Powered by Deep Web Technologies
Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

2

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

3

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

4

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Unknown

1999-10-31T23:59:59.000Z

5

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

6

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

7

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.

Unknown

1998-10-31T23:59:59.000Z

8

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

9

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.

Donald Duttlinger

2001-11-01T23:59:59.000Z

10

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

Unknown

2002-05-31T23:59:59.000Z

11

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

Science Conference Proceedings (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

Donald F. Duttlinger; E. Lance Cole

2003-12-15T23:59:59.000Z

12

Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers  

Science Conference Proceedings (OSTI)

Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

NONE

1995-10-01T23:59:59.000Z

13

Distributed Hydrogen Production from Natural Gas: Independent Review  

DOE Green Energy (OSTI)

Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

Fletcher, J.; Callaghan, V.

2006-10-01T23:59:59.000Z

14

Definition: Independent Power Producer | Open Energy Information  

Open Energy Info (EERE)

Producer Producer Jump to: navigation, search Dictionary.png Independent Power Producer Any entity that owns or operates an electricity generating facility that is not included in an electric utility's rate base. This term includes, but is not limited to, cogenerators and small power producers and all other nonutility electricity producers, such as exempt wholesale generators, who sell electricity.[1] View on Wikipedia Wikipedia Definition An Independent Power Producer is an entity, which is not a public utility, but which owns facilities to generate electric power for sale to utilities and end users. NUGs may be privately held facilities, corporations, cooperatives such as rural solar or wind energy producers, and non-energy industrial concerns capable of feeding excess energy into

15

ASEM Green Independent Power Producers Network | Open Energy...  

Open Energy Info (EERE)

A market-drive network independent of power producers that focus on renewable energy projects, linking researchers, industry representatives, policy makers and NGOs from Europe...

16

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

17

Independent to start gas flow in Moldova  

Science Conference Proceedings (OSTI)

A small independent operator hopes to start gas production this year in the eastern European republic of Moldova, which imports all oil and gas, mainly from Russia. Redeco Ltd. LLC, Oklahoma City, is seeking commercial customers in the town of Baimaclia for gas from a planned 5 km sales pipeline from nearby Victorovca field. The company is affiliated with Redexco ltd., Calgary, and Costilla Energy Inc., Midland, Tex. Redeco`s Victorovca 302 workover well in Cantemir County flowed 500 Mcfd of gas in December from 1,976--86 ft in the Miocene Sarmat formation. The well is in the eastern Carpathian basin. Most wells in Victorovca field are 30--45 years old, but Redeco believes it could economically redrill the field. Victorovca field extends about 12 km east-west and 4 km north-south.

NONE

1997-02-03T23:59:59.000Z

18

Coal seam natural gas producing areas (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

19

Delivery of Hydrogen Produced from Natural Gas  

E-Print Network (OSTI)

for economic storage, handling and delivery of hydrogen. Office of Fossil Energy Milestone · 2006: Define & Petroleum Technology Office of Fossil Energy June 3, 2003 Hydrogen Coordination Meeting #12;Key NearDelivery of Hydrogen Produced from Natural Gas Christopher Freitas Office of Natural Gas

20

How is shale gas produced? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home How is shale gas produced? How is shale gas produced? How is shale gas produced? Energy.gov Careers...

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Changes related to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

22

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis...

23

Writedowns, soft gas markets trim profits of OGJ independents' group  

SciTech Connect

A widely expected rise in 1990 profits stemming from a runup in oil prices did not happen for the group of 50 U.S. independent oil and gas companies the Oil and Gas Journal tracks. Instead, a string of special charges spurred big losses for a number of companies. In addition, an unexpectedly weak natural gas market also helped dampen upstream earnings for independents with reserves portfolios dominated by gas. As a result, overall profits for the OGJ group of independents slipped 2.3% in 1990 from 1989 levels. That occurred despite the group's increase of 13% in revenues, largely on the strength of oil production and prices climbing 16% and 25%, respectively. The group's gas production rose 8%, while gas prices remained flat. A few companies heavily skewed to oil saw profits about double year to year. However, the squeeze on revenues and profits from lower gas prices often more than offset increased gas production for many of the companies dependent on gas sales for most of their revenues. The situation was even worse for companies that shut in gas rather than sell it at less than replacement costs, thereby slicing, gas sales volumes as well. The depressed North American gas market has lasted into 1991, and oil prices have fallen from second half 1990 highs. Industry expectations are that oil prices overall will be lower in 1991 than they were last year, so it falls generally to increased gas prices and production in the second half to buoy profits enough to keep pace with 1990 levels. Prospects in 1991 are for big asset writedowns and plunging profits for U.S. independents if oil prices fall much below current levels and gas prices don't rally in the second half.

Williams, B.; Biggs, J.B.

1991-06-03T23:59:59.000Z

24

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

25

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Combined marketed natural gas production from the top five natural gas producing states—Texas, Louisiana, Wyoming, Oklahoma, and Colorado—increased by about 7.5% ...

26

Management of produced water in oil and gas operations.  

E-Print Network (OSTI)

??Produced water handling has been an issue of concern for oil and gas producers as it is one of the major factors that cause abandonment… (more)

Patel, Chirag V.

2005-01-01T23:59:59.000Z

27

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

28

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

29

Water management technologies used by Marcellus Shale Gas Producers.  

Science Conference Proceedings (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

30

Which states consume and produce the most natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

Which states consume and produce the most natural gas? U.S. consumption of natural gas in 2011 was 24.4 Tcf, the top five states that consumed the ...

31

Coal seam natural gas producing areas (Louisiana) | Open Energy...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal seam natural gas producing areas (Louisiana) This is the approved revision of this...

32

Top 5 producing states' combined marketed natural gas output rose ...  

U.S. Energy Information Administration (EIA)

Glossary › All Reports ... Due primarily to drilling programs in the Marcellus shale ... Alaska is the country's second leading natural gas producer in terms of ...

33

Producing Natural Gas From Shale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Producing Natural Gas From Shale Producing Natural Gas From Shale Producing Natural Gas From Shale January 26, 2012 - 12:00pm Addthis The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing

34

Process of producing combustible gas and for carbonizing coal  

SciTech Connect

This patent describes a process of producing combustible gas by supporting a column of fuel in a shaft furnace, intermittently blasting a combustion-supporting gas transversely through a mid portion of said column to produce a mid zone of sufficiently high temperature to decompose steam. The steam then circulated upwardly through said column between said blasting operations.

Doherty, H.L.

1922-08-15T23:59:59.000Z

35

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

36

Method and apparatus for producing synthesis gas  

DOE Patents (OSTI)

A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

Hemmings, John William (Katy, TX); Bonnell, Leo (Houston, TX); Robinson, Earl T. (Mentor, OH)

2010-03-03T23:59:59.000Z

37

Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers  

SciTech Connect

Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

2000-01-12T23:59:59.000Z

38

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

39

Economics of producing substitute natural gas from coal. Occasional pub  

Science Conference Proceedings (OSTI)

Using the cost levelization approach, the economics of producing substitute natural gas (SNG) are examined under different assumptions regarding conversion technologies, coal types and plant financing. A comparison of levelized constant dollar cost-of-service price estimated for Westinghouse and dry bottom Lurgi processes for 1990-2019 shows that SNG from coal produced at western sites is competitive with natural gas and fuel oils.

Rosenberg, J.I.; Ashby, A.B.

1983-07-01T23:59:59.000Z

40

Ratio of produced gas to produced water from DOE's EDNA Delcambre No. 1 geopressured-geothermal aquifer gas well test  

DOE Green Energy (OSTI)

A paper presented by the Institute of Gas Technology (IGT) at the Third Geopressured-Geothermal Energy Conference hypothesized that the high ratio of produced gas to produced water from the No. 1 sand in the Edna Delcambre No. 1 well was due to free gas trapped in pores by imbibition over geological time. This hypothesis was examined in relation to preliminary test data which reported only average gas to water ratios over the roughly 2-day steps in flow rate. Subsequent public release of detailed test data revealed substantial departures from the previously reported computer simulation results. Also, data now in the public domain reveal the existence of a gas cap on the aquifier tested. This paper describes IGT's efforts to match the observed gas/water production with computer simulation. Two models for the occurrence and production of gas in excess of that dissolved in the brine have been used. One model considers the gas to be dispersed in pores by imbibition, and the other model considers the gas as a nearby free gas cap above the aquifier. The studies revealed that the dispersed gas model characteristically gave the wrong shape to plots of gas production on the gas/water ratio plots such that no reasonable match to the flow data could be achieved. The free gas cap model gave a characteristically better shape to the production plots and could provide an approximate fit to the data of the edge of the free gas cap is only about 400 feet from the well.Because the geological structure maps indicate the free gas cap to be several thousand feet away and the computer simulation results match the distance to the nearby Delcambre Nos. 4 and 4A wells, it appears that the source of the excess free gas in the test of the No. 1 sand may be from these nearby wells. The gas source is probably a separate gas zone and is brought into contact with the No. 1 sand via a conduit around the No. 4 well.

Rogers, L.A.; Randolph, P.L.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

42

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

43

Adsorption process producing chronologically constant amount of a residual gas  

SciTech Connect

An adsorption process is disclosed for purifying or fractionating a gaseous feed mixture comprises an adsorption phase, at least one expansion phase, a purging phase and at least one pressure buildup phase. The expansion phase(S) and the purging phase produce residual process gas fractions. The sum total of volume, and/or mass streams of the residual process gas fractions comprises a residual gas stream which is maintained chronologically substantially constant by controlling the volume and/or gas streams of the gas entering the purging phase and maintaining the gas leaving the expansion phase(S) at a substantially constant value, dependent on the desired mass and/or volume quantity of the residual gas stream. The length of the purging phase and of the expansion phase(S) is adjusted accordingly so that the relationship of the length of time of the purging phase to the length of time of the expansion phase(S) is substantially the same as the relationship of the volume and/or mass of the gas fractions obtained during the purging to those obtained during the expansion phase(S), respectively. The control of the purging and of the expansion phase(S) can also be varied in response to a flow rate of a feed gas entering the process.

Benkmann, C.

1982-02-16T23:59:59.000Z

44

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability concern as more gas turbines are added to the electric system. A 10% reduction in gas turbine output, when it comprises only 10% of the electric system, does not cause reliability concerns. A 10% reduction in gas turbine output, when it comprises 50% of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section of the gas turbine.

Neeley, J. E.; Patton, S.; Holder, F.

1992-04-01T23:59:59.000Z

45

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

46

Support of EOR to independent producers in Texas. Quarterly report, April 1995--June 1995  

Science Conference Proceedings (OSTI)

Extensive research has been conducted nationwide since the early 1970`s to increase our domestic oil production via Enhanced oil Recovery (EOR) technology. Less effort has been made to assure that state-of-the-art EOR technology reaches all producers, especially independents, so they can understand and use it to their benefit. Further, very little effort has been made to make EOR research results useful to the broadest possible base of producers. This report presents information on horizontal drilling and oil well planning including drilling tools, bottomhole assembly tools, drilling equipment, and well completion. A glossary of applicable terms and diagrams are included.

Fotouh, K.H.

1995-09-01T23:59:59.000Z

47

Greenhouse gas emissions related to ethanol produced from corn  

DOE Green Energy (OSTI)

This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

Marland, G.

1994-04-01T23:59:59.000Z

48

Pages that link to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

49

METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES  

DOE Patents (OSTI)

A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

Bell, P.R.; Luce, J.S.

1960-01-01T23:59:59.000Z

50

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

51

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

Science Conference Proceedings (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

52

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

53

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

54

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much does it cost to produce crude oil and natural gas? A measure of the total cost to produce crude oil and natural gas is the upstream costs.

55

AGA Producing Region Natural Gas Underground Storage Withdrawals (Million  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 201,567 147,250 61,339 23,149 9,789 29,178 13,371 19,352 10,151 24,102 52,809 137,962 1995 166,242 120,089 100,955 31,916 17,279 19,712 35,082 62,364 16,966 33,762 102,735 181,097 1996 223,932 157,642 141,292 36,788 27,665 26,393 32,861 27,599 20,226 34,000 116,431 142,519 1997 204,601 103,715 43,894 54,285 24,898 34,122 65,631 42,757 30,579 32,257 113,422 180,582 1998 143,042 69,667 97,322 25,555 30,394 38,537 33,314 37,034 51,903 17,812 60,078 168,445 1999 189,816 77,848 104,690 44,930 22,829 26,085 58,109 60,549 25,888 43,790 66,980 165,046

56

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

57

Gas6 Downregulation Impaired Cytoplasmic Maturation and Pronuclear Formation Independent to the MPF Activity  

E-Print Network (OSTI)

Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr 2+, Gas6-silenced MII oocytes had markedly reduced Ca 2+ oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and

Kyeoung-hwa Kim; Eun-young Kim; Yuna Kim; Eunju Kim; Hyun-seo Lee; Sook-young Yoon

2011-01-01T23:59:59.000Z

58

AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,433,462 1,329,400 1,322,914 1,388,877 1,498,496 1,553,493 1,643,445 1,714,361 1,785,350 1,819,344 1,810,791 1,716,773 1995 1,601,428 1,510,175 1,467,414 1,509,666 1,586,445 1,662,195 1,696,619 1,688,515 1,768,189 1,818,098 1,757,160 1,613,046 1996 1,436,765 1,325,994 1,223,139 1,264,513 1,334,894 1,395,779 1,443,970 1,525,797 1,631,006 1,686,652 1,614,154 1,519,539 1997 1,379,108 1,303,888 1,356,678 1,385,616 1,461,221 1,536,339 1,542,480 1,596,011 1,683,987 1,770,002 1,707,810 1,559,636 1998 1,456,136 1,442,993 1,420,644 1,515,050 1,610,474 1,666,304 1,739,745 1,803,097 1,840,984 1,950,772 1,945,897 1,807,163

59

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

60

Producing Natural Gas from Shale Opportunities and Challenges of a Major  

E-Print Network (OSTI)

continuing annual support to STRONGER (the State Review of Oil and Natural Gas Environmental Regulation1 Producing Natural Gas from Shale ­ Opportunities and Challenges of a Major New Energy Source ~2300 TCF (85% Shale Gas) "100 years of Natural Gas" U.S. Consumption 23 TCF/y #12;5 Opportunity: Global

Nur, Amos

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sands, and methane from coalbeds, DOE developed and stimulated the deployment of advanced exploration and production technologies. These technologies recovered new gas supplies...

62

Process for producing dimethyl ether form synthesis gas  

DOE Green Energy (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, Ronald (Macungie, PA)

1985-01-01T23:59:59.000Z

63

Process for producing dimethyl ether from synthesis gas  

DOE Patents (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, R.

1985-06-04T23:59:59.000Z

64

AGA Producing Region Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

1,894,503 1,780,012 1,829,817 1,964,003 2,054,202 2,124,803 1994-2013 Base Gas 1,076,234 1,074,821 1,075,297 1,077,568 1,080,613 1,080,790 1994-2013 Working Gas 818,269 705,191...

65

Review of {sup 222}Rn in natural gas produced from unconventional sources  

SciTech Connect

A review of the literature on trace radioactivity in natural gas and natural gas products has been performed and the consequent radioactivity concentrations and dose rates due to natural radioactive elements in natural gas produced from Devonian shale wells, western tight gas sands, geo-pressurized aquifiers and coal beds have been studied. Preliminary data on {sup 222}Rn concentrations from these energy sources fall within the range observed for more conventional sources. Gas produced from reservoirs with higher than average natural /sup 238/U higher than average levels of {sup 222}Rn. Massive fracturing techniques do not appear to raise the relative concentration of radon in natural gas.

Gogolak, C.V.

1980-11-01T23:59:59.000Z

66

How much does it cost to produce crude oil and natural gas? - FAQ ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

67

Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs.  

E-Print Network (OSTI)

?? This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid… (more)

Lei, Guowen

2012-01-01T23:59:59.000Z

68

Gas injection as an alternative option for handling associated gas produced from deepwater oil developments in the Gulf of Mexico  

E-Print Network (OSTI)

The shift of hydrocarbon exploration and production to deepwater has resulted in new opportunities for the petroleum industry(in this project, the deepwater depth greater than 1,000 ft) but also, it has introduced new challenges. In 2001,more than 999 Bcf of associated gas were produced from the Gulf of Mexico, with deepwater associated gas production accounting for 20% of this produced gas. Two important issues are the potential environmental impacts and the economic value of deepwater associated gas. This project was designed to test the viability of storing associated gas in a saline sandstone aquifer above the producing horizon. Saline aquifer storage would have the dual benefits of gas emissions reduction and gas storage for future use. To assess the viability of saline aquifer storage, a simulation study was conducted with a hypothetical sandstone aquifer in an anticlinal trap. Five years of injection were simulated followed by five years of production (stored gas recovery). Particular attention was given to the role of relative permeability hysteresis in determining trapped gas saturation, as it tends to control the efficiency of the storage process. Various cases were run to observe the effect of location of the injection/production well and formation dip angle. This study was made to: (1) conduct a simulation study to investigate the effects of reservoir and well parameters on gas storage performance; (2) assess the drainage and imbibition processes in aquifer gas storage; (3) evaluate methods used to determine relative permeability and gas residual saturation ; and (4) gain experience with, and confidence in, the hysteresis option in IMEX Simulator for determining the trapped gas saturation. The simulation results show that well location and dip angle have important effects on gas storage performance. In the test cases, the case with a higher dip angle favors gas trapping, and the best recovery is the top of the anticlinal structure. More than half of the stored gas is lost due to trapped gas saturations and high water saturation with corresponding low gas relative permeability. During the production (recovery) phase, it can be expected that water-gas production ratios will be high. The economic limit of the stored gas recovery will be greatly affected by producing water-gas ratio, especially for deep aquifers. The result indicates that it is technically feasible to recover gas injected into a saline aquifer, provided the aquifer exhibits the appropriate dip angle, size and permeability, and residual or trapped gas saturation is also important. The technical approach used in this study may be used to assess saline aquifer storage in other deepwater regions, and it may provide a preliminary framework for studies of the economic viability of deepwater saline aquifer gas storage.

Qian, Yanlin

2003-05-01T23:59:59.000Z

69

AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,039,864 1,032,160 1,033,297 1,032,517 1,037,294 1,037,338 1,038,940 1,036,193 1,037,422 1,035,931 1,035,050 1,043,103 1995 1,051,669 1,054,584 1,051,120 1,051,697 1,052,949 1,062,613 1,058,260 1,054,218 1,054,870 1,051,687 1,056,704 1,060,588 1996 1,067,220 1,062,343 1,027,692 1,040,511 1,055,164 1,056,516 1,052,009 1,051,395 1,052,015 1,048,151 1,052,057 1,053,173 1997 1,064,968 1,054,977 1,059,316 1,059,050 1,059,706 1,064,515 1,063,554 1,063,029 1,066,254 1,064,123 1,065,557 1,065,151 1998 1,064,741 1,058,297 1,057,927 1,057,506 1,060,241 1,055,941 1,055,660 1,055,056 1,056,417 1,057,591 1,057,539 1,038,925

70

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

71

Study of a liquid-gas mixing layer: Shear instability and size of produced drops  

E-Print Network (OSTI)

Study of a liquid-gas mixing layer: Shear instability and size of produced drops Sylvain Marty +++++ Presented by £££££ Abstract We study experimentally the atomization of a liquid sheet by a parallel gas flow creation. We study in particular the regimes at low M (ratio of gas/liquid dynamic pressures), to test

Paris-Sud XI, Université de

72

Horizontal natural gas storage caverns and methods for producing same  

DOE Patents (OSTI)

The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

Russo, Anthony (Albuquerque, NM)

1995-01-01T23:59:59.000Z

73

Combination gas producing and waste-water disposal well  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, Raymond M. (McKeesport, PA)

1984-01-01T23:59:59.000Z

74

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

75

Producer gas power plants can cut the oil bills of the developing countries  

SciTech Connect

As a power-generation fuel substitute in developing countries, producer gas from coal, biomass, or waste could reduce oil-import bills while assuring a steady fuel supply. An international working group formed at the Royal Swedish Academy of Sciences is assisting developing countries in setting up simple producer-gas plants consisting of a downdraft gasifier, cyclone, filter, and cooler. Sweden gained expertise in this technology during World War II and now manufactures much of the equipment needed for producer-gas facilities. Depending on oil price, a dual-fuel power plant (15% diesel oil, 85% producer gas) could compete economically with a diesel-only plant, assuming extra labor requirements of 20 min/hr of operation for the gas-fired facility.

Not Available

1982-02-01T23:59:59.000Z

76

The Value of Hurricane Forecasts to Oil and Gas Producers in the Gulf of Mexico  

Science Conference Proceedings (OSTI)

The threat of hurricanes often forces producers of crude oil and natural gas in the Gulf of Mexico to evacuate offshore drilling rigs and temporarily to cease production. More accurate hurricane forecasts would result in fewer false alarms, ...

Timothy J. Considine; Christopher Jablonowski; Barry Posner; Craig H. Bishop

2004-09-01T23:59:59.000Z

77

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network (OSTI)

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

78

Method of producing a methane rich gas mixture from mine gas  

SciTech Connect

A pressure-swing adsorption system is used to enrich the methane content of mine gas obtained from bores around mine shafts or galleries from the customary 25 to 45% by volume to a product gas quality of 50% by volume. Using a carbon molecular sieve adsorbent, the adsorption is carried out at 5 to 8 bar and is followed by a uniflow expansion to an intermediate pressure and a counterflow expansion to a flushing pressure of 1.1 to 2 bar. Counterflow flushing is carried out with waste gas and the product gas is a mixture of the gases obtained by counterflow expansion and flushing.

Richter, E.; Giessler, K.; Knoblauch, K.; Korbacher, W.

1985-06-04T23:59:59.000Z

79

NETL: News Release - DOE's Oil and Gas Produced-Water Program Logs Key  

NLE Websites -- All DOE Office Websites (Extended Search)

July 20, 2007 July 20, 2007 DOE's Oil and Gas Produced-Water Program Logs Key Milestones Cost-Effectively Treating Coproduced Water Boosts U.S. Energy, Water Supplies MORGANTOWN, WV - A research program funded by the U.S. Department of Energy (DOE) is making significant progress in developing new ways to treat and use water coproduced with oil and natural gas. The ultimate benefit is a two-for-one solution that expects to boost domestic energy supplies while enhancing the Nation's water supply. Coproduced water-some of which occurs naturally in subsurface formations, and some that is recovered following injection of water into an oil or gas reservoir to boost production-accounts for 98 percent of all waste generated by U.S. oil and natural gas operations. Produced-water volumes average nine barrels for each barrel of oil produced. Handling, treating, and safely disposing of this produced water has been a tough, costly challenge for oil and natural gas producers for decades. Much of the produced water has high concentrations of minerals or salts that make it unsuitable for beneficial use or surface discharge. An oilfield operator often must reinject such produced water into deep formations, sometimes resorting to costly trucking of the water to deep-injection well sites specially designated by the U.S. Environmental Protection Agency.

80

Independent design review report for truck {number_sign}1 modifications for flammable gas tanks  

Science Conference Proceedings (OSTI)

The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

Wilson, G.W.

1997-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

Leininger, Thomas F. (Chino Hills, CA); Robin, Allen M. (Anaheim, CA); Wolfenbarger, James K. (Torrance, CA); Suggitt, Robert M. (Wappingers Falls, NY)

1995-01-01T23:59:59.000Z

82

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

1995-03-28T23:59:59.000Z

83

Geothermal Power Production from Brine Co-Produced from Oil and Gas Wells  

Science Conference Proceedings (OSTI)

Millions of barrels of water (brine) per day are co-produced from oil and gas wells. Currently, the oil and gas industry views this as a waste stream that costs millions of dollars per year to manage, through either treatment or disposal/reinjection. A significant percentage of the co-produced brine, however, flows at sufficient rate and temperature to generate power using a binary power plant, and this is viewed by some as a potential value stream. The value lies in that the co-produced water is "free" ...

2012-04-30T23:59:59.000Z

84

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

85

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

Science Conference Proceedings (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

86

A Review of Manufacturing Uses for Gypsum Produced by Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

Gypsum is widely used as a source material to manufacture products for building construction applications8212primarily wallboard, cement, and concrete8212and has a number of other commercial applications. The mineral is mined throughout the world (natural gypsum) and also is produced as a result of various industrial processes (synthetic gypsum). The largest source of synthetic gypsum used for manufacturing applications is flue gas desulfurization (FGD) gypsum, the product of wet flue gas desulfurization...

2006-03-07T23:59:59.000Z

87

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

88

,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Region Natural Gas Underground Storage Volume (MMcf)" Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030872m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030872m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

89

Review of the independent risk assessment of the proposed Cabrillo liquified natural gas deepwater port project.  

Science Conference Proceedings (OSTI)

In March 2005, the United States Coast Guard requested that Sandia National Laboratories provide a technical review and evaluation of the appropriateness and completeness of models, assumptions, analyses, and risk management options presented in the Cabrillo Port LNG Deepwater Port Independent Risk Assessment-Revision 1 (Cabrillo Port IRA). The goal of Sandia's technical evaluation of the Cabrillo Port IRA was to assist the Coast Guard in ensuring that the hazards to the public and property from a potential LNG spill during transfer, storage, and regasification operations were appropriately evaluated and estimated. Sandia was asked to review and evaluate the Cabrillo Port IRA results relative to the risk and safety analysis framework developed in the recent Sandia report, ''Guidance on Risk Analysis and Safety Implications of a Large Liquefied Natural Gas (LNG) Spill over Water''. That report provides a framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. This report summarizes the results of the Sandia review of the Cabrillo Port IRA and supporting analyses. Based on our initial review, additional threat and hazard analyses, consequence modeling, and process safety considerations were suggested. The additional analyses recommended were conducted by the Cabrillo Port IRA authors in cooperation with Sandia and a technical review panel composed of representatives from the Coast Guard and the California State Lands Commission. The results from the additional analyses improved the understanding and confidence in the potential hazards and consequences to people and property from the proposed Cabrillo Port LNG Deepwater Port Project. The results of the Sandia review, the additional analyses and evaluations conducted, and the resolutions of suggested changes for inclusion in a final Cabrillo Port IRA are summarized in this report.

Gritzo, Louis Alan; Hightower, Marion Michael; Covan, John Morgan; Luketa-Hanlin, Anay Josephine

2006-01-01T23:59:59.000Z

90

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil &, B. (2013). Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas, 2013 #12;Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

Yang, Zhenyu

91

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

92

Method for increasing the calorific value of gas produced by the in situ combustion of coal  

DOE Patents (OSTI)

The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

Shuck, Lowell Z. (Morgantown, WV)

1978-01-01T23:59:59.000Z

93

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

Science Conference Proceedings (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

94

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§ Karl T. Schroeder,§ and Harry M. Edenborn

2012-02-24T23:59:59.000Z

95

Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys  

Science Conference Proceedings (OSTI)

ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

2013-01-01T23:59:59.000Z

96

A nozzle array and ballast resistance for producing a glow discharge in a gas flow  

SciTech Connect

This paper describes a design for a nozzle-anode array equipped with a system of cathodes fitted at the axis of each nozzle together with liquid ballast resistors. The system is designed to produce a glow discharge in a supersonic gas flow. The circuit resistance is adjusted via the contact area between the electrode and the liquid. The nominal values of the resistances can be varied over the range 10/sup 1/-10/sup 4/..cap omega.., or set values can be produced with an accuracy of + or - 2%.

Alferov, V.I.; Bushmin, A.S.; Dmitriev, L.M.

1985-01-01T23:59:59.000Z

97

High density flux of Co nanoparticles produced by a simple gas aggregation apparatus  

Science Conference Proceedings (OSTI)

Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

2010-03-15T23:59:59.000Z

98

Use of inhibitors for scale control in brine-producing gas and oil wells  

SciTech Connect

Field and laboratory work have shown that calcium-carbonate scale formation in waters produced with natural gas and oil can be prevented by injection of phosphonate inhibitor into the formation, even if the formation is sandstone without calcite binging material. Inhibitor squeeze jobs have been carried out on DOE's geopressured-geothermal Gladys McCall brine-gas well and GRI's co-production wells in the Hitchcock field. Following the inhibitor squeeze on Gladys McCall, the well produced over five million barrels of water at a rate of approximately 30,000 BPD without calcium-carbonate scaling. Before the inhibitor squeeze, the well could not be produced above 15,000 BPD without significant scale formation. In the GRI brine-gas co-production field tests, inhibitor squeezes have been used to successfully prevant scaling. Laboratory work has been conducted to determine what types of oil field waters are subject to scaling. This research has led to the development of a saturation index and accompanying nomographs which allow prediction of when scale will develop into a problem in brine production.

Tomson, M.B.; Prestwich, S.

1986-01-01T23:59:59.000Z

99

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

100

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Proceedings of the 1999 Oil and Gas Conference: Technology Options for Producer Survival  

Science Conference Proceedings (OSTI)

The 1999 Oil & Gas Conference was cosponsored by the U.S. Department of Energy (DOE), Office of Fossil Energy, Federal Energy Technology Center (FETC) and National Petroleum Technology Office (NPTO) on June 28 to 30 in Dallas, Texas. The Oil & Gas Conference theme, Technology Options for Producer Survival, reflects the need for development and implementation of new technologies to ensure an affordable, reliable energy future. The conference was attended by nearly 250 representatives from industry, academia, national laboratories, DOE, and other Government agencies. Three preconference workshops (Downhole Separation Technologies: Is it Applicable for Your Operations, Exploring and developing Naturally Fractured Low-Permeability Gas Reservoirs from the Rocky Mountains to the Austin Chalk, and Software Program Applications) were held. The conference agenda included an opening plenary session, three platform sessions (Sessions 2 and 3 were split into 2 concurrent topics), and a poster presentation reception. The platform session topics were Converting Your Resources Into Reserves (Sessions 1 and 2A), Clarifying Your Subsurface Vision (Session 2B), and High Performance, Cost Effective Drilling, Completion, Stimulation Technologies (Session 3B). In total, there were 5 opening speakers, 30 presenters, and 16 poster presentations.

None available

2000-04-12T23:59:59.000Z

102

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

Science Conference Proceedings (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

103

Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes  

SciTech Connect

Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

Robert Lee; Liangxiong Li

2008-03-31T23:59:59.000Z

104

Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.  

Science Conference Proceedings (OSTI)

Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of produced water inputs to hypoxia will be made.

Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

2006-01-01T23:59:59.000Z

105

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

106

How to estimate worth of minor value oil, gas producing properties at public auction  

Science Conference Proceedings (OSTI)

The purpose of this paper is to evaluate the divestiture of minor value working and royalty interests (worth less than $20,000) in producing oil and gas properties through the transaction medium of no-minimum, English open outcry public auctions. Specifically, the paper seeks to answer the question, What can the seller expect to receive for his minor value properties at a public auction, knowing only how he values those properties to himself To answer this question, a mathematical model that predicts the seller's expected present worth (EPW) as a function of the seller's Securities and Exchange Commission-case book value (X{sub s}), and the winning bid value (X{sub B}) is derived from classical auction theory.

Randall, B.L. (Unit Corp., Tulsa, OK (US))

1990-12-31T23:59:59.000Z

107

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

108

In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen  

SciTech Connect

The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

Capp, John P. (Morgantown, WV); Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

109

Producing Natural Gas from Shale Opportunities and Challenges of a Major  

E-Print Network (OSTI)

agency thereof. #12;Modern Shale Gas Development in the United States: A Primer Work Performed Under DE.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 #12;MODERN SHALE GAS SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER FOREWORD This Primer on Modern Shale Gas

Nur, Amos

110

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

111

How much shale gas is produced in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

112

A full fuel-cycle analysis of energy and emissions impacts of transportation fuels produced from natural gas  

DOE Green Energy (OSTI)

Because of its abundance and because it offers significant energy and evironmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this study, the authors avaluate eight fuels produced from natural gas - compressed natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer-Tropsch diesel, and electricity--for use in five types of motor vehicles--spark-ignition vehicles, compression-ignition vehicles, hybrid electric vehicles, battery-powered electric vehicles, and fuel-cell vehicles. Because of great uncertainties associated with advances both in fuel production and vehicle technologies, they evaluate near-term and long-term fuels and vehicle technologies separately. Furthermore, for long-term options, they establish both an incremental technology scenario and a leap-forward technology scenario to address potential technology improvements. The study reveals that, in general, the use of natural gas-based fuels reduces energy use and emissions relative to use of petroleum-based gasoline and diesel fuel, although different natural gas-based fuels in different vehicle technologies can have significantly different energy and emissions impacts.

Wang, M.Q.; Huang, H.S.

2000-01-25T23:59:59.000Z

113

Long-term contracts and asset specificity revisited : an empirical analysis of producer-importer relations in the natural gas industry  

E-Print Network (OSTI)

In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the ...

Neumann, Anne

2006-01-01T23:59:59.000Z

114

A new technology for producing hydrogen and adjustable ratio syngas from coke oven gas  

Science Conference Proceedings (OSTI)

About 15 billion Nm{sup 3} coke oven gas (COG) is emitted into the air in Shanxi Province in China as air pollutants. It is also a waste of precious chemical resources. In this study, COG was purified respectively by four methods including refrigeration, fiberglass, silica gel, and molecular sieve. Purified COG was separated by a prism membrane into two gas products. One consists mainly of H{sub 2} ({gt}90 vol %) and the other is rich in CH{sub 4} ({gt}60 vol %) with their exact compositions to vary with the membrane separation pressure and outlet gas flow ratio. The gas rich in CH{sub 4} was partially oxidized with oxygen in a high-temperature fixed-bed quartz reactor charged with coke particles of 10 mm size. At 1200-1300{sup o}C, a CH{sub 4} conversion of {gt}99% could be obtained. The H{sub 2}/CO ratio in the synthesis product gas can be adjusted in the range 0.3-1.4, very favorable for further C1 synthesis. 10 refs., 17 figs., 1t ab.

Jun Shen; Zhi-zhong Wang; Huai-wang Yang; Run-sheng Yao [Taiyuan University of Technology, Taiyuan (China). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

115

Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report  

DOE Green Energy (OSTI)

Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

Fisher, R.

1995-08-01T23:59:59.000Z

116

Gas supplies of interstate natural gas pipeline companies, 1986  

SciTech Connect

The publication provides information on the total reserves, production, and deliverability capabilities of the 90 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing State and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico. 7 figs., 18 tabs.

Not Available

1987-12-18T23:59:59.000Z

117

Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers  

SciTech Connect

A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

2008-05-15T23:59:59.000Z

118

Structure and magnetic properties of Co-W clusters produced by inert gas condensation  

SciTech Connect

In this article, inert-gas condensation was used to synthesize Co-W clusters. The formation, structure, and magnetic properties of the clusters were investigated. Sub-10-nm clusters were obtained, and the structures and average sizes were strongly dependent on sputtering power. At low sputtering powers, the clusters were predominantly amorphous, while, at high sputtering power, the clusters were crystalline. X ray diffraction and transmission electron microscopy revealed clusters with hcp structure at high sputtering power. The magnetic properties were dependent on the sputtering power and temperature, with the highest coercivity of 810?Oe at 10 K for high sputtering power.

Golkar, Farhad; Kramer, Matthew; Zhang, Y.; McCallum, R.W.; Skomski, R.; Sellmyer, D.J.; Shield, J.E.

2012-03-06T23:59:59.000Z

119

Structure and magnetic properties of Co-W clusters produced by inert gas condensation  

Science Conference Proceedings (OSTI)

In this article, inert-gas condensation was used to synthesize Co-W clusters. The formation, structure, and magnetic properties of the clusters were investigated. Sub-10-nm clusters were obtained, and the structures and average sizes were strongly dependent on sputtering power. At low sputtering powers, the clusters were predominantly amorphous, while, at high sputtering power, the clusters were crystalline. X ray diffraction and transmission electron microscopy revealed clusters with hcp structure at high sputtering power. The magnetic properties were dependent on the sputtering power and temperature, with the highest coercivity of 810 Oe at 10 K for high sputtering power.

Golkar, Farhad [Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588 (United States); Kramer, M. J.; Zhang, Y.; McCallum, R. W. [Ames Laboratory, Ames, Iowa 50011 (United States); Skomski, R.; Sellmyer, D. J. [Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Shield, J. E. [Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

2012-04-01T23:59:59.000Z

120

Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst  

DOE Patents (OSTI)

This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

Sapienza, R.S.; Slegeir, W.A.

1990-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

122

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

123

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Styrofoam cups are one of many Styrofoam cups are one of many products made from styrene monomer. Exelus Inc. (Livingston, NJ), established in 2000, develops and licenses "Cleaner-by- Design" chemical technologies to produce a vast array of products and materials used in consumer goods, transportation, and food processing. Currently, the company's principal process technologies are: ExSact - a refining technology that overcomes the environmental concerns, safety hazards and rising costs associated with conventional liquid acid technologies ExSyM - energy efficient, low cost SM production technology BTG - efficient, cost-effective conversion of biomass to clean, high-octane, gasoline-compatible fuel http://www.exelusinc.com/ New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces

124

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

125

Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.

Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

2012-10-15T23:59:59.000Z

126

Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

127

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network (OSTI)

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

128

Economic benefits of R and D on gas supply technologies. [Unconventioal natural gas resources which are tight sands, Devonian shale, coal seam gas, and gas co-produced with water  

SciTech Connect

Advanced natural gas supply technologies, if successful, could lower the average cost of gas to consumers by 18% and increase the expected gas demand by 2 quads/year by the year 2000. Advanced production techniques for unconventional gas will have by far the greatest impact on future gas prices, providing economic benefits of between $200 billion and $320 billion. Advanced SNG from coal will provide only a $9 billion benefit if unconventional gas meets all of its performance targets. However, higher demand and failure of unconventional gas R and D could raise the benefits of SNG research to $107 billion. SNG research provides a hedge value that increases the likelihood of receiving a positive payoff from gas supply R and D. Changing the performance goals for SNG research to emphasize cost reduction rather than acceleration of the date of commercialization would greatly increase the potential benefits of the program. 9 references, 8 figures, 5 tables.

Darrow, K.G.; Ashby, A.B.; Nesbitt, D.M.; Marshalla, R.A.

1985-01-01T23:59:59.000Z

129

HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer  

E-Print Network (OSTI)

A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

2011-01-28T23:59:59.000Z

130

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells  

E-Print Network (OSTI)

Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water in well sites. This research has helped to develop a membrane process train for a mobile produced water treatment unit for treating oilfield produced brine for reuse. To design the process train, over 30 sets of combination tests at pilot laboratory scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater than 80 % oil removal efficiency were obtained in all these tests. Process train (pre-treatment and membrane) performance was monitored by chemical analysis of permeate and models fitting experimental data for the process. From the results, hydrocarbon rejection was analyzed; total organic carbon rejection was 47.9 %, total carbon content averaged 37.3 % rejection and total inorganic carbon rejection was at 3.66 %. BTEX removal efficiency ranged from 0.98 % to 52.7 % with the progressive pretreatment methods of using cartridge filters. The nanofiltration membrane showed significant reduction in total dissolved solids and in both anionic and cationic species. The process train is seen to follow a sequence of treatment from cartridge and oil removal filter treatment to microfiltration treatment to ultrafiltration, followed by nanofiltration for the purpose of this research. Further research still needs to be done on to determine the kind of analytical test which will give real time feedback on effectiveness of filters. In summary, the process train developed by TAMU-GPRI possesses distinct advantages in treating oilfield produced brine using membrane technology. These advantages include high quality of permeate, reduced sludge and the possibility of total recycle water systems. The small space requirement, moderate capital costs and ease of operation associated with the use of the mobile unit membrane technology also makes it a very competitive alternative to conventional technologies.

Eboagwu, Uche

2011-08-01T23:59:59.000Z

131

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

132

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

133

NETL: News Release - Providing Solutions for the Nation's Independent Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

May 22, 2003 May 22, 2003 Providing Solutions for the Nation's Independent Oil Producers Six New Projects Selected for Grants in DOE's "Technology Development with Independents" Program TULSA, OK - The U.S. Department of Energy has added six new projects to its "Technology Development with Independents" program. The program is intended to assist small independent oil producers in testing higher-risk technologies that could keep oil flowing from thousands of U.S. fields. Independent oil and gas producers operate the majority of wells in the United States. More than ever this segment of the oil and gas industry plays a major role in the recovery of our Nation's domestic oil and gas resources. Since the program began in 1995, over 57 projects have been initiated by small independent operators in 19 different states. Independent operators have contributed more than 70% of the investment needed for these projects. Sharing the risks and expenses has resulted in innovative methods and technologies which have boosted oil production and prevented the premature shut down of some of the nation's most endangered oil fields.

134

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

135

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

136

DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules  

Energy.gov (U.S. Department of Energy (DOE))

An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

137

New technology for the independent producer  

Science Conference Proceedings (OSTI)

This technology transfer conference consisted of the following six sessions: reservoir characterization; drilling, testing and completion; enhanced oil recovery; 3-d seismic and amplitude variation with offset (AVO); biotechnology for field applications; and well logging technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-07-01T23:59:59.000Z

138

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

139

Gas supplies of interstate natural gas pipeline companies 1985  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of the 91 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 7 figs., 18 tabs.

Not Available

1986-11-14T23:59:59.000Z

140

Gas supplies of interstate natural gas pipeline companies, 1984  

SciTech Connect

This publication provides information on the total reserves, production, and deliverability capabilities of 89 interstate pipeline companies. The gas supplies of interstate pipeline companies consist of the certificated, dedicated, recoverable, salable natural gas available from domestic in-the-ground reserves; gas purchased under contracts with other interstate pipeline companies; domestically produced coal gas, liquefied natural gas (LNG), and synthetic natural gas (SNG); and imported natural gas and LNG. The domestic in-the-ground reserves consist of company-owned reserves including natural gas in underground storage, reserves dedicated to or warranted under contracts with independent producers, and supplemental or short-term supplies purchased from independent producers and intrastate pipeline companies. To avoid duplicate reporting of domestic in-the-ground reserves, the volumes of gas under contract agreement between jurisdictional pipelines have been excluded in summarizing state and national reserves. Volumes contracted under agreements with foreign suppliers include pipeline imports from Canada and Mexico and LNG from Algeria. 8 figs., 18 tabs.

Price, R.

1985-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

System for treating produced water  

DOE Patents (OSTI)

A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

Sullivan, Enid J. (Los Alamos, NM); Katz, Lynn (Austin, TX); Kinney, Kerry (Austin, TX); Bowman, Robert S. (Lemitar, NM); Kwon, Soondong (Kyungbuk, KR)

2010-08-03T23:59:59.000Z

142

Autocorrelation function of the soft X-ray background produced by warm-hot gas in dark halos  

E-Print Network (OSTI)

We calculate the angular two-point autocorrelation function (ACF) of the soft X-ray background (SXRB) produced by the warm-hot intergalactic medium (WHIM) associated with dark halos, motivated primarily by searching for missing baryons and distinguishing different physical processes of the WHIM in dark halos. We employ a purely analytic model for the halo population which is completely determined by the universal density profile and the Press-Schechter mass function. We then adopt a phenomenological approach to nongravitational processes of the WHIM such as preheating and radiative cooling. It shows that the power spectra of the SXRB predicted by three WHIM models, namely, the self-similar model, preheating model and cooling model demonstrate remarkably different signatures in both amplitude and shape, with the peak locations moving from 4X10^4 for the self-similar model to a smaller value of (3-5)X10^3 when nongravitational processes are taken into account. The corresponding ACFs for preheating and cooling models become shallower too as compared with the prediction of the self-similar model. This may permit an effective probe of the physical processes of the WHIM in massive halos in conjunction with the observationally determined power spectrum or ACF of the SXRB from diffuse WHIM. However, a direct comparison of our theoretical predictions with existing data (e.g. the ACF determined from ROSAT observations) is still difficult because of the dominant contribution of AGNs in the soft X-ray sky. We discuss briefly the implication of our results for resolving the missing baryon problem in the local universe.

Xiang-Ping Wu; Yan-Jie Xue

2003-02-21T23:59:59.000Z

143

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

144

Natural gas monthly, October 1991  

SciTech Connect

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. 16 figs., 33 tabs.

Not Available

1991-11-05T23:59:59.000Z

145

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

146

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

147

Long-Term Contracts and Asset Specificity Revisited –An Empirical Analysis of Producer-Importer Relations in the Natural Gas Industry  

E-Print Network (OSTI)

Theoretical Perspective, Cambridge, CMI Working Paper. 16 Neumann, Anne, and Christian von Hirschhausen (2004) Less Long Term Gas to Europe? A Quantitative Analysis of European Long Term Gas-Supply Contracts, Zeitschrift für Energiewirtschaft, 28...

Neumann, Anne; von Hirschhausen, Christian

148

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 152 170 165 195 224 Production (million cubic feet)...

149

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 280 300 225 240 251 Production (million cubic feet)...

150

Independent directors in China.  

E-Print Network (OSTI)

??This thesis examines the development of the independent director system in China. The newly introduced independent director system is viewed as a revolutionary change to… (more)

Ma, Lijun

2009-01-01T23:59:59.000Z

151

Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

In this project, simulated gasifier-product streams were contacted with the zinc titanate desulfurization sorbent in a bench-scale atmospheric fluidized-bed reactor at temperatures ranging from 538 to 750 {degree}C (1000 to 1382 {degree}F). The first set of experiments involved treating a medium-Btu fuel gas (simulating that of a ``Texaco`` oxygen-blown, entrained-bed gasifier) containing 1.4 percent H{sub 2}S and HCl concentrations of 0, 200, and 1500 ppmv. The second experimental set evaluated hot-gas desulfurization of a low-Btu fuel gas (simulating the product of the ``U-Gas`` air-blown gasifier), with HCl concentrations of 0, 200, and 800 ppmv. These operating conditions were typical of the gas-treatment requirements of gasifiers fueled by Illinois basin coals containing up to 0.6 percent chlorine. The results of the experiments at 538 and 650 {degree}C at all the HCl concentrations revealed no deleterious effects on the capability of the sorbent to remove H{sub 2}S from the fuel gas mixtures. In most cases, the presence of the HCl significantly enhanced the desulfurization reaction rate. Some zinc loss, however, was encountered in certain situations at 750 {degree}C when low-steam operating conditions were present. Also of interest, a portion of the incoming HCl was removed from the gas stream and was retained permanently by the sorbent. This behavior was examined in more detail in a limited set of experiments aimed at identifying ways to modify the sorbents composition so that the sorbent could act as a simultaneous desulfurization and dechlorination agent in the hot-gas cleanup process.

O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Research Triangle Park, NC (United States)

1992-12-31T23:59:59.000Z

152

Army Energy Security and Independence  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARMY ARMY ENERGY SECURITY AND INDEPENDENCE Leadership Ownership Partnership 19 NOV 2008 Don Juhasz, PE, CEM CHIEF ARMY ENERGY POLICY Army Energy Security - "The Way Ahead" 2 ARMY ENERGY SECURITY AND INDEPENDENCE Leadership Ownership Partnership Energy Costs Driven by Global Situation OIL & GAS LIQUIDS Army Utilities Energy Use * 35% of DoD consumption * 21% of Fed government use * 11% of installations' budget * Commodity Prices increasing 8 - 20% annually Consumption Climbs as new sources decrease Oil production is primarily OCONUS and decreasing Our consumption is out of balance with our Reserves New Sources Dwindling - Forcing our reliance on Unstable governments 3 ARMY ENERGY SECURITY AND INDEPENDENCE Leadership Ownership Partnership Oil Field Forecasts Peak Year Oil Expert

153

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

154

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

155

Targeted Technology Transfer to US Independents  

Science Conference Proceedings (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

E. Lance Cole

2009-09-30T23:59:59.000Z

156

Combustion modeling in advanced gas turbine systems  

DOE Green Energy (OSTI)

Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K. [Brigham Young Univ., Provo, UT (United States). Advanced Combustion Engineering Research Center

1995-12-31T23:59:59.000Z

157

A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate  

Science Conference Proceedings (OSTI)

Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

Berg, John M. [Los Alamos National Laboratory; Narlesky, Joshua E. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

158

The Independent Technical Analysis Process  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.

Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.; Johnson, Gary E.

2007-04-13T23:59:59.000Z

159

Process for producing hydrogen  

SciTech Connect

A process for producing hydrogen by an electrolysis of water with an aqueous solution of an alkali hydroxide is provided. It is to use an electrolytic cell prepared by bonding a gas and liquid permeable anode on one surface of a cation-exchange membrane of a fluorinated polymer and a gas and liquid permeable cathode on the other surface of the membrane. An economical metal can be used as the substance for the electrolytic cell. Hydrogen can be produced at a low voltage in stable for a long time.

Oda, Y.; Morimoto, T.; Suzuki, K.

1984-08-14T23:59:59.000Z

160

International Natural Gas Workshop  

U.S. Energy Information Administration (EIA)

International Natural Gas Workshop U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 and a member of ...

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

... using a gas fermentation process to produce an estimated eight million gallons of cellulosic ethanol from citrus fruit, vegetable, ... Carbon ...

162

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

163

Carbon dioxide laser with an e-beam-initiated discharge produced in the working gas mixture at a pressure up to 5 atm  

SciTech Connect

A high-pressure CO{sub 2} laser with a discharge initiated by an electron beam of sub-nanosecond duration in the laser gas mixture at a pressure up to 5 atm is fabricated. For the 20-ns pulses the energy from the active volume {approx} 4 cm{sup 3} amounted to 40 mJ. The laser operation at a pulse repetition rate up to 5 Hz is demonstrated. In the gas mixture CO{sub 2}:N{sub 2}:He = 1:1:6 at a pressure 5 atm, the specific energy deposition of {approx} 0.07 J cm{sup -3} atm{sup -1} is obtained in the process of a non-self-sustained discharge with ionisation amplification.

Orlovskii, Viktor M; Alekseev, S B; Tarasenko, Viktor F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2011-11-30T23:59:59.000Z

164

Produced water associated with the  

E-Print Network (OSTI)

Summary: Produced water associated with the oil and gas (O&G) industry annually introduces hundreds of billions of gallons of brackish wastewa- ter in the U.S. alone. Most produced water is highly saline companies pay to have this contaminated produced water trucked to reinjection sites for disposal--an expen

165

Probabilistic human health risk assessment from offshore produced water.  

E-Print Network (OSTI)

??Offshore oil and gas facilities are producing huge amounts of produced water during the production. The produced water contains formation water, injected water, small volumes… (more)

Chowdhury, Mohammad Khaled H., 1979-

2009-01-01T23:59:59.000Z

166

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

167

From Investor-owned Utility to Independent Power Producer  

E-Print Network (OSTI)

L G & E Energy Corporation Xcel Energy IPP Y N Y Y Y Y Y Y YAmerican Electric Power Co Ine Xcel Energy IPP Y Y Y N Y Y NPower Co Ine UtiliCorp United Xcel Energy American Electric

Ishii, Jun

2003-01-01T23:59:59.000Z

168

From Investor-owned Utility to Independent Power Producer  

E-Print Network (OSTI)

generation supply, three (Duke Energy N o r t h A m e r i cCompany PG&E Exelon Duke Energy ConEd Edison InternationalDominion Resources Inc Duke Energy Public Serv Enterprise

Ishii, Jun

2003-01-01T23:59:59.000Z

169

Bridging the Gap between Chemical Flooding and Independent Oil Producers  

SciTech Connect

Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

Stan McCool; Tony Walton; Paul Whillhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmed; Peter Senior

2012-03-31T23:59:59.000Z

170

Saudi Arabia's Oil Minister: Address to US independent producers  

Science Conference Proceedings (OSTI)

The issue of Energy Detente is designed to promote better understanding of the Organization of Petroleum Exporting Countries (OPEC) through its self-image and its view of the world. The OPEC News Agency coverage and other OPEC materials are tapped to illustrate some key points in a speech about energy security from Saudi Arabia's Oil Minister. This paper from His Excellency Ibrahim M. Nazer is offered in an effort to share his message from the world's largest oil exporter to the world's largest oil consumer. This issue also provides selected statistics and statements from OPEC, both to put Saudi Arabia's statements in context of its commitment to OPEC and to reveal the striking similarity between the country's and the organization's positions. This issue also contains the following: (1) ED Refining Netback Data Series for the U.S. Gulf and West Coasts, Rotterdam, and Singapore as of March 23, 1990; Hemisphere, March 1990 edition. 6 figs., 5 tabs.

Not Available

1990-04-06T23:59:59.000Z

171

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Natural Gas Storage Report; Natural Gas Weekly Update; Thank You. We welcome your comments or suggestions (optional). EIA - 1000 Independence Avenue, SW, Washington ...

172

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,442 22,117 23,554 18,774 16,718 Production...

173

Number of Gas and Gas Condensate Wells  

Annual Energy Outlook 2012 (EIA)

2004 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year... 341,678 373,304 387,772 393,327 405,048 Production...

174

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ... 1,169 1,244 1,232 1,249 1,272 Production (million...

175

ORISE: Independent verification  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent verification Independent verification ORISE techinician performs environmental scanning The Oak Ridge Institute for Science and Education (ORISE) performs independent environmental assessments and verification to determine the effectiveness of radiological cleanup at decontamination and decommissioning (D&D) projects across the United States. Since 1980, ORISE has performed independent verification at more than 500 sites in 42 states and the District of Columbia. As the primary independent verification contractor for all U.S. Department of Energy (DOE) cleanup projects and the only verification contractor for the U.S. Nuclear Regulatory Commission (NRC), we validate that soil, water and structures are within established state and federal release criteria, and can be safely designated for public use.

176

Natural gas monthly, July 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

NONE

1995-07-21T23:59:59.000Z

177

Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification  

Science Conference Proceedings (OSTI)

The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

2010-06-04T23:59:59.000Z

178

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

179

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids ...  

U.S. Energy Information Administration (EIA)

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 ... produce unconventional gas economically. Production.

180

Impact of injecting inert cushion gas into a gas storage reservoir.  

E-Print Network (OSTI)

??Underground natural gas storage is a process which ensures constant supply of natural gas by storing the excess gas produced and quickly supply when required.… (more)

Lekkala, Sudheer R.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, ... Total (Gross Withdrawals ... natural gas wells divided by the number of producing wells, ...

182

Independent technical review, handbook  

SciTech Connect

Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction, and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.

Not Available

1994-02-01T23:59:59.000Z

183

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

184

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

185

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Coalbed Natural Gas Produced-Water Treatment Using Gas Hydrate Formation at the Wellhead DE-FC26-05NT15551...

186

Definition: Co-Produced Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water...

187

IEAB Independent Analysis Board  

E-Print Network (OSTI)

. On the Lemhi River, water transactions projects stipulated a minimum instream flow. Irrigators maintain be granted to public entities for future beneficial uses or to maintain minimum stream flows or quality­Effectiveness of Improved Irrigation Efficiency and Water Transactions for Instream Flow for Fish1 Independent Economic

188

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

189

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

can be exported to other CBM areas in the US. Benefits The opportunity to resolve the oil and gas industrys growing problem with producing, handling, and treating produced...

190

Independent Oversight Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Program Independent Oversight Program Home Office of Security and Cyber Evaluations Office of Safety and Emergency Management Evaluations Guidance Documents › Security and Cyber Evaluations › Safety and Emergency Management Evaluations Reports › Physical Security › Cyber Security › Safety and Emergency Management Evaluations Reports › Prior Environment, Safety and Health Evaluations Reports ›Prior Emergency Management Evaluations Reports Contact Us HSS Logo Welcome to the Independent Oversight Program The Independent Oversight Program is implemented by the Office of Health, Safety and Security's (HSS) Office of Enforcement and Oversight. The mission of this program is to provide DOE line management, Congress, and other stakeholders with an independent evaluation of the effectiveness of DOE policy and line management performance in safety and security, and other critical areas as directed by the Secretary of Energy. The Office of Enforcement and Oversight performs this mission by conducting activity, facility, site, and Department-wide performance-based assessments that are designed to verify that the Department's safeguards and security interests are protected, that the Department can effectively respond to emergencies, and that Departmental employees, the public, and the environment are protected from hazardous operations and materials. These assessments complement line management's responsibility for security and safety program oversight and self-assessments. The outcome of these assessments are reports that provide information and analysis regarding the effectiveness, vulnerabilities, and trends in DOE safety and security programs, and identify issues requiring corrective action as well as recommended areas for improvement.

191

Treatment of Oilfield Produced Water with Dissolved Air Flotation.  

E-Print Network (OSTI)

??Produced water is one of the major by products of oil and gas exploitation which is produced in large amounts up to 80% of the… (more)

Jaji, Kehinde Temitope

2012-01-01T23:59:59.000Z

192

Biological pretreatment of produced water for reuse applications.  

E-Print Network (OSTI)

??Co-produced water from the oil and gas industry represents a significant waste stream in the United States. Produced water is characterized by high levels of… (more)

Kwon, Soondong, 1973-

2008-01-01T23:59:59.000Z

193

New Process for Producing Styrene Cuts Costs, Saves Energy, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse Gas Emissions New Process for Producing Styrene Cuts Costs, Saves Energy, and Reduces Greenhouse...

194

DOE Seeks Industry Proposals for Feasibility Study to Produce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce...

195

Delivery of Hydrogen Produced from Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify and evaluate the most promising approaches and options for economic storage, handling and delivery of hydrogen. Office of Fossil Energy Milestone * 2006: Define a...

196

Independent Health Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Health Studies Independent Health Studies A study of cancer rates within a 15-mile radius of Brookhaven National Laboratory found no relationship between Brookhaven Lab and cancer. Suffolk County Task Force Report (PDF) New York State Department of Health Cancer Registry Report (PDF) Report of the Rhabdomyosarcoma Task Force (PDF) According to a 1998 report by the Suffolk County Environmental Task Force on the Laboratory, "cancer rates of all types of cancers [the task force] studied are not elevated near BNL" for the years 1979-93. Task Force Chair Roger Grimson, a biostatistician and an associate professor at the State University of New York at Stony Brook, concluded in a Newsday article at that time, "There is no link between Brookhaven National Lab and

197

Targeted Technology Transfer to US Independents  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

198

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

199

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

200

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

202

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

203

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

204

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

205

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

206

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

207

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

208

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

209

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

210

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

211

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

212

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

213

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

214

Efficient independent component analysis  

E-Print Network (OSTI)

Independent component analysis (ICA) has been widely used for blind source separation in many fields such as brain imaging analysis, signal processing and telecommunication. Many statistical techniques based on M-estimates have been proposed for estimating the mixing matrix. Recently several nonparametric methods have been developed but in-depth analysis on asymptotic efficiency has not been available. We analyze ICA using semiparametric theories and propose a straightforward estimate based on the efficient score function by using B-spline approximations. The estimate is asymptotically efficient under moderate conditions and exhibits better performance than standard ICA methods in a variety of simulations.

Chen, Aiyou

2006-01-01T23:59:59.000Z

215

Natural Gas Demand: New Domestic Uses and LNG Exports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Natural Gas Demand: New Domestic Uses and LNG Exports Natural Gas Demand Outlook

216

Natural Gas Data Collection and Estimation  

Reports and Publications (EIA)

This presentation to the Oklahoma Independent Petroleum Association gives an overview of the EIA natural gas data collection system, Oklahoma natural gas statistics, recent changes in monthly natural gas production statistics, and the May 2010 short-term natural gas forecast. The presentation focuses on the EIA-914, the "Monthly Natural Gas Production Report," and recent changes to this survey's estimation methodology.

Information Center

2010-06-09T23:59:59.000Z

217

Auctions to gas transmission access: The British experience  

E-Print Network (OSTI)

Transmission System (NTS) has evolved along with changes in the national gas industry and accompanying regulation. In this paper we will use the natural experiment observed in Great Britain to test the hypothesis that: auctioning of well defined access rights... with independent shippers,3 and BG was required to provide transmission facilities. 3 A shipper is anyone who requires capacity on the NTS. Shippers are usually producers, but the term would also...

McDaniel, Tanga; Neuhoff, Karsten

2004-06-16T23:59:59.000Z

218

dry natural gas production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Dry natural gas production: The process of producing consumer-grade natural gas. Natural gas withdrawn from reservoirs is reduced by volumes used at the production ...

219

Energy Information Administration / Natural Gas Annual 2006 138  

Gasoline and Diesel Fuel Update (EIA)

8 Table 64. Summary Statistics for Natural Gas - Pennsylvania, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 40,830...

220

Energy Information Administration / Natural Gas Annual 2006 72  

Gasoline and Diesel Fuel Update (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 23,554...

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration / Natural Gas Annual 2005 72  

Annual Energy Outlook 2012 (EIA)

2 Table 31. Summary Statistics for Natural Gas - Colorado, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ... 22,117...

222

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

223

INDEPENDENT COST REVIEW (ICR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

224

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Produced Water Treatment Using Gas Hydrate Formation at the Wellhead Authors: John and Deidre Boysen Venue:...

225

Gas laser  

SciTech Connect

According to the invention, the gas laser comprises a housing which accommodates two electrodes. One of the electrodes is sectional and has a ballast resistor connected to each section. One of the electrodes is so secured in the housing that it is possible to vary the spacing between the electrodes in the direction of the flow of a gas mixture passed through an active zone between the electrodes where the laser effect is produced. The invention provides for a maximum efficiency of the laser under different operating conditions.

Kosyrev, F. K.; Leonov, A. P.; Pekh, A. K.; Timofeev, V. A.

1980-08-12T23:59:59.000Z

226

Appraisal Process Protocols, Independent Oversight - November...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appraisal Process Protocols, Independent Oversight - November 2012 Appraisal Process Protocols, Independent Oversight - November 2012 November 2012 Updated Independent Oversight...

227

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

228

Natural Gas Consumption (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

229

Racing for conditional independence inference  

Science Conference Proceedings (OSTI)

In this article, we consider the computational aspects of deciding whether a conditional independence statement t is implied by a list of conditional independence statements L using the implication related to the method of structural imsets. ...

Remco R. Bouckaert; Milan Studený

2005-07-01T23:59:59.000Z

230

Independent Oversight Program - Guidance Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Home Sub Offices Security Evaluations Cyber Security Evaluations Emergency Management Oversight Environment, Safety and Health Evaluations...

231

INDEPENDENT ELECTRICITY SYSTEM OPERATOR  

E-Print Network (OSTI)

The Board of Directors of the Independent Electricity System Operator (IESO) has adopted this Charter as part of its commitment to high standards of corporate governance in pursuing the objects of the IESO set out in the Electricity Act, 1998. This Charter describes the Board’s mandate, accountability and composition, and sets out a specific Code of Conduct for the Board. More detailed information about the IESO’s corporate governance is set out in the Governance and Structure By?law and in corporate policies, notably the Terms of Reference for a Director. The activities of the Board and its Committees are formally recorded in minutes of meetings. MANDATE The Board shall manage and supervise the management of the IESO’s business and affairs and shall provide insight, input into and oversight of the development of the IESO’s strategic direction. More specifically, the Board’s mandate includes: periodically reviewing with Management: the strategic environment; the emergence of new risks and opportunities and the implications of such risks and opportunities for the IESO’s strategic direction; and the establishment and operation of the IESO?administered markets to promote the purposes of the Electricity Act, 1998 including, without limitation, making market rules and amendments thereto; approving strategic plans that take into account the IESO’s major risks and opportunities and overseeing the management of those risks; 2 appointing, monitoring and assessing the performance of the Chief Executive

unknown authors

2009-01-01T23:59:59.000Z

232

Public Comment re Section 934 of the Energy Independence and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of 2007 Public Comment by the Uranium Producers of America (UPA) re Section 934 of the Energy Independence and Security Act of 2007 (EISA). The UPA urges DOE to clarify the...

233

NTRM Producer Information  

Science Conference Proceedings (OSTI)

... NTRM ® Producer Information. An NTRM ® (NIST Traceable Reference Material) is a commercially produced reference ...

2012-03-21T23:59:59.000Z

234

Algeria: Ten Years of Independence  

E-Print Network (OSTI)

coastline of Algeria as refineries, pipe- lines and portsa large ethelene plant. Refineries which liquify gas and oil

Gallagher, Nancy

1972-01-01T23:59:59.000Z

235

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

236

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

237

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

238

Application of microturbines to control emissions from associated gas  

SciTech Connect

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

239

PROCESS FOR PRODUCING URANIUM HALIDES  

DOE Patents (OSTI)

A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

Murphree, E.V.

1957-10-29T23:59:59.000Z

240

Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur  

Science Conference Proceedings (OSTI)

A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

Diemer, P.; Brake, W.; Dittmer, R.

1985-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

E-Print Network (OSTI)

during the core recovery, gas and water are produced.Gas produced will displace some water, reducing the density

Kneafsey, Timothy J.

2010-01-01T23:59:59.000Z

242

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

243

Table 1.14 Sales of Fossil Fuels Produced on Federal and ...  

U.S. Energy Information Administration (EIA)

1 Includes those quantities for which royalties were paid based on the value of the natural gas plant liquids produced. Additional quantities of natural gas plant ...

244

Independent Oversight Appraisal Process Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF ENFORCEMENT AND OVERSIGHT OFFICE OF ENFORCEMENT AND OVERSIGHT INDEPENDENT OVERSIGHT PROGRAM APPRAISAL PROCESS PROTOCOLS November 2012 Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Program Appraisal Process Protocols Preface November 2012 i Preface The Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), is responsible for implementing an Independent Oversight Program for safety and security within the U.S. Department of Energy (DOE) in accordance with DOE Orders 227.1, Independent Oversight Program, and 226.1B, Implementation of Department of Energy Oversight Policy. Effective oversight, including independent oversight, of DOE Federal and contractor operations is an integral element of the

245

Independent Oversight Appraisal Process Protocols  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF ENFORCEMENT AND OVERSIGHT OFFICE OF ENFORCEMENT AND OVERSIGHT INDEPENDENT OVERSIGHT PROGRAM APPRAISAL PROCESS PROTOCOLS November 2012 Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Program Appraisal Process Protocols Preface November 2012 i Preface The Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), is responsible for implementing an Independent Oversight Program for safety and security within the U.S. Department of Energy (DOE) in accordance with DOE Orders 227.1, Independent Oversight Program, and 226.1B, Implementation of Department of Energy Oversight Policy. Effective oversight, including independent oversight, of DOE Federal and contractor operations is an integral element of the

246

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

247

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

248

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

249

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

250

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

251

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

252

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

253

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

254

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

255

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

256

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

257

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

258

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

259

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

260

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

industry in protecting our environment while exploring for and producing natural gas and oil. They are joined by Anadarko and other industry sponsors from GPRI to identify and...

262

Natural gas monthly, August 1997  

SciTech Connect

This report presents information on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported.

NONE

1997-08-01T23:59:59.000Z

263

The Mechanical Property Response of Turbine Disks Produced ...  

Science Conference Proceedings (OSTI)

turbine under extreme operating conditions. In this investigation, the powder UDIMETB Alloy 720 was produced using an advanced gas atomization nozzle in.

264

Treatment of produced water using chemical and biological unit operations.  

E-Print Network (OSTI)

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

265

DOE Seeks Industry Proposals for Feasibility Study to Produce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to...

266

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

267

Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference herein to any specific commercial product, process, or service by Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

268

Sequence independent amplification of DNA  

DOE Patents (OSTI)

The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

Bohlander, S.K.

1998-03-24T23:59:59.000Z

269

Sequence independent amplification of DNA  

DOE Patents (OSTI)

The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

Bohlander, Stefan K. (Chicago, IL)

1998-01-01T23:59:59.000Z

270

Advanced Biofuels Workshop U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 U.S. Energy Information Administration 1000 Independence Ave. SW, Room 2E-069 Washington, DC 20585 August 1, 2012 Presenter Bios (Arranged in presentation order) Anthony Radich Tony Radich is an economist with the Energy Information Administration. He is currently a member of the Biofuels and Emerging Technologies Team in the Petroleum, Natural Gas and Biofuels Analysis group of the Office of Energy Analysis. Dr. Radich has worked on biofuels issues since he joined EIA in 2001. He developed the cost models for the production of ethanol and biodiesel, the National Energy Modeling System, which is used to produce the EIA Annual Energy Outlook. He has served as a contributing author to numerous EIA publications, including the Annual Energy Outlook and the Short-Term

271

Independent Oversight Review, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

272

Alternative Fuels Data Center: Natural Gas Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Delicious Rank Alternative Fuels Data Center: Natural Gas Benefits on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Benefits on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Benefits and Considerations Compressed and liquefied natural gas are clean, domestically produced alternative fuels. Using these fuels in natural gas vehicles increases

273

Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid  

DOE Patents (OSTI)

A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

Roes, Augustinus Wilhelmus Maria (Houston, TX); Mo, Weijian (Sugar Land, TX); Muylle, Michel Serge Marie (Houston, TX); Mandema, Remco Hugo (Houston, TX); Nair, Vijay (Katy, TX)

2009-09-01T23:59:59.000Z

274

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network (OSTI)

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source… (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

275

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

276

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

277

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

278

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

279

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

280

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

282

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

283

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

284

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

285

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

286

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

287

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

288

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

289

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

290

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

291

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

292

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

293

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

294

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

295

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

296

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

297

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

298

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

299

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

300

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

302

Resolving discrepancies in predicting critical rates in low pressure stripper gas wells.  

E-Print Network (OSTI)

??The minimum gas rate for unloading liquids from a gas well has been the subject of much interest, especially in old gas producing fields with… (more)

Awolusi, Olufemi S.

2005-01-01T23:59:59.000Z

303

ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION  

E-Print Network (OSTI)

and to locate the best locations to drill for them. The tight gas sands of the Piceance Basin have long been understanding of the way that fractures have controlled the production of gas in these tight gas sands an east to west trend of tight gas sand fields that produce a substantial amount of the total gas produced

304

METHOD AND APPARATUS FOR PRODUCING NEUTRONS AND OTHER RADIATIONS  

DOE Patents (OSTI)

A neutron source is designed which comprises a toroidal chamber contained deuterium or tritium gas, means for ionizing said gas, primary coils located around said chamber for inducing an electrical current in said gas having a value high enough to produce a pinch effect, and electrical coil nmeans for preventing the outward radial drift of the pinched discharge current. (AEC)

Tuck, J.L.

1962-06-01T23:59:59.000Z

305

Independent Components Of Odour Signals  

E-Print Network (OSTI)

If two independent observations or processes are measured with the same apparatus, the inherent nature of the measuring device will in many cases introduce a dependency between the two recorded processes object to inspection. In this paper a suggestion of how Independent Component Analysis (ICA) can be used to identify such device dependencies and in turn give an estimated reconstruction of the observations without the correlation between signals introduced by the apparatus. The procedure is illustrated with the use of an "electronic nose" used to sample odours from mixtures of alcohol solutions. It is shown that ICA as a novel tool in the analysis of odour signals can extract the independent odour sources and give acceptable estimates of the ratio with which the alcohol solutions were mixed with two different approaches.

Martin Kermit Oliver; Oliver Tomic T

2001-01-01T23:59:59.000Z

306

Method and apparatus for producing thermal vapor stream  

DOE Patents (OSTI)

Method and apparatus for producing a thermal vapor stream for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, including a pressure vessel containing a high pressure combustion chamber for producing a heating gas for introduction into a heating gas injector. The heating gas injector is partly immersed in a steam generating section of the pressure vessel such that the heating gas is passed through the steam generating section to produce steam and combustion products which are directed between the pressure vessel and the combustion chamber for simultaneously cooling of the combustion chamber by further heating of the steam and combustion gases.

Cradeur, Robert R. (Spring, TX); Sperry, John S. (Houston, TX); Krajicek, Richard W. (Sugar Land, TX)

1979-01-01T23:59:59.000Z

307

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

308

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

309

Combined plant having steam turbine and gas turbine connected by single shaft  

SciTech Connect

A combined plant including a gas turbine, a steam turbine and a waste heat recovery boiler using exhaust gases of the gas turbine as a heat source for producing steam serving as a drive source of the steam turbine further includes an ancillary steam source separate from and independent of the waste heat recovery boiler. At the time of startup of the plant, steam from the ancillary steam source is introduced into the steam turbine until the conditions for feeding air to the waste heat recovery boiler are set, to thereby avoid overheating of the steam turbine due to a windage loss.

Okabe, A.; Kashiwahara, K.; Urushidani, H.

1985-05-28T23:59:59.000Z

310

Drilling often results in both oil and natural gas production ...  

U.S. Energy Information Administration (EIA)

In 2011 and 2012, more than 50% of new wells produced both oil and natural gas. Despite this phenomenon, many traditional methods for estimating oil and natural gas ...

311

Hydrogen and Elemental Carbon Production from Natural Gas and ...  

... hydrogen fuel Applications and Industries Transportation and/or manufacturing industries; Industrial gas producers and/or oil and gas industry. ...

312

Energy Information Administration / Natural Gas Annual 2009 120  

Annual Energy Outlook 2012 (EIA)

0 Table 54. Summary Statistics for Natural Gas - Nebraska, 2005-2009 Number of Producing Gas Wells at End of Year ... 114 114 186 322...

313

Energy Information Administration / Natural Gas Annual 2009 132  

Annual Energy Outlook 2012 (EIA)

2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ... 0 0 0 0 0...

314

Energy Information Administration / Natural Gas Annual 2009 160  

Annual Energy Outlook 2012 (EIA)

0 Table 74. Summary Statistics for Natural Gas - Washington, 2005-2009 Number of Producing Gas Wells at End of Year ... 0 0 0 0 0...

315

Energy Information Administration / Natural Gas Annual 2009 122  

Annual Energy Outlook 2012 (EIA)

2 Table 55. Summary Statistics for Natural Gas - Nevada, 2005-2009 Number of Producing Gas Wells at End of Year ... 4 4 4 R 0 0...

316

Corrosion of Materials in the Oil and Gas Industry  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Corrosion and Corrosion Protection of Materials in the Oil and Gas ... to be observed in steel equipment used to produce sour oil and gas.

317

Energy Information Administration / Natural Gas Annual 2009 142  

Gasoline and Diesel Fuel Update (EIA)

2 Table 65. Summary Statistics for Natural Gas - Pennsylvania, 2005-2009 Number of Producing Gas Wells at End of Year ... 46,654 49,750...

318

Withdrawals of Liquefied Natural Gas from Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

319

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

studies have provided strong indications that it is possible to produce large volumes of gas from natural hydrate deposits at high rates for long times from gas hydrate...

320

ANNUAL QUANTITY AND VALUE OF NATURAL GAS PRODUCTION REPORT FORM ...  

U.S. Energy Information Administration (EIA)

present in reservoir natural gas are water vapor, carbon dioxide, hydrogen sulfide, ... Shale Gas: Methane and other gases produced from wells that are open

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dissolution of inert gas in a metal alloy  

DOE Patents (OSTI)

A metal powder is produced by inert gas atomization processes. The atomizon process is regulated to provide a preselected level of inert gas alloyed in the metal.

Flinn, John E. (Idaho Falls, ID); Korth, Gary E. (Blackfoot, ID); Wright, Richard N. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Loop, Richard B. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

322

Beeping a maximal independent set  

Science Conference Proceedings (OSTI)

We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of ...

Yehuda Afek; Noga Alon; Ziv Bar-Joseph; Alejandro Cornejo; Bernhard Haeupler; Fabian Kuhn

2011-09-01T23:59:59.000Z

323

Natural gas monthly, November 1993  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-11-29T23:59:59.000Z

324

Natural gas monthly, April 1995  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 31 tabs.

NONE

1995-04-27T23:59:59.000Z

325

Natural gas monthly, June 1993  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-06-22T23:59:59.000Z

326

Natural gas monthly, July 1998  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

NONE

1998-07-01T23:59:59.000Z

327

Natural gas monthly: December 1993  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. Articles are included which are designed to assist readers in using and interpreting natural gas information.

Not Available

1993-12-01T23:59:59.000Z

328

Natural gas monthly, June 1999  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 25 tabs.

NONE

1999-06-01T23:59:59.000Z

329

Natural gas monthly: September 1996  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 24 tabs.

NONE

1996-09-01T23:59:59.000Z

330

Natural gas monthly, July 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is entitled ``Intricate puzzle of oil and gas reserves growth.`` A special report is included on revisions to monthly natural gas data. 6 figs., 24 tabs.

NONE

1997-07-01T23:59:59.000Z

331

Natural gas monthly, September 1993  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1993-09-27T23:59:59.000Z

332

Gas from Veggies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas from Veggies Gas from Veggies Name: Julie Location: N/A Country: N/A Date: N/A Question: Im doing my science experiment to see if the processing of food produces gas. I was told that you do this by getting the vegitables, grounding them up, mixing them with vinegar and putting it in a test tube and then place a balloon over it to see if gas is produced. First I tried mixing the foods (Im using canned, frozen and fresh broccoli first to see if it works) with the vinegar and put it in a test tube and I placed a balloon over it but no gas was produced. I then tried it again in heat and again in the cold and it still wouldnt work. I tried the experiment again and pureed the broccoli and mixed it with the vinegar, put the balloon over it and still no gas was produced. What could I be doing wrong? Im using 5% acidity vineger because that's the only kind I could find. Do I need a stronger one? Where can I get a stronger one? How much vinegar should I be using? How much of the broccoli should I be using? Do I have to do something to the broccoli first? Please try to answer my questions I really need help.

333

Natural Gas Market Regionalization and Implications  

Science Conference Proceedings (OSTI)

Natural gas producers, pipeline companies, electric utilities, and other end users all have a stake in understanding the dynamics of regional gas prices. This is especially true with evolving linkages between natural gas and power prices. This report addresses problems that appeared in the natural gas market during the winter of 1995/96 and again in 1996/97 when regional gas prices departed dramatically from their historic norms. Are regional gas price relationships becoming increasingly unpredictable?

1998-05-13T23:59:59.000Z

334

EIA - Natural Gas Pipeline Network - Intrastate Natural Gas Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Intrastate Natural Gas Pipeline Segment Intrastate Natural Gas Pipeline Segment About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Intrastate Natural Gas Pipeline Segment Overview Intrastate natural gas pipelines operate within State borders and link natural gas producers to local markets and to the interstate pipeline network. Approximately 29 percent of the total miles of natural gas pipeline in the U.S. are intrastate pipelines. Although an intrastate pipeline system is defined as one that operates totally within a State, an intrastate pipeline company may have operations in more than one State. As long as these operations are separate, that is, they do not physically interconnect, they are considered intrastate, and are not jurisdictional to the Federal Energy Regulatory Commission (FERC). More than 90 intrastate natural gas pipelines operate in the lower-48 States.

335

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

SciTech Connect

Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

Oldenburg, Curtis M.

2003-04-08T23:59:59.000Z

336

Plants producing DHA  

Science Conference Proceedings (OSTI)

CSIRO researchers published results in November 2012 showing that the long-chain n-3 fatty acid docosahexaenoic acid (DHA) can be produced in land plants in commercially valuable quantities. Plants producing DHA inform Magazine algae algal AOCS bi

337

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

injected oil, gas and water, produced/injected produced/injected oil, gas and water, produced oil, gas (at welland cyclically produced oil/water/steam (at well head) Steam

Jordan, Preston D.

2008-01-01T23:59:59.000Z

338

Oil & Natural Gas Technology DOE Award No.: FWP 49462  

E-Print Network (OSTI)

Used by Marcellus Shale Gas Producers Submitted by: John A. Veil Argonne National Laboratory Argonne, and gas shales. Figure 1 shows EIA projections of the source of natural gas supplies through 2030 productive oil and gas activities in the country today are shale gas plays. Figure 1 ­ U.S. Natural Gas

Boyer, Elizabeth W.

339

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2013 October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from October 21-31, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff reviewing the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the WTP Low Activity Waste (LAW) Melter and Off-gas systems, observed a limited portion of the HA for the

340

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cuba: Energy, Sustainability and Independence  

NLE Websites -- All DOE Office Websites (Extended Search)

Cuba: Energy, Sustainability and Independence Cuba: Energy, Sustainability and Independence Speaker(s): Victor Bruno Henriquez Perez Date: May 10, 2001 - 12:00pm Location: b Seminar Host/Point of Contact: Kristina LaCommare Cubasolar (http://www.cubasolar.cu) is Cuba's NGO of over 400 scientists researching and implementing projects in energy efficiency and conservation as well as renewable energy. This year Cubasolar wil receive a Global 500 award from the United Nations Environmental Program for its work in raising energy consciousness in Cuba and other nations of the developing world. Since its founding in 1994, Cubasolar has installed solar panels on over 300 family doctor clinics in rural Cuba and is in the process of installing 1800 panels in rural elementary schools. Cubasolar is also involved in

342

Performance Profiles of Major Energy Producers 1993  

Gasoline and Diesel Fuel Update (EIA)

3) 3) Distribution Category UC-950 Performance Profiles of Major Energy Producers 1993 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 Energy Information Administration/ Performance Profiles of Major Energy Producers 1993 ii This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/ Performance Profiles of Major Energy Producers 1993 iii The Financial Reporting System, 1977-1993 diskette is available from the Energy Information Administration.

343

3. Producing Areas  

U.S. Energy Information Administration (EIA)

The OCS area provides surplus capacity to meet major seasonal swings in the lower 48 States gas requirements. The ... Jun-86 9,878 17,706 1,460 19,166 9,288 51.5

344

Report on Produced Water  

NLE Websites -- All DOE Office Websites (Extended Search)

water is the largest volume by-product or waste stream associated with oil and gas exploration and production. The cost of managing such a large volume of water is a key...

345

NERSC Calculations Provide Independent Confirmation of Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901...

346

Independent Oversight Inspection of Environment, Safety, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Inspection of Environment, Safety, and Health Programs at the Savannah River Operations Office and Savannah River Site, January 2010 Independent Oversight...

347

Independent Activity Report, Pantex - October 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2010 Independent Activity Report, Pantex - October 2010 October 2010 Pantex Plant Orientation Visit The U.S. Department of Energy (DOE) Office of Independent Oversight,...

348

Independent Activity Report, Pantex - December 2010 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2010 Independent Activity Report, Pantex - December 2010 December 2010 Pantex Plant Site Visit The U.S. Department of Energy (DOE) Office of Independent Oversight, within...

349

Fullerenes produced by harnessing sunlight  

Science Conference Proceedings (OSTI)

Two independent groups of researchers have demonstrated that fullerenes can be produced by harnessing focused sunlight to vaporize carbon. Adapted to a large scale, generation of the carbon-cage molecules in solar furnaces might overcome yield-limiting problems associated with other fullerene production techniques, the researchers suggest. At Rice University, Houston, chemistry professor Richard E. Smalley and graduate students L.P. Felipe Chibante, Andreas Thess, J. Michael Alford, and Michael D. Diener used a parabolic mirror to focus sunlight on a graphite target to produce what appears to be a high yield of fullerenes. At the National Renewable Energy Laboratory (NREL), Golden, Colo., Roland R. Pitts, Mary Jane Hale, Carl Bingham, Allan Lewandowski, and David E.King, working in collaboration with Clark L. Fields, a chemistry professor at the University of Northern Colorado, Greeley, used NREL's high-flux solar furnace to produce soot that contains C[sub 60] and C[sub 70]. Papers describing the Rice and NREL results appeared together in last week's Journal of Physical Chemistry (97, 8696 and 8701 (1993)).

Not Available

1993-08-01T23:59:59.000Z

350

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjær, Jonas Bondegaard

2009-01-01T23:59:59.000Z

351

Alternative Fuels Data Center: Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on Google Bookmark Alternative Fuels Data Center: Natural Gas on Delicious Rank Alternative Fuels Data Center: Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Natural Gas on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Fuel Prices Find natural gas fuel prices and trends. Natural gas is a domestically produced gaseous fuel, readily available

352

Natural Gas Markets: Recent Changes and Key Drivers  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Natural Gas Markets: Recent Changes and Key Drivers for

353

Prospects for U.S. Oil & Natural Gas  

U.S. Energy Information Administration (EIA)

• Proposed light-duty vehicle CAFE standards; advanced battery technology; heavy-duty truck natural gas potential : Independence does not eliminate interdependence ...

354

Natural Gas Processing Plants in the United States: 2010 Update...  

Annual Energy Outlook 2012 (EIA)

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and...

355

Simulating the daily gasoline price-setting behaviour of gas stations in Cincinnati by agent-based modeling.  

E-Print Network (OSTI)

??In the retail gasoline market, gas stations as independent entities set gas prices according to a number of factors related to global and local economic… (more)

Zhou, Li

2009-01-01T23:59:59.000Z

356

Natural Gas Transmission and Distribution Module  

Reports and Publications (EIA)

Documents the archived version of the Natural Gas Transmission and Distribution Model that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 2013.

Joe Benneche

2013-07-18T23:59:59.000Z

357

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

358

Synthesis gas production  

SciTech Connect

Raw synthesis gas produced by the gasification of coal, heavy oil or similar carbonaceous material is contacted with a reforming catalyst at a temperature in the range between about 1000/sup 0/ and about 1800/sup 0/F and at a pressure between about 100 and about 2000 psig prior to adjustment of the carbon monoxide-to-hydrogen ratio and treatment of the gas to increase its Btu content. This catalytic reforming step eliminates C/sub 2/+ compounds in the gas which tend to form tarry downstream waste products requiring further treatment, obviates polymerization problems which may otherwise interfere with upgrading of the gas by means of the water gas shift and methanation reactions, and improves overall process thermal efficiency by making possible efficient low level heat recovery.

Kalina, T.; Moore, R.E.

1977-09-06T23:59:59.000Z

359

Treatment of gas from an in situ conversion process  

SciTech Connect

A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

2011-12-06T23:59:59.000Z

360

Energy Information Administration / Natural Gas Annual 2006 132  

Gasoline and Diesel Fuel Update (EIA)

2 Table 61. Summary Statistics for Natural Gas - Ohio, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 34,593 33,828...

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Strategic Center for Natural Gas and Oil - Past Program Archives...  

NLE Websites -- All DOE Office Websites (Extended Search)

These programs focused on improving industry understanding of ways to locate and produce natural gas from unconventional natural gas resources: Western U.S. Gas Sands (1977-1992),...

362

Energy Information Administration / Natural Gas Annual 2006 106  

Annual Energy Outlook 2012 (EIA)

6 Table 48. Summary Statistics for Natural Gas - Michigan, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 7,700 8,600...

363

Energy Information Administration / Natural Gas Annual 2006 152  

Annual Energy Outlook 2012 (EIA)

2 Table 71. Summary Statistics for Natural Gas - Vermont, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ... 0 0 0 0 0...

364

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

365

ii Produced Water Pretreatment for Water Recovery  

E-Print Network (OSTI)

Horizontal drilling and slickwater hydrofracturing have enabled shale gas to become a significant contributor to the United States ’ energy supply. Hydrofracturing typically requires 2MM – 6.5MM gallons of water per shale gas well. About 15-25 % of this water returns to the surface as “flowback ” within 30 days after hydrofracturing. “Produced water ” continues to flow at a much reduced rate, e.g. 2-10 bbl/day, for the life of the well. In addition to high salinity and hardness levels (Mg, Ca, Sr, Ba), much Marcellus produced water also contains significant levels of naturally occurring radioactive materials (NORM), particularly radium. The near absence of disposal wells in Pennsylvania initially forced much of the produced water to be trucked into Ohio for disposal by deep-well injection (UIC). Currently up to 95 % of the

Principal Investigator; James M. Silva; James M. Silva; Hope Matis; William L. Kostedt Iv; Vicki Watkins

2012-01-01T23:59:59.000Z

366

Comments from Independent Petroleum Association of America ...  

U.S. Energy Information Administration (EIA)

proposed survey. The description of EIA’s Current Method to Generate Estimates of Natural Gas ... information in today’s competitive natural gas marke ...

367

Natural gas monthly, June 1994  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

Not Available

1994-06-01T23:59:59.000Z

368

Natural gas monthly, April 1997  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

NONE

1997-04-01T23:59:59.000Z

369

Arizona - Natural Gas 2012 Million  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Arizona - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6 6 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 523 711 183 168 117 From Oil Wells * * 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

370

Natural gas monthly, May 1994  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The featured articles for this month are: Opportunities with fuel cells, and revisions to monthly natural gas data.

Not Available

1994-05-25T23:59:59.000Z

371

Natural gas monthly, November 1996  

Science Conference Proceedings (OSTI)

The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``US natural gas imports and exports-1995``. 6 figs., 24 tabs.

NONE

1996-11-01T23:59:59.000Z

372

Natural gas monthly, August 1995  

SciTech Connect

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

NONE

1995-08-24T23:59:59.000Z

373

Natural gas monthly, June 1996  

Science Conference Proceedings (OSTI)

The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

NONE

1996-06-24T23:59:59.000Z

374

Natural gas monthly, October 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article in this issue is a special report, ``Comparison of Natural Gas Storage Estimates from the EIA and AGA.`` 6 figs., 26 tabs.

NONE

1997-10-01T23:59:59.000Z

375

IEAB Independent Economic Analysis Board  

E-Print Network (OSTI)

for suitability for use by target species that typically rely on a particular kind of habitat. The suitability that can be used for biofuels, and budgetary constraints caused by the Iraq War. Conservation Reserve is either not being renewed or is being withdrawn as its use for producing crops for biofuels has become

376

The Independent Technical Analysis Process Final Report 2006-2007.  

DOE Green Energy (OSTI)

The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities. The Independent Technical Analysis Process (ITAP) was created to provide non-routine analysis for fish and wildlife agencies and tribes in particular and the public in general on matters related to juvenile and adult salmon and steelhead passage through the mainstem hydrosystem. The process was designed to maintain the independence of analysts and reviewers from parties requesting analyses, to avoid potential bias in technical products. The objectives identified for this project were to administer a rigorous, transparent process to deliver unbiased technical assistance necessary to coordinate recommendations for storage reservoir and river operations that avoid potential conflicts between anadromous and resident fish. Seven work elements, designated by numbered categories in the Pisces project tracking system, were created to define and accomplish project goals as follows: (1) 118 Coordination - Coordinate technical analysis and review process: (a) Retain expertise for analyst/reviewer roles. (b) Draft research directives. (c) Send directive to the analyst. (d) Coordinate two independent reviews of the draft report. (e) Ensure reviewer comments are addressed within the final report. (2) 162 Analyze/Interpret Data - Implement the independent aspects of the project. (3) 122 Provide Technical Review - Implement the review process for the analysts. (4) 132 Produce Annual Report - FY06 annual progress report with Pisces Disseminate (5) 161 Disseminate Raw/Summary Data and Results - Post technical products on the ITAP web site. (6) 185-Produce Pisces Status Report - Provide periodic status reports to BPA. (7) 119 Manage and Administer Projects - project/contract administration.

Duberstein, Corey; Ham, Kenneth; Dauble, Dennis; Johnson, Gary [Pacific Northwest National Laboratory

2007-03-01T23:59:59.000Z

377

Oil and gas production in the Amu Dar`ya Basin of Western Uzbekistan and Eastern Turkmenistan  

SciTech Connect

The resource base, development history, current output, and future outlook for oil and gas production in Turkmenistan and Uzbekistan are examined by a Western specialist with particular emphasis on the most important gas-oil province in the region, the Amu Dar`ya basin. Oil and gas have been produced in both newly independent countries for over a century, but production from the Amu Dar`ya province proper dates from the post-World War II period. Since that time, however, fields in the basin have provided the basis for a substantial natural gas industry (Uzbekistan and Turkmenistan consistently have trailed only Russia among the former Soviet republics in gas output during the last three decades). Despite high levels of current production, ample oil and gas potential (Turkmenistan, for example, ranks among the top five or six countries in the world in terms of gas reserves) contributes to the region`s prominence as an attractive area for Western investors. The paper reviews the history and status of several international tenders for the development of both gas and oil in the two republics. Sections on recent gas production trends and future outlook reveal considerable differences in consumption patterns and export potential in the region. Uzbekistan consumes most of the gas it produces, whereas Turkmenistan, with larger reserves and a smaller population, exported well over 85% of its output over recent years and appears poised to become a major exporter. A concluding section examines the conditions that will affect these countries` presence on world oil and gas markets over the longer term: reserves, domestic consumption, transportation bottlenecks, the likelihood of foreign investment, and future oil and gas demand. 33 refs., 1 fig., 3 tabs.

Sagers, M.J. [PlanEcon, Inc., Washington, DC (United States)

1995-05-01T23:59:59.000Z

378

World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States  

E-Print Network (OSTI)

forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Background The use of horizontal drilling in conjunction with hydraulic fracturing has greatly expanded the ability of producers to profitably produce natural gas from low permeability geologic formations, particularly shale formations. Application of fracturing techniques to stimulate oil and gas production began to grow rapidly in the 1950s, although experimentation dates back to the 19 th century. Starting in the mid-1970s, a partnership of private operators, the U.S. Department of Energy (DOE) and the Gas Research Institute (GRI) endeavored to develop technologies for the commercial production of natural gas from the relatively shallow Devonian (Huron) shale in the Eastern United States. This partnership helped foster technologies that eventually became crucial to producing natural gas from shale rock, including horizontal wells, multi-stage fracturing, and slick-water fracturing. 1 Practical application of horizontal drilling to oil production began in the early 1980s, by which time the advent of improved downhole drilling motors and the invention of other necessary supporting equipment, materials, and technologies, particularly downhole telemetry equipment, had brought some applications within the realm of

unknown authors

2011-01-01T23:59:59.000Z

379

Rigs Drilling Gas Wells Are At  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

380

1999 Oil & Gas Conference Proceedings - Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's Federal Energy Technology Center and National Petroleum Technology Office 1999 Oil & Gas Technology Options Conference Proceedings for Producer Survival Contents This...

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Produced Water R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas » Produced Water Shale Gas » Produced Water R&D Produced Water R&D Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Developed as a result of lessons learned from the NETL funded demonstration project, the Altela 600 water treatment system (shown above) treats about 25,000 gallons per day of produced and flowback water from hydraulic fracturing. [Photo courtesy of Altela Inc.] Drilling and fracturing wells produce water along with the natural gas. Some of this water is returned fracture fluid and some is natural formation water. The actual water production of a particular well depends on the well

382

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

Science Conference Proceedings (OSTI)

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

383

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

384

Report on Produced Water  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2009 Produced Water Volumes and Management Practices Page 3 Table of Contents Executive Summary ........................................................................................................................ 7 Chapter 1 - Introduction ............................................................................................................. 11 1.1 Purpose .......................................................................................................................... 11 1.2 Background ................................................................................................................... 11 1.3 Overview ....................................................................................................................... 11

385

Coal markets squeeze producers  

SciTech Connect

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

386

Natural gas monthly, February 1994  

SciTech Connect

The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

Not Available

1994-02-25T23:59:59.000Z

387

Natural gas monthly, October 1995  

SciTech Connect

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

NONE

1995-10-23T23:59:59.000Z

388

Nuclear stimulation of gas fields  

SciTech Connect

From National Technical Canadian Gas Association; Calgary, Alberta, Canada (17 Oct 1973). The technical bases of the emerging technology of nuclear stimulation of natural gas fields, the potential of this method for increasing the gas supply of the US, and public issues related to this technology are discussed. A technical appendix is provided with information on: reservoir producing characteristics; explosive design, availability, and cost; firing and space of explosives; economic parameters; and tabulated statistics on past and current projects on nuclear stimulation. (LCL)

Randolph, P.L.

1973-09-01T23:59:59.000Z

389

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

390

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

391

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

392

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

393

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

394

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

395

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

396

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

397

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

398

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

399

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

400

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

402

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

403

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

404

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

405

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

406

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

407

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

408

Natural gas monthly, July 1990  

Science Conference Proceedings (OSTI)

This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

Not Available

1990-10-03T23:59:59.000Z

409

Products Produced in Countries Other Than Iran  

U.S. Energy Information Administration (EIA) Indexed Site

April 25, 2013 April 25, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 The eighth in a series of reports required by section 1245 (d) (4) (A) of the National Defense Authorization Act for Fiscal Year 2012 April 2013 U.S. Energy Information Administration | Availability and Price of Petroleum and Petroleum Products Produced in Countries Other Than Iran 1 Table of Contents March - April 2013 Update ........................................................................................................................... 2 Tables ............................................................................................................................................................ 4 Figures ......................................................................................................................................................... 10

410

Natural Gas Monthly, August 1984  

SciTech Connect

Dry gas production during August 1984 was estimated at 1441 billion cubic feet (Bcf), 8.4% above August 1983 dry gas production. Consumption of natural gas during August 1984 was an estimated 1182 Bcf, 3.7% above the August 1983 level. Compared to the previous July, residential and commercial consumption was down 4.6 and 6.2%, respectively, industrial consumption was up 13.2%, and electric utility consumption was up 11.1% during July 1984. The volume of working gas in underground storage reservoirs at the end of August 1984 was 5.8% below the August 31, 1983 level. The average wellhead price of natural gas in June 1984 was $2.61 per thousand cubic feet (Mcf). In June 1983, the average was $2.62 per Mcf. In August 1984, the average residential price of natural gas was $6.17 per Mcf. The comparable price in August 1983 was $6.16 per Mcf. The average wellhead (first sale) price for natural gas purchases projected for September 1984 by selected interstate pipeline companies was $2.67 per Mcf. In September 1983, the average price was $2.64 per Mcf. The average price projected for Old Gas (NGPA Sections 104, 105, and 106) in September 1984 was $1.23 per Mcf; for New Gas (NGPA Sections 102, 103, 108, and 109), $3.66 per Mcf; and for High Cost Gas (NGPA Section 107), $5.18 per Mcf. In September 1983, the prices projected for Old Gas, New Gas, and High Cost Gas averaged $1.35, $3.47, and $5.66 per Mcf, respectively. On September 26, 1984 the FERC approved extension of the authorized natural gas producer and pipeline special marketing programs (SMP) for another year. The North Great Plains coal gasification plant in North Dakota begun producing gas in July of this year.

Not Available

1984-10-01T23:59:59.000Z

411

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

412

NETL: Oil & Natural Gas Projects - Environmental  

NLE Websites -- All DOE Office Websites (Extended Search)

(SENM) produces around 400 million barrels of produced water per year as a by-product of oil and gas production. Water production volumes have been increasing every year. Ninety...

413

Coordinate-independent font description using Kanji as an example  

E-Print Network (OSTI)

, font-independent character descriptions are important for a systematic approach to automated and semi-automated font design. This is particularly so for large character sets such as Kanji. The paper defines a completely coordinate-independent notation for Kanji, which contains all the necessary information to produce legible character sketches. KEY WORDS Abstract character description Coordinate- independent font Large fonts Kanji Prolog 1 INTRODUCTION In his comment on Knuth's METAFONT [1], Hofstadter [2] envisions that a futuregeneration font design system should consist of a) an abstract description of characters in terms of roles such as `crossbar'; b) `an ability to generalize from a few letterforms ... to an entire typeface', and c) `an integration of perception with generation'. Intermixing of structure and parameter values leads to tools for the implementation of fonts and metafonts based on the concepts of procedural, functional, and structured programming [1,3,4]. How...

Martin J. Dürst

1993-01-01T23:59:59.000Z

414

The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost  

E-Print Network (OSTI)

and cumulative mass of produced water (M W ). In addition, aquantity of water removed per volume of gas produced at thecumulative water removed, M W , to cumulative gas produced,

Reagan, M. T.

2010-01-01T23:59:59.000Z

415

Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs  

E-Print Network (OSTI)

cannot be produced because gas wells “water out,” a processcan be produced because there is no invading water to killwater flows into the reservoir from surrounding aquifers continuously while gas is produced.

Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

416

Independent Oversight Review, Los Alamos National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Chemistry and Metallurgy Research Facility - January 2012 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility -...

417

Independent Activity Report, Sandia National Laboratories - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2012 Independent Activity Report, Sandia National Laboratories - September 2012 September 2012 Operational Awareness Oversight of Sandia National Laboratories HIAR...

418

Independent Mineral Processing Project Technical Due Diligence  

Science Conference Proceedings (OSTI)

Presentation Title, Independent Mineral Processing Project Technical Due Diligence ... CRIMM Energy-saving Magnetic Separation Equipment and Industrial ...

419

Lessons Learned from Independent Verification Activities | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

control after the property has been demonstrated to meet the Department's stringent radiation protection requirements. Lessons Learned from Independent Verification...

420

Small Wind Independent Testing (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Small Wind Independent Testing at the NWTC and the Regional Test Centers project.

Not Available

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

422

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

423

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

424

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

425

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

426

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

427

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

428

Natural gas monthly, April 1998  

Science Conference Proceedings (OSTI)

This issue of the Natural Gas Monthly presents the most recent estimates of natural gas data from the Energy Information Administration (EIA). Estimates extend through April 1998 for many data series. The report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, feature articles are presented designed to assist readers in using and interpreting natural gas information. This issue contains the special report, ``Natural Gas 1997: A Preliminary Summary.`` This report provides information on natural gas supply and disposition for the year 1997, based on monthly data through December from EIA surveys. 6 figs., 28 tabs.

NONE

1998-04-01T23:59:59.000Z

429

Gas evolution from geopressured brines  

DOE Green Energy (OSTI)

The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

Matthews, C.S.

1980-06-01T23:59:59.000Z

430

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

431

North African producers cooperate to improve outlook  

Science Conference Proceedings (OSTI)

A new commercial outlook on the oil and gas business is starting to emanate from Algeria. Foreign companies are being lured back into the exploration business with new production-sharing contracts. And in the LNG business, where Algeria is on of the major producers, exports to the United States have been resumed at world market prices. Deliveries to Britain are due to resume later this year and new contracts have been signed for deliveries to Turkey and Greece, all at competitive market prices. Excluded from this turnaround in attitudes are Algeria's traditional customers for LNG in Europe. Sonatrach, the Algerian state energy company, is still insisting on prices that make imported LNG up to 30% more expensive than gas from other sources. As a result LNG liftings have declined and gas companies in France, Belgium, and Spain are in dispute with Sonatrach over prices.

Not Available

1988-06-20T23:59:59.000Z

432

NETL: News Release - DOE-Funded R&D Will HelpProducers ...  

NLE Websites -- All DOE Office Websites (Extended Search)

May 30, 2006 DOE-Funded R&D Will Help Producers Tap America's Deep Natural Gas Resources Milestones Achieved for New Components That Can Withstand Brutal Heat in Ultra-Deep Gas...

433

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

434

Produced Water Management and Beneficial Use  

Science Conference Proceedings (OSTI)

Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

2007-10-31T23:59:59.000Z

435

Method for producing small hollow spheres  

DOE Patents (OSTI)

Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

Hendricks, C.D.

1979-01-09T23:59:59.000Z

436

Method for producing small hollow spheres  

SciTech Connect

Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

Hendricks, Charles D. (Livermore, CA)

1979-01-01T23:59:59.000Z

437

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

438

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

439

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

440

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

442

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

443

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

444

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

445

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

446

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

447

Electronic fuel control system for gas turbine  

SciTech Connect

A method is described for monitoring gas turbine operating temperatures and rotational velocity for producing one of a group of fuel control signals for controlling the fuel input rate to the gas turbine. The method consists of: monitoring turbine inlet temperatures through respective sensors for the gas turbine, averaging the turbine inlet temperatures to produce an average turbine inlet temperature signal, monitoring a gas generator inlet temperature sensor of the gas turbine for producing a gas generator inlet temperature signal, generating a speed signal proportional to the rotational velocity of the gas turbine, combining the gas generator inlet temperature signal with the speed signal to produce a first function signal, applying the first function signal to a stored data set to produce a second function signal, the stored data set related to performance characteristics of the gas turbine, and comparing the turbine inlet temperature signal to the second function signal to produce a difference signal therefrom, the difference signal serving as a fuel control signal for the gas turbine.

Nick, C.F.

1986-04-22T23:59:59.000Z

448

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

449

Backscatter absorption gas imaging system  

DOE Patents (OSTI)

A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

McRae, Jr., Thomas G. (Livermore, CA)

1985-01-01T23:59:59.000Z

450

AGA Producing Regions Natural Gas Underground Storage Net Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 181,202 117,919 6,043 -70,389 -119,495 -54,764 -90,630 -78,703 -78,810 -41,384 3,174 110,677 1995 141,597 94,129 43,122 -46,127 -83,740 -81,214 -42,329 7,753 -77,793 -50,909 62,552 147,261 1996 189,543 108,720 103,253 -39,312 -70,578 -61,809 -55,791 -81,685 -105,390 -57,617 79,056 94,165 1997 159,274 68,321 -45,732 -28,852 -82,922 -65,620 -5,729 -52,520 -86,054 -85,240 63,672 147,412 1998 101,163 10,342 23,740 -93,466 -97,929 -57,723 -73,822 -57,671 -36,017 -111,305 2,052 120,522 1999 153,986 27,076 55,017 -35,949 -87,235 -74,047 -14,239 -6,737 -77,700 -35,924 515 132,062 2000 201,606 127,455 21,465 -13,293 -27,098 -58,272 -39,442 -4,324 -66,987 -78,226 66,960 220,332

451

NETL: News Release - Alaska Well Targets Gas Hydrate, Produces...  

NLE Websites -- All DOE Office Websites (Extended Search)

bulb, Thomas Edison claimed to have first discovered "a thousand ways not to make a light bulb," with each effort yielding valuable information that contributed to his eventual...

452

Pennsylvania is the fastest-growing natural gas-producing ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

453

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

454

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

455

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

456

Canada affirms ban on discount gas exports  

Science Conference Proceedings (OSTI)

Canada's National Energy Board has banned discount gas export deals with California and supported Canadian producer arguments for long term contracts at stable prices. The ruling is seen as a victory by Canadian producers in a battle with the California Public Utilities Commission (CPUC) over gas exports and prices. It benefits Canadian producers who are members of a supply pool that provides contract gas to California. There is a $1 billion/year gas export trade flowing from Alberta to California. Several projects are under way to expand pipeline capacity and increase exports.

Not Available

1992-07-06T23:59:59.000Z

457

METHOD OF PRODUCING NEUTRONS  

DOE Patents (OSTI)

A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

Imhoff, D.H.; Harker, W.H.

1964-02-01T23:59:59.000Z

458

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

history of the Messoyakha field demonstrates that gas hydrates are a readily producible source of natural

Moridis, George J.

2008-01-01T23:59:59.000Z

459

The Intense Radiation Gas  

E-Print Network (OSTI)

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2004-10-14T23:59:59.000Z

460

Strategies for gas production from oceanic Class 3 hydrate accumulations  

E-Print Network (OSTI)

the cumulative mass of produced water M W . Note that pro-Salinity X P of the produced water. Gas production fromThe salinity of the produced water may pose significant

Moridis, George J.; Reagan, Matthew T.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "independent gas producers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural Gas Program Archive (Disk1)  

NLE Websites -- All DOE Office Websites (Extended Search)

Eastern U.S. Gas Eastern U.S. Gas Shales Eastern U.S. Gas Eastern U.S. Gas Shales Shales Program Program This DVD contains information related to research and development (R&D) undertaken by the U.S. Department of Energy (DOE) during the 1976-1995 time period. This R&D focused on improving industry understanding of ways to locate and produce natural gas from the fractured organic gas shales of the Eastern U.S. A second DVD is also available that includes similar information related to the five other R&D programs targeting unconventional natural gas during roughly the same time frame: Western U.S. Gas Sands (1977-1992), Methane Recovery from Coalbeds (1978-1982), Methane Hydrates (1982-1992), Deep Source Gas Project (1982-1992), and Secondary Gas Recovery (1987-1995). The following items are found on this DVD.

462

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

463

Proposal to reduce greenhouse gas emissions via landfill gas management in Greater Buenos Aires, Argentina. Final report  

DOE Green Energy (OSTI)

The purpose of this project was to evaluate the feasibility of reducing the emission of greenhouse gases by collection, flaring, and possibly beneficially using the gas from landfills in Greater Buenos Aires, Argentina (GBA). Another purpose was to prepare a proposal to the US Initiative on Joint Implementation (USIJI) for a project to collect and possibly use the landfill gas (LFG). The project was carried out from September 30, 1997 through September 30, 1998. Collection and flaring of gas is feasible provided private firms have sufficient incentive to obtain greenhouse gas emission reduction benefits. The value of those benefits that would be required to motivate funding of an LFG management project was not explicitly determined. However, one independent power producer has expressed an interest in funding the first phase of the proposed project and paid for a detailed feasibility study which was conducted in August and September of 1998. As a result of this project, a proposal was submitted to the USIJI Evaluation Panel in June, 1998. In August, 1998, an office was established for reviewing and approving joint implementation proposals. The proposal is currently under review by that office.

Jones, D.B.

1998-10-01T23:59:59.000Z