National Library of Energy BETA

Sample records for incubator spurs solar

  1. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Energy Savers [EERE]

    DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar...

  2. Energy Department Announces Over $12 Million to Spur Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the lab to the marketplace through the Energy Department's SunShot Incubator program. The funding will accelerate American innovation in solar energy and manufacturing by...

  3. SunShot Incubator Inspires Solar Energy Visionaries | Department...

    Office of Environmental Management (EM)

    SunShot Incubator Inspires Solar Energy Visionaries SunShot Incubator Inspires Solar Energy Visionaries January 16, 2013 - 12:43pm Addthis Minh Le Minh Le Director, Solar Energy...

  4. SunShot Incubator Awardee Helps Companies Offer Discount Solar...

    Office of Environmental Management (EM)

    Incubator Awardee Helps Companies Offer Discount Solar as Employee Perk SunShot Incubator Awardee Helps Companies Offer Discount Solar as Employee Perk March 31, 2015 - 10:18am...

  5. innovati nNREL Scientists Spurred the Success of Multijunction Solar Cells

    E-Print Network [OSTI]

    innovati nNREL Scientists Spurred the Success of Multijunction Solar Cells Before 1984, many a solar cell can convert into electricity. Olson thought the focus should change to finding materials-winning gallium indium phosphide/gallium arsenide tandem solar cell, which had achieved record efficiencies, con

  6. SunShot Funding Spurs Standardized Testing for "Smart" Solar...

    Office of Environmental Management (EM)

    of Lauren Wellicome. Solar inverters are one of the most important components of a solar energy system. These power electronic devices convert the direct current produced by...

  7. EERE Solar SunShot Incubator ShowcaseSunShot - Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Solar SunShot Incubator Showcase Good afternoon, everybody. Welcome to the SunShot Incubator Awardee Showcase. My name is Victor Kane. I'm the program manager for the SunShot...

  8. Solar Companies Go for the Gold with SunShot Incubator | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Companies Go for the Gold with SunShot Incubator Solar Companies Go for the Gold with SunShot Incubator July 26, 2012 - 9:45am Addthis William Parish from Solar Mosaic, one...

  9. Spurring Solar Installations in Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolarSpace-Based Solar

  10. SunShot Incubator Spurs Solar Industry Innovation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWestMayBuilding K-25KyleEnergyHangoutSunShot GrandMinh

  11. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  12. PROJECT PROFILE: Sistine Solar (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (IncubatorEnergySistine

  13. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Broader source: Energy.gov (indexed) [DOE]

    rooftop solar systems. This project is part of the Department's larger effort to make solar energy more accessible and affordable, increase domestic solar deployment, and...

  14. Notice of Intent to Issue Funding Opportunity for SunShot Incubator 10, SolarMat 3, and SUNPATH 2

    Broader source: Energy.gov [DOE]

    SunShot intends to issue a funding opportunity announcement entitled “SunShot Incubator 10, SolarMat 3, SUNPATH 2.”

  15. SunShot Technology to Market “Incubator 11, SolarMat 4”

    Broader source: Energy.gov [DOE]

    The SunShot Technology to Market funding program brings highly impactful solar energy technologies and solutions to the marketplace through technology research, development, and demonstration that overcomes technical, institutional, and market challenges. Historically, annual funding opportunities have been separated by stage of technology development (Incubator, SolarMaT, and SUNPATH). For the first time, these funding opportunities have been combined into a single funding opportunity with the goal of bringing disruptive innovation to the solar industry in the near term that will take root in the U.S.

  16. NREL Scientists Spurred the Success of Multijunction Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Before 1984, many scientists believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. One researcher at the Solar Energy Research Institute (SERI) thought differently. His name was Jerry Olson, and his innovative thinking changed solar history. Olson identified a material combination that allowed the multijunction cell to flourish. It is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic (CPV) products.

  17. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathasBestI) April 2012 1 I.Rooftop Solar

  18. PROJECT PROFILE: SafeConnect Solar (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (IncubatorEnergy Ra

  19. Energy Department Announces $13 Million to Strengthen Local Solar...

    Office of Environmental Management (EM)

    3 Million to Strengthen Local Solar Markets and Spur Solar Deployment Across the United States Energy Department Announces 13 Million to Strengthen Local Solar Markets and Spur...

  20. Past SunShot Incubator Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projects funded under the SunShot Initiative solar energy Incubator Program yielded technical breakthroughs and insights.

  1. SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

  2. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  3. On the Parallel and Perpendicular Propagating Motions Visible in Polar Plumes: An Incubator For (Fast) Solar Wind Acceleration?

    E-Print Network [OSTI]

    Liu, Jiajia; De Moortel, Ineke; Wang, Yuming

    2015-01-01

    We combine observations of the Coronal Multi-channel Polarimeter (CoMP) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study the characteristic properties of (propagating) Alfvenic motions and quasi-periodic intensity disturbances in polar plumes. This unique combination of instruments highlights the physical richness of the processes taking place at the base of the (fast) solar wind. The (parallel) intensity perturbations with intensity enhancements around 1% have an apparent speed of 120 km/s (in both the 171A and 193A passbands) and a periodicity of 15 minutes, while the (perpendicular) Alfvenic wave motions have a velocity amplitude of 0.5 km/s, a phase speed of 830 km/s, and a shorter period of 5 minutes on the same structures. These observations illustrate a scenario where the excited Alfvenic motions are propagating along an inhomogeneously loaded magnetic field structure such that the combination could be a potential progenitor of the magnetohydrodynamic tur...

  4. Technology Business Incubation Programme

    E-Print Network [OSTI]

    1 Technology Business Incubation Programme Ms. Kimmie Wong Assistant Manager Incubation Admission and organization. Industry Technology Biotechnology Clusters IT & Telecomm. Pharmaceutical Precision Engg. Chinese Lab Premises Technical Support Facilities Technical and Management Assistance Management and Technical

  5. Department Of Energy Offers $60 Million to Spur Industry Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in...

  6. Energy Department Awards $5 Million to Spur Local Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 5 Million to Spur Local Clean Energy Development, Energy Savings Energy Department Awards 5 Million to Spur Local Clean Energy Development, Energy Savings October 14, 2014...

  7. President Obama Announces Major Initiative to Spur Biofuels Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Obama Announces Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security President Obama Announces Major Initiative to Spur Biofuels Industry and...

  8. SunShot Incubator Program 2014 Fact Sheet

    Broader source: Energy.gov [DOE]

    Learn more about the SunShot Initiative's Incubator program, which helps solar energy start-up companies get up and running.

  9. Investigation into nitrided spur gears

    SciTech Connect (OSTI)

    Yilbas, B.S.; Coban, A.; Nickel, J.; Sunar, M.; Sami, M.; Abdul Aleem, B.J. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-01

    The cold forging method has been widely used in industry to produce machine parts. In general, gears are produced by shaping or hobbing. One of the shaping techniques is precision forging, which has several advantages over hobbing. In the present study, cold forging of spur gears from Ti-6Al-4V material is introduced. To improve the surface properties of the resulting gears, plasma nitriding was carried out. Nuclear reaction analysis was carried out to obtain the nitrogen concentration, while the micro-PIXE technique was used to determine the elemental distribution in the matrix after forging and nitriding processes. Scanning electron microscopy and x-ray powder diffraction were used to investigate the metallurgical changes and formation of nitride components in the surface region. Microhardness and friction tests were carried out to measure the hardness depth profile and friction coefficient at the surface. Finally, scoring failure tests were conducted to determine the rotational speed at which the gears failed. Three distinct regions were obtained in the nitride region, and at the initial stages of the scoring tests, failure in surface roughness was observed in the vicinity of the tip of the gear tooth. This occurred at a particular rotational speed and work input.

  10. Wintering Steer Calves at the Spur Station. 

    E-Print Network [OSTI]

    Jones, J. H.; Fisher, C. E.; Marion, P. T.

    1956-01-01

    at the Spur Station SUMMARY Winter maintenance experiments were conducted with 1,034 steer calves at the Spur station dur. ing the 14-year period from the fall of 1941 to the spring of 1955. Results of these comparative trials, in most instances, were... made approximately the same gain during the winter as heavy calves averaging 466 pounds. Wheat pasture provided the lowest cost of winter maintenance for calves. Sorghum fields and na- tive grass supplemented with cottonseed cake were intermediate...

  11. Incubating and Hatching Eggs 

    E-Print Network [OSTI]

    Cartwright, A. Lee

    2000-04-25

    E-531 Incubating and Hatching Eggs A. Lee Cartwright* E ggs of exotic birds and common chickens require a standard measure of care in storage and incubation to ensure a successful hatch. Environmental conditions, handling, sanitation and record... be washed briefly in 110-degree F water that contains a commercial egg sanitizer. Washing an egg in water that is cooler than the egg itself causes egg contents to contract. Contraction of egg contents draws water into the egg through pores in the shell...

  12. UNIVAP Incubator | Open Energy Information

    Open Energy Info (EERE)

    UNIVAP Incubator Jump to: navigation, search Name: UNIVAP Incubator Place: Brazil Sector: Services Product: General Financial & Legal Services ( Academic Research foundation )...

  13. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely...

  14. Spurring Local Economic Development with Clean Energy Investments

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Spurring Local Economic Development with Clean Energy Investments.

  15. New Study Shows Solar Manufacturing Costs Not Driven Primarily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    regions. Their analysis indicates that further innovations in crystalline silicon solar cell technology may spur new investment, significantly enhancing access to capital for...

  16. A Strong California Economy Spurs Real Estate Activity

    E-Print Network [OSTI]

    Kroll, Cynthia

    1998-01-01

    94720-1922 Fisher Center for Real Estate and Urban EconomicsFall Fisher Center f or Real Estate and Urban Economics •A Strong California Economy Spurs Real Estate Activity T he

  17. NREL Spurred the Success of Multijunction Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Many scientists once believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. However, researchers at the National Renewable Energy Laboratory (NREL) thought differently, and they employed GaInP in a material combination that allowed the multijunction cell to flourish. The multijunction cell is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic products.

  18. Energy Department Announces Over $12 Million to Spur Solar Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects | Department ofHanford's

  19. Advancing Solar Through Photovoltaic Technology Innovations ...

    Broader source: Energy.gov (indexed) [DOE]

    At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL...

  20. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    E-Print Network [OSTI]

    Deshmukh, Ranjit

    2011-01-01

    recently. The total installed solar capacity by the end ofits meteoric rise in installed solar PV capacity spurred byhas the third largest installed solar PV capacity of 3.6 GW.

  1. Current SunShot Incubator Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projects funded under the SunShot Incubator Program allow start-up businesses to yield breakthrough technologies and game-changing insights. The following projects are in progress. SunShot Incubator 7 and 8.

  2. SunShot Incubator Virtual Company Showcase Webinar — Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy SunShot Initiative held this webinar on March 4, 2015 to display the products and solutions being developed by current and recent awardees of the SunShot Incubator funding program. The video include one minute quick pitches from each awardee covering their solar project. The SunShot Initiative aims to drive down the cost of solar power in the United States so it is fully cost-competitive with traditional energy sources by 2020.

  3. On the modelling of spur and helical gear dynamic behaviour

    E-Print Network [OSTI]

    Velex, Philippe

    2012-01-01

    This chapter is aimed at introducing the fundamentals of spur and helical gear dynamics. Using three-dimensional lumped models and a thin-slice approach for mesh elasticity, the general equations of motion for single-stage spur or helical gears are presented. Some particular cases including the classic one degree-of-freedom model are examined in order to introduce and illustrate the basic phenomena. The interest of the concept of transmission errors is analysed and a number of practical considerations are deduced. Emphasis is deliberately placed on analytical results which, although approximate, allow a clearer understanding of gear dynamics than that provided by extensive numerical simulations. Some extensions towards continuous models are presented.

  4. Building Green in Greensburg: Business Incubator Building

    Office of Energy Efficiency and Renewable Energy (EERE)

    This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing SunChips Business Incubator building in Greensburg, Kansas.

  5. An examination of the mechanisms of incubation 

    E-Print Network [OSTI]

    Kohn, Nicholas William

    2007-04-25

    the Withdrawal of Attention hypothesis of incubation and is inconsistent with the predictions of the Incremental Work and Forgetting Fixation hypotheses....

  6. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  7. Will Reducing Oil Taxes Spur Production? The Critical Question in Alaska's FY 2014 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry; Wright, Glenn

    2015-01-01

    Resources Committee, “SB 21 Oil and Gas Production Tax,” “Will Reducing Oil Taxes Spur Production? The Criticals proposed reform of the state oil taxation regime, which

  8. Will Reducing Oil Taxes Spur Production? The Critical Question in Alaska's FY 2014 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry; Wright, Glenn

    2015-01-01

    spurred investment and production increases in the oiloil tax overhaul definitely would lead to more investment (s re- turn on investments in 2013. Oil Prices In the last

  9. Kansas City Completes Innovative Business Incubator | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The logo for EnergyWorks KC. The Blue Hills Business Center and Contractor Incubator is now open This Kansas City, Missouri, center has been a collaborative effort between...

  10. And the Award Goes to... Silicon Ink Solar Technology Supported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator...

  11. National Security Technology Incubator Business Plan

    SciTech Connect (OSTI)

    None

    2007-12-31

    This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

  12. National Security Technology Incubator Operations Plan

    SciTech Connect (OSTI)

    2008-04-30

    This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

  13. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Environmental Management (EM)

    Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) -...

  14. Detection of Dense Molecular Gas in Inter-Arm Spurs in M51

    E-Print Network [OSTI]

    S. A. Corder; K. Sheth; N. Z. Scoville; J. Koda; S. N. Vogel; E. Ostriker

    2008-11-18

    Spiral arm spurs are prominent features that have been observed in extinction and 8$\\mu$m emission in nearby galaxies. In order to understand their molecular gas properties, we used the Owens Valley Radio Observatory to map the CO(J=1--0) emission in three spurs emanating from the inner northwestern spiral arm of M51. We report CO detections from all three spurs. The molecular gas mass and surface density are M$_{H2} \\sim3\\times10^6$ M$_{\\sun}$ and $\\Sigma_{H2} \\sim$50 M$_{\\sun}$ pc$^{-2}$. Thus, relative to the spiral arms, the spurs are extremely weak features. However, since the spurs are extended perpendicular to the spiral arms for $\\sim$500 pc and contain adequate fuel for star formation, they may be the birthplace for observed inter-arm HII regions. This reduces the requirement for the significant time delay that would be otherwise needed if the inter-arm star formation was initiated in the spiral arms. Larger maps of galaxies at similar depth are required to further understand the formation and evolution of these spurs and their role in star formation - such data should be forthcoming with the new CARMA and future ALMA telescopes and can be compared to several recent numerical simulations that have been examining the evolution of spiral arm spurs.

  15. Tsinghua Solar New Energy Rizhao Techonology Incubation Centre | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind Power Co Ltd JumpAssessmentEnergy

  16. PROJECT PROFILE: Aurora Solar Inc. (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack,1PPPO Website|Aurora

  17. PROJECT PROFILE: SolarRetina (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs

  18. National Security Technology Incubation Project Continuation Plan

    SciTech Connect (OSTI)

    2008-09-30

    This document contains a project continuation plan for the National Security Technology Incubator (NSTI). The plan was developed as part of the National Security Preparedness Project (NSPP) funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This continuation plan describes the current status of NSTI (staffing and clients), long-term goals, strategies, and long-term financial solvency goals.The Arrowhead Center of New Mexico State University (NMSU) is the operator and manager of the NSTI. To realize the NSTI, Arrowhead Center must meet several performance objectives related to planning, development, execution, evaluation, and sustainability. This continuation plan is critical to the success of NSTI in its mission of incubating businesses with security technology products and services.

  19. Solar Policy Environment: New York

    Broader source: Energy.gov [DOE]

    The New York City Solar America Cities (SAC) team hopes to foster a local solar energy market that will be economically sustainable while providing the City with clean, reliable, affordable electricity by reducing barriers and educating the workforce, using the City’s resources to spur the market and create economies of scale to lower prices, and creating institutions to plan and monitor future growth.

  20. Incubator of Quimper Communaut | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res. Bd. May,InThrMaIncubator Center ofof

  1. Rensselaer Incubation Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to: navigation, searchIncubation Program Jump

  2. Rensselaer Incubator Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to: navigation, searchIncubation Program

  3. Independent Effects of Incubation Temperature and Gonadal Sex on the

    E-Print Network [OSTI]

    Crews, David

    of the hypothalamus are determined primarily by incubation temperature, not by gonadal sex. However, incubation hypothalamus, external amygdala, dorsal lateral nucleus of the hypothalamus, dorsal lateral nucleus of the thalamus, dorsal ventricular ridge, habenula, lateral hypothalamus, nucleus rotundus, nucleus sphericus

  4. Funding Opportunity Announcement: Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways funding opportunity announcement (FOA) seeks to support regional, state, tribal, and locally-driven efforts to develop multi-year solar deployment plans that will help provide business certainty and establish a clear path for the next five to ten years of solar deployment. Specifically, this FOA is intended to enable replicable multi-year strategies that spur significant solar deployment, drive down solar soft costs, support local economic development efforts, and address the potential challenges arising from increased solar penetration on the electrical grid.

  5. 2015 SunShot Incubator Virtual Showcase Slides

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download the slides from the 2015 SunShot Initiative Incubator Virtual Showcase webinar, which occurred March 4, 2015

  6. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    SciTech Connect (OSTI)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-07-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

  7. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    SciTech Connect (OSTI)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-01-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

  8. Energy Department Invests $54 Million to Spur Development of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar Power Plant | Department

  9. Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks

    E-Print Network [OSTI]

    Woong-Tae Kim; Eve C. Ostriker

    2006-03-28

    (Abridged) We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous 2D studies (Kim & Ostriker 2002), which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in interarm spur structures and massive fragments. Similar spur features have recently been seen in high-resolution observations of several galaxies. Here, we consider two sets of numerical models: 2D models that use a thick-disk gravitational kernel, and 3D runs with explicit vertical stratification. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity in thick disks increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)x10^7 Msun each, a factor ~3-8 times larger than in razor-thin models with the same gas surface density and stellar spiral arm strength. We find that unmagnetized or weakly magnetized 2D models are unstable to the wiggle instability (WI) previously identified by Wada & Koda (2004), and proposed as a potential spur- and clump-forming mechanism. However,our fully 3D models do not show this effect. Non-steady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the WI that appears in 2D (isothermal) runs. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge (in self-gravitating models), although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.

  10. SunShot Funding Spurs Standardized Testing for "Smart" Solar Inverters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting State EnergyStrategicSubsidyDepartment ofSunShot|

  11. Notice of Intent Extended for Fuel Cell Technologies Incubator...

    Energy Savers [EERE]

    a Funding Opportunity Announcement (FOA) entitled "Innovations in Fuel Cell and Hydrogen Fuels Technologies." The FCTO Incubator Program is intended to identify potentially...

  12. Technology Incubator for Wind Energy Innovations Funding Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    , 2014 EERE's Wind Program announced a funding opportunity entitled "Technology Incubator for Wind Energy Innovations." This funding opportunity will fund R&D investments in...

  13. Rebuilding It Better: City of Greensburg, Kansas, Business Incubator (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designed SunChips Business Incubator in Greensburg, Kansas.

  14. Rebuilding It Better: City of Greensburg, Kansas, Business Incubator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure) This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designed SunChips Business Incubator in Greensburg, Kansas. 47189.pdf More...

  15. Grenoble Alpes Incubation GRAIN | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:Resources JumpStrategy | Open EnergyGrenoble

  16. Albuquerque Technology Incubator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to:ElecVirginia:Albuquerque

  17. NREL: News - New Incubator Network to Help Clean-Energy Entrepreneurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incubator Network. The program, funded by the Energy Department, aims to improve the performance of clean energy business incubators, connect critical industry and energy sector...

  18. animals --produce characteristic, heritable incubation times and patterns of brain

    E-Print Network [OSTI]

    Hays, Graeme

    animals -- produce characteristic, heritable incubation times and patterns of brain damage, the animalslivedalong,TSE-freelife,andmostly did not accumulate PrPSc in their brains (B. Chesebro, Rocky Mountain Labs, Hamilton, Montana). The injection of PrPSc -negative brain extracts from these mice into further

  19. TAILINGS FANS AND VALLEY-SPUR CUTOFFS 869 Copyright 2004 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 29, 869882 (2004)

    E-Print Network [OSTI]

    James, L. Allan

    2004-01-01

    of natural earthfill dam spillway not prone to catastrophic failures. Tailing fans, valley-spur cutoffs Superfund cleanup site to remove mercury. Some large tailings fans dammed main channels resulting in lakesTAILINGS FANS AND VALLEY-SPUR CUTOFFS 869 Copyright © 2004 John Wiley & Sons, Ltd. Earth Surf

  20. New York Nano-Bio Molecular Information Technology (NYNBIT) Incubator

    SciTech Connect (OSTI)

    Das, Digendra K

    2008-12-19

    This project presents the outcome of an effort made by a consortium of six universities in the State of New York to develop a Center for Advanced technology (CAT) in the emerging field of Nano-Bio-Molecular Information Technology. The effort consists of activities such as organization of the NYNBIT incubator, collaborative research projects, development of courses, an educational program for high schools, and commercial start-up programs.

  1. PROJECT PROFILE: Folsom Labs (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (Incubator 10) PROJECT

  2. PROJECT PROFILE: Halo Industries, Inc. (Incubator 10) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (Incubator 10)

  3. PROJECT PROFILE: Nevados Engineering Inc. (Incubator 10) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (Incubator 10)Energy

  4. PROJECT PROFILE: PowerScout (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (Incubator

  5. PROJECT PROFILE: SenSanna (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (IncubatorEnergy

  6. PROJECT PROFILE: SunPower (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (Incubator 10)

  7. PROJECT PROFILE: Sunfield Semiconductor (Incubator 10) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (Incubator

  8. Solar So Simple It Is Just a Click Away | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar So Simple It Is Just a Click Away Solar So Simple It Is Just a Click Away May 6, 2013 - 10:00am Addthis Incubator 6 awardee Sun Number converts complex aerial data into an...

  9. SunShot Incubator Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding rounds. Awardees CURRENT PROJECTS PAST PROJECTS Soft Costs Aurora Solar, Inc. Clean Energy Collective Demeter Power Group EnergySage Faraday Genability kWh Analytics...

  10. Energy Department Announces $10 Million to Advance Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Securities and Exchange Commission public filings. New Ideas Spring from the SunShot Incubator Energy Department Announces Over 12 Million to Spur Solar Energy Innovation...

  11. Incubator Center of Technology Businesses CIETEC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. Water Res. Bd. May,InThrMaIncubator Center of

  12. PROJECT PROFILE: Ra Power Management, Inc. (Incubator 10) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (IncubatorEnergy Ra Power

  13. PROJECT PROFILE: Sunrun Inc. (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (IncubatorSunrun Inc.

  14. PROJECT PROFILE: UtilityAPI (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (IncubatorSunrun

  15. Phosphorus Cycling in the Red Tide Incubator Region of Monterey Bay in Response to Upwelling

    E-Print Network [OSTI]

    Mackey, Katherine R. M; Mioni, Cecile E; Ryan, John P; Paytan, Adina

    2012-01-01

    of C. balechii from the RTI region of Monterey Bay differsThe red tide incubator (RTI) is a persistent feature ofspecies that incubate in the RTI may cause harmful effects

  16. Los Angeles CleanTech Incubator to Host Event With Senior Energy...

    Office of Environmental Management (EM)

    Angeles CleanTech Incubator to Host Event With Senior Energy Department Official Dr. Arun Majumdar Los Angeles CleanTech Incubator to Host Event With Senior Energy Department...

  17. Los Angeles CleanTech Incubator to Host Event With Senior Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Angeles CleanTech Incubator to Host Event With Senior Energy Department Official Dr. Arun Majumdar Los Angeles CleanTech Incubator to Host Event With Senior Energy Department...

  18. Energy Department Announces $13 Million to Strengthen Local Solar Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformation Form Employee Informationand Spur Solar Deployment

  19. Energy Department Announces $15 Million to Integrate Affordable Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformation Form Employee Informationand Spur Solar

  20. Energy Department Announces $32 Million to Boost Solar Workforce Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformation Form Employee Informationand SpurGeothermalDrive Solar

  1. Influence of Water Availability during Incubation on Hatchling Size, Body Composition, Desiccation Tolerance, and Terrestrial

    E-Print Network [OSTI]

    Finkler, Michael S.

    714 Influence of Water Availability during Incubation on Hatchling Size, Body Composition The effects of water availability during incubation on the water contents of neonatal snapping turtles in hatchlings with greater water availability dur- ing incubation may enhance survival by increasing the amount

  2. Solar Companies Go for the Gold with SunShot Incubator | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectDataSecretaryDepartment of EnergyDepartment» SoftwareCareer

  3. NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1forEnergy NRECA's Ex

  4. SunShot Incubator Awardee Helps Companies Offer Discount Solar as Employee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting State EnergyStrategicSubsidyDepartment ofSunShot|Perk

  5. SunShot Incubator Inspires Solar Energy Visionaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting State EnergyStrategicSubsidyDepartment

  6. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  7. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  8. PROJECT PROFILE: Concurrent Design, Inc. (Incubator 10) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateau TrainingeTrack,1PPPOCogenra Solar,

  9. Effect of Field Size and Length of Plantar Spur on Treatment Outcome in Radiation Therapy of Plantar Fasciitis: The Bigger the Better?

    SciTech Connect (OSTI)

    Hermann, Robert Michael, E-mail: hermann@strahlentherapie-westerstede.com [Zentrum für Strahlentherapie und Radioonkologie, Bremen/Westerstede (Germany); Abteilung Strahlentherapie und Spezielle Onkologie, Medizinische Hochschule Hannover (Germany); Meyer, Andreas [Abteilung Strahlentherapie und Spezielle Onkologie, Medizinische Hochschule Hannover (Germany); Gemeinschaftspraxis für Strahlentherapie Hildesheim/Goslar (Germany); Becker, Alexandra [Zentrum für Strahlentherapie und Radioonkologie, Bremen/Westerstede (Germany); Schneider, Michael [Orthopaedic Centre for Musculoskeletal Research, University of Würzburg (Germany); Reible, Michael; Carl, Ulrich Martin [Zentrum für Strahlentherapie und Radioonkologie, Bremen/Westerstede (Germany); Christiansen, Hans [Abteilung Strahlentherapie und Spezielle Onkologie, Medizinische Hochschule Hannover (Germany); Nitsche, Mirko [Zentrum für Strahlentherapie und Radioonkologie, Bremen/Westerstede (Germany); Klinik für Strahlentherapie, Karl-Lennert-Krebscentrum, Universität Kiel (Germany)

    2013-12-01

    Purpose: Radiation therapy is well established in the treatment of painful plantar fasciitis or heel spur. A retrospective analysis was conducted to investigate the effect of field definition on treatment outcome and to determine the impact of factors potentially involved. Methods and Materials: A review of treatment data of 250 patients (285 heels) with a mean follow-up time of 11 months showed that complete symptom remission occurred in 38%, partial remission in 32%, and no change in 19% (11% were lost to follow-up). Variables such as radiologic evidence of plantar spurs, their length, radiation dose, field size, age, sex, and onset of pain before administration of radiation therapy were investigated in univariate and multivariate regression analyses. Results: Treatment response depended upon age >53 years, length of heel spur ?6.5 mm (or no radiologic evidence of a heel spur), and onset of pain <12 months before radiation therapy. Patients with these clinical prerequisites stood a 93% chance of clinical response. Without these prerequisites, only 49% showed any impact. No influence of field size on treatment outcome became evident. Conclusion: Patients with short plantar heel spurs benefit from radiation therapy equally well as patients without any radiologic evidence. Moreover, smaller field sizes have the same positive effect as commonly used large field definitions covering the entire calcaneal bone. This leads to a recommendation of a considerable reduction of field size in future clinical practice.

  10. Rebuilding It Better: Greensburg, Kansas. City of Greensburg SunChips Business Incubator (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designed SunChips Business Incubator in Greensburg, Kansas.

  11. Urea and nickel utilization in marine cyanobacteria as evaluated by incubation, proteomic, and uptake techniques

    E-Print Network [OSTI]

    Goepfert, Tyler Jay

    2013-01-01

    Nitrogen and trace metal biogeochemical effects on phytoplankton productivity were compared through whole water bottle incubations and proteomic evaluation of in situ harvested particulate matter from two distinct oceanographic ...

  12. Mechanical design and prototyping of a neonatal incubator for areas with intermittent electrical grid power

    E-Print Network [OSTI]

    Present, Elaina Kim

    2012-01-01

    Every year, 1.1 million infants die from complications related to preterm birth. An estimated 80% of these deaths could be prevented through the use of non-intensive methods, including thermal regulation. Neonatal incubators ...

  13. Making electrocompetent cells 1. Streak out desired strain from frozen stock and incubate overnight (include drug if

    E-Print Network [OSTI]

    Segall, Anca

    Making electrocompetent cells 1. Streak out desired strain from frozen stock and incubate overnight ml of media (include drug if present). 4. Shake/incubate until an OD600 of 0.5 is reached (this takes

  14. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    heater replacement, air conditioner replacement, solar thermal waterheater replacement, air conditioner replacement, solar thermal water

  15. A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers

    E-Print Network [OSTI]

    Aasi, J; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Amariutei, D V; Andersen, M; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Ashton, G; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Branco, V; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Colombini, M; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Damjanic, M D; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Edwards, M; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Gergely, L Á; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez, J; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammer, D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hoelscher-Obermaier, J; Hofman, D; Hollitt, S E; Holt, K; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Islas, G; Isler, J C; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jang, H; Jaranowski, P; Jawahar, S; Ji, Y; Jiménez-Forteza, F

    2015-01-01

    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is $6.87^\\circ$ in diameter and centered on $20^\\textrm{h}10^\\textrm{m}54.71^\\textrm{s}+33^\\circ33'25.29"$, and the other (B) is $7.45^\\circ$ in diameter and centered on $8^\\textrm{h}35^\\textrm{m}20.61^\\textrm{s}-46^\\circ49'25.151"$. We explored the frequency range of 50-1500 Hz and frequency derivative from $0$ to $-5\\times 10^{-9}$ Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave em...

  16. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01

    energy efficiency, solar photovoltaics (PV), and direct loadenergy efficiency, solar photovoltaics (PV), and direct loadAnnouncements Solar Photovoltaics Residential Conservation

  17. A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers

    E-Print Network [OSTI]

    J. Aasi; B. P. Abbott; R. Abbott; T. D. Abbott; M. R. Abernathy; F. Acernese; K. Ackley; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; V. B. Adya; C. Affeldt; M. Agathos; K. Agatsuma; N. Aggarwal; O. D. Aguiar; A. Ain; P. Ajith; B. Allen; A. Allocca; D. V. Amariutei; M. Andersen; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. C. Arceneaux; J. S. Areeda; N. Arnaud; G. Ashton; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; S. Babak; P. T. Baker; F. Baldaccini; G. Ballardin; S. W. Ballmer; J. C. Barayoga; S. E. Barclay; B. C. Barish; D. Barker; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; J. Bartlett; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. C. Batch; C. Baune; V. Bavigadda; B. Behnke; M. Bejger; C. Belczynski; A. S. Bell; B. K. Berger; J. Bergman; G. Bergmann; C. P. L. Berry; D. Bersanetti; A. Bertolini; J. Betzwieser; S. Bhagwat; R. Bhandare; I. A. Bilenko; G. Billingsley; J. Birch; R. Birney; S. Biscans; M. Bitossi; C. Biwer; M. A. Bizouard; J. K. Blackburn; C. D. Blair; D. Blair; S. Bloemen; O. Bock; T. P. Bodiya; M. Boer; G. Bogaert; P. Bojtos; C. Bond; F. Bondu; R. Bonnand; R. Bork; M. Born; V. Boschi; Sukanta Bose; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; V. Branco; J. E. Brau; T. Briant; A. Brillet; M. Brinkmann; V. Brisson; P. Brockill; A. F. Brooks; D. A. Brown; D. Brown; D. D. Brown; N. M. Brown; C. C. Buchanan; A. Buikema; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Calderón Bustillo; E. Calloni; J. B. Camp; K. C. Cannon; J. Cao; C. D. Capano; E. Capocasa; F. Carbognani; S. Caride; J. Casanueva Diaz; C. Casentini; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; C. Celerier; G. Cella; C. Cepeda; L. Cerboni Baiardi; G. Cerretani; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. J. Chamberlin; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; C. Cheng; A. Chincarini; A. Chiummo; H. S. Cho; M. Cho; J. H. Chow; N. Christensen; Q. Chu; S. Chua; S. Chung; G. Ciani; F. Clara; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; C. G. Collette; M. Colombini; M. Constancio Jr.; A. Conte; L. Conti; D. Cook; T. R. Corbitt; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; S. B. Coughlin; J. -P. Coulon; S. T. Countryman; P. Couvares; D. M. Coward; M. J. Cowart; D. C. Coyne; R. Coyne; K. Craig; J. D. E. Creighton; T. Creighton; J. Cripe; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; T. Dal Canton; M. D. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; N. S. Darman; V. Dattilo; I. Dave; H. P. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; D. DeBra; G. Debreczeni; J. Degallaix; M. De Laurentis; S. Deléglise; W. Del Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. De Rosa; R. T. DeRosa; R. DeSalvo; S. Dhurandhar; M. C. Díaz; L. Di Fiore; M. Di Giovanni; A. Di Lieto; I. Di Palma; A. Di Virgilio; G. Dojcinoski; V. Dolique; E. Dominguez; F. Donovan; K. L. Dooley; S. Doravari; R. Douglas; T. P. Downes; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; M. Ducrot; S. E. Dwyer; T. B. Edo; M. C. Edwards; M. Edwards; A. Effler; H. -B. Eggenstein; P. Ehrens; J. M. Eichholz; S. S. Eikenberry; R. C. Essick; T. Etzel; M. Evans; T. M. Evans; R. Everett; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; S. Farinon; B. Farr; W. M. Farr; M. Favata; M. Fays; H. Fehrmann; M. M. Fejer; D. Feldbaum; I. Ferrante; E. C. Ferreira; F. Ferrini; F. Fidecaro; I. Fiori; R. P. Fisher; R. Flaminio; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; P. Fulda; M. Fyffe; H. A. G. Gabbard; J. R. Gair; L. Gammaitoni; S. G. Gaonkar; F. Garufi; A. Gatto; N. Gehrels; G. Gemme; B. Gendre; E. Genin; A. Gennai; L. Á. Gergely; V. Germain; A. Ghosh; S. Ghosh; J. A. Giaime; K. D. Giardina; A. Giazotto; J. R. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; J. Gonzalez; A. Gopakumar; N. A. Gordon; M. L. Gorodetsky; S. E. Gossan; M. Gosselin; S. Goßler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; G. Greco; P. Groot; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. J. Guido; X. Guo; A. Gupta; M. K. Gupta; K. E. Gushwa; E. K. Gustafson; R. Gustafson; J. J. Hacker; B. R. Hall; E. D. Hall; D. Hammer; G. Hammond; M. Haney; M. M. Hanke; J. Hanks; C. Hanna; M. D. Hannam; J. Hanson; T. Hardwick; J. Harms; G. M. Harry; I. W. Harry; M. J. Hart; M. T. Hartman; C. -J. Haster; K. Haughian; A. Heidmann; M. C. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; J. Hennig; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; J. Hoelscher-Obermaier; D. Hofman; S. E. Hollitt; K. Holt; P. Hopkins; D. J. Hosken; J. Hough; E. A. Houston; E. J. Howell; Y. M. Hu; S. Huang; E. A. Huerta; D. Huet; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh

    2015-10-14

    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is $6.87^\\circ$ in diameter and centered on $20^\\textrm{h}10^\\textrm{m}54.71^\\textrm{s}+33^\\circ33'25.29"$, and the other (B) is $7.45^\\circ$ in diameter and centered on $8^\\textrm{h}35^\\textrm{m}20.61^\\textrm{s}-46^\\circ49'25.151"$. We explored the frequency range of 50-1500 Hz and frequency derivative from $0$ to $-5\\times 10^{-9}$ Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near $169$ Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized strain amplitude $h_0$ of $6.3\\times 10^{-25}$, while at the high end of our frequency range we achieve a worst-case upper limit of $3.4\\times 10^{-24}$ for all polarizations and sky locations.

  18. Community Shared Solar with Solarize

    Office of Energy Efficiency and Renewable Energy (EERE)

    An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  20. Changes in Pituitary Somatotroph and Lactotroph Distribution in Laying and Incubating Turkey Hens

    E-Print Network [OSTI]

    Ramachandran, Ramesh

    Changes in Pituitary Somatotroph and Lactotroph Distribution in Laying and Incubating Turkey Hens Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705 Accepted May 21, 1996 Turkey be- havior, and hyperprolactinemia. Although remarkable changes occur in hormonal profiles as turkey

  1. EVALUATION OF THE RETURN OF ADULT CHINOOK SALMON TO THE ABERNATHY INCUBATION CHANNEL

    E-Print Network [OSTI]

    -, and 4-yr-old adult fish returning to the hatchery holding pond were examined for fin clips and fluoresEVALUATION OF THE RETURN OF ADULT CHINOOK SALMON TO THE ABERNATHY INCUBATION CHANNEL ALLAN E. THOMAS' ABSTRACT Adult returns of progeny of the 1964 year class of chinook salmon, Oncorhynchus

  2. Revisiting the role of Incubators during Fiscal Austerity Times: The Case of PSP, Greece.

    E-Print Network [OSTI]

    1 Revisiting the role of Incubators during Fiscal Austerity Times: The Case of PSP, Greece. Areti, Department of Economics, University Campus Rio, 26504 Patras, Greece b: University of Patras, Department of Computer Engineering and Informatics, University Campus Rio, 26504 Patras, Greece c: Computer Technology

  3. Success stories spur students

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructureInnovationEnergy Conversion | ANSERSuccessSuccess

  4. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Solar Data a. SOLAR RADIATION Solar radiation data provide aAppendix C - Appendix 0 - Solar Radiation Glossary. Convers

  5. Solar Census - Perfecting the Art of Automated, Remote Solar Shading Assessments (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    To validate the work completed by Solar Census as part of the Department of Energy SunShot Incubator 8 award, NREL validated the performanec of the Solar Census Surveyor tool against the industry standard Solmetric SunEye measurements for 4 residential sites in California who experienced light to heavy shading. Using the a two one-sided test (TOST) of statistical equivalence, NREL found that the mean differences between the Solar Census and SunEye mean solar access values for Annual, Summer, and Winter readings fall within the 95% confidence intervals and the confidence intervals themselves fall within the tolerances of +/- 5 SAVs, the Solar Census calculations are statistically equivalent to the SunEye measurements.

  6. SunShot Technology to Market "Incubator 10, SolarMat 3, SunPath 2" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShot News SunShot

  7. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    SciTech Connect (OSTI)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.

  8. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    SciTech Connect (OSTI)

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26{degree}C and downshifted 30-26-30{degree}C) and females (constant 30{degree}C and upshifted 26-30-26{degree}C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26{degree}C group and 93% males from the downshifted group. 100% females resulted from both the constant 30{degree}C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26{degree}C were significantly larger than hatchlings from eggs incubated at a constant 30{degree}C or downshifted. Hatchlings were raised in individual aquaria at 25{degree}C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30{degree}C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.

  9. Disaster incubation, cumulative impacts and the urban/ex-urban/rural dynamic

    SciTech Connect (OSTI)

    Mulvihill, Peter R. . E-mail: prm@yorku.ca; Ali, S. Harris . E-mail: hali@yorku.ca

    2007-05-15

    This article explores environmental impacts and risks that can accumulate in rural and ex-urban areas and regions and their relation to urban and global development forces. Two Southern Ontario cases are examined: an area level water disaster and cumulative change at the regional level. The role of disaster incubation analysis and advanced environmental assessment tools are discussed in terms of their potential to contribute to more enlightened and effective assessment and planning processes. It is concluded that conventional approaches to EA and planning are characteristically deficient in addressing the full range of impacts and risks, and particularly those originating from pathogens, dispersed and insidious sources. Rigorous application of disaster incubation analysis and more advanced forms of EA has considerable potential to influence a different pattern of planning and decision making.

  10. PROJECT PROFILE: GeoCF LLC (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom Labs (Incubator 10) PROJECTGeoCF

  11. Solar Forecasting

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

  12. Solar Rights

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "a system affixed to a building or buildings that uses solar devices, which are thermally isolated from living space or any other area where the energy is used...

  13. Solar Rights

    Broader source: Energy.gov [DOE]

    In the context of this law, a solar energy device is a system "manufactured and sold for the sole purpose of facilitating the collection and beneficial use of solar energy, including passive...

  14. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  15. Solar Physics A Journal for Solar and Solar-Stellar

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    investigated in the build-up to one of the deepest solar minima expe- rienced in the past 100 years1 23 Solar Physics A Journal for Solar and Solar-Stellar Research and the Study of Solar-013-0335-3 Changes in Quasi-periodic Variations of Solar Photospheric Fields: Precursor to the Deep Solar Minimum

  16. Modeling Solar Energy Technology Evolution breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Evolution What is a question we could ask about technology evolution, which when answered could yield deep insight into how to spur innovation? Introductory question...

  17. Project Profile: Helios: Understanding Solar Evolution through...

    Broader source: Energy.gov (indexed) [DOE]

    investments to spur evolutionary and revolutionary advancements for silicon, thin-film, and concentrating photovoltaic technologies. Recognizing the most promising research...

  18. High Efficiency Solar Power via Separated Photo and Voltaic Pathways

    SciTech Connect (OSTI)

    Michael J. Naughton

    2009-02-17

    This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

  19. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (IncubatorSunrunkWh

  20. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    network approach of solar potential in Turkey,” Renewabledue to the high solar resource potential. However, the solar

  1. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    data records. 1, Solar Data Solar energy is a general termin obtaining reliable data for solar energy applications,data and analyzed the consequences of designing solar energy

  3. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    a characteristic solar potential is expected to prevail, Theso many sites of potential solar energy applications will besun creates a high potential for solar energy use. Solar-

  4. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  5. Solar Rights

    Broader source: Energy.gov [DOE]

    Ordinances, bylaws, or regulations may reasonably restrict the installation and use of solar energy devices to protect public health and safety, buildings from damage, historic/aesthetic values ...

  6. Demo Day Winter 2013 Last week INCUBATE held it's second Demo Day for the startups in the winter accelerator program. The

    E-Print Network [OSTI]

    Wasinger, Rainer

    training of these INCUBATE participants was a real asset, said Freelancer.com CEO Matt Barrie. "It gives

  7. Emergent environmental issues, ever-shrinking global petroleum reserves, and unstable fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. The development and viability

    E-Print Network [OSTI]

    costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. The development and viability of all biofuel fermentations, however, remains limited by numerous factors adsorbents for the recovery of alcohol biofuels from model aqueous solutions as the first step towards

  8. Solar Physics A Journal for Solar and Solar-

    E-Print Network [OSTI]

    Padmanabhan, Janardhan

    1 23 Solar Physics A Journal for Solar and Solar- Stellar Research and the Study of Solar-010-9653- x Solar Polar Fields During Cycles 21??? 23: Correlation with Meridional Flows #12;1 23 Your article's request, provided it is not made publicly available until 12 months after publication. #12;Solar Phys

  9. Unified Solar

    Broader source: Energy.gov [DOE]

    Unified Solar is an MIT startup that is commercializing an integrated circuit solution that eliminates most of the adverse effects caused by partial shading in photovoltaic power systems. With its patent-pending design, Unified Solar's solution is smaller, cheaper and more powerful than any competing power optimizer in the market.

  10. Petrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION

    E-Print Network [OSTI]

    Petrovay, Kristóf

    where = T(P0/P) ad (potential temperature) #12;Petrovay: Solar physics Helioseismology Group velocity Helioseismology Global helioseismology: Determine set of nlm's infer global mean solar structure. LocalPetrovay: Solar physics Helioseismology SOLAR OSCILLATIONS: INTRODUCTION Small departures from

  11. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    SciTech Connect (OSTI)

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.; Resch, Charles T.; Arntzen, Evan V.; Smithgall, A. N.; Pfiffner, S.; Freifeld, Barry M.; White, D. C.; Long, Philip E.

    2009-09-23

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.

  12. Solar | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar SHARE Solar ORNL's Solar Technologies program supports the U.S. Department of Energy (DOE) Solar Energy Technologies Office - SunShot Initiative goal to make solar energy...

  13. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Techniques for Daily Solar Radiation Data. Proceedings ofa. SOLAR RADIATION Solar radiation data provide a measure ofMonthly Solar Data Latitude: Jan SOLAR RADIATION (kWhJm2 per

  14. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  15. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  16. Solar Two

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  17. Solar Rights

    Broader source: Energy.gov [DOE]

    In June of 2015, SB 1626 was signed into law. It provides that during the development period, the developer may only prohibit  a property owner from installing solar in developments with 50 or...

  18. Solar and Wind Easements & Rights Laws & Local Option Solar Rights...

    Broader source: Energy.gov (indexed) [DOE]

    Schools State Government Federal Government Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal...

  19. Solar Rights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nonprofit Residential Schools State Government Federal Government Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Photovoltaics Daylighting Solar Pool...

  20. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    will enable optimal solar cell efficiencies in multiple bandlow cost, high efficiency hybrid solar cells. 4.6 Conclusioncosts and improving efficiencies of solar photovoltaic

  1. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  2. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    the limits of solar photovoltaics (PV) in traditionalthe limits of solar photovoltaics (PV) in electric powertechnologies is that of solar photovoltaics due to the high

  3. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  4. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and M. Cony, “Prediction of global solar irradiance based onand C. K. Chan, “Prediction of hourly solar radiation usingand K. C. Chee, “Prediction of hourly solar radiation using

  5. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish them

  6. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    of these errors on solar design is discussed. To facilitateone of the simplified solar design methods discussed inWisconsin Interactive Solar Heating Design Program, , , , c,

  7. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  9. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    the cloud index,” Solar Energy, vol. 81, no. 2, pp. 280 –Cover Indices,” ASME Journal of Solar Energy Engineering (inHorizontal Irradiance,” submitted to Solar Energy, 2012.

  10. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  11. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    nanocrystal-polymer solar cells The full potential of hybridto reach the full potential of polymer blend solar cells.solar cells described here offer several potential

  12. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  13. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    2.1.2 European Solar Radiation Atlas (ESRA)synthetic hourly radiation,” Solar Energy, vol. 49, pp. 67–for supplementing solar radiation network data,” Final

  14. Energy Department Invests $10M Through the Fuel Cell Technologies Incubator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy of theSolarDepartmentEnergyFunding Opportunity to

  15. The National Alliance of Clean Energy Incubators jgroelinger@cleanenergyalliance.com Phone: +1-609-516-7669

    E-Print Network [OSTI]

    Delgado, Mauricio

    The National Alliance of Clean Energy Incubators jgroelinger@cleanenergyalliance.com Phone: +1, Executive Director (phone): 1-609-516-7669; (e-mail): jgroelinger@cleanenergyalliance.com CLEAN ENERGY ALLIANCE AND U.S. DEPARTMENT OF ENERGY LAUNCH PARTNERSHIP TO SUPPORT COMMERCIALIZATION OF CLEAN ENERGY

  16. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    of solar- radiation data,” Solar Energy, vol. 19, no. 6, pp.16 independent data banks,” Solar Energy, vol. 80, no. 4,data,” Final Report of International Energy Agency Solar

  17. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Radiation in Canada. Solar Energy ~, p.153. Threlkeld, J.L.pool. As the use of solar energy becomes more widespread,a high potential for solar energy use. Solar-heated swimming

  18. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect (OSTI)

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  19. Total Dissolved Gas Effects on Incubating Chum Salmon Below Bonneville Dam

    SciTech Connect (OSTI)

    Arntzen, Evan V.; Hand, Kristine D.; Carter, Kathleen M.; Geist, David R.; Murray, Katherine J.; Dawley, Earl M.; Cullinan, Valerie I.; Elston, Ralph A.; Vavrinec, John

    2009-01-29

    At the request of the U.S. Army Corps of Engineers (USACE; Portland District), Pacific Northwest National Laboratory (PNNL) undertook a project in 2006 to look further into issues of total dissolved gas (TDG) supersaturation in the lower Columbia River downstream of Bonneville Dam. In FY 2008, the third year of the project, PNNL conducted field monitoring and laboratory toxicity testing to both verify results from 2007 and answer some additional questions about how salmonid sac fry respond to elevated TDG in the field and the laboratory. For FY 2008, three objectives were 1) to repeat the 2006-2007 field effort to collect empirical data on TDG from the Ives Island and Multnomah Falls study sites; 2) to repeat the static laboratory toxicity tests on hatchery chum salmon fry to verify 2007 results and to expose wild chum salmon fry to incremental increases in TDG, above those of the static test, until external symptoms of gas bubble disease were clearly present; and 3) to assess physiological responses to TDG levels in wild chum salmon sac fry incubating below Bonneville Dam during spill operations. This report summarizes the tasks conducted and results obtained in pursuit of the three objectives. Chapter 1 discusses the field monitoring, Chapter 2 reports the findings of the laboratory toxicity tests, and Chapter 3 describes the field-sampling task. Each chapter contains an objective-specific introduction, description of the study site and methods, results of research, and discussion of findings. Literature cited throughout this report is listed in Chapter 4. Additional details on the monitoring methodology and results are provided in Appendices A and B included on the compact disc bound inside the back cover of the printed version of this report.

  20. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  1. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Beckman, Solar Energy Thermal Processes (John Wiley & Sons,New York. Solar Energy Thermal Processes. John Duncan, C,

  3. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01

    and operation of solar power plants and the model- ing offor application to solar ther- mal power plants energy

  4. VISUAL-SOLAR

    Energy Science and Technology Software Center (OSTI)

    003661IBMPC00 Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops   

  5. CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership

    E-Print Network [OSTI]

    READY BUILDINGS Solar access, easements, rights now and future Technical design ­ rCUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39

  6. New Incubator Network to Help Clean-Energy Entrepreneurs - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic(MillionNatureThousandFeet) PriceDepartment

  7. SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment

    E-Print Network [OSTI]

    Brownstone, Rob

    SOLAR ENERGY FOR ACADEMIC INSTITUTIONS Solar Suitability Assessment of Dalhousie University.................................................................................................. 2 2.2 Solar Radiation Data for Calculating Solar Energy Resource .................... 3 3 Campus.1 Evaluation of Suitability for Solar Energy Generation................................ 12 4.2 Solar

  8. Solar Impulse's Solar-Powered Plane

    ScienceCinema (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  9. Solar Impulse's Solar-Powered Plane

    SciTech Connect (OSTI)

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  10. Solar collector

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1982-05-04

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  11. Solar Neutrinos

    E-Print Network [OSTI]

    R. G. H. Robertson

    2006-02-05

    Experimental work with solar neutrinos has illuminated the properties of neutrinos and tested models of how the sun produces its energy. Three experiments continue to take data, and at least seven are in various stages of planning or construction. In this review, the current experimental status is summarized, and future directions explored with a focus on the effects of a non-zero theta-13 and the interesting possibility of directly testing the luminosity constraint. Such a confrontation at the few-percent level would provide a prediction of the solar irradiance tens of thousands of years in the future for comparison with the present-day irradiance. A model-independent analysis of existing low-energy data shows good agreement between the neutrino and electromagnetic luminosities at the +/- 20 % level.

  12. Solar Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideo »ServicesShaleEnergyValleySolar Access

  13. Final Report for PV Incubator Subcontract No. NAT-7-77015-05: October 19, 2007 - July 30, 2009

    SciTech Connect (OSTI)

    Pan, N.

    2012-04-01

    The Solar America Initiative (SAI) is intended to provide numerous technological routes towards a lower levelized cost of solar-generated electricity (LCOE). MicroLink's planned contribution towards the SAI is to provide a method of lowering the cost of GaAs-based solar cells, which are a major contributor to the cost of concentrator photovoltaic (CPV) modules. MicroLink's unique approach is to use an epitaxial liftoff (ELO) process to completely remove the active solar cell from the substrate while preserving the performance and yield of the cell. The substrate accounts for approximately half the cost of conventional, multijunction GaAs-based solar cells. By using ELO, the substrate can be reused several times for additional solar cell growths, thereby reducing the cost of multijunction solar cells by up to 50%. The achievement of high efficiency has significantly increased the acceptance of MicroLink Devices as a future supplier of high-efficiency dual-junction and IMM (inverted metamorphic) triple-junction ELO solar cells. MicroLink entered the SAI program with a 10% efficiency GaAs solar cell (1-sun AM 1.5) and finished the program with an NREL-verified IMM triple-junction ELO solar cell (1-sun AM 1.5).

  14. EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Solar Millennium Blythe Solar Power Project in Riverside County, CA EIS-0449: Solar Millennium Blythe Solar Power Project in Riverside County, CA December 10, 2010 EIS-0449:...

  15. San Francisco, California: Solar in Action (Brochure), Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Francisco, California: Solar in Action (Brochure), Solar America Cities,...

  16. edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATIONAL TOOLS; CURRICULUM GUIDES; GLAZING; HOUSES; SOLAR COOKERS; SOLAR...

  17. China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...

    Open Energy Info (EERE)

    China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name: China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

  18. SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE...

    Office of Scientific and Technical Information (OSTI)

    SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM Citation Details In-Document Search Title: SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR...

  19. Portland, Oregon: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland, Oregon: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Portland, Oregon: Solar in Action (Brochure), Solar America Cities,...

  20. San Antonio, Texas: Solar in Action (Brochure), Solar America...

    Energy Savers [EERE]

    San Antonio, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) San Antonio, Texas: Solar in Action (Brochure), Solar America...

  1. Orlando, Florida: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Orlando, Florida: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Orlando, Florida: Solar in Action (Brochure), Solar America Cities,...

  2. Denver, Colorado: Solar in Action (Brochure), Solar America Cities...

    Office of Environmental Management (EM)

    Denver, Colorado: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Denver, Colorado: Solar in Action (Brochure), Solar America Cities,...

  3. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Environmental Management (EM)

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  4. Houston, Texas: Solar in Action (Brochure), Solar America Cities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Houston, Texas: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Houston, Texas: Solar in Action (Brochure), Solar America Cities,...

  5. Solar energy collector

    DOE Patents [OSTI]

    Brin, Raymond L. (Cedar Crest, NM); Pace, Thomas L. (Albuquerque, NM)

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  6. Solar Innovator | Alta Devices

    ScienceCinema (OSTI)

    Mattos, Laila; Le, Minh

    2013-05-29

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  7. Solar Innovator | Alta Devices

    SciTech Connect (OSTI)

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  8. Solar neutrinos and the solar composition problem

    E-Print Network [OSTI]

    Carlos Pena-Garay; Aldo Serenelli

    2008-11-16

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  9. Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy Smooth BromeBuildings |Solar PoolU.S. Department

  10. Solar Circuitry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience of SignaturesSoft0 Soils SoilSolar

  11. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541 *ImpactScience(TechnicalFor Milwaukee, BySoft Solar Power

  12. Managers spur productivity gains. [USA

    SciTech Connect (OSTI)

    Brezovec, D.

    1981-12-01

    Output per worker hour grows at U.S. coal mines as management gears training programs and operating practices to fight falling productivity.

  13. Earthquake 'memory' could spur aftershocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010Mesoscopy andSaving onEarth Day Earth DayEarthquake

  14. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),layer,? Solar Energy Materials and Solar Cells, 2013, 113,thickness,? Solar Energy Materials and Solar Cells, 2013,

  15. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    grids,? Solar Energy Materials and Solar Cells, 2011, 95(5),thickness,? Solar Energy Materials and Solar Cells, 2013,analysis,? Solar Energy Materials and Solar Cells, [130] J.

  16. Solar Easements & Rights Laws | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Institutional Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics Program Info...

  17. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  18. Solar skylight

    DOE Patents [OSTI]

    Adamson, James C. (Osprey La., Rumson, NJ 07760)

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  19. Solar collector

    DOE Patents [OSTI]

    Wilhelm, William G. (Cutchogue, NY)

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  20. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    basic bilayer CdTe/CdSe solar cells described above. Figurecomplete CdTe/CdSe nanocrystal solar cell (B). gap variationlength for CdSe-P3HT hybrid solar cells. (b) Current-voltage

  1. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    and William A. Beckman, Solar Energy Thermal Processes (JohnWiley, Inc" New York. Solar Energy Thermal Processes. John1977): SOLCOST, Solar Energy Design Program for Non-Thermal

  2. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    Users in a zone with one solar measurement location shouldin California where solar data of one kind or another havelifetime of the solar heating system: one can expect to pay

  3. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    of organic based solar cells and distinguish them from theirNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensionalinorganic nanocrystal solar cells 5.1 Introduction In recent

  4. Solar Energy Entrepreneurs

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region May 31, 2012 #12;Solar Energy Entrepreneurs Meeting MD, DC, DE, VA Region Meeting Objectives should attend if you.... · ... work in the solar energy market

  5. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    to create low-cost solar cells with performance andachieving stable and low-cost solar energy conversion.of large-scale solar power at low costs (1). The most

  6. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    to be supplied by solar, A cost analysis is not included.predict the performance and cost of solar energy systems forthe performance and costs of solar energy systems for

  7. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    inorganic nanocrystal solar cells 5.1 Introduction In recentoperation of organic based solar cells and distinguish themThe organic donor-acceptor solar cell relies on a type II

  8. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  9. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    are many solar photovoltaic power plants internationally andUSA, Blythe, CA Solar electric power plant, Blythe USA, SanTX Blue Wing solar electric power plant USA, Jacksonville,

  10. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    of organic based solar cells and distinguish them from theirinorganic nanocrystal solar cells 5.1 Introduction In recentNov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional

  11. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

  12. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  14. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  15. Solar | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sources Renewables Solar Solar July 13, 2015 The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction...

  16. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  17. Solar Permitting Law

    Broader source: Energy.gov [DOE]

    This legislation also addressed permitting fees for solar systems.  Counties and cities may not charge permit fees for solar permit applications specifically, but they can charge building permit ...

  18. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  19. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  20. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  1. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    from industries or solar collectors 1.2.2 Multi-stage FlashWilliams Large area solar collector Desalination Process

  2. Solar Energy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

  3. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre Søren Østergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

  4. Solar in Cold, Cloudy Climates

    Broader source: Energy.gov [DOE]

    Presentation delivered by Chuck Marken during the 2009 Northeastern Solar Cities Conference Solar Survey session.

  5. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2007). Global Concentrated Solar Power Markets andLLC. (2007). Global Concentrated Solar Power Markets and

  6. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    Solar Energy Materials and Solar Cells 93(10): 1728-1723,Solar Energy Materials and Solar Cells 92(8) 39. Sima, C.Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (

  7. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    glass contact Solar Energy Materials and Solar Cells 93(10):cells. Solar Energy Materials and Solar Cells 92(8) 39.potential of these materials for solar energy conversion,

  8. Energy Department Announces up to $4.6 Million through the Fuel Cell Technologies Incubator Funding Opportunity Announcement to Support Innovations in Fuel Cell and Hydrogen Fuel Technologies

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office (FCTO) Incubator Funding Opportunity Announcement is intended to identify potentially impactful technologies that are not already addressed in FCTO's strategic plan or project portfolio.

  9. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009

    Broader source: Energy.gov [DOE]

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  10. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007 -- June 16, 2009

    SciTech Connect (OSTI)

    Ounadjela, K.; Blosse, A.

    2010-08-01

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  11. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    USA, Jacksonville, FL Jacksonville Solar Energy Generation Facility Constructed Systems that produce electricity

  12. Solar Policy Environment: Houston

    Broader source: Energy.gov [DOE]

    The City of Houston is committed to achieving a sustainable solar infrastructure through strategic partnerships that address market barriers for solar energy through the Houston Solar Initiative. The initiative is dedicated to this long-term goal while focusing on near- and mid-term results that go beyond demonstration solar projects.

  13. Solar Policy Environment: Sacramento

    Broader source: Energy.gov [DOE]

    The City of Sacramento and the greater Sacramento region is the home of a long standing history of commitment to solar. Sacramento Solar Access seeks to further widespread adoption of solar energy by addressing current market barriers and preparing, through design guidelines and education, the infrastructure that will optimize solar production in the future.

  14. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    Solar Energy Center USA, Blythe, CA Solar electric power plant,Solar Wind Total Northwest Imports Southwest Imports Total Energy System Table 1.18: Largest PV Power PlantsPlants……………………………………………………32 Table 1.19: Solar Desalination Systems…………………………………………………34 Table 1.20: Energy

  15. Region Solar Inc Solar Inc California Renewable Energy Solar...

    Open Energy Info (EERE)

    North Lexington Massachusetts Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc...

  16. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  17. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  18. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    colorants. Solar Energy Materials and Solar Cells, [30]materials. Solar Energy Materials and Solar Cells, [31] NRELmeasurements. Solar Energy Materials & Solar Cells, 89:319–

  19. Solar Policy Environment: Pittsburgh

    Broader source: Energy.gov [DOE]

    In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburgh’s partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

  20. Solar collector array

    DOE Patents [OSTI]

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  1. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  2. Ordred-Modification (1) SOLAR

    E-Print Network [OSTI]

    Banbara, Mutsunori

    C-7-2 SOL SOLAR 3 (1) SOLAR (2) (3) (1) SOL Ordred-Modification SOLAR CF SOLAR (2) BDD EM PRISM (3) CF SOLAR () (1) SOLAR SOLAR 2008 2011 20240016 Inference-based Hypothesis-finding and its Application to Systems Biology

  3. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  4. Solar Design Workbook

    SciTech Connect (OSTI)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  5. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.

  6. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-23

    In this study, accurately estimating methane (CH4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH4 flux requires explicit representations of microbial processes on CH4 dynamics because all processes for CH4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out by four microbial functional groups: acetoclastic methanogens,more »hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  7. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    1999). Basic Research Needs for Solar Energy Utilization,Basic Energy Science Advisory Committe (BESAC), (2005),and M. A. Green, Solar Energy Materials and Solar Cells 94 (

  8. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    cell. The solar cell’s power conversion efficiency, ? is theEfficiency ..5 Thermal Managements of SolarTemperature on Efficiency Photons incident on a solar cell

  9. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  10. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    IRS 2009). 57 By funding amount, solar accounted for 21% orto 2008. In addition, funding to solar companies increasedfor solar installation technicians by providing funding to

  11. MAGNETOHYDRODYNAMICS OF THE SOLAR TACHOCLINE

    E-Print Network [OSTI]

    ACEVEDO-ARREGUIN, LUIS ANTONIO

    2012-01-01

    4.3 A “solar” model . . . . . . . . . . . . . . . . . . . .of the solar tachocline . . . . . . . . . . . . . . . .pro?le needed to recover the solar ? pro?le in our numerical

  12. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.

  13. SOLAR OPTICAL PROPERTIES OF WINDOWS

    E-Print Network [OSTI]

    Rubin, Michael

    2014-01-01

    for Conservation and Solar Applications of the U.S.~ the Fifth National Passive Solar Conference, University ofInsulation- Proceedings the Solar Glazing Conference,

  14. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    which uses solar energy to generate electricity." Like otherwhich uses solar energy to generate electricity” qualifiesenergy technologies, solar PV creates the most jobs per unit of electricity

  15. Utah Solar Outlook March 2010

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of Utah's solar market, policy initiatives, and progress to date on the Solar America Cities Project: Solar Salt Lake.

  16. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    10MW Thin Film Solar Power Plant for Sempra Generation. ”2009). “Concentrating solar power plants of the southwest1.11. Concentrating solar power plants of the southwest

  17. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    Deduced from Impulsive Solar Flare Particles, Astrophys.the Propagation of Solar-Flare Electrons in Interplanetary,1995), The nature of solar flares associated with coronal

  18. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    coronal mass ejections and solar energetic proton events, J.Voyager observations of solar wind proton temperature:1- 10Howard (2004), Variability of solar eruptions during cycle

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    National Laboratories Solar Renewable Energy CertificateCSP Of all the renewable resources, solar is by far the mostal. New Jersey announced its Solar Renewable Energy Credit

  20. Homebuyer Solar Option and Solar Offset Program

    Broader source: Energy.gov [DOE]

    Senate Bill 1 of 2006, which established the statewide California Solar Initiative, also required the California Energy Commission (CEC) to implement regulations that require sellers of production...

  1. EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project...

    Office of Environmental Management (EM)

    84: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV EA-1784: Fotowatio Nevada Solar, LLC's Apex Solar Power Project in Clark County, NV July 1, 2010...

  2. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  3. EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV EIS-0454: Tonopah Solar Energy Crescent Dunes Solar Energy Project in Nye County, NV Documents...

  4. SolarTech: Sun Sets on Yesterday's Solar Permitting Practices...

    Office of Environmental Management (EM)

    SolarTech: Sun Sets on Yesterday's Solar Permitting Practices SolarTech: Sun Sets on Yesterday's Solar Permitting Practices October 1, 2012 - 3:26pm Addthis Lengthy reviews, high...

  5. Could Solar Energy Storage be Key for Residential Solar? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Could Solar Energy Storage be Key for Residential Solar? Could Solar Energy Storage be Key for Residential Solar? October 26, 2010 - 4:52pm Addthis This is the silent power storage...

  6. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  7. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  8. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    Study of Solar Electron Events over one Solar Cycle …… 3.1occurrence vary over one solar cycle? How is the correlationevents measured over one solar cycle, to address the

  9. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar Power—Technology, Cost, and2009). “Concentrating solar power plants of the southwest

  10. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    heat exchangers, and solar cells," Sci-Tech News, vol. 65,Solar Energy Materials and Solar Cells, vol. 86, pp. 451-in crystalline silicon solar cells," Renewable Energy, vol.

  11. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    heat exchangers, and solar cells," Sci-Tech News, vol. 65,Solar Energy Materials and Solar Cells, vol. 86, pp. 451-Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,

  12. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  13. 2010 Solar Technologies Market Report

    E-Print Network [OSTI]

    2010 Solar Technologies Market Report NOVEMBER 2011 #12;ii #12;iii 2010 Solar Technologies Market Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV

  14. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    output of 300 megawatts, though Solar Thermal Energy (STE).Solar Thermal Energy is solar it is expected to reach 550This class of solar thermal energy collection, known as a

  15. Nanocrystal Solar Cells

    E-Print Network [OSTI]

    Gur, Ilan

    2006-01-01

    requisite, for solar energy conversion based on the donor-stable and low-cost solar energy conversion. Supplementalsolar cells blending organic semiconductors and inorganic semiconductor nanocrystals offer the potential to deliver efficient energy conversion

  16. Solar 2015 Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Solar Energy Society is hosting a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change...

  17. CT Solar Lease

    Broader source: Energy.gov [DOE]

    CT Solar Lease allows homeowners to lease a photovoltaic (PV) or solar thermal system, with fixed monthly payments, for a term of 20 years, at no upfront down payment.* This program, which takes...

  18. Junior Solar Sprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junior Solar Sprint Overview The Junior Solar Sprint (JSS) Car Competition is a classroom-based, hands-on educational program for 6th, 7th, and 8th grade students. Student teams...

  19. Solar 2015 Conference

    Broader source: Energy.gov [DOE]

    The Solar 2015 Conference is a three-day conference where attendees can share sustainable energy ideas and network with other clean energy professionals who are driving solar change and industry innovation.

  20. LADWP- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The Los Angeles Department of Water and Power's (LADWP) Solar Incentive Program began in 2000, with a funding level of $150 million. The California Solar Initiative, created in 2007 upon the...

  1. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Owners of solar photovoltaic (PV) systems and solar water heating systems in Colorado are required to obtain a building permit before their systems may be installed. Permits are handled at the l...

  2. Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in Fairbanks, Mat Su, Kenai, and Anchorage.

  3. Alaska Solar Energy Workshop

    Broader source: Energy.gov [DOE]

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned about solar energy.

  4. Solar Market Pathways

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of...

  5. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  6. REAP Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in...

  7. Solar Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on solar renewable energy.

  8. MAGNETOHYDRODYNAMICS OF THE SOLAR TACHOCLINE

    E-Print Network [OSTI]

    ACEVEDO-ARREGUIN, LUIS ANTONIO

    2012-01-01

    years (from NASA). Prediction of solar weather from theseyears (from NASA). Prediction of solar weather from these

  9. POSTDOCTORAL RESEARCHER Solar Physics

    E-Print Network [OSTI]

    to availability of funding. Candidates must have expertise in solar physics, in particular the interpretation andPOSTDOCTORAL RESEARCHER Solar Physics A fixed-term postdoctoral research position tenable/or modelling of small-scale solar transient features. Expertise in the use of data from different instruments

  10. Solar Policy Environment: Milwaukee

    Broader source: Energy.gov [DOE]

    The City of Milwaukee’s SAC Initiative, Milwaukee Shines, works to reduce informational, economic and procedural barriers to the widespread adoption of solar energy systems. While the City of Milwaukee and its partners have demonstrated commitment and experience in implementing solar technologies, Milwaukee Shines aims to enhance these efforts and make solar a viable alternative throughout the region.

  11. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  12. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  13. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  14. Conservation and solar guidelines

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the US and the results are also displayed on maps. An example is included.

  15. Solar Market Pathways Website

    Broader source: Energy.gov [DOE]

    The Solar Market Pathways website distributes key insights from 15 SunShot Initiative projects that are advancing solar deployment across the United States. These projects take a variety of approaches to develop actionable strategic plans to expand solar electricity use for residential, community, and commercial properties.

  16. Solar Policy Environment: Tucson

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Tucson Solar Initiative seeks to institutionalize the value of nine years of solar energy development experience, secure the promise of renewable energy investment funds, facilitate the installation of a significant volume of installations in the community and establish a mechanism for sustainable solar integration for the future.

  17. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  18. Espanola Incubator Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    well in the past, but our post-911 future will be more challenging. Today's electric system was not designed to handle extensive, well- organized acts of terrorism aimed at...

  19. Espanola Incubator Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliable solutions for metering, communications, and IT. Available modern advances in digital communications can be applied to these utility applications and can support more...

  20. Espanola Incubator Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    largely on the availability of clean, reliable power. This criterion led to the selection of rural Grant County, WA, as the site for both Microsoft and Yahoo server farms. PQ...

  1. Espanola Incubator Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4thwrites out the headerENABLES

  2. Espanola Incubator Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4thwrites out the

  3. Espanola Incubator Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4thwrites out theSmart Grid

  4. Portable solar heater structure

    SciTech Connect (OSTI)

    Holley, D.; Holley, D.E.

    1981-09-08

    Portable solar heater structure is described. A substantially rectangular frame has a back with openings therethrough for permitting air to be drawn into the solar heater. A layer of insulating materials is in contact with the back. A plurality of cupshaped solar collectors open toward the front of the solar heater structure are positioned adjacent the insulating material. A cover is over the front of the solar heater having openings therein adjacent the top thereof through which air heated by the solar heater is passed. A passage is between the openings in the back and cover of the solar heater through which relatively cool air is drawn through the openings in the back over the collectors to be heated for subsequent withdrawal through the openings in the cover.

  5. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  6. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01

    colorants. Solar Energy Materials and Solar Cells, [30]materials. Solar Energy Materials and Solar Cells, [31] NRELof In press at Progress in Solar Energy April 28, 2010 R.

  8. Final Report for PV Incubator Subcontract No. NEU-0-99010-09: March 29, 2010 - March 28, 2011

    SciTech Connect (OSTI)

    Pan, N.

    2012-04-01

    MicroLink has developed a process technology that will enable the manufacture of high-efficiency, low-cost, multijunction solar cells for use in concentrating photovoltaic (CPV) applications. The multijunction cells were fabricated using a novel low-temperature wafer bonding process. A triple-junction InGaP/GaAs/Ge tandem solar cell with efficiency of 30% at 1 sun AM1.5 illumination was fabricated by wafer bonding a dual-junction InGaP/GaAs cell to a single-junction Ge cell. Temperature cycling over the range -25 degrees C to +40 degrees C resulted in no degradation of cell performance. Triple junction InGaP/GaAs/Ge cells were mounted onto ceramic carriers and tested at concentrations up to 300 suns.

  9. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

  10. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  11. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Solar Energy Materials and Solar Cells, 2011, 95(5), 1339-heterojunction organic solar cells,? Solar Energy MaterialsSolar Energy Materials and Solar Cells, 2013, 113, 85-89. [

  12. Helioseismology and Solar Abundances

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    2007-11-28

    Helioseismology has allowed us to study the structure of the Sun in unprecedented detail. One of the triumphs of the theory of stellar evolution was that helioseismic studies had shown that the structure of solar models is very similar to that of the Sun. However, this agreement has been spoiled by recent revisions of the solar heavy-element abundances. Heavy element abundances determine the opacity of the stellar material and hence, are an important input to stellar model calculations. The models with the new, low abundances do not satisfy helioseismic constraints. We review here how heavy-element abundances affect solar models, how these models are tested with helioseismology, and the impact of the new abundances on standard solar models. We also discuss the attempts made to improve the agreement of the low-abundance models with the Sun and discuss how helioseismology is being used to determine the solar heavy-element abundance. A review of current literature shows that attempts to improve agreement between solar models with low heavy-element abundances and seismic inference have been unsuccessful so far. The low-metallicity models that have the least disagreement with seismic data require changing all input physics to stellar models beyond their acceptable ranges. Seismic determinations of the solar heavy-element abundance yield results that are consistent with the older, higher values of the solar abundance, and hence, no major changes to the inputs to solar models are required to make higher-metallicity solar models consistent with helioseismic data.

  13. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    1 Introduction 1.1. Solar Photovoltaics Semiconductingmulti-junction photovoltaics, solar beamsplitting 1.Concentrator Photovoltaics Multijunction solar cells were

  14. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

  15. Connectable solar air collectors Solar Energy Centre Denmark

    E-Print Network [OSTI]

    Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren Østergaard Jensen Miroslav Bosanac Solar Energy Centre for renewable energy of the Danish Energy Agency. The project group behind the project was: Solar Energy Centre

  16. Petrovay: Solar physics The solar cycle ACTIVE REGIONS

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics The solar cycle ACTIVE REGIONS Large scale (up to 100 Mm) anomalies in the structure and radiation of the solar atmosphere. Photosphere : AR = cluster of strong magnetic flux tubes of facular points. Filamentary structure due to supergranulation. #12;Petrovay: Solar physics The solar cycle

  17. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    et al. , April 1975. 4. Solar Thermal Conversion Missionof.Several Central Reveiver Solar Thermal Power Plant Designterm solar energy are: Included solar thermal conversion to

  18. SELECTIVE ABSORBER COATED FOILS FOR SOLAR COLLECTORS

    E-Print Network [OSTI]

    Lampert, Carl M.

    2013-01-01

    fabrication of solar collector panels. adhesives and bondingdirectly to solar collector panels. the solar selectivefabrication of solar collector panels. However, the finish

  19. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  20. ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE

    E-Print Network [OSTI]

    Berdahl, P.

    2011-01-01

    OF DIRECT NORMAL SOLAR RADIATION AND TOTAL SOLAR RADIA- TIONSUMMARY OF USERS' NEEDS FOR SOLAR RADIATION DATA SUMMARY ANDCALIFORNIA SOURCES OF SOLAR RADIATION DATA CALI FORN IA

  1. The Solar Argon Abundance

    E-Print Network [OSTI]

    Katharina Lodders

    2007-10-24

    The solar argon abundance cannot be directly derived by spectroscopic observations of the solar photosphere. The solar Ar abundance is evaluated from solar wind measurements, nucleosynthetic arguments, observations of B stars, HII regions, planetary nebulae, and noble gas abundances measured in Jupiter's atmosphere. These data lead to a recommended argon abundance of N(Ar) = 91,200(+/-)23,700 (on a scale where Si = 10^6 atoms). The recommended abundance for the solar photosphere (on a scale where log N(H) = 12) is A(Ar)photo = 6.50(+/-)0.10, and taking element settling into account, the solar system (protosolar) abundance is A(Ar)solsys = 6.57(+/-)0.10.

  2. Solar Chemical Peculiarities?

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2006-12-08

    Several investigations of FGK stars in the solar neighborhood have suggested that thin-disk stars with an iron abundance similar to the Sun appear to show higher abundances of other elements, such as silicon, titanium, or nickel. Offsets could arise if the samples contain stars with ages, mean galactocentric distances, or kinematics, that differ on average from the solar values. They could also arise due to systematic errors in the abundance determinations, if the samples contain stars that are different from the Sun regarding their atmospheric parameters. We re-examine this issue by studying a sample of 80 nearby stars with solar-like colors and luminosities. Among these solar "analogs", the objects with solar iron abundances exhibit solar abundances of carbon, silicon, calcium, titanium and nickel.

  3. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  4. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Solar Policy Environment: Seattle

    Broader source: Energy.gov [DOE]

    The objective of the Emerald City Solar Initiative is to overcome the barriers to widespread deployment of solar energy technology, dramatically increasing residential, commercial, City-owned, and community-scale solar energy use. The City has assembled a strong team of partners that have proven track records in the fields of public planning, renewable energy resource mapping, financial analysis, site analysis, education and outreach, policy analysis and advocacy, community organizing and renewable energy project development.

  6. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  7. Solar selective absorption coatings

    DOE Patents [OSTI]

    Mahoney, Alan R. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Martinez, F. Edward (Horseheads, NY)

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  8. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  9. Conservation and solar guidelines

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1986-01-01

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar buildings. The guidelines are based on balancing the incremental cost/benefit of conservation and passive solar strategies. Tables are given for 90 cities in the United States and the results are also displayed on maps. The procedures are developed in an appendix, which gives the cost assumptions used and explains how to develop different guidelines for different costs.

  10. for doubling solar panel

    E-Print Network [OSTI]

    An outline for doubling solar panel efficiency C o l o ra do S c ho o l of M i ne s Ma g a z i ne Take a look at a solar panel on a sunny Colorado day and, if you're like most people, you won't see physics professor and solar energy researcher, who admits to checking out his panels and their energy

  11. Heterojunction solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  12. Solar Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report AppendicesAVideoSolar Decathlon 2015:Solar6 Solar Success

  13. Pacific Northwest Solar Radiation Data

    E-Print Network [OSTI]

    Oregon, University of

    Pacific Northwest Solar Radiation Data UO SOLAR MONITORING LAB Physics Department -- Solar Energy Center 1274 University of Oregon Eugene, Oregon 97403-1274 April 1, 1999 #12;Hourly solar radiation data can be obtained from the University of Oregon Solar Moni- toring Laboratory after obtaining permission

  14. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    solar data: NWS, Eppley lightbulb pyranorneter until 1974,interval: NWS, Eppley lightbulb pyranometer until 1974,data: BAAPCD, Eppley lightbulb pyranometer. Monthly Total

  16. Solar parabolic trough

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar parabolic trough section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  17. Solar dish engine

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  18. Solar Decathlon 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    This brochure provides key information about Solar Decathlon 2009--the dates, the background of the competition and event, and where to go for more information.

  19. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  20. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the...

  1. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  2. Residential Solar Permit Requirements

    Broader source: Energy.gov [DOE]

    Washington's State Building Code sets requirements for the installation, inspection, maintenance and repair of solar photovoltaic (PV) energy systems. Local jurisdictions have the authority to is...

  3. Electromechanical solar tracking apparatus

    DOE Patents [OSTI]

    Stromberg, Robert P. (Albuquerque, NM)

    1981-01-01

    The invention relates to an electromechanical solar tracking device which tracks the position of the sun using paired, partially-shaded bimetallic elements.

  4. Deed Restrictions for Solar

    Broader source: Energy.gov [DOE]

    This report summarizes the efforts made to address Task 3 - Examples of Residential Deed Restrictions Allowing Solar. The focus of the study is on communities surrounding Houston, Texas.

  5. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  6. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    pp. 67-73, 2003. [17] "Energy Requirements of Desalinationof solar collectors and thermal energy storage in solarapplications," Applied Energy, pp. 538-553, 2013. [20] P. G.

  7. Solar and Wind Rights

    Broader source: Energy.gov [DOE]

    The law stipulates that associations must adopt an energy policy statement specifying details such as location, design, and architectural requirements of the solar energy systems within 120 days...

  8. Community Solar Scenario Tool: Planning for a Fruitful Solar Garden

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of a Do-It-Yourself Solar Market Analysis summer series, NREL's Solar Technical Assistance Team (STAT) is presenting a live webinar titled, "Community Solar Scenario Tool: Planning for a...

  9. Molecular solution processing of metal chalcogenide thin film solar cells

    E-Print Network [OSTI]

    Yang, Wenbing

    2013-01-01

    properties,” Solar Energy Materials and Solar Cells, vol.G. Dhere, Solar Energy Materials and Solar Cells 2006 , 90,devices, Solar Energy Materials and Solar Cells (2012), doi:

  10. Petrovay: Solar physics Solar wind and heliosphere THE SOLAR WIND AND THE HELIOSPHERE

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics Solar wind and heliosphere THE SOLAR WIND AND THE HELIOSPHERE 1951: First proposal of solar corpuscular radiation by Biermann, to explain slight deviation of comets' ion tails from radial (aberration effect). 1958: Parker's supersonic wind model 1962: Mariner-2 detects solar wind. v

  11. Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2007-01-01

    Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar We present a different back contact for CdTe solar cell by the application of only a transparent that acts as a free-Cu stable back contact and at the same time allows to realize bifacial CdTe solar cells

  12. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  13. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  14. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    W. , Dunlop, E.D. Solar Cell efficiency tables (version 38).Grätzel. A Low-Cost, High-Efficiency Solar Cell Based on Dyeand E.D. Dunlop. Solar Cell efficiency tables (version 38).

  15. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    2. Graztel, M. Solar Energy Conversion by Dye-Sensitized17. M. Grätzel, Solar Energy Conversion by Dye-Sensitizedas a low-cost solar energy conversion technology. 1.3.2

  16. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    www.eere.energy.gov/solar/photovoltaics_program.html DOEConcentrating Solar Power and Utility Scale Photovoltaics in1 year. 3.2.1. Solar Resource for PV Photovoltaics can take

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    generated by the Nevada Solar One plant is about $0.18/kWh (SEGS IX APS Saguaro Nevada Solar One Total Location Daggett,I - IX APS Saguaro Nevada Solar One PS10 Puertollano Plant

  18. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Industry Update. ” Solar Outlook. Issue SO2009-1. Palo Alto,Outlook.. 105 5.1 Private Investment in SolarOutlook This chapter provides information on trends in private investment in solar

  19. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    551, 2005. 2. Graztel, M. Solar Energy Conversion by Dye-Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (efficiency in dye-sensitized solar cells based on Tio2

  20. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

  1. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    potential as a low-cost solar energy conversion technology.Grätzel. A Low-Cost, High-Efficiency Solar Cell Based on Dye1) reducing the cost of solar cells by depositing

  2. MAGNETOHYDRODYNAMICS OF THE SOLAR TACHOCLINE

    E-Print Network [OSTI]

    ACEVEDO-ARREGUIN, LUIS ANTONIO

    2012-01-01

    in the solar surface (right lower panel). The magnetic ?eldin the solar surface (right lower panel). The magnetic ?eldlower panel), and the ratio of angular velocity in the solar

  3. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, Basicseu_rpt_print.pdf. S. Pillai and M. A. Green, Solar EnergyMaterials and Solar Cells 94 (9), 1481-1486 (2010). M. J.

  4. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    en.wikipedia.org/wiki/File:Solar_two.jpg 18 • B erkeley SMolten Nitrate Salt for Solar Energy Storage. Retrieved fromK. (2008). More-Efficient Solar Cells. Retrieved from

  5. Collective Acceleration in Solar Flares

    E-Print Network [OSTI]

    Barletta, W.

    2008-01-01

    Collective Acceleration in Solar Flares w. Barletta, S.S.COLLECTIVE ACCELERATION IN SOLAR FLARES* W. Barletta (1), S.Park, MD 20742 Abstract Solar flare data are examined with

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Looking back—sizing the 2008 solar market. ” pp. 88–93.Iberdrola launches its first solar thermal power plant. ”Analysis of a future solar market, management summary. Bonn,

  7. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    back—sizing the 2008 solar market. ” pp. 88–93. Bradford,Analysis of a future solar market, management summary. Bonn,Sherwood, L. (2009). U.S. Solar Market Trends 2008. Latham,

  8. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    Y. , Warta, W. , Dunlop, E.D. Solar Cell efficiency tables (in dye-sensitized solar cells based on Tio2 nanocrystal/R. J. ; Nozik, A. J. Schottky Solar Cells Based on Colloidal

  9. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    voltage . The cell output power is given by:solar cell. The solar cell’s power conversion efficiency, ?ratio of the solar cell output power to the incident light

  10. BEF- Solar 4R Schools

    Broader source: Energy.gov [DOE]

    The school agrees to: own and maintain the solar system, provide access to a network in order to transfer solar data and offer and implement an educational and/or public outreach strategy. Solar ...

  11. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    www.popularmechanics.com/science/energy/solar-wind/3-clever-Molten Nitrate Salt for Solar Energy Storage. Retrieved fromKrisch, J. (2014). 3 Clever New Ways to Store Solar Energy.

  12. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    GW of cumulative installed solar capacity by 2025 (Wiser andon the aggregate capacity of solar installed in each utilitySolar Power . 1 1.1 Global Installed PV Capacity

  13. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Department of Energy. Solar Energy Technologies Program.U.S. DOE. (2009). DOE Solar Energy Technologies Program. FY2.6 References The American Solar Energy Society (ASES) and

  14. National Solar Jobs Census 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Solar Foundation’s National Solar Jobs Census 2014 is the fifth annual update of current employment, trends, and projected growth in the U.S. solar industry. Data for Census 2014 is derived...

  15. Bright Ideas in Solar Energy

    E-Print Network [OSTI]

    Melville, Jo

    2014-01-01

    Molten Nitrate Salt for Solar Energy Storage. Retrieved fromNew Ways to Store Solar Energy. Retrieved from http://new-ways-to-store-solar-energy-16407404 Lenert, Andrej,

  16. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    there is a great deal of interest in thin-film solar cells.Thin-film solar cells are made from a variety oflimitation in all thin-film solar cell technologies is that

  17. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    the harvesting potential of our solar cell and suggests thedye sensitized solar cell and the potential they can serveSchottky solar cells has demonstrated the potential of these

  18. Portable solar heater

    SciTech Connect (OSTI)

    Kilar, L.J.

    1981-08-18

    A portable solar heater combines a self-contained hot air and heat storage system having a collector area with adjustable reflectors in a unit that can be moved from room to room as needed. The heater has fans for circulation of the solar heater air and provides both direct and indirect heat transfer to the ambient room air.

  19. Solar tracking device

    SciTech Connect (OSTI)

    Wyland, R.R.

    1981-01-20

    A solar tracking device having a plurality of reflector banks for reflecting the sun rays onto collector tubes and heating a fluid circulated therethrough. The reflector banks synchronized to follow the sun during the daily and yearly cycle of the earth as the earth orbits around the sun. The device by accurately following the sun provides a more efficient means of collecting solar energy.

  20. Solar Policy Environment: Portland

    Broader source: Energy.gov [DOE]

    City of Portland’s Solar Now! Program will pursue solar market transformation for Portland residents, businesses, and city operations. The program will work with other City bureaus to ease the regulatory process by streamlining city-level regulations for contractors, homeowners and businesses. The City will use its influence as a regulator, educator and motivator to reach the larger regional community.

  1. Solar Policy Environment: Berkeley

    Broader source: Energy.gov [DOE]

    The goals of this project are to (1) accelerate the adoption of solar technology at the local level by engaging the City, service providers, end users and regulators; (2) provide a model for other cities; and (3) promote solar technology among residents and local businesses.

  2. Your Community With Solar

    E-Print Network [OSTI]

    contractors and partners · Conducting community outreach and education · Pricing and financing projects. Also for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large- scale adoption of solar electricity across the United States. Reaching this goal will re

  3. Concentrating Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.

  4. SOLAR ENERGY Andrew Blakers

    E-Print Network [OSTI]

    utilised by photovoltaics and solar heat is hundreds of times larger than all other energy resources quantities; and · has minimal environmental impact over unlimited time scales. No other energy source can (photovoltaics and solar heat) and indirect forms such as biomass, wind, hydro, ocean thermal and waves

  5. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  6. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Deployment . 96 4.3.1 Third-Party Power Purchase Agreementparty power purchase agreement financing, customer solarthird-party power purchase agreement (PPA), the solar lease,

  7. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

  8. Solar Policy Environment: Ann Arbor

    Broader source: Energy.gov [DOE]

    The goal for Ann Arbor’s Solar America Cities program is to utilize a wide range of community partners and resources to remove market barriers to the adoption of solar energy while simultaneously increasing consumer awareness and demand, and helping solar energy manufacturers and contractors to succeed. Expected outcomes include a Solar Plan for Ann Arbor, one or more large-scale photovoltaic demonstration projects, more small-scale solar hot water and photovoltaic demonstration projects, greater consumer awareness of solar options, a simpler permitting process for solar projects, and proof that solar energy works even in cloudy cities.

  9. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  10. Solar Easements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Georgia Program Type SolarWind Access Policy Summary In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia...

  11. Solar Easements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    easement from another property owner for the purpose of ensuring adequate exposure of a solar-energy system to sunlight. A solar easement must include: The vertical and...

  12. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01

    absorbed light energy into output electricity. Solar cellselectricity. The remaining 70% of absorbed energy is turned into heat inside the solar

  13. Energy 101: Concentrating Solar Power

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity.

  14. Solar Blog | Department of Energy

    Office of Environmental Management (EM)

    Solar Bridges to Energy Security Despite great recent advances in lowering the cost of solar energy, this technology is not yet affordable for every segment of the population....

  15. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    E-Print Network [OSTI]

    Phuyal, Dibya

    2012-01-01

    dynamics in dye sensitized nanocrystalline solar cells using a polymer electrolytedynamics in dye sensitized nanocrystalline solar cells using a polymer electrolyte.

  16. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    prediction of the efficiency limitation of solar cell givenperfect solar cell absorber. [29] Following this prediction,

  17. Rooftop Solar PV & Firefighter Safety

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  18. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    Solar Energy Materials and Solar Cells. 2005;86(2):197-205.in LEDs [18-20] and solar cells [ 20, 21]. What makes thesesolar cells, hybrid solar cells and dye-sensitized solar

  19. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  20. Petrovay: Solar physics Chromosphere and corona THE SOLAR CHROMOSPHERE

    E-Print Network [OSTI]

    Petrovay, Kristóf

    Petrovay: Solar physics Chromosphere and corona THE SOLAR CHROMOSPHERE Visible in eclipses as red brightness temperature at 10.7 cm: Tb 10 000 K. #12;Petrovay: Solar physics Chromosphere and corona Mean temperature profile: VAL model atmosphere, based on lines #12;Petrovay: Solar physics Chromosphere and corona

  1. SOLAR PHYSICS AND TERRESTRIAL EFFECTS Solar-Terrestrial Interactions

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    SOLAR PHYSICS AND TERRESTRIAL EFFECTS Chapter 4 Chapter 4 Solar-Terrestrial Interactions from the charged particles that reach the planet steadily as part of the solar wind and the much it will be deflected into a circular or spiral path by the Lorentz Force. Most charged particles in the solar wind

  2. Solar energy at Forest Research Solar Power at Alice Holt

    E-Print Network [OSTI]

    - crystalline solar photovoltaic panels (175 watt panels with a total peak DC rating of 32.375 kilowatts). SolarSolar energy at Forest Research Solar Power at Alice Holt research station provides a renewable per annum. As part of a programme to improve energy efficiency and meet government targets on carbon

  3. Time to Go Solar with Solarize U Gain energy independence

    E-Print Network [OSTI]

    Royer, Dana

    #12;Time to Go Solar with Solarize U · Gain energy independence · Have more disposable income for solar, insulation or other measures · Home Energy Solutions (HES) program offered through UI for solar For information on programs and financing to help you reduce energy use and save money, please

  4. Solar Energy Materials & Solar Cells 90 (2006) 664677 Invited article

    E-Print Network [OSTI]

    Romeo, Alessandro

    2006-01-01

    Solar Energy Materials & Solar Cells 90 (2006) 664­677 Invited article Recent developments in evaporated CdTe solar cells G. Khrypunova , A. Romeob , F. Kurdesauc , D.L. Ba¨ tznerd , H. Zogge , A Abstract Recent developments in the technology of high vacuum evaporated CdTe solar cells are reviewed

  5. Solar Policy Environment: Madison

    Broader source: Energy.gov [DOE]

    The City of Madison’s Solar America Cities project, “MadiSUN”, will coordinate and galvanize substantial local and state resources to showcase how a U.S. Midwest city can dramatically increase the use of solar energy. Madison’s approach includes a comprehensive review of zoning and land use planning, streamlining the permitting processes, development of the local workforce, and assessment of city-owned buildings for solar PV and thermal applications. The City of Madison objective is to make Madison a green capital city and a national leader in energy efficiency and renewable energy.

  6. Computing Solar Absolute Fluxes

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2007-09-14

    Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.

  7. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  8. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  9. Solar Pricing Trends

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar FlareSolar Phoenix 2ReadySolarSB

  10. Sandia Energy - Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEAR &SolarSolar GlareSolar

  11. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01

    Based Performance Analysis of a Solar Absorption Cooling andExperimental Investigation of a Solar Adsorption ChillerKreith, Jan F. Kreider. "Solar Cooling." Principles of Solar

  12. Analyzing and simulating the variability of solar irradiance and solar PV powerplants

    E-Print Network [OSTI]

    Lave, Matthew S.

    2012-01-01

    Optimum tilt of a solar collector, Solar & Wind Technology,and orientation for solar collector in Brunei Darussalam,Optimum tilt angle for solar collectors. , Energy Sources,

  13. Solar for Mining Hugh Rudnick

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Solar for Mining Hugh Rudnick Professor Pontificia Universidad Católica de Chile #12;Solar Energy in Mining · Solar energy is becoming affordable · Attractive potential use for mining purposes · Must solve the storage requirement to increase its participation worldwide #12;Solar Energy in Mining · Electrical Energy

  14. The Economics of Solar Electricity

    E-Print Network [OSTI]

    Fowlie, Meredith

    increases in solar capacity, holding the rest of the power sys- tem fixed. Solar's variability adds value-run analyses consider the implications of nonincremental changes in solar capacity. The cost of each installation may fall through experience effects, but the cost of grid integration increases when solar

  15. Where, when and how much solar is available? A provincial-scale solar resource assessment for China

    E-Print Network [OSTI]

    He, G; Kammen, DM

    2016-01-01

    and optimization of solar and other complimentary resources, such as solar and wind, solar and storage, solar and hydro,

  16. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  17. Solar system fault detection

    DOE Patents [OSTI]

    Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  18. Solar Forecast Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more...

  19. Collaborative solar powered neighborhoods

    E-Print Network [OSTI]

    Cheimets, Anna

    2015-01-01

    Solar photovoltaic (PV) deployment has been steadily expanding over the past decade. While decreasing our reliance on fossil fuels will be beneficial for the environment, increasing our exposure to an intermittent renewable ...

  20. Solar Energy System Exemption

    Broader source: Energy.gov [DOE]

    A solar energy system is defined as "any device that uses the heat of the sun as its primary energy source and is used to heat or cool the interior of a structure or swimming pool, or to heat...

  1. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01

    data is as input to simpl; ed design methods to predict the performance and cost of solarsolar data had been used, This increased cost occurs regardless of whether the datadata, Suppose the solar system is designed to minimize costs (

  2. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  3. Energy 101: Solar PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  4. Atrium House solar revitalization

    E-Print Network [OSTI]

    Malamuceanu, Dan Roland

    1984-01-01

    The idea behind the Atrium House Solar Revitalization project, may be briefly presented as: energy conserving, low rise, high density, related- to- the-sky residences. The proposed system consists of a reticulate grid - ...

  5. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Municipalities and counties in Arizona may no longer require a stamp from a professional engineer to approve a solar system installation, which can raise the cost of a permit, unless such a...

  6. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  7. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  8. Solar cell array interconnects

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  9. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  10. Argonne tackles solar energy

    ScienceCinema (OSTI)

    George Crabtree

    2010-09-01

    At Argonne National Laboratory, scientists and engineers are working to improve the solar cell to allow us to capture more of the sun's energy. Read more: http://www.anl.gov/Media_Center/News/...

  11. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  12. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  13. Solar Rights Law

    Broader source: Energy.gov [DOE]

    Although the wording of the legislation refers generally to "solar energy", the title of the bill references only photovoltaic (PV) systems as eligible for these protections. Only single-family...

  14. Alaska Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices, performance of systems in the arctic, project development and financing, and lessons learned...

  15. Value of Solar Tariff

    Broader source: Energy.gov [DOE]

     Note: This program is only available to customers of one of the state's investor-owned utilities (Alliant, Minnesota Power, Otter Tail Power Company, Xcel Energy) in the Community Solar Gardens...

  16. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    tracking and fixed in place. Generally these collectors consist of a solar absorbing surface facing the suntracking. The main difference is the concentrators and often the absorber move to track the sun

  17. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  18. Broad spectrum solar cell

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  19. Solar Construction Permitting Standards

    Broader source: Energy.gov [DOE]

    Two bills signed in 2012 place limits on the fees that cities, counties, cities and counties, and charter cities can charge for a solar permit. AB 1801 specifies that a local government cannot base...

  20. Solar Installation Labor Market Analysis

    SciTech Connect (OSTI)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  1. Solar Powered Classroom

    ScienceCinema (OSTI)

    none

    2013-06-27

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  2. Solar Powered Classroom

    SciTech Connect (OSTI)

    2013-06-13

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  3. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01

    solar energy: Photovoltaic vs Solar Thermal. In: Planetaryexpectancy of a thermal solar energy development? A common

  4. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01

    expectancy of a thermal solar energy development? A commontowards solar energy: Photovoltaic vs Solar Thermal. In:

  5. Solar Energy Materials & Solar Cells 90 (2006) 34073415 High-efficiency flexible CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2006-01-01

    Solar Energy Materials & Solar Cells 90 (2006) 3407­3415 High-efficiency flexible CdTe solar cells: Solar cells; Thin films; CdTe; Flexible solar cells; Space solar cells; Solar energy ARTICLE IN PRESS for Renewable Energy Systems and Technology), Department of Electronic and Electrical Engineering, Loughborough

  6. Solar energy collection system

    SciTech Connect (OSTI)

    Hummel, R.L.

    1982-04-06

    A solar energy collection system for a building is described. A solar energy collector is disposed at the exterior surface of the building and includes a solar energy absorbent body having a surface which is exposed to sunlight and from which solar energy can be transmitted as sensible heat. A panel which is transparent to sunlight is spaced from the said surface of the absorbent body so as to define therewith a passageway in which air contacts at least a substantial area of said surface so that air in said passageway absorbs heat transmitted from said surface when the collector is in use. The passageway has an inlet and an outlet and the absorbent body and panel are arranged with the outlet higher than the inlet so that heated air in the passageway tends to rise by convection towards the outlet. The building is provided with heating means including a circulation circuit for a heating fluid. Heat exchange means are coupled to said air passageway outlet of the solar energy collector for passage of heated air therethrough. The heat exchange means are also coupled to the circulation circuit of the building heating means and are arranged to permit heat transfer between said heated air and the heating fluid. A return air flow conduit is coupled between the heat exchange means and the inlet of the air passageway of the solar energy collector for returning heated air from the heat exchange means to the air passageway for recirculation.

  7. Overcoming Barriers to Solar Use 

    E-Print Network [OSTI]

    Halme, D. S.; Sicotte, J. R.

    1986-01-01

    in lowering of solar system costs in all sectors of the market. MICRO FLO solar domestic water heaters and MEGA collector systems offer the key to the future for all sizes of solar applications from residential water heaters to very large 10,000 m2... American Solar Industry. The opportunities provided through Government assistance programs have enabled the Industry to develop products, standards and the research capability to the edge of commercially realisable solar water heating systems...

  8. Solar Energy Materials & Solar Cells 91 (2007) 13881391 Bifacial configurations for CdTe solar cells

    E-Print Network [OSTI]

    Romeo, Alessandro

    2007-01-01

    Solar Energy Materials & Solar Cells 91 (2007) 1388­1391 Bifacial configurations for CdTe solar Verona, Italy e Department of Electronic and Electrical Engineering, Centre for Renewable Energy Systems We present a different back contact for CdTe solar cell by the application of only a transparent

  9. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  10. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  11. EE580 Solar Cells Todd J. Kaiser

    E-Print Network [OSTI]

    Kaiser, Todd J.

    7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

  12. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  13. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):

  14. Analysis of the California Solar Resource--Volume 3: Appendices

    E-Print Network [OSTI]

    erdahl, P.

    2011-01-01

    own experience with solar energy data requirements. GENERALof Solar Energy Systems Summary of Solar Data MeasurementsOF SOLAR ENERGY SYSTEMS EFFECTS OF SOLAR DATA ACCURACY ON

  15. Solar Means Business: Top U.S. Corporate Solar Users

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  16. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    Best research solar cells efficiencies. [cited 2010; ChartHisikawa Y, Warta W. Solar cell efficiency tables (Versionusing organic solar cells, the efficiencies of these devices

  17. High efficiency, radiation-hard solar cells

    E-Print Network [OSTI]

    Ager III, J.W.; Walukiewicz, W.

    2004-01-01

    Igari, and W. Warta, “Solar Cell Efficiency Tables (Version56326 High efficiency, radiation-hard solar cells Finalprototype high efficiency multijunction (MJ) solar cells use

  18. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    of Photovoltaic Solar Energy Conversion, Brown University,technologies. Most solar energy conversion technologiesare obvious examples. solar energy conversion may accentuate

  19. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    from Concentrix Solar," in Concentrator Photovoltaics, A.L.Solar Concentrators: Using optics to boost photovoltaics,”Solar Concentrators: Using optics to boost photovoltaics,”

  20. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    8-12. Würfel P. Physics of solar cells : from principles toPhotocell for Converting Solar Radiation into Electricalgeneration photovoltaics: solar cells for 2020 and beyond.

  1. Solar Success Stories | Department of Energy

    Office of Environmental Management (EM)

    Solar Success Stories Solar Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing more efficient and less expensive solar energy...

  2. MODELING PASSIVE SOLAR BUILDINGS WITH HAND CALCULATIONS

    E-Print Network [OSTI]

    Goldstein, David B.

    2011-01-01

    Stromberg, and S.O. Woodall. "Passive Solar Buildings: ASome Analytic Models of Passive Solar Building Per­at the Third National Passive Solar Conference, San Jose,

  3. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    and G. Li, ?Polymer solar cells with enhanced open-circuittandem and triple-junction solar cells,? Materials, 2012, 5(high performance solar cells,” Advanced Energy Materials,

  4. Integrating Solar PV in Utility System Operations

    E-Print Network [OSTI]

    Mills, A.

    2014-01-01

    2007a, “Evaluating the Limits of Solar Photovoltaics (PV) infor Short-Term Variability of Solar Power. Lawrence Berkeleyand Medium Term Operational Solar Radiation Forecasts in the

  5. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01

    solar energy are: Included solar thermal conversion to electricity,solar energy) which has been omitted is decommissioning of facilities. Transmission lines are common to all centralized electricity

  6. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    self-tracking solar concentration: design and materialsself- tracking solar concentration: design and materialsSolar Concentrators," in International Optical Design

  7. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Analysis and design of holographic solar concentrators,”reflection design may enable multiband solar power usingoptical geometry and design of a two band, solar splitting

  8. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    Angeles Organic Tandem Solar Cells: Design and Formation AOrganic Tandem Solar Cells: Design and Formation by Chun-multi-junction tandem solar-cell design. Given this design,

  9. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    c) Cyrium multi-junction solar cell. (d) Faulhaber miniaturecan leverage expensive multi-junction solar cells to achievec) Cyrium multi-junction solar cell. ( d) Faulhaber

  10. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    silicon cells 2 . Multi-junction solar cells hope becomethe motivation for multi- junction solar cells which layerassociated with multi-junction solar cells. The superior

  11. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    performance of multi-junction solar cells combining III-VMulti-Junction Solar Cells .improvement: Multi-Junction Solar Cells 2.1 Loss mechanism

  12. Legislative Developments in Solar Energy during 1980

    E-Print Network [OSTI]

    Krueger, Robert B.; Hoffman, Peter C.

    1981-01-01

    L. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsIn particular, the Solar Energy and Energy Conservation Bankthermal sytems is the Solar Energy and En- ergy Conservation

  13. High Penetration Solar Deployment Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the High Penetration Solar Deployment program, DOE is funding solar projects that are accelerating the placement of solar photovoltaic (PV) systems into existing and newly designed...

  14. Fabrication and Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Yengel, Emre

    2010-01-01

    T. Recent Advances in Organic Solar Cells. Advances incharacterization of organic solar cells. Adv Funct Mater.Voltage Characteristics of Organic Solar Cells. [cited 2010;

  15. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Environmental Management (EM)

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen...

  16. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    12] A.Rabl, Active Solar Collectors and Their Applications (23, A.Rabl, Active Solar Collectors and Their Applications (Rabl, A. , [Active Solar Collectors and Their Applications],

  17. PROJECT PROFILE: Vermont Energy Investment Corporation (Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation (Solar Market Pathways) PROJECT PROFILE: Vermont Energy Investment Corporation (Solar Market Pathways) Title: Vermont Solar Development Plan...

  18. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    solar cells,” Advanced Energy Materials, 2011, 1(5), 771-collecting grids,? Solar Energy Materials and Solar Cells,laboratory stability studies,” Energy Technology, 2014. [

  19. Legislative Developments in Solar Energy during 1980

    E-Print Network [OSTI]

    Krueger, Robert B.; Hoffman, Peter C.

    1981-01-01

    is apparent that many solar and energy conservation programsL. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsto -103 (Supp. 1979). SOLAR ENERGY DEVELOPMENTS vegetation

  20. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Planar Micro-Optic Solar Collectors," Optics for Solarin planar micro-optic solar collectors,” Optics Express, (inin planar micro-optic solar collectors,” Optics Express (in