ventilation system and HEPA filters and includes the diesel fuel tank. The FSUC of Segment 3 is Low Hazard.

  3. Hanford Site-Wide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L - Glossary of Key Terms and Symbols Hanford Site-Wide Probabilistic Seismic Hazard Analysis 2014 Appendix L Glossary of Key Terms and Symbols Definitions provided in this glossary were compiled from multiple sources, including the Senior Seismic Hazard Analysis Committee (SSHAC) guidance in NUREG/CR-6372 (Budnitz et al. 1997), NUREG-2117 (NRC 2012), and McGuire (2004). The glossary definitions are consistent with the use of the terms in the Hanford Probabilistic Seismic Hazard Analysis (PSHA)

  4. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  5. Hanford Sitewide Probabilistic Seismic Hazard Analysis - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sitewide Probabilistic Seismic Hazard Analysis Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Sitewide Probabilistic Seismic Hazard Analysis Email

  6. Audit of Selected Hazardous Waste Remedial Actions Program Costs,

    Energy Savers [EERE]

    ER-B-97-04 | Department of Energy of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 PDF icon Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 More Documents & Publications Audit Report: CR-B-97-04 Audit Report: IG-0443 Semiannual Report to Congress: April 1 - September 30, 1997

  7. Natural Phenomena Hazards (NPH) Meeting - October 2014 | Department of

    Energy Savers [EERE]

    Energy 4 Natural Phenomena Hazards (NPH) Meeting - October 2014 On October 21-22, 2014, the DOE Chief of Nuclear Safety (CNS) hosted a Natural Phenomena Hazards (NPH) working meeting in Germantown, Maryland. The meeting brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact critical facilities. The meeting was valuable for sharing and discussing research in NPH analysis and mitigation, as well as best practices

  8. Approaches for Developing Uniform Hazard Spectra at Critical Facilities |

    Office of Environmental Management (EM)

    Department of Energy Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. PDF icon Approaches for Developing Uniform Hazard Spectra at Critical Facilities More Documents & Publications Approaches for Developing Uniform Hazard Spectra at Critical Facilities Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model

  9. Approaches for Developing Uniform Hazard Spectra at Critical Facilities

    Broader source: Energy.gov [DOE]

    Approaches for Developing Uniform Hazard Spectra at Critical Facilities Andrew Maham, Tom Houston, Carl J. Costantino DOE NPH Meeting, Germantown, MD October 2014

  10. Natural Phenomena Hazards Analysis and Design Criteria for DOE...

    Office of Environmental Management (EM)

    ... The strategy shall mitigate the flood (i.e., reducing the flood hazards, hardening the facility, building a levee to prevent flood encroachment) to an extent that facility ...

  11. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lappe, Project Leader Hazardous Materials Bureau Department of Energy Carlsbad Field Office P o. Box 3090 Carlsbad, New Mexico 88221 FEB I 3110 New Mexico Environment Department...

  12. Title 40 CFR 300 National Oil and Hazardous Substances Pollution...

    Open Energy Info (EERE)

    0 National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  13. The Adequacy of DOE Natural Phenomena Hazards Performance Goals...

    Office of Environmental Management (EM)

    Adequacy of DOE Natural Phenomena Hazards Performance Goals from an Accident Analysis ... concept of unmitigated consequences from accident analysis to designate Safety-Class ...

  14. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    and the Transport of Hazardous Materials More Documents & Publications The Role of GIS in Decision Support Systems Section 180(c) Ad Hoc Working Group Transportation Plan Ad...

  15. Seismic hazard methodology for the central and Eastern United...

    Office of Scientific and Technical Information (OSTI)

    submittals, is an acceptable methodology for use in calculating seismic hazard ... Resource Type: Technical Report Research Org: Electric Power Research Inst., Palo Alto, CA ...

  16. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    Hazards (NPH) Meeting. Presentations Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Validation of the SASSI2010...

  17. Chemical Process Hazards Analysis (DOE-HDBK-1100-2004)

    Energy Savers [EERE]

    February 1996 DOE HANDBOOK CHEMICAL PROCESS HAZARDS ANALYSIS U.S. Department ... The PSM Rule contains an integrated set of chemical process safety management elements ...

  18. Solar Glare Hazard Analysis Tool (SGHAT) - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Energy Analysis Energy Analysis Find More Like This Return to Search Solar Glare Hazard Analysis Tool (SGHAT) ...

  19. Vermont Flood Hazard Area and River Corridor General Permit Applicatio...

    Open Energy Info (EERE)

    the developer should provide a map generated from the ANR Natural Resources Atlas showing the river corridor and flood hazard area; A written description of the...

  20. Natural Phenomena Hazards Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As material and research is completed the reports will be added below. Reports: NFSP-2015-TD01, Report on the Implementation of Periodic Natural Phenomena Hazards Assessment ...

  1. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  2. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  3. OAR 340-105 - DEQ Hazardous Management Facility Permits | Open...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- RegulationRegulation: OAR 340-105 - DEQ Hazardous Management Facility PermitsLegal Abstract Establishes basic permitting requirements for...

  4. Natural Phenomena Hazard Analysis and Design Criteria for Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-2012, Natural Phenomena Hazard Analysis and Design Criteria for Department of Energy Facilities by Diane Johnson This Department of Energy (DOE) Standard (STD)-1020-2012,...

  5. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Broader source: Energy.gov [DOE]

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

  6. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  7. Vermont Agency of Natural Resources Flood Hazard Area & River...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Vermont Agency of Natural Resources Flood Hazard Area & River Corridor...

  8. Hazardous Waste Generator Treatment Permit by Rule | Open Energy...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Hazardous Waste Generator Treatment Permit by RulePermittingRegulatory GuidanceGuideHandbook...

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number...

  10. Vermont Instructions for Preparing the VT Hazardous Waste Handler...

    Open Energy Info (EERE)

    Instructions for Preparing the VT Hazardous Waste Handler Site ID Form Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  11. Hazardous Waste: Resource Pack for Trainers and Communicators...

    Open Energy Info (EERE)

    Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency...

  12. EPA Hazardous Waste Generators Website | Open Energy Information

    Open Energy Info (EERE)

    Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

  13. Montana Hazardous Waste Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    Waste Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Hazardous Waste Program Webpage Abstract Provides overview of permitting...

  14. A Probabilistic Approach to Site-Specific, Hazard-Consistent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High Coulombic Efficiency Si Electrodes Suggested Approaches for Probabilistic Flooding Hazard Assessment State of Practice Approaches in Geomorphology, Geochronology and ...

  15. Standoff Spectroscopy Using a Conditioned Target Identifies Hazardous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the necessity of close and potentially hazardous contact. It combines tunable infrared (IR) and ultraviolet (UV) spectroscopy techniques to target identifying properties of...

  16. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final ...

  17. Program Review, Workplace Inspections, Hazards Analysis And Abatement

    Broader source: Energy.gov [DOE]

    This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

  18. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HAZARDOUS WASTE REMEDIAL ACTIONS PROGRAM COSTS The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. ...

  19. Dust: A major environmental hazard on the earth's moon

    SciTech Connect (OSTI)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  20. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  1. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  2. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  3. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  4. Ground freezing for containment of hazardous waste

    SciTech Connect (OSTI)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  5. Design for containment of hazardous materials

    SciTech Connect (OSTI)

    Murray, R.C. ); McDonald, J.R. )

    1991-03-01

    Department of Energy, (DOE), facilities across the United States, use wind and tornado design and evaluation criteria based on probabilistic performance goals. In addition, other programs such as Advanced Light Water Reactors, New Production Reactors, and Individual Plant Examinations for External Events for commercial nuclear power plants utilize design and evaluation criteria based on probabilistic performance goals. The use of probabilistic performance goals is a departure from design practice for commercial nuclear power plants which have traditionally been designed utilizing a conservative specification of wind and tornado loading combined with deterministic response evaluation methods and permissible behavior limits. Approaches which utilize probabilistic wind and tornado hazard curves for specification of loading and deterministic response evaluation methods and permissible behavior limits are discussed in this paper. Through the use of such design/evaluation approaches, it may be demonstrated that there is high likelihood that probabilistic performance goals can be achieved. 14 refs., 1 fig., 5 tabs.

  6. Plasmonic crystal enhanced refractive index sensing

    SciTech Connect (OSTI)

    Stein, Benedikt; Devaux, Eloïse; Genet, Cyriaque Ebbesen, Thomas W.

    2014-06-23

    We demonstrate experimentally how the local anisotropy of the dispersion relation of surface plasmon modes propagating over periodic metal gratings can lead to an enhancement of the figure of merit of refractive index sensors. Exploiting the possibility to acquire defocused images of the Fourier space of a highly stable leakage radiation microscope, we report a twofold increase in sensing sensitivity close to the band gap of a one-dimensional plasmonic crystal where the anisotropy of the band structure is the most important. A practical sensing resolution of O(10{sup −6}) refractive index units is demonstrated.

  7. Health hazard evaluation report HETA 94-0109-2494, Pan American Health Organization National Smelting Company, Oruro, Bolivia

    SciTech Connect (OSTI)

    Sussell, A.; Singal, M.

    1995-03-01

    In response to a request from the Pan American Health Organization (PAHO), an investigation was begun into possible exposures to heavy metals and sulfur-dioxide at Empresa Metalurigica Vinto, a large tin smelter near Oruro, Bolivia. Fifteen workers were selected for exposure monitoring. Of the 15, 14 had exposures greater than the NIOSH Recommended Exposure Limit or the OSHA Permissible Exposure Level to arsentic; 11 had hazardous exposures to cadmium, and eight had hazardous exposures to sulfur-dioxide. Surfaces throughout the facility were highly contaminated with heavy metals. Fifteen workers participated in biological monitoring studies. The median value for urinary arsenic (UA) was 78 micrograms per gram creatinine. Nine of the 15 workers had UA levels exceeding the American Conference of Governmental Industrial Hygienists Biological Exposure Index. The median blood lead level was 19 micrograms per deciliter.

  8. Natural Phenomena Hazards Modeling Project: Preliminary flood hazards estimates for screening Department of Energy sites, Albuquerque Operations Office

    SciTech Connect (OSTI)

    McCann, M.W. Jr.; Boissonnade, A.C.

    1988-05-01

    As part of an ongoing program, Lawrence Livermore National Laboratory (LLNL) is directing the Natural Phenomena Hazards Modeling Project (NPHMP) on behalf of the Department of Energy (DOE). A major part of this effort is the development of probabilistic definitions of natural phenomena hazards; seismic, wind, and flood. In this report the first phase of the evaluation of flood hazards at DOE sites is described. Unlike seismic and wind events, floods may not present a significant threat to the operations of all DOE sites. For example, at some sites physical circumstances may exist that effectively preclude the occurrence of flooding. As a result, consideration of flood hazards may not be required as part of the site design basis. In this case it is not necessary to perform a detailed flood hazard study at all DOE sites, such as those conducted for other natural phenomena hazards, seismic and wind. The scope of the preliminary flood hazard analysis is restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does involve an assessment of the potential encroachment of flooding on-site at individual facility locations. However, the preliminary flood hazard assessment does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues are reserved for consideration by the DOE site manager. 11 refs., 84 figs., 61 tabs.

  9. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  10. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B; Cartelli, Laura

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  11. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  12. Guidance manual for hazardous waste incinerator permits. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The manual provides guidance to the permit writer for designating facility - specific operating conditions necessary to comply with the RCRA standards for hazardous waste incinerators. Each section of the incineration regulation is addressed, including: waste analysis, designation of principal organic hazardous constituents and requirements for operation, inspection and monitoring. Guidance is also provided for evaluating incinerator performance data and trial burn procedures.

  13. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  14. WIPP Hazardous Waste Facility Permit - 2008 Update

    SciTech Connect (OSTI)

    Kehrman, R.F.; Most, W.A.

    2008-07-01

    Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

  15. Zurich`s hazard analysis process: A systematic team approach

    SciTech Connect (OSTI)

    Frei, H.

    1997-06-01

    The Zurich method of hazard analysis (ZHA) is a process designed to facilitate the systematic identification, assessment and reduction or elimination of hazard and risk in almost any product, system or process. It has been particularly successful as a front-end screening tool in the petrochemical, chemical, and pharmaceutical industries. The complexity and the regulation of these industries and the requirement for management of change have created a demand for highly efficient, yet thorough, hazard analysis techniques capable of capturing and managing the total risk perspective while clearly illuminating the risk priorities. Only when these priorities have been segregated and economically addressed as an organization fully leveraged the power of any hazard analysis tool. This paper will outline the Zurich Hazard Analysis process and will highlight the elements and strategies central to its success as an efficient, yet thorough methodology.

  16. Hazardous waste research and development in the Pacific Basin

    SciTech Connect (OSTI)

    Cirillo, R.R.; Carpenter, R.A.; Environment and Policy Inst., Honolulu, HI )

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

  17. K Basins fuel encapsulation and storage hazard categorization

    SciTech Connect (OSTI)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a {open_quotes}Category 2{close_quotes} Facility.

  18. Human body impedance for electromagnetic hazard analysis in the VLF to MF band

    SciTech Connect (OSTI)

    Kanai, H.; Chatterjee, I.; Gandhi, O.P.

    1984-08-01

    A knowledge of the average electrical impedance of the human body is essential for the analysis of electromagnetic hazards in the VLF to MF band. The purpose of the measurements was to determine the average body impedance of several human subjects as a function of frequency. Measurements were carried out with the subjects standing barefoot on a ground plane and touching various metal electrodes with the hand or index finger. The measured impedance includes the electrode polarization and skin impedances, spread impedance near the electrode, body impedance, stray capacitance between the body surface and ground, and inductance due to the body and grounding strap. These components are separated and simplified equivalent circuits are presented for body impedance of humans exposed to free-space electromagnetic waves as well as in contact with large ungrounded metallic objects therein.

  19. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.

  20. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  1. Evolution of the spectral index after inflation

    SciTech Connect (OSTI)

    Asgari, A.A.; Abbassi, A.H. E-mail: ahabbasi@modares.ac.ir

    2014-09-01

    In this article we investigate the time evolution of the adiabatic (curvature) and isocurvature (entropy) spectral indices after inflation era for all cosmological scales with two different initial conditions. For this purpose, we first extract an explicit equation for the time evolution of the comoving curvature perturbation (which may be known as the generalized Mukhanov-Sasaki equation). It would be cleared that the evolution of adiabatic spectral index severely depends on the initial conditions moreover, as expected it is constant only for the super-Hubble scales and adiabatic initial conditions. Additionally, the adiabatic spectral index after recombination approaches a constant value for the isocurvature perturbations. Finally, we re-investigate the Sachs-Wolfe effect and show that the fudge factor  1/3 in the adiabatic ordinary Sachs-Wolfe formula must be replaced by 0.4.

  2. Matched Index of Refraction Flow Facility

    ScienceCinema (OSTI)

    Mcllroy, Hugh

    2013-05-28

    What's 27 feet long, 10 feet tall and full of mineral oil (3000 gallons' worth)? If you said INL's Matched Index of Refraction facility, give yourself a gold star. Scientists use computers to model the inner workings of nuclear reactors, and MIR helps validate those models. INL's Hugh McIlroy explains in this video. You can learn more about INL energy research at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  3. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  4. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  5. Hazardous waste identification: A guide to changing regulations

    SciTech Connect (OSTI)

    Stults, R.G. )

    1993-03-01

    The Resource Conservation and Recovery Act (RCRA) was enacting in 1976 and amended in 1984 by the Hazardous and Solid Waste Amendments (HSWA). Since then, federal regulations have generated a profusion of terms to identify and describe hazardous wastes. Regulations that5 define and govern management of hazardous wastes are codified in Title 40 of the code of Federal Regulations, Protection of the environment''. Title 40 regulations are divided into chapters, subchapters and parts. To be defined as hazardous, a waste must satisfy the definition of solid waste any discharged material not specifically excluded from regulation or granted a regulatory variance by the EPA Administrator. Some wastes and other materials have been identified as non-hazardous and are listed in 40 CFR 261.4(a) and 261.4(b). Certain wastes that satisfy the definition of hazardous waste nevertheless are excluded from regulation as hazardous if they meet specific criteria. Definitions and criteria for their exclusion are found in 40 CFR 261.4(c)-(f) and 40 CFR 261.5.

  6. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  7. ORISE Resources: Hospital All-Hazards Self-Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help hospitals assess and identify potential gaps in their facility's all-hazards emergency plan(s). Upon completing the HAH, hospitals can use it to modify aspects of these plan(s). Hospitals are encouraged to update the HAH as changes to the plan(s) are made, and to include the HAH with their preparedness planning documents. The

  8. Geological hazards programs and research in the U. S. A

    SciTech Connect (OSTI)

    Filson, J.R. )

    1988-01-01

    Geological hazards have been studied for centuries, but government support of research to lessen their effects is relatively new. This article briefly describes government programs and research underway in the U.S.A. that are directed towards reducing losses of life and property from earthquakes, volcanic eruptions and landslides. The National Earthquake program is described, including four basic research areas: plate tectonics; estimation of the earthquakes; and effects and hazards assessment. The Volcano Studies Program has three areas of research: fundamentals of volcanoes; hazards assessments; and volcano monitoring. Three research areas are included in landslide studies: land slide processes; prediction; inventory and susceptibility studies.

  9. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  10. Hazard classification assessment for the High Voltage Initiator

    SciTech Connect (OSTI)

    Cogan, J.D.

    1994-04-19

    An investigation was conducted to determine whether the High Voltage Initiator (Sandia p number 395710; Navy NAVSEA No. 6237177) could be assigned a Department of Transportation (DOT) hazard classification of ``IGNITERS, 1.4G, UN0325`` under Code of Federal Regulations, 49 CFR 173.101, when packaged per Mound drawing NXB911442. A hazard classification test was performed, and the test data led to a recommended hazard classification of ``IGNITERS, 1.4G, UN0325,`` based on guidance outlined in DOE Order 1540.2 and 49 CFR 173.56.

  11. Indexes to Nuclear Regulatory Commission issuances, July--September 1997

    SciTech Connect (OSTI)

    1998-03-01

    This digest and index lists the Nuclear Regulatory Commission (NRC) issuances for July to September 1997. Issuances are from the Commission, the Atomic Safety and Licensing Boards, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking. There are five sections to this index: (1) case name index, (2) headers and digests, (3) legal citations index, (4) subject index, and (5) facility index. The digest provides a brief narrative of the issue, including the resolution of the issue and any legal references used for resolution.

  12. DOE-STD-1027-92; Hazard Categorization and Accident Analysis...

    Energy Savers [EERE]

    ... The decision criteria blocks shown immediately ... represent a level of hazard for which significant management attention is ... Use Hazard Analysis Low-complexity operations ...

  13. EERE Success Story-New Mexico: Solar Glare Hazard Analysis Tool...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar installations. ...

  14. Category 3 threshold quantities for hazard categorization of nonreactor facilities

    SciTech Connect (OSTI)

    Mandigo, R.L.

    1996-02-13

    This document provides the information necessary to determine Hazard Category 3 threshold quantities for those isotopes of interest not listed in WHC-CM-4-46, Section 4, Table 1.''Threshold Quantities.''

  15. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    ANS Standards to Support DOE NPH Design Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants? Review of Natural Phenomena Hazards (NPH)...

  16. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  17. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On October ... in Los Alamos, New Mexico. The PNOV cites four violations of DOE worker safety and health ...

  18. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS...

  19. Title 40 CFR 261 Identification and Listing of Hazardous Waste...

    Open Energy Info (EERE)

    1 Identification and Listing of Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40...

  20. Vermont Hazardous Waste Handler Site ID Form | Open Energy Information

    Open Energy Info (EERE)

    to library Legal Document- Permit ApplicationPermit Application: Vermont Hazardous Waste Handler Site ID FormLegal Abstract This form is used to notify the Vermont Agency of...

  1. Hazardous Waste Part A Permit Application | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Hazardous Waste Part A Permit ApplicationLegal Abstract Detailed instructions for filing a RCRA...

  2. Title 40 CFR 270: EPA Administered Programs: The Hazardous Waste...

    Open Energy Info (EERE)

    270: EPA Administered Programs: The Hazardous Waste Program Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 40 CFR...

  3. Title 18 Alaska Administrative Code Section 60.020 Hazardous...

    Open Energy Info (EERE)

    60.020 Hazardous Waste Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Section 60.020...

  4. A Probabilistic Seismic Hazard Analysis Update Review for Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status Presentation from the May 2015 Seismic Lessons-Learned Panel ...

  5. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events at LANL | Department of Energy Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On October 17, 2012, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to Los Alamos National Security, LLC (LANS) for violations of Department of Energy (DOE) worker safety and health program requirements. LANS is the management and

  6. Process development accomplishments: Waste and hazard minimization, FY 1991

    SciTech Connect (OSTI)

    Homan, D.A.

    1991-11-04

    This report summarizes significant technical accomplishments of the Mound Waste and Hazard Minimization Program for FY 1991. The accomplishments are in one of eight major areas: environmentally responsive cleaning program; nonhalogenated solvent trials; substitutes for volatile organic compounds; hazardous material exposure minimization; nonhazardous plating development; explosive processing waste reduction; tritium capture without conversion to water; and robotic assembly. Program costs have been higher than planned.

  7. Seismic hazard methodology for the Central and Eastern United States.

    Office of Scientific and Technical Information (OSTI)

    Volume 1: methodology. Final report (Technical Report) | SciTech Connect Central and Eastern United States. Volume 1: methodology. Final report Citation Details In-Document Search Title: Seismic hazard methodology for the Central and Eastern United States. Volume 1: methodology. Final report A methodology to estimate the hazard of earthquake ground motion at a site has been developed. The methodology consists of systematic procedures to characterize earthquake sources, the seismicity

  8. Seismic hazard methodology for the Central and Eastern United States:

    Office of Scientific and Technical Information (OSTI)

    Volume 1: Part 2, Methodology (Revision 1): Final report (Technical Report) | SciTech Connect Central and Eastern United States: Volume 1: Part 2, Methodology (Revision 1): Final report Citation Details In-Document Search Title: Seismic hazard methodology for the Central and Eastern United States: Volume 1: Part 2, Methodology (Revision 1): Final report Aided by its consultant, the US Geologic Survey (USGS), the Nuclear Regulatory Commission (NRC) reviewed ''Seismic Hazard Methodology for

  9. Seismic hazard methodology for the central and Eastern United States:

    Office of Scientific and Technical Information (OSTI)

    Volume 1, Part 1: Theory: Final report (Technical Report) | SciTech Connect central and Eastern United States: Volume 1, Part 1: Theory: Final report Citation Details In-Document Search Title: Seismic hazard methodology for the central and Eastern United States: Volume 1, Part 1: Theory: Final report The NRC staff concludes that SOG/EPRI Seismic Hazard Methodology, as documented in the topical report and associated submittals, is an acceptable methodology for use in calculating seismic

  10. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  11. New tool helps reduce use of hazardous chemicals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Helps Reduce Use Of Hazardous Chemicals Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit New tool helps reduce use of hazardous chemicals The "Green Chemical Alternatives Purchasing Wizard," will begin to help employees choose the most benign substances possible for their work. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs

  12. Seismic Hazards at Kilauea and Mauna LOA Volcanoes, Hawaii

    SciTech Connect (OSTI)

    Klein, Fred W.

    1994-04-22

    A significant seismic hazard exists in south Hawaii from large tectonic earthquakes that can reach magnitude 8 and intensity XII. This paper quantifies the hazard by estimating the horizontal peak ground acceleration (PGA) in south Hawaii which occurs with a 90% probability of not being exceeded during exposure times from 10 to 250 years. The largest earthquakes occur beneath active, unbuttressed and mobile flanks of volcanoes in their shield building stage.

  13. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday, October

    Office of Environmental Management (EM)

    21st Session Presentations | Department of Energy Tuesday, October 21st Session Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday, October 21st Session Presentations Presentations from the October 2014 Natural Phenomena Hazards Meeting - Tuesday, October 21st Session Presentations Relative Movements for Design of Commodities in Nuclear Power Plants Liquefaction Triggering Evaluations at DOE Sites - An Update Opportunities for Improving Regulations Governing the

  14. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday, October

    Office of Environmental Management (EM)

    22nd Session Presentations | Department of Energy Session Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday, October 22nd Session Presentations Presentations from the October 2014 Natural Phenomena Hazards Meeting - Wednesday, October 22nd Session Presentations Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile State of Practice Approaches in Geomorphology, Geochronology and Probabilistic Analyses for Addressing Fault Capability at

  15. Natural Phenomena Hazards (NPH) Program - Guidelines | Department of Energy

    Energy Savers [EERE]

    (NPH) Program - Guidelines Natural Phenomena Hazards (NPH) Program - Guidelines Current Natural Phenomena Hazards Program requirements of the Department reside in the documents listed below separated out by Federal Government Wide Requirements to Primary Department of Energy Documents. Key industry consensus standards and guidance documents are also listed below for reference. Federal Government-wide Requirements Public Law 101-614 Executive Order 12941 Primary DOE Requirements Documents 10

  16. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-07

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  17. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  18. Agencies complete comprehensive investigation for radioactive and hazardous

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste landfill Printer-friendly icon Printer-Friendly June 29, 2007 Agencies complete comprehensive investigation for radioactive and hazardous waste landfill; agree to extend document submittal milestone The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (IDEQ), and U.S. Environmental Protection Agency (EPA) have completed a CERCLA (Superfund) Remedial Investigation and Baseline Risk Assessment and Feasibility Study of a radioactive and hazardous waste landfill

  19. An Environmentally Safe Detector for Hazardous Gas - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Find More Like This Return to Search An Environmentally Safe Detector for Hazardous Gas Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary ORNL researchers developed a breakthrough design for a hazardous-gas detector that is environmentally safe and inexpensive and that includes both sensing and detecting means. The invention can detect and identify volatile organic and inorganic substances in vapors faster than conventional methods.

  20. Arc Vault Significantly Reduces Electrical Hazards | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc Vault Significantly Reduces Electrical Hazards Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Arc Vault Significantly Reduces Electrical Hazards GE Global Research 2012.05.01 Recently, technology developed at GE Global Research received high praise from industry leaders for its ability to shield industrial -

  1. A-Z Index | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Abbreviations, energy related About U.S. Natural Gas Pipelines (U.S. & state) Acid rain (U.S., Census division, & state) Definition Emissions data Overview Acquisitions and Divestitures by Foreign Direct Investors in U.S. Energy (report discontinued) Activities for kids Additions to storage (natural gas; includes U.S. & state) Underground, by all operators Underground, by storage type Liquefied natural gas additions and

  2. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  3. Compressing bitmap indexes for faster search operations

    SciTech Connect (OSTI)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-04-25

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.

  4. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted

    Office of Scientific and Technical Information (OSTI)

    Dose Distribution (Journal Article) | SciTech Connect Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution Citation Details In-Document Search Title: Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials:

  5. NEPA Guidance and Requirements - Search Index | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance and Requirements - Search Index NEPA Guidance and Requirements - Search Index The NEPA Guidance and Requirements - Search Index is a one-stop solution providing you with DOE's Guidance and Requirements documents combined into one file for easy download and use. The compressed (.zip) file contains all of these documents in their optimized and machine-readable format. The file also contains a "search index" that can be used to search for keywords and phrases in all the documents

  6. DOERS Records Schedule Cross Index to DOE Administrative Records

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules | Department of Energy DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules Crosswalk between DOERS and Admin Schedules PDF icon DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules More Documents & Publications DOE Records Disposition Schedule Changes ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL

  7. Microsoft Word - 01 - Cover.doc

    National Nuclear Security Administration (NNSA)

    Water Pollution Control Act FY Fiscal Year gpy gallons per year HAZMAT Hazardous Materials HMMWV High Mobility Multipurpose Wheeled Vehicle HQ ACC Headquarters Air Combat ...

  8. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  9. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  10. Structures with negative index of refraction

    DOE Patents [OSTI]

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  11. DOE-DP-STD-3016-99; DOE Limited Standard Hazard Analysis Reports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... . . . . 2 5. HAZARD ANALYSIS SCOPE AND INTERFACES . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . 3 5.2 INTERFACES . . . . . . . . . . . . . . . . . . . . ...

  12. 49 CFR Subchapter C, Parts 171-177: Hazardous Materials Regulations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration regulates the transport of hazardous materials through Title 49 of the Code of Federal Regulations (49 CFR), Subchapter C, "Hazardous Materials Regulations." Parts 171-177 provide general information on hazardous materials and regulation for their packaging and their shipment by rail, air, vessel, and public highway.

  13. October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Soil Structure Interaction Presentations

    Broader source: Energy.gov [DOE]

    Presentations for the Soil Structure Interaction session at the October 2014 Natural Phenomena Hazards (NPH) Meeting.

  14. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect (OSTI)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  15. Memorandum for Improving DOE HQ Recruitment and Hiring Processes

    Energy Savers [EERE]

    ~ e ~ u t ~ ~ l o ~ f @ i j Washington, DC 20585 hlEMORANDUM TO DEPARTMENTAL ELEh@NT& FROM: SUBJECT: DANIEL B. P O N W Improving the Headquarters' Hiring Processes Secretary Chu has set forth an athbitious agenda for the D of Energy i f l - a f d a to build a clean, secure, and prosperous energy future for our Nation. Fulfilling that agenda requires that we act with urgency and purpose. Success will depend largely on ow ability to recruit and retain a dedicated, high-performing workforce. To

  16. C:\Forms\HQ F 1400.12.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    F. 1400.12 (03-00) INSTRUCTIONS: U.S. DEPARTMENT OF ENERGY LAST NAME SIGNING THIS APPLICATION CERTIFIES THAT YOU ARE NOT A PARTICIPANT IN THE SEET PROGRAM, OR OTHER GOVERNMENT SUBSIDY PROGRAMS. WORK PHONE WORK PHONE WORK PHONE WORK PHONE YEARS FEDERAL SERVICE YEARS FEDERAL SERVICE YEARS FEDERAL SERVICE YEARS FEDERAL SERVICE FEDERAL FEDERAL FEDERAL CONTRACTOR CONTRACTOR CONTRACTOR CAR NO 1, MAKE CAR NO 1, MAKE CAR NO 1, MAKE CAR NO 1, MAKE LAST NAME LAST NAME LAST NAME FIRST NAME FIRST NAME FIRST

  17. C:\Forms\HQ F 3305.7.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    305.7 (07-90) U.S. DEPARTMENT OF ENERGY Applicant Name: Thank you for applying for consideration for our Senior Executive Service vacancy of: Your application was received in our office postmarked on Although you were found to meet the basic qualifications required for this position, we regret to inform you that another candidate has been selected for this position. The competitive process for filing this position has been cancelled due to: Your application could not be forwarded for competitive

  18. C:\Forms\HQ F 3790.7.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 (7-82) U.S. Department of Energy TO: COPY DISTRIBUTION: 1. POSTING 2. OFFICIAL IN CHARGE 3. SAFETY INSPECTOR 4. BUILDING MANAGER 5. SUSPENSE INSPECTOR DATE LOCATION On the basis of the above stated inspection, it was found that the following unsafe or unhealthful working condition exists: FOR THIS NOTICE DESCRIPTION DATE FOR CORRECTION NOTICE OF UNSAFE OR UNHEALTHFUL WORKING CONDITIONS

  19. HQ Energy Services (US), Inc | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 21249 Utility Location Yes Ownership W NERC Location NPCC NERC NPCC Yes RTO PJM Yes ISO NY Yes ISO MISO Yes ISO NE Yes Activity Generation Yes Activity Buying...

  20. 2010 Annual Workforce Analysis and Staffing Plan Report- NNSA HQ

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.