Powered by Deep Web Technologies
Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of an Incremental Ventilation Energy Model for Estimating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

2

LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network [OSTI]

Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared

3

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

4

Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation  

E-Print Network [OSTI]

associated change in energy demand of homes. The IVE modelmodels that calculate energy demand by solving a series ofand (b) the change in energy demand resulting in a change in

Logue, Jennifer M.

2014-01-01T23:59:59.000Z

5

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

6

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

7

Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

8

Residential Ventilation & Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

9

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network [OSTI]

to account for 1/3 to 1/2 of the space conditioning energy. There is not a great deal of measurement data opportunities, the United States Department of Energy and others need to put into perspective the energy based on energy conservation and ventilation strategies. Because of the lack of direct measurements, we

10

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

11

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

12

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network [OSTI]

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

13

Whole-House Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

14

Natural Ventilation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

15

Federal Energy Management Program: Solar Ventilation Preheating Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

16

Tax Incremental Financing (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Incremental Financing (Connecticut) Incremental Financing (Connecticut) Tax Incremental Financing (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Bond Program Provider Connecticut Development Authority CDA provides Tax Incremental Financing for significant economic

17

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

18

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Quality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical VentilationQuality Benefits and Energy Costs of Mechanical Ventilation

Logue, J.M.

2012-01-01T23:59:59.000Z

19

Tax Increment Financing (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Iowa) Iowa) Tax Increment Financing (Iowa) < Back Eligibility Commercial Industrial Construction Municipal/Public Utility Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Home Weatherization Water Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Industry Recruitment/Support Property Tax Incentive Provider Iowa Economic Development Authority Tax Increment Financing allows city councils or county boards of supervisors to use the property taxes resulting from the increase in taxable valuation caused by the construction of new industrial or commercial facilities to provide economic development incentives to a business or industry. Tax Increment Financing may be used to offset the cost of public improvements and utilities that will serve the new private

20

Tax Increment Financing (Louisiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Louisiana) Louisiana) Tax Increment Financing (Louisiana) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Low-Income Residential Multi-Family Residential Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Property Tax Incentive Sales Tax Incentive Louisiana law provides for two types of Tax Increment Financing mechanisms: (1) property tax, also known as ad valorem, and (2) sales tax. Either form may be utilized to enhance an economic development project. In these, it is assumed the project will create future increases in tax revenue above

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ventilation System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

22

Ventilation System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

23

Ventilation and Energy Saving in Auto Manufacturing Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

24

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

25

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

26

Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits  

SciTech Connect (OSTI)

Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr--1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 ?g/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 ?g/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

Less, Brennan; Walker, Iain

2014-06-01T23:59:59.000Z

27

Industrial Ventilation Statistics Confirm Energy Savings Opportunity  

E-Print Network [OSTI]

is based on installed on-demand ventilation systems, where sensors and PLC are installed with each system, so data is easily collected. Another critical factor for effective dust collecting is proper air velocities in duct system. Having measured air... of the cutting tool is active or not. Information from the sensor is transmitted to the Omron PLC. The Omron PLC saves data in binary form every 5 minutes (24/7) to the CompactFlash card (a similar card is used in digital cameras) along with the time...

Litomisky, A.

2006-01-01T23:59:59.000Z

28

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

29

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Tax Increment Financing (TIF) (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TIF) (Nebraska) TIF) (Nebraska) Tax Increment Financing (TIF) (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type PACE Financing Provider Economic Development Tax Increment Financing (TIF) Nebraska is primarily designed to finance the public costs associated with a private development project. Essentially,

31

Recovering Energy From Ventilation and Process Airstreams  

E-Print Network [OSTI]

. Heat is transferred from the hot to the cold airstreams as the two move through the plate-type device. Heat can be recovered from exhaust air by using one of these three systems: process to-process, process-to-comfort, and comfort to... between surfaces. One excellent application for a high latent heat recovery device is used in the textile industry. Slide 5 shows air-to liquid plate-type heat exchangers used in a carpet mill to recover energy from hot, .moist exhaust air...

Cheney, W. A.

32

Incremental Implementation of Energy Management at Industrial Facilities  

E-Print Network [OSTI]

The essential elements of a sustainable energy management program at industrial facilities are defined in the ANSI/MSE 2000 Management System for Energy standard document. Although many organizations have expressed interest in improving their energy...

Brown, M.; Key, G.

2005-01-01T23:59:59.000Z

33

Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings  

SciTech Connect (OSTI)

This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

Hunt, W. D.

2008-05-14T23:59:59.000Z

34

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network [OSTI]

UC-95d INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATIONVentilation on Indoor Air Quality and Energy Use in Schoo s,EEB~Vent INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION

Young, Rodger A.

2013-01-01T23:59:59.000Z

35

ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES  

E-Print Network [OSTI]

use more fan and boiler energy but less chiller energy than the mixing ventilation system. The total in order to handle the high cooling loads found in U.S. buildings. Thus, the displacement ventilation, the chiller efficiency is increased. Besides, the

Chen, Qingyan "Yan"

36

First BPA customer schedules energy in 15-minute increments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Articles (by tag) Lineman shares life-saving skills with electrical workers in Suriname Thursday, January 08, 2015 NWPPA spotlights synchrophasors, energy-saving competition...

37

The impact of demand-controlled and economizer ventilation strategies on energy use in buildings  

SciTech Connect (OSTI)

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

Brandemuehl, M.J.; Braun, J.E.

1999-07-01T23:59:59.000Z

38

The impact of demand-controlled ventilation on energy use in buildings  

SciTech Connect (OSTI)

The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

Braun, J.E.; Brandemuehl, M.J.

1999-07-01T23:59:59.000Z

39

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect (OSTI)

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

40

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Particle transport in low-energy ventilation systems. Part 1: theory of steady states  

E-Print Network [OSTI]

of the global population. According to the Energy Information Administration (http://www.eia.doe.gov/) the US of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US total energy budget. To reduce energy consumption various low-energy systems such as displacement

Bolster, Diogo

42

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

E-Print Network [OSTI]

columns indicate the energy and cost savings for demandand class size. (The energy costs of classroom ventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

43

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network [OSTI]

legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus by the American Society of Heating, Refrigerating and Air- conditioning Engineers (ASHRAE). This standard does but about the environment in which they lived. Historically, people have ventilated buildings to provide

44

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

45

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS Webinar (Text Version)  

Broader source: Energy.gov [DOE]

Below is the text version of the webinar, DOE Zero Energy Ready Home: Ventilation and Filtration Strategies with Indoor airPLUS, presented in August 2014.

46

Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes  

SciTech Connect (OSTI)

High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

Hun, Diana E [ORNL; Jackson, Mark C [University of Texas at Austin; Shrestha, Som S [ORNL

2014-01-01T23:59:59.000Z

47

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

03E 03E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 Indoor Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory *Now with the California Energy Commission PIER Program, Sacramento CA. This research was sponsored by the California Energy Commission through the Public Interest Energy Research program as the Lawrence Berkeley National Laboratory Classroom HVAC: Improving Ventilation and Saving Energy research project, CEC Contract Number 500-03-041.

48

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

SciTech Connect (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

49

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

50

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network [OSTI]

quality will be achieved. Our study aims to simulate airflow in the ventilated room with this new type of air conditioning. Radiation is taken into account by the energy conservation in the system. The following section presents algorithm, thermal..., the governing equations to be solved are the conservation equations for continuity, momentum, and energy as well as the equations for turbulent kinetic energy and its dissipation rate. The buoyancy effect is accounted for by Boussinesq approximation...

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

51

Demand Controlled Ventilation and Classroom Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

52

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

53

Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report  

SciTech Connect (OSTI)

In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

Rainer, D.; Michaelsen, G.S.

1980-03-01T23:59:59.000Z

54

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network [OSTI]

columnsindicatetheenergyandcostsavingsfor demandclasssize. (Theenergycosts ofclassroomventilationTotal Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

55

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network [OSTI]

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

56

Analysis of Energy Recovery Ventilator Savings for Texas Buildings  

E-Print Network [OSTI]

.S. Environmental Protection Agency and U.S. Department of Energy, Publication No. DOE/GO-102003-1774. Prepared by National Renewable Energy Laboratory, Golden CO, October 2003. Available at http://www.nrel.gov/docs/fy04osti/34349.pdf APPENDIX A: ANALYSIS...

Christman, K. D.; Haberl, J. S.; Claridge, D. E.

57

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies...  

Broader source: Energy.gov (indexed) [DOE]

We have these homes so well-air-sealed, we need to look at things like good source control products. Obviously, these homes are so efficient, they're zero energy ready, we have...

58

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Broader source: Energy.gov [DOE]

This document provides Public Information for Convening Interviews for US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

59

Energy saving by integrated control of natural ventilation and HVAC systems using model guide for comparison  

Science Journals Connector (OSTI)

Abstract Integrated control by controlling both natural ventilation and HVAC systems based on human thermal comfort requirement can result in significant energy savings. The concept of this paper differs from conventional methods of energy saving in HVAC systems by integrating the control of both these HVAC systems and the available natural ventilation that is based on the temperature difference between the indoor and the outdoor air. This difference affects the rate of change of indoor air enthalpy or indoor air potential energy storage. However, this is not efficient enough as there are other factors affecting the rate of change of indoor air enthalpy that should be considered to achieve maximum energy saving. One way of improvement can be through the use of model guide for comparison (MGFC) that uses physical-empirical hybrid modelling to predict the rate of change of indoor air potential energy storage considering building fabric and its fixture. Three methods (normal, conventional and proposed) are tested on an identical residential building model using predicted mean vote (PMV) sensor as a criterion test for thermal comfort standard. The results indicate that the proposed method achieved significant energy savings compared with the other methods while still achieving thermal comfort.

Raad Z. Homod; Khairul Salleh Mohamed Sahari; Haider A.F. Almurib

2014-01-01T23:59:59.000Z

60

Eco Design and the Optimization of Passive Cooling Ventilation for Energy Saving in the Buildings: A Framework for Prediction of Wind Environment and Natural Ventilation in Different Neighborhood Patterns  

Science Journals Connector (OSTI)

The idea of utilizing natural ventilation for passive cooling and hence reducing the energy for air conditioning systems of buildings has increasingly attracted the attention of researchers. In urban areas how...

Mohammad Reza Masnavi; Hasan-Ali Laghai

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION  

SciTech Connect (OSTI)

This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

2014-01-06T23:59:59.000Z

62

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems  

E-Print Network [OSTI]

Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002 of a corresponding low-energy house have been per- formed for a full heating period. They reproduce measurements from, air quality, control of humidity) [1, 2]. In such houses, the ventilation and infiltration losses

Gieseler, Udo D. J.

63

Building Science - Ventilation  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

64

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

65

Ventilative cooling  

E-Print Network [OSTI]

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

66

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

SciTech Connect (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL] [ORNL

2011-01-01T23:59:59.000Z

67

Webinar: Ventilation and Filtration Strategies with Indoor airPLUS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy...

68

Multifamily Ventilation - Best Practice?  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

69

Why We Ventilate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

70

Investigation of Energy, Carbon Dioxide Emissions and Costs in Single Point Incremental Forming  

Science Journals Connector (OSTI)

The LCA of sheet metal forming processes is lacking in studies of sustainability issues and quantification of energy and carbon dioxide (CO2) emissions. This paper summarizes an investigation of the...2 emissions

Kadra Branker; David W. Adams

2013-01-01T23:59:59.000Z

71

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: CHEMICAL CONTAMINATION OF HOSPITAL AIR. FINAL REPORT.  

E-Print Network [OSTI]

LBL-10475 EEB-Hosp 79-6 HOSPITAL VENTILATION STANDARDS ANDCHH1ICAL CONTAMINATION OF HOSPITAL AIR na 1 Report DavidMinnesota 55455 TWIN CITIES HOSPITAL VEtHILATION STANDARDS

Rainer, David

2012-01-01T23:59:59.000Z

72

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

73

Smart Ventilation (RIVEC) - 2014 BTO Peer Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

technology. Their mechanical ventilation systems dominate for energy use; as the foundation, wall, and roof work together. Smart ventilation is expected to save at least 40% on...

74

Ventilation Requirements in Hot Humid Climates  

E-Print Network [OSTI]

the Building America program, LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels. In order to capture moisture related HVAC system operation..., LBNL has simulated the effects of mechanical ventilation systems that meet ASHRAE Standard 62.2 on ventilation, energy use and indoor humidity levels for houses that meet current (2005) International Energy Conservation Code requirements...

Walker, I. S.; Sherman, M. H.

2006-01-01T23:59:59.000Z

75

Effortless Incremental Design FMEA  

E-Print Network [OSTI]

effects analysis (FMEA) can be augmented to make incremental design FMEA much less of a burden for the

Christopher J. Price

1996-01-01T23:59:59.000Z

76

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL-203E LBNL-203E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Appendix Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 A-1 Tables Table A-1. Thermal Comfort Results - May 2005, September 2005, November 2005 Room 13 - 9/19/2005 AM/PM Time Period Operative T and RH Acceptable (% of time) Operative T and RH, and Air Velocity acceptable (% of time) Average Indoor Air T (°C) Average Indoor Air RH (%) AM AM1 66.7 0.0 21.3 67.1 PM PM1 40.0 0.0 24.9 46.8 Room 13 - 5/16/2005 AM AM1 0.0 0.0 21.1 0.4 PM PM1 0.0 0.0 20.8 55.5 Room 13 - 12/1/2005 AM AM1 0.0% 0.0% 17.8 38.5

77

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

78

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Broader source: Energy.gov (indexed) [DOE]

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

79

Measuring Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

80

Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores  

SciTech Connect (OSTI)

This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of Californias Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 ?m. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below Californias stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.

Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development of a Residential Integrated Ventilation Controller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

82

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

many hospitals for energy audits and for energy-conserving1980, will include an energy audit, modifications to theannotated bibliography of energy audit source materials will

Cairns, Elton J.

2011-01-01T23:59:59.000Z

83

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Building Technologies Program, Office of Energy EfficiencyBuilding Technologies Program, Office of Energy Efficiency

Logue, J.M.

2012-01-01T23:59:59.000Z

84

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Broader source: Energy.gov (indexed) [DOE]

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

85

Building ventilation and acoustics for people who dont know much about building ventilation.  

Science Journals Connector (OSTI)

The architectural composition required for building ventilation used both for low energy cooling and improved air quality can be anathema to acoustical goals of speech privacy and noise control. This paper presents a short tutorial on the basics of cross ventilation stack ventilation comfort ventilation and indoor air quality as it relates to climate building type and indoor pollutants. It is geared to those without significant prior knowledge and follows a similar tutorial on geothermal systems presented at the Miami ASA conference.

2009-01-01T23:59:59.000Z

86

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

to optimize indoor air quality and energy use. The resultsthe indoor air quality and energy use of passive stacks.of the improved air quality is energy consumption increases

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

87

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

Indoor Air Quality Benefits and Energy Costs of MechanicalIndoor Air Quality Benefits and Energy Costs of MechanicalIndoor Air Quality Benefits and Energy Costs of Mechanical

Logue, J.M.

2012-01-01T23:59:59.000Z

88

Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector  

E-Print Network [OSTI]

We calculated the change in energy demand for each home in aincrease residential site energy demand by 0.07 quads (0.07increase annual site energy demand by less than 1% ? WAPs

Logue, J.M.

2014-01-01T23:59:59.000Z

89

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

Ventilation Air Preconditioning Systems Mukesh Khattar Michael J. Brandemuehl Manager, Space Conditioning and Refrigeration Associate Professor Customer Systems Group Joint Center for Energy Management Electric Power Research Institute Campus... costs, the small, modular nature of the system allows great flexibility for fitting into retrofit geometries and saves space in new construction. Moreover, a single chiller can serve multiple air-handling units-in stark contrast to packaged...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

90

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

Energy and air quality implications of passive stackemployer. Energy and air quality implications of passivean acceptable indoor air quality. Historically, U.S.

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

91

Advanced Controls and Sustainable Systems for Residential Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

92

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network [OSTI]

standard, ASHRAE 90-75R, Energy Conservation in New Building Design, 3 has stipulated that the minimum

Young, Rodger A.

2013-01-01T23:59:59.000Z

93

Analysis and feasibility study of residential integrated heat and energy recovery ventilator with built-in economizer using an excel spreadsheet program  

Science Journals Connector (OSTI)

Abstract Currently, heat recovery ventilator (HRV) and energy recovery ventilator (ERV) are commonly studied. Nevertheless, there is limited information regarding the dual-core approach energy recovery. This paper investigates the feasibility of an integrated HRV and ERV system, namely HERV, with a built-in economizer used in the residential sector to reduce dependency on furnace and air conditioning systems. In order to achieve this goal, an excel-based analysis tool was developed, providing a quick estimate of system performance and comparison with the HRV and ERV that are currently being used in research houses. The potential of integrated heat and energy recovery ventilator was evaluated based on its calculated operating cost ratio (OCR) and its payback period. Results collected for Vancouver and Toronto, corresponding to temperate and continental climate, indicated that the \\{OCRs\\} of the HERV were four times smaller than the ERV's, meaning that the proposed system was cost-efficient. It was also evidenced that the high demand on the economizer resulted in higher energy saving and shorter payback period of the system. In conclusion, the integrated HERV system with a built-in economizer could be a feasible option for both temperate and continental climates.

Junlong Zhang; Alan S. Fung; Sumeet Jhingan

2014-01-01T23:59:59.000Z

94

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network [OSTI]

jn Ne~ Building Desig~, ASHRAE 90-75R (New York, 1975). 4.in 1975. This standard, ASHRAE 90-75R, Energy Conservation

Young, Rodger A.

2013-01-01T23:59:59.000Z

95

Design of a Natural Ventilation System in the Dunhuang Museum  

E-Print Network [OSTI]

Fresh air and good air quality can be obtained by a natural ventilation system, to fulfill the requirement of near natural conditions for the psychological health of mankind. A natural ventilation system is an ecological, energy saving system...

Zhang, Y.; Guan, W.

2006-01-01T23:59:59.000Z

96

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network [OSTI]

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

97

VFD Technology's Energy Conservation Application at Metro Ventilation Air-conditioning System  

E-Print Network [OSTI]

Shenzhen metro has been applied the VFD control technique and close loop negative control logic to adjust and control the temperature and humidity of public area and conserve the energy on HVAC system of children palace station and Fumin station...

Li, G.

2006-01-01T23:59:59.000Z

98

Reducing Ventilation Energy Demand by Using Air-to-Earth Heat Exchangers  

Science Journals Connector (OSTI)

For the cases where the duct spacing was investigated, results showed that the outlet temperature of the earth ducts changed only marginally for the three cases simulated. The energy saving per duct showed a slig...

Hans Havtun; Caroline Trnqvist

2013-01-01T23:59:59.000Z

99

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

100

Design of industrial ventilation systems  

SciTech Connect (OSTI)

This latest edition has a title change to reflect an expansion to cover the interrelated areas of general exhaust ventilation and makeup air supply. More coverage is also given the need for energy conservation and for the physical isolation of the workspace from major contaminant generation zones. Excellent and generous illustrative matter is included. Contents, abridged are as follows: flow of fluids; air flow through hoods; pipe resistance; piping design; centrifugal exhaust fans; axial-flow fans; monitoring industrial ventilization systems; isolation; and energy conservation.

Alden, J.L.; Kane, J.M.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Study on Energy Saving of the Interlayer Ventilation Walla Used in Clean Operation Rooms  

E-Print Network [OSTI]

and Air Conditioning, 2003(3):61-62 (in Chinese) [3] H.L.Wang, K.Li, Y.L.Dai, Progress status and existing problems of energy-saving sunlight greenhouse, Journal of Northwest Sci-tech University of Agriculture and Forestry, 2000,28(4), 108-112 (in...

Feng, J.; Lian, Z.; Hou, Z.

2006-01-01T23:59:59.000Z

102

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

103

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Broader source: Energy.gov (indexed) [DOE]

US Department of Energy's Regulatory Negotiations Convening on US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that is certified to the Department; The timing of when the certification should be made relative to distribution in commerce; and Alterations to a basic model that would impact the certification.

104

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

2014-05-01T23:59:59.000Z

105

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

106

The International Journal of Ventilation  

E-Print Network [OSTI]

in Buildings: Harrington C and Modera M 345 Estimates of Uncertainty in Multi-Zone Air Leakage Measurements. Introduction Heating, cooling and ventilation can account for 50 percent of total building energy use flow rate. Over the past 15 years, the subject of duct leakage in buildings other than single-family

California at Davis, University of

107

Ventilation in Multifamily Buildings  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

108

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

SciTech Connect (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

109

Scale model studies of displacement ventilation  

E-Print Network [OSTI]

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

110

Solar ventilation and tempering  

Science Journals Connector (OSTI)

The paper presents basic information about solar panels designed realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window facade chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring autumn) prolongs the period without classical heating of the room or building in winter the classical heating is supported. In the summer period the system furnished with chimney can exhaust inner warm air together with necessary cooling of the system by gravity circulation only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

2014-01-01T23:59:59.000Z

111

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect (OSTI)

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

112

Issue #9: What are the Best Ventilation Techniques?  

Broader source: Energy.gov [DOE]

How do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency?

113

Carbon-dioxide-controlled ventilation study  

SciTech Connect (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

114

Ventilation of Electrical Substations  

Science Journals Connector (OSTI)

... THE type of construction used for substations is generally governed by requirements, for example, fire and air-raid precautions, which ... Electrical Engineers, F. Favell and E. W. Connon record their experiences in overcoming substation ventilation problems in particular cases. Adequate and suitably planned ventilation will maintain ...

1943-05-01T23:59:59.000Z

115

Whole Building Ventilation Systems  

Broader source: Energy.gov (indexed) [DOE]

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

116

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network [OSTI]

indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology of the U.S. Department measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust

117

Hysteresis effects in hybrid building ventilation  

E-Print Network [OSTI]

Cross- breeze Kitchen Stove Ambient air Case study #3 #12;· Wind plays an integral role in low-energy remains a central challenge for the successful implementation of natural ventilation Case study - summary of population, urban energy consumption grows by 2.1% · Buildings consume 40% of world's energy

Flynn, Morris R.

118

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network [OSTI]

theCaliforniaEnergyCommissionforcontractmanagement,Atlanta. CaliforniaEnergyCommission. Californiaby California EnergyCommissionunderDOEContractNo.

Hong, Tianzhen

2010-01-01T23:59:59.000Z

119

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network [OSTI]

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

120

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Broader source: Energy.gov (indexed) [DOE]

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network [OSTI]

DCVcostsfromtheHVACenergycost savings. Table 6 OA Use Gas Use Energy Energy Cost PV kWh/ft kBtu/ft kBtu/n.a. n.a. n.a. n.a. HVAC Energy Cost Savings PV $/ft n.a.

Hong, Tianzhen

2010-01-01T23:59:59.000Z

122

Coupled simulation of BES-CFD and performance assessment of energy recovery ventilation system for office model  

Science Journals Connector (OSTI)

Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat re...

Yunqing Fan; T. Hayashi; K. Ito

2012-03-01T23:59:59.000Z

123

Healthy Zero Energy Buildings (HZEB) Program Interim Report on Cross Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores  

E-Print Network [OSTI]

levels within a commercial retail building. Indoor Air, 18,andVentilationRatesinRetailStores WanyuR. Chan,exchange rates of the nine retail stores estimated from the

Chan, Wanyu R.

2014-01-01T23:59:59.000Z

124

Building America Technology Solutions for New and Existing Homes: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate  

Broader source: Energy.gov [DOE]

This project investigates the impact of air infiltration and ventilation on space cooling and moisture in residential buildings; research was conducted in two identical laboratory homes in the hot-humid climate over the cooling season.

125

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

126

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

127

Kitchen Ventilation Should be High Performance (Not Optional)  

Broader source: Energy.gov (indexed) [DOE]

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

128

Natural ventilation generates building form  

E-Print Network [OSTI]

Natural ventilation is an efficient design strategy for thermal comfort in hot and humid climates. The building forms can generate different pressures and temperatures to induce natural ventilation. This thesis develops a ...

Chen, Shaw-Bing

1996-01-01T23:59:59.000Z

129

THE EFFECTS OF ENERGY-EFFICIENT VENTILATION RATES ON INDOOR AIR QUALITY AT AN OHIO ELEMENTARY SCHOOL  

E-Print Network [OSTI]

New Buil~ Desi!! 1 ASHRAE 90-75R 5. J.V. Berk 1 C.D.recently 1 a new standard, ASHRAE 90~75R 3 Energy in New

Berk, J.V.

2013-01-01T23:59:59.000Z

130

Incremental Hierarchical Clustering of Text Documents  

E-Print Network [OSTI]

in incremental clustering of text documents as a part of Topic Detection and Tracking initiative ([1], [19], [10Incremental Hierarchical Clustering of Text Documents by Nachiketa Sahoo Adviser: Jamie Callan May 5, 2006 Abstract Incremental hierarchical text document clustering algorithms are important

Gordon, Geoffrey J.

131

A new design of wind tower for passive ventilation in buildings to reduce energy consumption in windy regions  

Science Journals Connector (OSTI)

Abstract In todays world, the significance of energy and energy conservation is a common knowledge. Wind towers can save the electrical energy used to provide thermal comfort during the warm months of the year, especially during the peak hours. In this paper, we propose a new design for wind towers. The proposed wind towers are installed on top of the buildings, in the direction of the maximum wind speed in the region. If the desired wind speed is accessible in several directions, additional wind towers can be installed in several positions. The proposed wind tower can also rotate and set itself in the direction of the maximum wind speed. In the regions where the wind speed is low, to improve the efficiency of the system a solar chimney or a one-sided wind tower can be installed in another part of the building in the opposite direction. Using transparent materials in the manufacturing of the proposed wind towers improves the use of natural light inside the building. The major advantage of wind towers is that they are passive systems requiring no energy for operation. Also, wind towers reduce electrical energy consumption and environmental pollution.

A.R. Dehghani-sanij; M. Soltani; K. Raahemifar

2015-01-01T23:59:59.000Z

132

Secondary pollutants from ozone reactions with ventilation filters and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

133

Analyzing Ventilation Effects of Different Apartment Styles by CFD  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Renewable Energy Resources and a Greener Future Vol.VIII-3-5 Analyzing Ventilation Effects of Different Apartment Styles by CFD Xiaodong Li Lina Wang Zhixing Ye Associate Professor School...

Li, X.; Wang, L.; Ye, Z.

2006-01-01T23:59:59.000Z

134

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

135

Dehumidification and cooling loads from ventilation air  

SciTech Connect (OSTI)

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

136

Ventilation System Effectiveness and Tested Indoor Air Quality Impacts  

SciTech Connect (OSTI)

Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

Rudd, A.; Bergey, D.

2014-02-01T23:59:59.000Z

137

Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ?

Not Available

2014-04-01T23:59:59.000Z

138

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels  

SciTech Connect (OSTI)

Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

2013-09-01T23:59:59.000Z

139

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Joe Lstiburek  

Broader source: Energy.gov [DOE]

This presentation will be delivered at the U.S. Department of Energy Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014. Joe...

140

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

E-Print Network [OSTI]

ECONOMIZER SYSTEM COST EFFECTIVENESS: ACCOUNTING FOR THEand economic benefits of an economizer ventilation controlanalyses indicate that the economizer reduces energy costs

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - air quality ventilation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: air quality ventilation Page: << < 1 2 3 4 5 > >> 1 Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH Summary: control strategy impacts on indoor air...

142

Procedures and Standards for Residential Ventilation System Commissioning:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

143

Literature Review of Displacement Ventilation  

E-Print Network [OSTI]

) and Nielsen et al. (1988) showed the impact of supply diffusers whereby increasing the entrainment of room air can decrease the temperature gradient in the occupied zone. #0;? Two important parameters to evaluate the performance of displacement ventilation... of Ventilated Rooms, Oslo, Norway. Nielsen, P.V., Hoff, L., Pedersen, L.G. 1988. Displacement Ventilation by Different Types of Diffusers. Proceedings of the 9 th AIVC Conference, Warwick. Niu, J. 1994. Modeling of Cooled-Ceiling Air-Conditioning Systems Ph...

Cho, S.; Im, P.; Haberl, J. S.

144

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

145

Innovative Energy Efficient Industrial Ventilation  

E-Print Network [OSTI]

?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

Litomisky, A.

2005-01-01T23:59:59.000Z

146

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

147

Why We Ventilate - Recent Advances  

Broader source: Energy.gov (indexed) [DOE]

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

148

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

149

Review of Residential Ventilation Technologies.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

150

Viscosity Increments of Non-Ionized Molecules  

Science Journals Connector (OSTI)

... DISTINCTIVE property of colloidally dispersed substances as opposed to crystalloids is their relatively higher intrinsic viscosity or ... or viscosity increment. The reason for this is that the medium in which the macromolecular particles ...

ALFRED POLSON

1960-08-06T23:59:59.000Z

151

Design of double skin (envelope) as a solar chimney: adapting natural ventilation in double envelope for mild or warm climates.  

E-Print Network [OSTI]

??In United States, space heating, space cooling and ventilation of buildings consume 33% of the annual building energy consumption and 15% of the total annual (more)

Wang, Lutao

2010-01-01T23:59:59.000Z

152

Incremental condition estimation for sparse matrices  

SciTech Connect (OSTI)

Incremental condition estimation provides an estimate for the smallest singular value of a triangular matrix. In particular, it gives a running estimate of the smallest singular value of a triangular factor matrix as the factor is generated one column or row at a time. An incremental condition estimator for dense matrices was originally suggested by Bischof. In this paper this scheme is generalized to handle sparse triangular matrices, especially those that are factors of sparse matrices. Numerical experiments on a variety of matrices demonstrate the reliability of this scheme in estimating the smallest singular value. A partial description of its implementation in a sparse matrix factorization code further illustrates its practicality.

Bischof, C.H. (Argonne National Lab., IL (United States)); Lewis, J.G.; Pierce, D.J. (Boeing Computer Servies, Seattle, WA (United States))

1990-10-01T23:59:59.000Z

153

Comparative study of the thermal and power performances of a semi-transparent photovoltaic faade under different ventilation modes  

Science Journals Connector (OSTI)

Abstract This paper studied the thermal and power performances of a ventilated photovoltaic faade under different ventilation modes, and appropriate operation strategies for different weather conditions were proposed accordingly to maximize its energy conversion efficiency. This ventilated PV double-skin faade (PV-DSF) consists of an outside layer of semi-transparent amorphous silicon (a-Si) PV laminate, an inward-openable window and a 400mm airflow cavity. Before installation, the electrical characteristics under standard testing conditions (STC) and the temperature coefficients of the semi-transparent PV module were tested and determined in the laboratory. Field measurements were carried out to investigate the impact of different ventilation modes, namely, ventilated, buoyancy-driven ventilated and non-ventilated, on the thermal and power performances of this PV-DSF. The results show that the ventilated PV-DSF provides the lowest average solar heat gain coefficient (SHGC) and the non-ventilated PV-DSF provides the best thermal insulation performance. In terms of power performance, the energy output of the ventilated PV-DSF is greater than those of the buoyancy-driven ventilated and non-ventilated PV-DSFs by 1.9% and 3%, respectively, due to its much lower operating temperature. Based on the experimental results, a conclusion was drawn that the ventilation design can not only reduce the heat gain of PV-DSF but also improve the energy conversion efficiency of PV modules by bringing down their operating temperature. In addition, an optimum operation strategy is recommended for this kind of PV-DSF to maximize its overall energy efficiency under different weather conditions.

Jinqing Peng; Lin Lu; Hongxing Yang; Tao Ma

2014-01-01T23:59:59.000Z

154

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

155

Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation Relevant Contaminants of Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results Srinandini Parthasarathy, Thomas E. McKone, Michael G. Apte Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 April 29, 2111 Prepared for the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program Legal Notice The Lawrence Berkeley National Laboratory is a national laboratory of the DOE managed by the University of California for the U.S. Department of Energy under Contract Number DE-AC02- 05CH11231. This report was prepared as an account of work sponsored by the Sponsor and pursuant to an M&O Contract with the United States Department of Energy (DOE). Neither the

156

Underground and Ventilation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Camera inspection of shaftropes completed * Preventive maintenance progress good * NDE of ropes completed * Scaling of buildup in shaft underway www.energy.govEM 11 Panel 6...

157

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network [OSTI]

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

158

Incremental integrity checking: limitations and possibilities  

E-Print Network [OSTI]

the problem to query containment, we show that no procedure exists that always returns the best incremental measuring the checking effort. In spite of this theoretical limitation, we develop an effective procedure and also applies to recursive databases. Finally, we point out the improvements with respect to previous

Martinenghi, Davide

159

Strongly Incremental Repair Detection Julian Hough  

E-Print Network [OSTI]

Strongly Incremental Repair Detection Julian Hough Dialogue Systems Group Faculty of Linguistics.purver@qmul.ac.uk Abstract We present STIR (STrongly Incremen- tal Repair detection), a system that de- tects speech repairs-theoretic measures from n-gram models as its principal decision features in a pipeline of classifiers detecting

Purver, Matthew

160

Alternative Fuels Data Center: Vehicle Incremental Cost Allocation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Incremental Vehicle Incremental Cost Allocation to someone by E-mail Share Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Facebook Tweet about Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Twitter Bookmark Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Google Bookmark Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Delicious Rank Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Digg Find More places to share Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Economizer system cost effectiveness: Accounting for the influence of ventilation rate on sick leave  

SciTech Connect (OSTI)

This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, DC with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modelling suggests that economizers are much more cost effective than currently recognized.

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2003-06-01T23:59:59.000Z

162

Ventilation, temperature, and HVAC characteristics in small and medium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

163

Public Sector New Construction and Retrofit Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

164

Occupant Behavior: Impact on Energy Use of Private Offices  

E-Print Network [OSTI]

projects demonstrated that low energy systems, such as natural ventilation, shading to control solar

Hong, Tianzhen

2014-01-01T23:59:59.000Z

165

Bottom line: comments on incremental costs in the Massachusetts multi-family passive solar housing program  

SciTech Connect (OSTI)

As part of its ongoing Passive Solar Multifamily Housing Program, the Office of Energy Resources performs detailed in-house estimates of incremental passive solar and conservation costs. These estimates are part of an iterative design reviewing process and are used to minimize costs while assuring good system performance. The Office of Energy Resources will finance approved energy conservation and passive solar features in over 20 elderly housing projects presently in various stages of design and construction. Experience gained refining cost-effective designs of these projects is discussed. The discussion includes: isolating and analyzing incremental costs, accruing credits for downsized heating systems, and accounting for soft variables such as additional space and architectural amenity. Cost implications of system type, building scale and geometry, and construction details are outlined, and incremental costs for several specific designs are presented in detail. Much of this information should be applicable to design for single-family and commercial buildings, as well as multi-family housing.

Shannon, R.F.

1980-01-01T23:59:59.000Z

166

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-4 Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation Yanli Ren1, Deying Li2, Yufeng Zhang1 1...

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

167

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center  

E-Print Network [OSTI]

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis outlines the results from energy models of several multifamily building configurations to improve airflow component of multifamily building design due to its effects on occupant health and comfort. Though

California at Davis, University of

168

Integrated Demand Controlled Ventilation for Single Duct VAV System with Conference Rooms  

E-Print Network [OSTI]

. This paper presents a new integrated demand controlled ventilation (IDCV) methodology which can ensure acceptable IAQ and energy savings with lower OA intake ratio. The requirement on hardware and software is simple and the implementation is easy. One office...

Yu, Y.; Liu, M.; Cho, Y.; Xu, K.

2007-01-01T23:59:59.000Z

169

FEMP-FS--Solar Ventilation Preheating  

Broader source: Energy.gov (indexed) [DOE]

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

170

Experimental analysis and model validation of an opaque ventilated facade  

Science Journals Connector (OSTI)

Natural ventilation is a convenient way of reducing energy consumption in buildings. In this study an experimental module of an opaque ventilated faade (OVF) was built and tested for assessing its potential of supplying free ventilation and air preheating for the building. A numerical model was created and validated against the experimental data. The experimental results showed that the flow rates induced in the faade cavity were due to mixed driving forces: wind and buoyancy. Depending on the weather conditions one of them was the main driving force, or both were of the same order. When the wind force was the main driving force, higher flow rates were found. In these cases buoyancy acted as supporting driving force. When the wind speed was low and buoyancy prevailed lower flow rates were found. Air and surface temperatures were predicted by the numerical model with a better accuracy than flow and energy rates. The model predicts correctly the influence of the wind and buoyancy driving forces. The experimental OVF module showed potential for free ventilation and air preheating, although it depends on weather and geometrical variables. The use of the numerical model using the right parameters was found viable for analyzing the performance of an OVF.

F. Peci Lpez; R.L. Jensen; P. Heiselberg; M. Ruiz de Adana Santiago

2012-01-01T23:59:59.000Z

171

Federal Energy Management Program: New and Underutilized Heating,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heating, Ventilation, and Air Conditioning Technologies to Heating, Ventilation, and Air Conditioning Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Digg Find More places to share Federal Energy Management Program: New and

172

SM Energy-Efficient  

E-Print Network [OSTI]

SM 111 Energy Energy-Efficient Ventilation for Apartment Buildings #12. These Guides provide clear and practical information on issues related to energy-efficient building retrofits

Diamond, Richard

173

Original article Root biomass and biomass increment in a beech  

E-Print Network [OSTI]

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Paris-Sud XI, Université de

174

Building America Technology Solutions for New and Existing Homes: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)  

Broader source: Energy.gov [DOE]

This case study describes research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

175

Heating, Ventilation and Air Conditioning Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

176

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Not Available

2013-11-01T23:59:59.000Z

177

Solar Ventilation Preheating Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

178

Confinement Ventilation and Process Gas Treatment Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

. . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1168-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-1168-2013 INTENTIONALLY BLANK iv DOE-STD-1168-2013 TABLE OF CONTENTS ACKNOWLEDGMENT...................................................................................................................vii

179

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

California Energy Supply Model Operation Resource Requirements Dimensions of Housing Types , Annual Incremental Energy and Capacity Savings from Passive Solar

Authors, Various

2010-01-01T23:59:59.000Z

180

Commissioning Residential Ventilation Systems: A Combined Assessment of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Association of Classroom Ventilation with Reduced Illness Absence: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association of Classroom Ventilation with Reduced Illness Absence: A Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6259E Year of Publication 2013 Authors Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte Journal Indoor Air Keywords carbon dioxide, Illness absence, indoor environmental quality, schools, ventilation Abstract Limited evidence associates inadequate classroom ventilation rates (VRs) with increased illness absence (IA). We investigated relationships between VRs and IA in Californiaelementary schools over two school years in 162 3rd-5th grade classrooms in 28 schools in three school districts: South Coast (SC), Bay Area (BA), and Central Valley (CV). We estimated relationships between daily IA and VR (estimated from real-time carbon dioxide) in zero-inflated negative binomial models. We also compared IA benefits and energy costs of increased VRs. All school districts had median VRs below the 7.1 L/sec-person California standard. For each additional 1 L/sec-person of VR, IA was reduced significantly (p<0.05) in models for combined districts (-1.6%) and for SC (-1.2%), and non-significantly for districts providing less data: BA (-1.5%) and CV (-1.0%). Assuming associations were causal and generalizable, increasing classroom VRs from the California average (4 L/sec-person) to the State standard would decrease IA by 3.4%, increase attendance-linked funding to schools by $33 million annually, and increase costs only $4 million. Further increasing VRs would provide additional benefits. These findings, while requiring confirmation, suggest that increasing classroom VRs above the State

182

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers [EERE]

Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

183

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Summer InfiltrationVentilation Test Results from the FRTF Laboratory This presentation was delivered at the...

184

Procedures and Standards for Residential Ventilation System  

E-Print Network [OSTI]

1 Procedures and Standards for Residential Ventilation System Commissioning: An Annotated, commissioning, procedures, standards, ASHRAE 62.2 Please use the following citation for this report: Stratton, J.C. and C.P. Wray. 2013. Procedures and Standards for Residential Ventilation System Commissioning

185

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Title Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5035E Year of Publication 2012 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Building and Environment Volume 47 Pagination 368-372 Date Published 01/2012 Keywords cost-benefit analysis, economizer, health, office, ventilation rate, work performance Abstract This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

186

Microsoft Word - Draft Pier Final Report DCV and Classroom ventilation 05-11-12  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Controlled Ventilation and Classroom Ventilation William J. Fisk, Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, Douglas P. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02- 05CH11231. LBNL-6258E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

187

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Broader source: Energy.gov (indexed) [DOE]

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

188

UC Berkeley Heat/Ventilation Curtailment Period DECEMBER 24, 2011 through JANUARY 1, 2012  

E-Print Network [OSTI]

and January 1, 2012 in order to conserve energy, most campus buildings will be closed and heat and ventilation that a building be exempt from energy curtailment. If you would like to request that your building be exempt from. Technical questions or concerns about energy curtailment can be directed to Gilbert Escobar at 3

California at Irvine, University of

189

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Broader source: Energy.gov (indexed) [DOE]

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

190

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Max Sherman (THIS SEMINAR TO BE RESCHEDULED.) Sustainability of the built-environment must be achieved in parallel with the sustenance of occupants' health and comfort. Actions to conserve energy and resources require much forethought and careful consideration due to possible consequences on the human aspects. Thus, many extensive works in the recent decades have focused on identifying the associations between indoor environment and human responses. Results have shown moderate to strong implications of thermal and indoor air quality factors on the prevalence and intensity of sick

191

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

control should be the first priority instead of dilution of pollutants by ventilation or by cleaning the air.air quality, could better provide healthful indoor environments, and also reward designers and owners who control indoor pollutantsair quality, could better document healthful indoor environments, and also reward designers and owners who control indoor pollutants

Mendell, Mark

2014-01-01T23:59:59.000Z

192

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT DEMANDCONTROLLED VENTILATION AND CLASSROOM VENTILATION SEPTEMBER 2009 CEC5002013057 Prepared for: California Energy. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley

193

Current Concepts: Weaning Patients from the Ventilator  

Science Journals Connector (OSTI)

...neurologic ICUs. Patients who require reintubation have an increased risk of death, a prolonged hospital stay, and a decreased likelihood of returning home, as compared with patients in whom discontinuation of mechanical ventilation is successful. Thus, it is essential that critical care physicians identify... In the United States, almost 800,000 patients who are hospitalized each year require mechanical ventilation.1 This estimate excludes neonates, and there is little doubt that mechanical ventilation will be increasingly used as the number of patients 65 ...

McConville J.F.; Kress J.P.

2012-12-06T23:59:59.000Z

194

Study on solar chimney used for room natural ventilation in Nanjing  

Science Journals Connector (OSTI)

Abstract The study investigated the performance of solar chimney, which is integrated into a one-story building. A module was developed for and implemented in the Energy Plus program for the simulation and determination of the energy impact of thermal chimneys. The basic concepts, assumptions, and algorithms are implemented into the Energy Plus program to predict the performance of a solar chimney. The results showed that in Nanjing 45 is found to be optimum for obtaining maximum rate of ventilation and the rate of ventilation increases with increase of the ratio between height of absorber and gap between glass and absorber. This finding is in agreement with experimental results.

Xu Jianliu; Liu Weihua

2013-01-01T23:59:59.000Z

195

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

The webinar will focus on key challenges in multifamily ventilation and strategies to address these challenges.

196

TR-IIS-11-006 Learning Boolean Functions Incrementally  

E-Print Network [OSTI]

TR-IIS-11-006 Learning Boolean Functions Incrementally Yu-Fang Chen and Bow-Yaw Wang Dec. 31, 2011;Learning Boolean Functions Incrementally Yu-Fang Chen and Bow-Yaw Wang Academia Sinica, Taiwan Abstract of verifying a system composed of two components. This work is partially supported by the National Science

Chen, Sheng-Wei

197

Incremental Clicks Impact Of Mobile Search Advertising Shaun Lysen  

E-Print Network [OSTI]

Incremental Clicks Impact Of Mobile Search Advertising Shaun Lysen Google Inc. Abstract In this research, we examine how the number of mobile organic clicks changes when advertisers significantly change to mobile search advertising. A metastudy of 327 advertisers re- veals that 88% of ad clicks are incremental

Tomkins, Andrew

198

An Incremental, Probabilistic Rough Set Approach to Rule Discovery  

E-Print Network [OSTI]

1 An Incremental, Probabilistic Rough Set Approach to Rule Discovery Ning Zhong, Ju­Zhen Dong, Setsuo Ohsuga, Tsau Young Lin Abstract--- This paper introduces an incremental, proba­ bilistic rough set. The approach is based on the combination of Generaliza­ tion Distribution Table (GDT) and the rough set

Lin, Tsau Young

199

Utility maximization in models with conditionally independent increments  

E-Print Network [OSTI]

Utility maximization in models with conditionally independent increments Jan Kallsen Johannes Muhle-Karbe Abstract We consider the problem of maximizing expected utility from terminal wealth in models for power utility under the assumption that the increments of the asset price are independent conditionally

Kallsen, Jan

200

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Journals Connector (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

SciTech Connect (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

202

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS  

E-Print Network [OSTI]

DEVELOPMENTS Marcello Caciolo, Dominique Marchio, Pascal Stabat Ecole des Mines de Paris- Center for Energy their attention to natural ventilation, due to the potential benefits in terms of energy consumption related - Difference ° Incidence angle of the wind from normal kg / m3 Density Indexes B Buoyancy in Indoor out Outdoor

Boyer, Edmond

203

Experimental evaluation of a naturally ventilated PV double-skin building envelope in real operating conditions  

E-Print Network [OSTI]

-4Mar2014 Author manuscript, published in "Solar Energy 103 (2014) 223-241" DOI : 10.1016/j.solener.2014. Keywords: Building integrated photovoltaic system; Natural ventilation; Chimney effect; Monitoring 1 fallen by 50%. To these ends, significant investments are being made into solar energy, which is seen

Paris-Sud XI, Université de

204

Building Energy Simulation & Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

strategies in a building or test bed equipped with a low-energy heating, ventilation, and air conditioning system. Project Impact Products: Improved design analysis tools and data,...

205

Should Title 24 Ventilation Requirements Be Amended to include an Indoor Air Quality Procedure?  

SciTech Connect (OSTI)

Minimum outdoor air ventilation rates (VRs) for buildings are specified in standards, including California?s Title 24 standards. The ASHRAE ventilation standard includes two options for mechanically-ventilated buildings ? a prescriptive ventilation rate procedure (VRP) that specifies minimum VRs that vary among occupancy classes, and a performance-based indoor air quality procedure (IAQP) that may result in lower VRs than the VRP, with associated energy savings, if IAQ meeting specified criteria can be demonstrated. The California Energy Commission has been considering the addition of an IAQP to the Title 24 standards. This paper, based on a review of prior data and new analyses of the IAQP, evaluates four future options for Title 24: no IAQP; adding an alternate VRP, adding an equivalent indoor air quality procedure (EIAQP), and adding an improved ASHRAE-like IAQP. Criteria were established for selecting among options, and feedback was obtained in a workshop of stakeholders. Based on this review, the addition of an alternate VRP is recommended. This procedure would allow lower minimum VRs if a specified set of actions were taken to maintain acceptable IAQ. An alternate VRP could also be a valuable supplement to ASHRAE?s ventilation standard.

Dutton, Spencer M.; Mendell, Mark J.; Chan, Wanyu R.

2013-05-13T23:59:59.000Z

206

CoEvolutionary Incremental Modelling of Robotic Cognitive Mechanisms  

E-Print Network [OSTI]

, trahania}@ics.forth.gr Abstract. Recently, brain models attempt to support cognitive abili- ties work introduces a novel com- putational framework for incremental brain modelling, which aims properly formulated neural agents to represent brain areas. A collaborative coevolutionary method

Trahanias, Panos

207

INCREMENTAL LEARNING OF NDE SIGNALS WITH CONFIDENCE ESTIMATION  

E-Print Network [OSTI]

INCREMENTAL LEARNING OF NDE SIGNALS WITH CONFIDENCE ESTIMATION Robi Polikar Department evaluation (NDE) applications resort to pattern recognition and machine learning algorithms for automated classification and characterization of NDE signals. Applications of such systems include defect identification

Polikar, Robi

208

Determination of age in forensic dentistry from cemental incremental lines  

E-Print Network [OSTI]

discrimination of incremental lines with accuracy and repeatability. Therefore, the purposes of this study are (1) to develop a technique for enhancing the incremen al lines n the dental cementum; (2) to evaluate the accuracy of age estimates based... economically applied to evaluate and count the incremental lines in the dental cementum. In this study nondemineralized cross-sections of human teeth were evaluated. This method was cnosen because the decalcification process is not only a time...

Sousa, Eliane Marques Duarte de

1987-01-01T23:59:59.000Z

209

Design Feature 7: Continuous Preclosure Ventilation  

SciTech Connect (OSTI)

This design feature (DF) is intended to evaluate the effects of continuous ventilation in the emplacement drifts during preclosure and how the effects, if any, compare to the Viability Assessment (VA) reference design for postclosure long term performance. This DF will be evaluated against a set of criteria provided by the License Application Design Selection (LADS) group. The VA reference design included a continuous ventilation airflow quantity of 0.1 m{sup 3}/s in the emplacement drifts in the design of the repository subsurface facilities. The effects of this continuous ventilation during the preclosure was considered to have a negligible effect on postclosure performance and therefore is not included during postclosure in the assessment of the long term performance. This DF discusses the effects of continuous ventilation on the emplacement drift environment and surrounding rock conditions during preclosure for three increased airflow quantities. The three cases of continuous ventilation systems are: System A, 1.0 m{sup 3}/s (Section 8), System B, 5.0 m{sup 3}/s (Section 9), and System C, 10.0 m{sup 3}/s (Section 10) in each emplacement drift split. An emplacement drift split is half total length of emplacement drift going from the east or west main to the exhaust main. The difference in each system is the quantity of airflow in the emplacement drifts.

A.T. Watkins

1999-06-22T23:59:59.000Z

210

Underground ventilation remote monitoring and control system  

SciTech Connect (OSTI)

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

211

Formadehyde in New Homes: Ventilation vs. Source Control  

Broader source: Energy.gov (indexed) [DOE]

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

212

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

ventilation) Introducing net zero energy buildings IncreasedPotential for Achieving Net Zero-Energy Buildings in the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

213

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Journals Connector (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

214

DOE Announces 2008 Federal Energy and Water Management Awards...  

Office of Environmental Management (EM)

improving operations and maintenance practices and upgrading building management and heating, ventilating, and air conditioning equipment, including recommissioning energy...

215

MODELING VENTILATION SYSTEM RESPONSE TO FIRE  

SciTech Connect (OSTI)

Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

Coutts, D

2007-04-17T23:59:59.000Z

216

Breathing HRV by the Concept of AC Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

217

Simulating Natural Ventilation in and Around Buildings by Fast Fluid Mingang Jin1  

E-Print Network [OSTI]

]. It is preferred over mechanical ventilation for sustainable building design. However, the design of natural is a sustainable building technology that can provide a good indoor environment and save energy [1]. These factors should be thoroughly considered at the early stage of building design in order to achieve good

Chen, Qingyan "Yan"

218

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

219

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect (OSTI)

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

220

Experimental simulation of wind driven cross-ventilation in a naturally ventilated building  

E-Print Network [OSTI]

A device was designed and constructed to simulate cross-ventilation through a building due to natural wind. The wind driver device was designed for use with a one tenth scale model of an open floor plan office building in ...

Hult, Erin L. (Erin Luelle), 1982-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Humidity Implications for Meeting Residential Ventilation Requirements  

E-Print Network [OSTI]

residential ventilation standard, ASHRAE Standard 62.2. Because meeting this standard can significantly change, Kansas City, Seattle, Minneapolis and Phoenix). In order to capture moisture related HVAC system.2, design strategies for moisture control, humidity and comfort. #12;INTRODUCTION ASHRAE standards 62

222

Hospital Energy Benchmarking Guidance - Version 1.0  

E-Print Network [OSTI]

ventilation site energy intensity of California hospitalsSep-2009 Lighting site energy intensity for all Californiafor lighting site energy intensity of California nursing

Singer, Brett C.

2010-01-01T23:59:59.000Z

223

Tax Increment Financing (TIF) Guarantee Program (Pennsylvania) | Department  

Broader source: Energy.gov (indexed) [DOE]

TIF) Guarantee Program (Pennsylvania) TIF) Guarantee Program (Pennsylvania) Tax Increment Financing (TIF) Guarantee Program (Pennsylvania) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Commonwealth Financing Authority (CFA) State Pennsylvania Program Type Loan Program Provider Department of Community and Economic Development The Tax Increment Financing (TIF) Guarantee Program provides credit enhancement to improve market access and lower capital costs through loan guarantees to bond issuers to assist in the development and revitalization

224

Section 38 - HVAC (Heating, Ventilation, Air Conditioning)  

Science Journals Connector (OSTI)

The term HVAC is an acronym for Heating, Ventilation (and) Air Conditioning, the industry term for any of various efforts to control conditions in a building or other enclosed area to improve comfort and efficiency. A closely related section is Refrigeration, which follows this one. Some contemporary HVAC techniques have ancient roots. Early forms of central heating and solar home heating were in use in Rome in the first century A.D. The earliest use of glass in windows (as opposed to a covering of wood, cloth, or hide, or simply an opening) is also attributed to the Romans at this same time. The first known use of solar-oriented building design in North America dates back to about the year 1050; i.e., the cliff dwellings built by the Anasazi (Ancient Pueblo) people of the Colorado Plateau area. Geothermal district heating was employed as early as the 1300s, in the Auvergne region of southern France. The foundation for modern central heating was established in the 1700s, first in England and then in France. The 1800s saw significant advances in the use of water heaters, especially the first automatic storage water heater (Edwin Ruud, 1889) and the first commercial solar water heater (Clarence Kemp, 1891). In comparison with heating, cooling technology was late in developing. The first successful method of producing ice occurred in 1851, and it was not until 1902 that Willis Haviland Carrier designed the first industrial air-conditioning system. His Carrier Air Conditioning Corporation would go on to develop air-conditioning systems for stores and theaters (1924) and for residential buildings (1928). Carrier remains the global leader in air conditioner production. The first air-conditioned automobile was produced by Packard in 1939. Recent entries in this section emphasize the use of alternative energy sources in heating and cooling, such as solar, photovoltaic, geothermal, and fuel cells. These advances include the ground-source heat pump, the Trombe wall, the heat pipe, and the PV/thermal hybrid system.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

225

Applications of Optimal Building Energy System Selection and Operation  

E-Print Network [OSTI]

direct control of the solar-assisted heating ventilation and5]. And 4. , the solar-assisted heating ventilation and airPerformance of a Solar-Thermal-Assisted HVAC System, Energy

Marnay, Chris

2014-01-01T23:59:59.000Z

226

An Incremental and Nonbinary CSP Solver: The Hyperpolyhedron Search Algorithm  

E-Print Network [OSTI]

An Incremental and Non­binary CSP Solver: The Hyperpolyhedron Search Algorithm Miguel A. Salido and scheduling can be expressed in a natural way as a Constraint Satisfaction Problem (CSP). It is well known that a non­binary CSP can be transformed into an equivalent binary CSP using some of the actual techniques

Rossi, Francesca

227

Instructions for the Use and Care of an Increment Borer  

E-Print Network [OSTI]

to determine growth rate, age, soundness, and penetration of wood-preserving chemicals. An increment borer, apply beeswax to the threads and shank of the borer bit. This will make penetration and removal into the "pith" or center of the tree. 3. Align the borer bit and handle so that the bit will penetrate toward

Bolding, M. Chad

228

Observers for systems with nonlinearities satisfying incremental quadratic constraints  

Science Journals Connector (OSTI)

We consider the problem of designing observers to asymptotically estimate the state of a system whose nonlinear time-varying terms satisfy an incremental quadratic inequality that is parameterized by a set of multiplier matrices. Observer design is reduced ... Keywords: Application of nonlinear analysis and design, Linear matrix inequalities, Nonlinear observer and filter design, Optimization-based controller synthesis

Behet A?kme?e; Martin Corless

2011-07-01T23:59:59.000Z

229

Incremental Partitioning-Based Vectorless Power Grid Verification  

E-Print Network [OSTI]

Incremental Partitioning-Based Vectorless Power Grid Verification Dionysios Kouroussis Department performance of a chip, design verification of the power grid is of critical importance. This paper builds the efficient verification of local power grid sections or blocks, enabling incremen- tal design analysis

Najm, Farid N.

230

Report on the DagstuhlSeminar on INCREMENTAL COMPUTATION AND  

E-Print Network [OSTI]

of incremental processing in practical systems; the systems people were ex­ posed to new algorithms and analysis with search and network problems), 2. On­line algorithms and competitive analysis, 3. Parametric algorithms and sensitivity analysis, and 4. The design of adaptive, on­the­fly, and self­stabilizing algorithms

Reps, Thomas W.

231

Replication-Based Incremental Copying Collection Scott Nettles  

E-Print Network [OSTI]

Replication-Based Incremental Copying Collection Scott Nettles 1, James O'Tool e 2, David Pi erce 3 for mai ntai ni ng consi stency may be appl i ed. In our i mpl ementati on for Standard ML of New

Williams, Brian C.

232

Incremental Machine Descriptions for GCC Sameera Deshpande Uday P. Khedker  

E-Print Network [OSTI]

Incremental Machine Descriptions for GCC Sameera Deshpande Uday P. Khedker Indian Institute of Technology, Bombay {sameera,uday}@cse.iitb.ac.in Abstract The mechanism of providing machine descriptions a GCC port exists. However, this mechanism is quite ad hoc and the machine descriptions are dif- ficult

Khedker, Uday

233

A Polynomial Time Incremental Algorithm for Learning DFA  

E-Print Network [OSTI]

and membership queries. This algorithm is an extension of Angluin's ID pro­ cedure to an incremental framework that the modified hypoth­ esis is consistent with all examples observed thus far. The algorithm is guaranteed a knowledgeable teacher who responds to queries generated by the learner. Angluin's ID algorithm learns the target

Honavar, Vasant

234

An Incremental Algorithm for Betti Numbers of Simplicial Complexes*  

E-Print Network [OSTI]

An Incremental Algorithm for Betti Numbers of Simplicial Complexes* Cecil Jose A. Delfinado. Abstract A general and direct method for computing the betti numbers of the homology groups of a finite!ied to the family of a-shapes of a finite point set in R3 ittakes time O(ncz(n)) to compute the betti numbers of all

Kazhdan, Michael

235

The Use of Associative Concepts in the Incremental Building  

E-Print Network [OSTI]

The Use of Associative Concepts in the Incremental Building of a Logical Context S'ebastien Ferr. Because of the changing nature of users' intentions, the assistance given in the incremen­ tal building are incoming emails. In this application, the building of the context is clearly on­line; and possible

Ferré, Sébastien

236

Strongly Incremental Repair Detection Julian Hough1,2  

E-Print Network [OSTI]

in a pipeline of classifiers detecting the the different stages of repairs. Results on the Switchboard disStrongly Incremental Repair Detection Julian Hough1,2 1 Dialogue Systems Group Faculty of London m.purver@qmul.ac.uk Abstract We present STIR (STrongly Incremen- tal Repair detection), a system

Purver, Matthew

237

Incremental Semi-Supervised Subspace Learning for Image  

E-Print Network [OSTI]

Preserving): where and Solution: A is the d eigen vectors corresponding the d smallest eigen values of XLXTIncremental Semi-Supervised Subspace Learning for Image Retrieval Author: Xiaofei He Presented Projection (LPP) Incremental Semi-Supervised LPP Experiment Results and Analysis #12;Subspace Learning

Tian, Qi

238

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

of Energy Use Intensity (EUI) predicted with building energyEnergyPlus 2.1 program. The EUI is the annual energy use per2008) provide the predicted EUI values while Benne et al (

Mendell, Mark

2014-01-01T23:59:59.000Z

239

Performance Assessment of Photovoltaic Attic Ventilator Fans  

Broader source: Energy.gov [DOE]

A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

240

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network [OSTI]

, energy consumption from building ventilation could be one of the limiting factors in achieving energy quality or, conversely, overventilation, which wastes energy. To develop the healthbased ventilationHealthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

242

Heat balance for two commercial broiler barns with solar preheated ventilation air  

Science Journals Connector (OSTI)

In temperate climatic zones, solar air heaters can reduce heating loads, and increase winter ventilation rates thereby improving inside air quality and livestock performance without additional fuel input. A heat balance was carried out to measure bird heat production under field conditions on two commercial broiler barns to evaluate the impact of solar heated ventilation air on bird performance, and identify strategies to reduce winter heating load. Located 40km east of Montreal, Canada, the experimental broiler barns were identically built with three floors housing 6500 birds per floor in an all-in all-out fashion. Equipped with solar air pre-heaters over their fresh air inlets, the barns were instrumented to monitor inlet, inside and outside air conditions, ventilation rate and heating system operating time. The effects on bird performance were observed from November 2007 to March 2009 by alternating their operation between the barns. The measured sensible and total heat productions of 4.5W and 8.4W, respectively, for 1kg birds corresponded to laboratory measured values. Bird performance was not affected by the solar air pre-heaters which increased the ventilation rate above normal during only 20% of the daytime period. Room air temperature stratification resulted in 2040kW of heat losses during the winter, representing 25% of the total natural gas heat load. Because inside air moved directly to the fans, large and rapid increases in ventilation inlet air temperature, produced by the solar air pre-heaters, resulted in further heat losses equivalent to 15% of the solar energy recovered. Sustainable energy management in livestock barns requiring heating should incorporate an air mixing system to eliminate air temperature stratification and improve fan flows.

Sbastien Cordeau; Suzelle Barrington

2010-01-01T23:59:59.000Z

243

Effect of Ventilation Strategies on Residential Ozone Levels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

244

Policy Flash 2015-02 INCREMENTALLY FUNDING FIXED-PRICE ACTIONS...  

Office of Environmental Management (EM)

5-02 INCREMENTALLY FUNDING FIXED-PRICE ACTIONS Policy Flash 2015-02 INCREMENTALLY FUNDING FIXED-PRICE ACTIONS Questions concerning this policy flash should be directed to Michael...

245

Ventilation System to Improve Savannah River Site's Liquid Waste...  

Broader source: Energy.gov (indexed) [DOE]

A process vessel ventilation system is being installed in a facility that houses two tanks that will process decontaminated salt solution at the Saltstone Production Facility. A...

246

Building America Case Study: Selecting Ventilation Systems for...  

Energy Savers [EERE]

requirements must be met? * What is the scope of the renovation project? * What heating, air conditioning, and ventilation systems are currently in the home? * What type of...

247

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Energy Savers [EERE]

to provide needed ventilation under drier summer and winter conditions and reduce the air introduced during periods of peak space conditioning. For more information, see the...

248

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect (OSTI)

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

249

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

250

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

This Building America webinar, held on Sept. 24, 2014, focused on key challenges in multifamily ventilation and strategies to address these challenges.

251

Impact of Infiltration and Ventilation on Measured Space Conditioning...  

Broader source: Energy.gov (indexed) [DOE]

Hot-humid PERFORMANCE DATA Costs for reducing infiltration and incorporating mechanical ventilation in buildings will vary greatly depending on the condition and...

252

U.S. Department of Energy NEPA Categorical Exclusion Determination...  

Broader source: Energy.gov (indexed) [DOE]

an energy audit of City Hall, 3) energy efficient retrofits (heating, ventilating, and air conditioning; lighting; building management system; and building envelope) City Hall...

253

Hospital Energy Benchmarking Guidance - Version 1.0  

E-Print Network [OSTI]

from week to year. Steam EUI: Fuel energy to steamcan also calculate for EUI: individual services above.to large pumps. Ventilation EUI: Total electric energy for

Singer, Brett C.

2010-01-01T23:59:59.000Z

254

Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

comes from USACE managed energy audits. 6 Table 3. Renewable Energy Status at Pilot Sites Solar Photovoltaic (PV) Wind Solar Hot Water (SHW) Solar Ventilation Preheating (SVP)...

255

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network [OSTI]

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

256

Results of the Evaluation Study DeAL Decentralized Facade Integrated Ventilation Systems  

E-Print Network [OSTI]

Most office buildings in Germany have either no mechanical ventilation system or a centralized ventilation system with fresh and exhaust air supply. Within the last 10 years some projects using decentralized ventilation systems (DVS) came up. Common...

Mahler, B.; Himmler, R.

257

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network [OSTI]

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems...

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

258

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

control with ventilation, given current ventilation and filtration system practices, are the indoor-sourced gaseous pollutants with low octanal-air

Mendell, Mark J.

2014-01-01T23:59:59.000Z

259

Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia  

E-Print Network [OSTI]

This paper explores the potential of using natural ventilation as a passive cooling system for new house windows in suburban houses can be opened. Passive cooling design elements are mostly ignored in modern1 Natural Ventilation Design for Houses in Thailand Chalermwat Tantasavasdia , Jelena Srebricb

Chen, Qingyan "Yan"

260

Measure Guideline: Selecting Ventilation Systems for Existing Homes  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Aldrich, R.

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Independent Oversight Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades, November 2011  

Broader source: Energy.gov (indexed) [DOE]

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope and Approach .............................................................................................................................. 2

262

The incrementally zoned Miocene Ayagaures ignimbrite (Gran Canaria, Canary Islands)  

Science Journals Connector (OSTI)

The 2025m thick trachyphonolitic Ayagaures ignimbrite cooling unit [(AY); 11.8Ma] exposed over 250km2 (onshore volume ca. 4.5km3 DRE) is the uppermost and most voluminous cooling unit of the Middle Fataga Formation (MFF), part of the Fataga Group (ca. 13.3ca. 9Ma) on Gran Canaria (GC), Canary Islands (2800? N, 1535? W). Up to 19 flow units (named bt) subdividing the AY have been identified throughout most of the area from proximally to the caldera wall to distally as far as 14km away. Individual flow units were distinguished from each other and logged using mainly chemical criteria. Single and/or packages of flow units (A, B and C) are tentatively interpreted to correspond to compositionally distinct magma bodies erupted from the same magma reservoir. These source-controlled flow units are interpreted to reflect successive eruptive pulses during incremental subsidence of Tejeda caldera. We subdivided AY cooling unit into four welding facies. Tentative correlation with a major syn-ignimbrite turbidite drilled during ODP Leg 157 suggests a total DRE volume of >50km3. The cooling unit as a whole becomes less evolved upwards as shown by major elements, trace elements and REE of bulk rock and phenocrysts. All phenocryst phases, dominantly sanidineanorthoclase (up to 20vol.%), with minor biotite, augite, titanite, hayne and apatite, are unzoned and show an incremental compositional zoning in the stratigraphy. The shallow level parent magma reservoir is interpreted to have undergone strong mixing prior to starting its final compositional zoning in a thermodynamically equilibrated reservoir. Compositional zoning resulted in three main bodies. This compositional and physical layering may have been triggered by rapid growth of alkali feldspar and biotite throughout the erupted part of the magma chamber. Abundant titanite and hayne phenocrysts in basal flow units and in a locally preserved, highly evolved fallout tephra are interpreted to reflect initial evacuation of a small volume, highly fractionated cupola. AY represents the most evolved part of a large, partially evacuated magma reservoir. Progressive downward tapping of the reservoir is interpreted to have been controlled by incremental caldera collapse. Absence of less evolved magmas suggests that the magma chamber was only partially evacuated. Incremental compositional zoning of the cooling unit, but unzoned phenocrysts and evacuation reversals show that mixing did not occur following initiation of alkali feldspar growth.

Martin Jutzeler; Hans-Ulrich Schmincke; Mari Sumita

2010-01-01T23:59:59.000Z

263

Literature review supporting assessment of potential radionuclides in the 291-Z exhaust ventilation  

SciTech Connect (OSTI)

This literature review was prepared to support a study conducted by Pacific Northwest Laboratory to assess the potential deposition and resuspension of radionuclides in the 291-Z ventilation exhaust building located in the 200 West Area of the US Department of Energy`s Hanford Project near Richland, Washington. The filtered ventilation air from three of the facilities at the Plutonium Finishing Plant (PFP) complex are combined together in the 291-Z building before discharge through a common stack. These three facilities contributing filtered exhaust air to the discharge stream are (1) the PFP, also known as the Z-Plant or 234-5Z, (2) the Plutonium Reclamation Facility (PRF or 236-Z), and (3), the Waste Incinerator Building (WIB or 232-Z). The 291-Z building houses the exhaust fans that pull air from the 291-Z central collection plenum and exhausts the air to the stack. Section 2.0 of this report is a description of the physical characteristic of the ventilation system from the High Efficiency Particulate Air (HEPA) filters to the exhaust stack. A description of the processes performed in the facilities that are vented through 291-Z is given in Section 3.0. The description focuses on the chemical and physical forms of potential aerosols given off from the unit operations. A timeline of the operations and events that may have affected the deposition of material in the ventilation system is shown. Aerosol and radiation measurements taken in previous studies are also discussed. Section 4.0 discusses the factors that influence particle deposition and adhesion. Mechanisms of attachment and resuspension are covered with specific attention to the PFP ducts. Conclusions and recommendations are given in Section 5.0.

Mahoney, L.A.; Ballinger, M.Y.; Jette, S.J.; Thomas, L.M. Glissmeyer, J.A. [Pacific Northwest Lab., Richland, WA (United States); Davis, W.E. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

264

Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Lunden, Melissa

2014-01-01T23:59:59.000Z

265

Text-Alternative Version of Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements  

Broader source: Energy.gov [DOE]

Transcript of Building America webinar, "Multifamily Ventilation Strategies and Compartmentalization Requirements," held on Sept. 24, 2014.

266

Experimental and numerical VOC concentration field analysis from flooring material in a ventilated room  

E-Print Network [OSTI]

in "7th International Conference, Healthy Buildings 2003, Singapore : Singapore (2003)" #12;Ventilation

Paris-Sud XI, Université de

267

Infrared Properties of Cataclysmic Variables from 2MASS Results from the 2nd Incremental Data Release  

E-Print Network [OSTI]

Because accretion-generated luminosity dominates the radiated energy of most cataclysmic variables, they have been ``traditionally'' observed primarily at short wavelengths. Infrared observations of cataclysmic variables contribute to the understanding of key system components that are expected to radiate at these wavelengths, such as the cool outer disk, accretion stream, and secondary star. We have compiled the J, H, and Ks photometry of all cataclysmic variables located in the sky coverage of the 2 Micron All Sky Survey (2MASS) 2nd Incremental Data Release. This data comprises 251 systems with reliably identified near-IR counterparts and S/N > 10 photometry in one or more of the three near-IR bands.

Hoard, D W; Clark, L L; Bowers, T P; Bowers, Timothy P.

2001-01-01T23:59:59.000Z

268

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

01 - 29310 of 29,416 results. 01 - 29310 of 29,416 results. Download Western Interconnection 2006 Congestion Assessment Study http://energy.gov/oe/downloads/western-interconnection-2006-congestion-assessment-study Download Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Why ventilate? What are the ultimate goals of ventilation requirements in codes and standards? What are the characteristics of an effective ventilation system in new vs. existing construction? What are the risks and solutions associated with ventilation in hot-humid climates? http://energy.gov/eere/downloads/critical-question-7-what-are-best-practices-single-family-ventilation-all-climate Download Financial and Activity Report- June 5, 2009 http://energy.gov/downloads/financial-and-activity-report-june-5-2009

269

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Office of the BuildingEfficiency and Renewable Energy, Office of the Building

Sherman, Max

2011-01-01T23:59:59.000Z

270

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity and IAQ Vol.I-7-2 Key Factors in Displacement Ventilation Systems for Better IAQ1 Xiaotong Wang Junjun Chen Yike Li Zhiwei Wang Associate Professor...

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

271

Comparison of Two Ventilation Systems in a Chinese Commercial Kitchen  

E-Print Network [OSTI]

A numerical simulation of an indoor thermal environment in a Chinese commercial kitchen has been carried out using indoor zero-equation turbulence model. Two different ventilation systems in a Chinese commercial kitchen have been simulated...

Wan, X.; Yu, L.; Hou, H.

2006-01-01T23:59:59.000Z

272

SURFACE CIRCULATION AND VENTILATION Lynne D. Talley(1)  

E-Print Network [OSTI]

of autonomous subsurface profiling to include oxygen and turbulence profiling, and implementation of local of subsurface circulation in the wind-driven gyres (section 2), and (2) ventilation/upwelling processes

Talley, Lynne D.

273

Incremental Learning from Positive Examples Grazia Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli  

E-Print Network [OSTI]

Incremental Learning from Positive Examples Grazia Bombini, Nicola Di Mauro, Floriana Esposito Bombini, Nicola Di Mauro, Floriana Esposito, and Stefano Ferilli evidence for the class ci

Di Mauro, Nicola

274

Study on Influencing Factors of Night Ventilation in Office Rooms  

E-Print Network [OSTI]

& Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort... & Environmental Engineering, Harbin Institute of Technology Harbin P.R.China, 150090 wzjw02@yahoo.com.cn Abstract: A mathematical and physical model on night ventilation is set up. The fields of indoor air temperature, air velocity and thermal comfort...

Wang, Z.; Sun, X.

2006-01-01T23:59:59.000Z

275

The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory  

E-Print Network [OSTI]

different renewable energy potential and cost assumptions.and negative impacts and costs of renewable energy on otherany incremental cost of renewable energy (relative to

Bolinger, Mark A

2009-01-01T23:59:59.000Z

276

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network [OSTI]

ofbothindoorairqualityandenergy. References ASHRAEbothindoorairqualityandbuildingenergyconsumption. acceptable indoor air quality at minimum energy cost, it is

Sherman, Max

2008-01-01T23:59:59.000Z

277

U.S. Department of Energy NEPA Categorical Exclusion Determination...  

Broader source: Energy.gov (indexed) [DOE]

Plan, and 3) installation of energy efficiency retrofits for the City Hall (1948 - boiler; heating, ventilating, and air conditioning; and lighting systems) and Police...

278

FEMP Expands ESPC ENABLE Program to Include More Energy Conservation...  

Energy Savers [EERE]

(ESPC) ENABLE program to include two new energy conservation measures (ECMs): solar photovoltaic (PV) and simple one-for-one heating, ventilation, and air conditioning (HVAC)...

279

Program Update: 2nd Quarter 2009 | Department of Energy  

Energy Savers [EERE]

2009 More Documents & Publications CERTIFIED REALTY SPECIALIST Heating Ventilation and Air Conditioning Efficiency Taking It from Brown to Green: Renewable Energy on...

280

Building America Best Practices Series Vol. 14: Energy Renovations...  

Energy Savers [EERE]

comfort, health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment. Energy Renovations: HVAC More Documents & Publications...

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FEMP Offers New Training Series on Renewable Energy Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ventilation Preheat Concentrating Solar Power Daylighting Geothermal and Ground Source Heat Pumps Biomass for Heat and Power Small Scale Hydropower and Ocean Energy. The series...

282

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Siting Your Solar Water Heating System Have you decided to install a solar water heater? Learn how to correctly orient and tilt the heater. May 30, 2012 A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Whole-House Ventilation Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment. May 30, 2012 Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar Water Heating System Maintenance and Repair Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Learn how to maintain your solar water

283

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Siting Your Solar Water Heating System Have you decided to install a solar water heater? Learn how to correctly orient and tilt the heater. May 30, 2012 A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Whole-House Ventilation Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment. May 30, 2012 Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar Water Heating System Maintenance and Repair Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Learn how to maintain your solar water

284

A robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems  

Science Journals Connector (OSTI)

There have been increasingly growing concerns over the quality of the air inside buildings and the associated energy use. The CO2-based demand-controlled ventilation DCV is one of the strategies that could offer a great opportunity to reduce energy consumption in HVAC systems. However, implementing CO2-based DCV under ASHRAE Standard 62.1 20042010 is not simple as it was under previous versions due to the changes in breathing-zone ventilating rate calculations. Thus, this paper provides insight into the performance of a multi-zone VAV system under different operating and ventilation conditions, discusses the difficulties in the CO2-based DCV, and proposes a robust DCV strategy based on the supply air CO2 concentration. The proposed strategy offers great benefits in terms of better indoor air control and improved energy efficiency. To evaluate the proposed strategy, energy simulations were performed on various USA locations and for a typical two-story office building conditioned by a VAV system. The results show that a significant energy saving could be achieved by implementing the proposed strategy as compared to the design-occupancy ASHRAE Standard 62.1 2010 multi-zone procedure and the amount of saving that could be up to 23% depends mainly on locations and the actual occupancy profile.

Nabil Nassif

2012-01-01T23:59:59.000Z

285

Efficient Incremental Search for Moving Target Search Xiaoxun Sun William Yeoh Sven Koenig  

E-Print Network [OSTI]

- puter game company Bioware, for example, recently imposed a limit of 1-3 ms on the search time [BulitkoEfficient Incremental Search for Moving Target Search Xiaoxun Sun William Yeoh Sven Koenig Computer, skoenig}@usc.edu Abstract Incremental search algorithms reuse information from previous searches to speed

Yeoh, William

286

DOCUMENT DE TRAVAIL THE EFFECT OF THE INCREMENTAL R&D TAX CREDIT ON THE PRIVATE  

E-Print Network [OSTI]

1 DOCUMENT DE TRAVAIL THE EFFECT OF THE INCREMENTAL R&D TAX CREDIT ON THE PRIVATE FUNDING OF R, whether the incremental R&D tax credit increases the private funding of R&D. In order to answer the determinants of the probability to benefit from the R&D tax credit, that is the selection process at work

Paris-Sud XI, Université de

287

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

& SAVING ENERGY: FINAL REPORT ON INDOOR ENVIRONMENTAL QUALITY & ENERGY MONITORING IN SIXTEENPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT IMPROVING VENTILATION RELOCATABLE CLASSROOMS MAY 2012 CEC5002012075 Prepared for: California Energy Commission Prepared by

288

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

289

Assessment of Indoor Air Quality Benefits and Energy Costs of  

E-Print Network [OSTI]

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation J.M.Logue1,P.H. Sherman, B.C. Singer, Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation; LBNL-4945E #12;Logue et al., Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical

290

Phase-change wallboard and mechanical night ventilation in commercial buildings: Potential for HVAC system downsizing  

SciTech Connect (OSTI)

As thermal storage media, phase-change materials (PCMs) such as paraffin, eutectic salts, etc. offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. By embedding PCMs in dypsum board, plaster, or other wall-covering materials, the building structure acquires latent storage properties. Structural elements containing PCMs can store large amounts of energy while maintaining the indoor temperature within a relatively narrow range. As heat storage takes place inside the building where the loads occur, rather than at a central exterior location, the internal loads are removed without the need for additional transport energy. Distributed latent storage can thus be used to reduce the peak power demand of a building, downsize the cooling system, and/or switch to low-energy cooling sources. The authors used RADCOOL, a thermal building simulation program based on the finite difference approach, to numerically evaluate the thermal performance of PCM wallboard coupled with mechanical night ventilation in office buildings offers the opportunity for system downsizing in climates where the outside air temperature drops below 18 C at night. In climates where the outside air temperature remains above 19 C at night, the use of PCM wallboard should be coupled with discharge mechanisms other than mechanical night ventilation with outside air.

Stetiu, C.; Feustel, H.E.

1998-07-01T23:59:59.000Z

291

Natural Ventilation Applications in Hot-humid Climate: A Preliminary Design for the College of Design at NTUST  

E-Print Network [OSTI]

to create a comfortable architectural environment, especially in a hot, humid climate such as that of Taiwan. However, the air currents of urban wind fields are unpredictable and whimsical. The conventional architectural design process does not employ... awkward. In addition, with increased awareness of the impact of climate change and greenhouse emissions, the effective usage of natural ventilation will likely become a crucial element in reducing the energy consumption of buildings. In improving...

Lin, M. T.; Wei, H. Y.; Lin, Y. J.; Wu, H. F.; Liu, P. H.

292

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

293

Capture and Use of Coal Mine Ventilation-Air Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

294

Formaldehyde emissions from ventilation filters under different relative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formaldehyde emissions from ventilation filters under different relative Formaldehyde emissions from ventilation filters under different relative humidity conditions Title Formaldehyde emissions from ventilation filters under different relative humidity conditions Publication Type Journal Article Refereed Designation Refereed Year of Publication 2013 Authors Sidheswaran, Meera A., Wenhao Chen, Agatha Chang, Robert Miller, Sebastian Cohn, Douglas P. Sullivan, William J. Fisk, Kazukiyo Kumagai, and Hugo Destaillats Journal Environmental Science and Technology Date Published 04/18/2013 Abstract A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is

295

Preoperational test report, primary ventilation condenser cooling system  

SciTech Connect (OSTI)

This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-10-29T23:59:59.000Z

296

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network [OSTI]

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review...

Sherman, M.

2000-01-01T23:59:59.000Z

297

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network [OSTI]

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

298

A sweating model for the internal ventilation of a motorcycle Claudio Canutoa  

E-Print Network [OSTI]

A sweating model for the internal ventilation of a motorcycle helmet Claudio Canutoa , Flavio and optimization of the internal ventilation of a motorcycle hel- met, with the purpose of enhancing the comfort

Ceragioli, Francesca

299

Building America Webinar: Multifamily Ventilation Strategies and Compartmentalization Requirements- Sean Maxwell  

Broader source: Energy.gov [DOE]

This presentation is included in the Building America webinar, Multifamily Ventilation Strategies and Compartmentalization Requirements, on September 24, 2014.

300

2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network [OSTI]

1) indoor pollutant source control, and 2) air cleaning.control is complicated by the large number and changing nature of indoor pollutant sources. Particle air

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

302

Energy saving strategies with personalized ventilation in tropics  

E-Print Network [OSTI]

office. The equipment loads follow the schedules of theand the equipment heat load follow the profile shown inload was 10 W/m 2 and it follows the load shown in Table 1.

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

303

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

a light load office. The loads follow the schedules of theheat load generated by occupants and equipment follows the

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

304

Energy saving strategies with personalized ventilation in tropics  

E-Print Network [OSTI]

is extracted by the fan coil units from the room in 1 year (a two-pipe overhead fan coil unit, is used to keep the roomto the room through the fan coil unit. There is no heating

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

305

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

were modelled. Four-pipe fan coil units were used to controlthat is extracted by the fan coil units from the room in oneis supplied by the fan coil units to the room in one year (

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

306

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network [OSTI]

RollOMat polyester type HVAC filter with a thin tackifiera Petri dish. A 47mm cut HVAC filter piece was mounted on anwas loaded on HVAC particle filters, and the formaldehyde

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

307

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

tropics, Proceedings of Healthy Buildings 2003, Singapore,Proceedings of Healthy Buildings 2000 Vol. 2, 2000, pp. 523-building. Proceeding of Healthy Building 2006. Vol. V, 2006,

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

308

Energy saving strategies with personalized ventilation in tropics  

E-Print Network [OSTI]

in: Proceedings of Healthy Buildings 2003, Singapore, 2, (in: Proceedings of Healthy Buildings 2000, vol. 2, 2000, pp.

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

309

Energy saving strategies with personalized ventilation in tropics  

E-Print Network [OSTI]

The strategy to control the supply air temperature does notopportunity to control the supply air temperature because itpersonalized air supply temperature control strategy on the

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

310

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network [OSTI]

opportunity to control the supply air temperature. In Case 8the personalized supply air temperature control strategy onreveal that the supply air temperature control strategy has

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

311

Skylights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Skylights Skylights Skylights June 18, 2012 - 8:54am Addthis A skylight can provide lighting, ventilation, views, and sometimes emergency egress. | Photo courtesy of ©iStockphoto/PaulaConnelly A skylight can provide lighting, ventilation, views, and sometimes emergency egress. | Photo courtesy of ©iStockphoto/PaulaConnelly What does this mean for me? You can brighten your home and provide ventilation by installing a skylight. Proper installation is important to a skylight's energy performance. A skylight can provide your home with daylighting and ventilation. When properly selected and installed, an energy-efficient skylight can help minimize your heating, cooling, and lighting costs. Skylight Design Considerations Before selecting a skylight for your home, determine what type of skylight

312

Air flow and particle control with different ventilation systems in a classroom  

E-Print Network [OSTI]

Air flow and particle control with different ventilation systems in a classroom Sture Holmberg, Ph. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation

Chen, Qingyan "Yan"

313

Building structured web community portals: a top-down, compositional, and incremental approach  

Science Journals Connector (OSTI)

Structured community portals extract and integrate information from raw Web pages to present a unified view of entities and relationships in the community. In this paper we argue that to build such portals, a top-down, compositional, and incremental ...

Pedro DeRose; Warren Shen; Fei Chen; AnHai Doan; Raghu Ramakrishnan

2007-09-01T23:59:59.000Z

314

#AskEnergySaver: Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on how ventilation and air leakage impact a home's energy use. 1. How can I recover my loss heat from my furnace exhaust? -- from @DezGardner007 on Twitter IW: The simplest way...

315

Hottest spot temperatures in ventilated dry type transformers  

SciTech Connect (OSTI)

The hottest spot temperature allowance to be used for the different insulation system temperature classes is a major unknown facing IEEE Working Groups developing standards and loading guides for ventilated dry type transformers. In 1944, the hottest spot temperature allowance for ventilated dry type transformers was established as 30 C for 80 C average winding temperature rise. Since 1944, insulation temperature classes have increased to 220 C but IEEE standards continue to use a constant 30 C hottest spot temperature allowance. IEC standards use a variable hottest spot temperature allowance from 5 to 30 C. Six full size test windings were manufactured with imbedded thermocouples and 133 test runs performed to obtain temperature rise data. The test data indicated that the hottest spot temperature allowance used in IEEE standards for ventilated dry type transformers above 500 kVA is too low. This is due to the large thermal gradient from the bottom to the top of the windings caused by natural convection air flow through the cooling ducts. A constant ratio of hottest spot winding temperature rise to average winding temperature rise should be used in product standards for all insulation temperature classes. A ratio of 1.5 is suggested for ventilated dry type transformers above 500 kVA. This would increase the hottest spot temperature allowance from 30 C to 60 C and decrease the permissible average winding temperature rise from 150 C to 120 C for the 220 C insulation temperature class.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-01-01T23:59:59.000Z

316

Control of airborne infectious diseases in ventilated spaces  

Science Journals Connector (OSTI)

...Refrigerating and Air-Conditioning Engineers. Badeau, A. , A. Afshari, T. Goldsmith...control of SARS virus aerosols in indoor environment-transmission routes and ward ventilation...transmission of infectious agents in the built environment-a multidisciplinary systematic review...

2009-01-01T23:59:59.000Z

317

The Ventilation, Heating, and Management of Churches and Public Buildings  

Science Journals Connector (OSTI)

... THIS book is addressed chiefly to the architects, managers and caretakers of buildings, and its opening chapter deals with the physical principles bearing on ventilation. An interesting ... the writer makes the cryptic statement that "the friction caused by the wind passing over buildings is so great that it is scarcely possible to demonstrate it accurately,"and later ...

J. H. V.

1903-04-02T23:59:59.000Z

318

Frequency domain and finite difference modeling of ventilated concrete slabs and comparison with field measurements: Part 1, modeling methodology  

Science Journals Connector (OSTI)

Abstract This paper is the first of two papers that focus on the thermal modeling of building-integrated thermal energy storage (BITES) systems using frequency response (FR) and lumped-parameter finite difference (LPFD) techniques. Structural/non-structural building fabric components, such as ventilated concrete slabs (VCS) can actively store and release thermal energy effectively by passing air through their embedded air channels. These building components can be described as ventilated BITES systems. To assist the thermal analysis and control of BITES systems, modeling techniques and guidelines for FR and LPFD models of VCS are presented in this two-part paper. In this first part, modeling techniques for FR and LPFD approaches based on network theory are presented. A method for calculating the heat transfer between flowing air and ventilated components is developed for these two approaches. Discretization criteria for explicit LPFD models are discussed. For the FR approach, discrete Fourier series in complex frequency form are used to represent the boundary excitations. In the treatment of heat injection from the flowing air as internal source in the VCS, network techniques such as Thvenin theorem, heat flow division, and Y-diakoptic transform are employed. The techniques presented in this paper are applicable to other BITES with hydronic or electric charging/discharging systems. With the FR techniques, model-based control strategies based on transfer functions can be readily developed.

Yuxiang Chen; Andreas K. Athienitis; Khaled E. Galal

2013-01-01T23:59:59.000Z

319

Energy Department Announces Funding to Develop Improved Next Generation HVAC Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced nearly $8 million to support research and development of the next generation of heating, ventilating, and air conditioning technologies.

320

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network [OSTI]

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

322

Occupancy Modeling and Prediction for Building Energy Management  

Science Journals Connector (OSTI)

Heating, cooling and ventilation accounts for 35% energy usage in the United States. Currently, most modern buildings still condition rooms assuming maximum occupancy rather than actual usage. As a result, rooms are often over-conditioned needlessly. ... Keywords: HVAC, Occupancy, demand response, energy savings, machine learning, ventilation

Varick L. Erickson, Miguel . Carreira-Perpin, Alberto E. Cerpa

2014-04-01T23:59:59.000Z

323

Home Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

324

Incremental feature selection based on rough set in dynamic incomplete data  

Science Journals Connector (OSTI)

Abstract Feature selection plays a vital role in many areas of pattern recognition and data mining. The effective computation of feature selection is important for improving the classification performance. In rough set theory, many feature selection algorithms have been proposed to process static incomplete data. However, feature values in an incomplete data set may vary dynamically in real-world applications. For such dynamic incomplete data, a classic (non-incremental) approach of feature selection is usually computationally time-consuming. To overcome this disadvantage, we propose an incremental approach for feature selection, which can accelerate the feature selection process in dynamic incomplete data. We firstly employ an incremental manner to compute the new positive region when feature values with respect to an object set vary dynamically. Based on the calculated positive region, two efficient incremental feature selection algorithms are developed respectively for single object and multiple objects with varying feature values. Then we conduct a series of experiments with 12 UCI real data sets to evaluate the efficiency and effectiveness of our proposed algorithms. The experimental results show that the proposed algorithms compare favorably with that of applying the existing non-incremental methods.

Wenhao Shu; Hong Shen

2014-01-01T23:59:59.000Z

325

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Broader source: Energy.gov (indexed) [DOE]

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

326

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

SciTech Connect (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

327

Good seal construction and ventilation controls improve airflow  

SciTech Connect (OSTI)

As workings become deeper and more distant from the ventilation inlet, better seal construction technology is needed. Tekseal, a specially formulated pumpable grout which allows a seal to be erected quickly and safety, is Minova's answer to the limitations of traditional block seals. Its use is explained in this article. An alternative product is the Carbonfill range which comprises a two-component phenolic resin based foam generating by a pump. 3 photos.

NONE

2005-12-15T23:59:59.000Z

328

Transformational adaptation when incremental adaptations to climate change are insufficient  

Science Journals Connector (OSTI)

...example, are extensive seawall constructions transformational? Probably...approximately 29 research needs by sector, many of which would provide...Dearing J Smith D ( 2007 ) Shadow spaces for social learning: A relational...International Energy Agency, Solar Heating and Cooling Programme , Paris...

Robert W. Kates; William R. Travis; Thomas J. Wilbanks

2012-01-01T23:59:59.000Z

329

Predicting hottest spot temperatures in ventilated dry type transformer windings  

SciTech Connect (OSTI)

Test data indicates that hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA are too low. A mathematical model to predict hottest spot temperature rises in ventilated dry type transformers was developed. Data from six layer type test windings and a 2500 kva prototype was used to refine the model. A correlation for the local heat transfer coefficient in the cooling ducts was developed. The model was used to study the effect of various parameters on the ratio of hottest spot to average winding temperature rise. The number of conductor layers, insulation thickness, and conductor strand size were found to have only a minor effect on the ratio. Winding height was found to be the main parameter influencing the ratio of hottest spot to average winding temperature rise. The study based on the mathematical model confirmed previous conclusions based on test data that the hottest spot allowances used in IEEE standards for ventilated dry type transformers above 500 kVA should be revised.

Pierce, L.W. (General Electric Co., Rome, GA (United States))

1994-04-01T23:59:59.000Z

330

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

331

Ventilation for an enclosure of a gas turbine and related method  

DOE Patents [OSTI]

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O'Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

332

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

333

Low-Cost Ventilation in Production Housing- Building America Top Innovation  

Broader source: Energy.gov [DOE]

This Building America Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

334

THE IMPACT OF REDUCED VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

carbon monoxide and nitrogen dioxide fron gas appliances;quality, infiltration, nitrogen dioxide, radon, ventilation.carbon monoxide (CO), nitrogen dioxide (N02) formaldehyde (

Berk, James V.

2013-01-01T23:59:59.000Z

335

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

E-Print Network [OSTI]

quality survey. In: Healthy Buildings 2006. Lisbon,In: Proceedings of Healthy Buildings 2006. Lisbon, Portugal:as ventilation varies. In: Healthy Buildings 2012. Brisbane,

Mendell, Mark J.

2014-01-01T23:59:59.000Z

336

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents [OSTI]

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

337

Energy Performance and Economic Evaluations of the Geothermal Heat Pump System used in the KnowledgeWorks I and II Buildings, Blacksburg, Virginia.  

E-Print Network [OSTI]

??Heating, Ventilating and Air Conditioning Systems (HVAC) are not only one of the most energy consuming components in buildings but also contribute to green house (more)

Charoenvisal, Kongkun

2008-01-01T23:59:59.000Z

338

Exergy Analysis of Incremental Sheet Forming M.A. Dittrich1  

E-Print Network [OSTI]

Exergy Analysis of Incremental Sheet Forming M.A. Dittrich1 , T.G. Gutowski1 , J. Cao2 , J.T. Roth3 studied so far. Using the concept of exergy analysis, two ISF technologies, namely single sided and double. A second exergy analysis is carried out with the purpose of examining the environmental impact of different

Gutowski, Timothy

339

Optimizing Ackermann's Function by Incrementalization # Yanhong A. Liu Scott D. Stoller  

E-Print Network [OSTI]

Optimizing Ackermann's Function by Incrementalization # Yanhong A. Liu Scott D. Stoller Computer of Programs]: Logics and Mean­ ings of Programs---partial evaluation; I.2.2 [Artificial In­ telligence. INTRODUCTION General and systematic methods for transforming high­ level programs into e#cient implementations

Liu, Yanhong Annie

340

Incremental Cluster-Based Retrieval using Compressed Cluster-Skipping Inverted Files  

E-Print Network [OSTI]

Incremental Cluster-Based Retrieval using Compressed Cluster-Skipping Inverted Files ISMAIL SENGOR ________________________________________________________________________ We propose a unique cluster-based retrieval (CBR) strategy using a new cluster-skipping inverted file for improving query processing efficiency. The new inverted file incorporates cluster membership and centroid

Can, Fazli

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Incremental Cluster-Based Retrieval Using Compressed Cluster-Skipping Inverted Files  

E-Print Network [OSTI]

15 Incremental Cluster-Based Retrieval Using Compressed Cluster-Skipping Inverted Files ISMAIL cluster-based retrieval (CBR) strategy using a new cluster-skipping inverted file for improving query processing efficiency. The new inverted file incorporates cluster member- ship and centroid information along

Ulusoy, ?zgür

342

Incremental Clicks Impact Of Search Advertising David X. Chan, Yuan Yuan, Jim Koehler, Deepak Kumar  

E-Print Network [OSTI]

Incremental Clicks Impact Of Search Advertising David X. Chan, Yuan Yuan, Jim Koehler, Deepak Kumar the fraction of total clicks that can be attributed to search advertising. A meta-analysis of several hundred to the advertiser's site would not have occurred without the ad campaigns. 1 Introduction In recent years

Tomkins, Andrew

343

An Experimental and Numerical Investigation of the Steady State Forces in Single Incremental Sheet Forming  

E-Print Network [OSTI]

: (a) headlight Jeswiet and Hagan (2001), (b) automobile noise shield, Jeswiet et al. (2005c)... ....................................................................... 11 9 Parameters which influence formability, Ham and Jeswiet (2006...).. ............................................................................... 13 10 Forming limit curve, (a) conventional forming and (b) incremental sheet forming, Filice et al. (2002)... ......................... 14 11 Force trends showing the governing mechanisms, Ambrogio et al. (2006...

Nair, Mahesh

2012-10-19T23:59:59.000Z

344

Predicting Brain States from fMRI Data: Incremental Functional Principal Component  

E-Print Network [OSTI]

Predicting Brain States from fMRI Data: Incremental Functional Principal Component Regression S@science.uva.nl Abstract We propose a method for reconstruction of human brain states directly from func- tionalMRI data to the domain of stochastic functional measurements, facilitating evaluation of brain responses

Smeulders, Arnold

345

Incremental Policy Generation for Finite-Horizon DEC-POMDPs Chistopher Amato  

E-Print Network [OSTI]

of these algorithms use dy- namic programming to build up a set of possible policies from the last step until the first. This is accomplished by "backing up" the possible policies at each step and prun- ing thoseIncremental Policy Generation for Finite-Horizon DEC-POMDPs Chistopher Amato Department of Computer

Zilberstein, Shlomo

346

Incremental Training Of First Order Recurrent Neural Networks To Predict A  

E-Print Network [OSTI]

trained the networks to predict symbols in string sequences of the context-sensitive language Preprint, while the trajectories of non-incrementally trained networks were oscillating. The non or index n of a particular string, for example sn = anbncn, is in the following refereed to as the depth

Chalup, Stephan K.

347

Evaluation of pulmonary ventilation in horses during methoxyflurane anesthesia  

E-Print Network [OSTI]

and venous pH, pCO2, p02, and HCO3 in evaluating pulmonary ventilation and the metabolic status of the horse. LITERATURE REVIEW 8oth methoxyflurane and halothane were first used in the early 1960's as inhalation anesthetics ' ' ' ' ' . These agents were... 7)12, 13, 15, 28&36 primarily responsible for the increase in popularity of gas anesthesia in veterinary medicine. Inhalation anesthesia with these agents pro- duced some long awaited advantages over intravenous long-acting bar- biturates...

McDonald, Don Reed

2012-06-07T23:59:59.000Z

348

Incremental update of approximations in dominance-based rough sets approach under the variation of attribute values  

Science Journals Connector (OSTI)

Abstract Dominance-based Rough Sets Approach (DRSA) has received much attention since it is able to acquire knowledge from information with preference ordered attribute domains and decision classes. In many real-life applications, the information systems may evolve over time dynamically. In a dynamic information system, the obtained knowledge, e.g., approximations in DRSA, need to be updated for decision making and other related tasks. As a useful technique, the incremental update can be applied to process dynamic information with revising the obtained knowledge. In this paper, we propose an incremental approach for maintaining approximations of DRSA when attribute values vary over time. Some numerical examples illustrate that the incremental approach can renew approximations of DRSA without beginning from scratch. Experimental evaluations show that the incremental algorithm can effectively reduce the computational time in comparison with the non-incremental one when the ratio of the attribute values varied is less than a threshold.

Shaoyong Li; Tianrui Li

2015-01-01T23:59:59.000Z

349

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

350

Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation  

E-Print Network [OSTI]

wind direction, and the simulated results agree reasonably with the corresponding experimental data is the use of small-scale models in a wind tunnel to simulate natural ventilation. In general, the mean flow1 Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy

Chen, Qingyan "Yan"

351

Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation  

E-Print Network [OSTI]

Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 ...................................................................................3-5 #12;Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-2 A without compromising safety or system integrity. The following should be included unless alternate design

Queitsch, Christine

352

Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,*  

E-Print Network [OSTI]

1 Ventilation performance prediction for buildings: Model Assessment Qingyan Chena,b,* , Kisup Leeb building, but cannot provide detailed flow information in a room. The zonal model can be useful when a user ventilation systems for buildings requires a suitable model to assess system performance. The performance can

Chen, Qingyan "Yan"

353

A New Empirical Model for Predicting Single-Sided, Wind-Driven Natural Ventilation in Buildings  

E-Print Network [OSTI]

ventilation rate due to the pulsating flow and eddy penetration of single-sided, wind-driven natural Normal to the opening q Fluctuating flow rate e Eddy penetration Wang, H. and Chen, Q. 2012. "A new buildings. A new empirical model was developed that can predict the mean ventilation rate and fluctuating

Chen, Qingyan "Yan"

354

The Improvement of Natural Ventilation in an Industrial Workshop by Solar Chimney  

Science Journals Connector (OSTI)

This paper presents a numerical simulation based on computational fluid dynamics (CFD) method on the enhancement of natural ventilation in an industrial workshop with heat source induced by solar chimney (SC). Four types of SC were designed to attach ... Keywords: natural ventilation, solar chimney, industrtial workshop, numerical simulation, thermal comfort

Yu-feng Xue; Ya-xin Su

2011-02-01T23:59:59.000Z

355

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1  

E-Print Network [OSTI]

Ventilation and Air Quality in Indoor Ice Skating Arenas Chunxin Yang, Ph.D.1 Philip Demokritou, and the operation strategy of the ventilation system are significant contributing factors to the indoor air quality contamination levels in the arenas. Keywords: Air distribution, health, skating rink, indoor air quality, space

Chen, Qingyan "Yan"

356

A case study of boundary layer ventilation by convection and coastal processes  

E-Print Network [OSTI]

of the pollution in the atmosphere originates from emissions in the atmospheric boundary layer, the region; published 12 September 2007. [1] It is often assumed that ventilation of the atmospheric boundary layer responsible for ventilation of the atmospheric boundary layer during a nonfrontal day that occurred on 9 May

Dacre, Helen

357

Modeling Coupled Evaporation and Seepage in Ventilated Cavities  

SciTech Connect (OSTI)

Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small.

T. Ghezzehei; R. Trautz; S. Finsterle; P. Cook; C. Ahlers

2004-07-01T23:59:59.000Z

358

Overall Ventilation System Flow Network Calculation for Site Recommendation  

SciTech Connect (OSTI)

The scope of this calculation is to determine ventilation system resistances, pressure drops, airflows, and operating cost estimates for the Site Recommendation (SR) design as detailed in the ''Site Recommendation Subsurface Layout'' (BSC (Bechtel SAIC Company) 2001a). The statutory limit for emplacement of waste in Yucca Mountain is 70,000 metric tons of uranium (MTU) and is considered the base case for this report. The objective is to determine the overall repository system ventilation flow network for the monitoring phase during normal operations and to provide a basis for the system description document design descriptions. Any values derived from this calculation will not be used to support construction, fabrication, or procurement. The work scope is identified in the ''Technical Work Plan for Subsurface Design Section FY01 Work Activities'' (CRWMS M&O 2001, pp. 6 and 13). In accordance with the technical work plan this calculation was prepared in accordance with AP-3.12Q, ''Calculations'' and other procedures invoked by AP-3.12Q. It also incorporates the procedure AP-SI1.Q, ''Software Management''.

Jeff J. Steinhoff

2001-08-02T23:59:59.000Z

359

An overview of the TA-55, Building PF-4 ventilation system  

SciTech Connect (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

360

Building America Case Study: Selecting Ventilation Systems for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

Not Available

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building  

E-Print Network [OSTI]

R.J. : Effect of ventilation rate in a healthy building.IAQ '91: Healthy Buildings, American Society of Heating,

Thatcher, Tracy L.

2011-01-01T23:59:59.000Z

362

Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?  

E-Print Network [OSTI]

Environ. 15, List of Acronyms Energy Commission:CaliforniaEnergyCommission CREL:Chronicreferenceby the California Energy Commission Public Interest Energy

Fisk, Michael G. Apte and William J.

2009-01-01T23:59:59.000Z

363

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity Prices  

E-Print Network [OSTI]

of the prices from 33 U.S. cities.2 Crude oil data covers January 1986 to June 2010. The data are monthly. It was taken from Cushing, OK WTI3 Spot Price FOB and are expressed in dollars per barrel. Heating oil data covers the period June 1986 to June 2010..., Upstate NY, Cincinnati, Portland, Memphis, Nashville, Houston, Richmond, Seattle, Milwaukie. (Hart?s Oxy Fuel News, 2010) 3 West Texas Intermediate, also known as Texas Light Sweet. WTI is produced in Texas and South Oklahoma. Price from WTI serves...

Kudoyan, Olga

2012-02-14T23:59:59.000Z

364

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Mortensen, Dorthe K.

2012-01-01T23:59:59.000Z

365

Energy Philosophy in Prospective Petrochemical Projects  

E-Print Network [OSTI]

, if cheap and reliable hydro power becomes available. As in the plant design, we must examine the incremental capital and operating costs of all such energy optimization measures to decide if they overcome justification hurdles. These cost..., if cheap and reliable hydro power becomes available. As in the plant design, we must examine the incremental capital and operating costs of all such energy optimization measures to decide if they overcome justification hurdles. These cost...

Wallsgrove, C.

366

Energy efficiency buildings program, FY 1980  

SciTech Connect (OSTI)

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

367

Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

368

Methodology for the Determination of Potential Energy Savings in Commercial Buildings  

E-Print Network [OSTI]

This paper describes a methodology to determine potential energy savings of buildings with limited information. This methodology is based upon the simplified energy analysis procedure of heating, ventilation and air condition (HVAC) systems...

Baltazar-Cervantes, J. C.; Claridge, D. E.

2007-01-01T23:59:59.000Z

369

Atmos Energy - Energy Efficiency Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Atmos Energy - Energy Efficiency Rebate Program Atmos Energy - Energy Efficiency Rebate Program Atmos Energy - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Water Heating Maximum Rebate Miscellaneous Hot Water Insulation and Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2/account Program Info State Colorado Program Type Utility Rebate Program Rebate Amount '''Residential and Small Commercial''' Furnace: $200-$300 Boiler: $150 Proper Sizing of Furnaces/Boilers: $50 Storage Water Heater: $50 Tankless Water Heater: $300 Programmable Thermostat: $25 Furnace Maintenance: $40

370

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy  

E-Print Network [OSTI]

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy Varick L. Erickson, Miguel Á & control General Terms Algorithms, Machine Learning, Measurement Keywords Occupancy, HVAC, Ventilation for heating, ventilation, and air-conditioning (HVAC) systems[2]. Studies suggest that 15% to 25% of HVAC

Carreira-Perpiñán, Miguel Á.

371

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

B B World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal-computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product [GDP]) and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and

372

Addressing Kitchen Contaminants for Healthy, Low-Energy Homes  

E-Print Network [OSTI]

HVI. (2013). Certified Home Ventilating Products Directory:for Healthy, Low-Energy Homes Jan-2014 X X X X X X X X X X XENERGY STAR Certified Homes, Version 3 - Local Mechanical

Stratton, J. Chris

2014-01-01T23:59:59.000Z

373

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network [OSTI]

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

Tanskyi, O.

2011-01-01T23:59:59.000Z

374

Air Exchange Rates in New Energy-Efficient Manufactured Housing  

E-Print Network [OSTI]

During the 1989-1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer...

Hadley, D. L.; Bailey, S. A.

1990-01-01T23:59:59.000Z

375

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

376

Performance of unglazed solar ventilation air pre-heaters for broiler barns  

Science Journals Connector (OSTI)

Solar radiation is an interesting heat source for applications requiring a limited amount of energy, such as pre-heating cold fresh air used in venting livestock barns. The objective of this study was to evaluate the energy recovery efficiency of a solar air pre-heater consisting of an unglazed perforated black corrugated siding where the incoming fresh ventilation air picks up heat from its face and back. Installed on the southeast wall of two broiler barns located 40km east of Montreal, Canada, the performance of solar air pre-heaters was monitored over 2years. Sensors inside the barns monitored the temperature of the ambient air, that pre-heated by the solar collector and that exhausted by one of the three operating fans. An on-site weather station measured ambient air temperature, wind direction and velocity and radiation energy absorbed on a vertical plane parallel to the unglazed solar air pre-heaters. The measured vertical solar radiation value was used to evaluate the heat recovery efficiency of the unglazed solar air pre-heaters. Using data from the Varennes Environment Canada weather station located 30km northwest, the solar sensors were found to measure the absorbed solar radiation with a maximum error of 7%, including differences in exterior air moisture. Unglazed, the efficiency of the solar air pre-heaters reached 65% for wind velocities under 2m/s, but dropped below 25% for wind velocities exceeding 7m/s. Nevertheless, the unglazed solar air pre-heaters were able to reduce the heating load especially in March of both years. Over a period starting in November and ending in March, the solar air heaters recovered an energy value equivalent to an annual return on investment of 4.7%.

Sbastien Cordeau; Suzelle Barrington

2011-01-01T23:59:59.000Z

377

4052 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009 Energy Planning for Progressive Estimation in  

E-Print Network [OSTI]

--Decentralized estimation, distributed estima- tion, energy scheduling and planning, incremental estimation, multi4052 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009 Energy Planning energy planning algorithm for progressive estimation in multihop sensor networks. Unlike many iterative

Hua, Yingbo

378

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

Best Practices. Case StudyThe Challenge: Improving Ventilation System Energy EfficiencyEnergy Efficiency & Renewable Energy (EERE), Office of Industrial Technologies. 2000. Best PracticesEnergy Efficiency Actions for Plant Personnel96 iii Appendix D: Assessing Energy Management Systems for Best Practices .

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

379

Are We Ready to Propose Guidelines for Health-Based Ventilation?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Are We Ready to Propose Guidelines for Health-Based Ventilation? Are We Ready to Propose Guidelines for Health-Based Ventilation? Speaker(s): Pawel Wargocki Date: October 14, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Mark Mendell Guidelines for health-based ventilation in Europe are proposed. They follow the premise of controlling exposures to indoor air pollutants of both indoor and outdoor origin. Exposures are controlled through a two-step sequential approach, in which source control is the primary strategy, while ventilation is the secondary strategy once all options for source control have been fully implemented. World Health Organization (WHO) air quality (AQ) guidelines are used to set the exposure limits. A decision diagram is created for guidance through the process of source control and to aid in

380

Influence of ventilation arrangements on particle removal in industrial cleanrooms with various tool coverage  

Science Journals Connector (OSTI)

This paper aims to investigate the influence of comparative ventilation arrangements (wall-return, locally balanced ceiling-return, and four-way ceiling-return) on the airflow distribution and particle fates w...

Yun-Chun Tung; Shih-Cheng Hu; Tengfang Xu; Ren-Huei Wang

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Behavior of a Nuclear Power Plant Ventilation Stack for Wind Loads  

Science Journals Connector (OSTI)

This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependa...

V. Venkatachalapathy

2012-05-01T23:59:59.000Z

382

Workers Remove Glove Boxes from Ventilation at Hanfords Plutonium Finishing Plant  

Broader source: Energy.gov [DOE]

An employee at Hanfords Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facilitys former processing area.

383

Increasing ventilation in commercial cattle trailers to decrease shrink, morbidity, and mortality  

E-Print Network [OSTI]

moving livestock trailers, an experimental treatment that increased cross-ventilation within commercial cattle trailers by installing aluminum scoops to punch-hole trailers was evaluated. Environmental factors including temperature, ammonia and carbon...

Giguere, Nicole Marie

2009-06-02T23:59:59.000Z

384

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network [OSTI]

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

385

A Method for Evaluating the Application of Variable Frequency Drives with Coal Mine Ventilation Fans.  

E-Print Network [OSTI]

??The adjustable-pitch setting on an axial-flow fan is the most common method of controlling airflow for primary coal mine ventilation. With this method, the fan (more)

Murphy, Tyson M.

2006-01-01T23:59:59.000Z

386

Control of the microclimate around the head with opposing jet local ventilation  

E-Print Network [OSTI]

ventilation application. Healthy Buildings 2003, Singapore.21 (1996) 427-436. Healthy Buildings 2009, September 13-17,distance is 1.20m. Healthy Buildings 2009, September 13-17,

Liu, Chonghui; Higuchi, Hiroshi; Arens, Edward; Zhang, Hui Ph.D

2009-01-01T23:59:59.000Z

387

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

388

A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming  

SciTech Connect (OSTI)

One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi body system model and its included compensation method.

Meier, Horst; Laurischkat, Roman; Zhu Junhong [Institute Product and Service Engineering, Chair of Production Systems, Ruhr-University of Bochum, Universitaetsstrasse 150, D-44780 Bochum (Germany)

2011-01-17T23:59:59.000Z

389

Incremental seismic rehabilitation concept for Romanian civil buildings integrated in natural hazards prevention management  

Science Journals Connector (OSTI)

A recent study in Bucharest emphasised the need to rehabilitate 392 vulnerable buildings, but when investing in seismic strengthening, the authorities are facing both financial and technical obstacles. For this reason the present paper is studying the possibility to use the incremental seismic rehabilitation (ISR) method to Romanian damaged and/or vulnerable buildings that present a higher risk of collapse in case of a major earthquake. Also, it proposes a tool having as base the critical path method to help the implementation of ISR methodology.

Andreea Dutu; João Gomes Ferreira; Cristian Sandu

2013-01-01T23:59:59.000Z

390

Xcel Energy - Residential ENERGY STAR Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential ENERGY STAR Rebate Program Residential ENERGY STAR Rebate Program Xcel Energy - Residential ENERGY STAR Rebate Program < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heating Commercial Lighting Lighting Water Heating Cooling Maximum Rebate Ground Source Heat Pump: $1500 Program Info Funding Source Home Performance with ENERGY STAR State Colorado Program Type Utility Rebate Program Rebate Amount Air Sealing and Weatherstripping: $160 Attic Insulation and Bypass Sealing: $350 High Efficiency Lighting: $40 Wall Insulation: $800 Set Back Thermostat: $25 Furnaces: $170 - $200 Boiler: $160 Electric Heat Pump: $550

391

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures  

SciTech Connect (OSTI)

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

Petithuguenin, T.D.P.; Sherman, M.H.

2009-05-01T23:59:59.000Z

392

Effect of outside air ventilation rate on VOC concentrations and emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of outside air ventilation rate on VOC concentrations and emissions Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Title Effect of outside air ventilation rate on VOC concentrations and emissions in a call center Publication Type Conference Proceedings Year of Publication 2002 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Conference Name Proceedings of the Indoor Air 2002 Conference, Monterey, CA Volume 2 Pagination 168-173 Publisher Indoor Air 2002, Santa Cruz, CA Abstract A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13- week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

393

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

SciTech Connect (OSTI)

Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

Mendell, Mark J.; Fisk, William J.

2014-02-01T23:59:59.000Z

394

Jackson Energy Cooperative - Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

Energy Cooperative - Residential Energy Efficiency Rebate Energy Cooperative - Residential Energy Efficiency Rebate Programs Jackson Energy Cooperative - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Heat Pumps Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Touchstone Energy Home: $500 Heat Pump Tune-Up: Discounted to $50 Weatherization Measures: up to $300 Provider Jackson Energy Cooperative Established in Jackson County in 1938, Jackson Energy Cooperative, A Touchstone Energy Cooperative, is a regional utility with headquarters in McKee, Kentucky, serving over 51,000 members in 15 southeastern Kentucky

395

Lower Valley Energy - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program Lower Valley Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Energy Audit: Discounted Cost Weatherization Measures: Varies Marathon Water Heater: $25 Water Heater: $15 - $25 Clothes Washer: $25 - $50 Refrigerator: $15 Refrigerator Recycling: $75 Energy Star Manufactured Home: $1,000 Geothermal Heat Pumps: Up to $2,100 Provider Lower Valley Energy Lower Valley Energy offers numerous rebates for residential customers who

396

Model of ventilation flows during large tunnel fires  

Science Journals Connector (OSTI)

In order to describe the reduction in the longitudinal airflow velocity due to the fire and hot gases resistances in a large tunnel fire, a theoretical model, taking into consideration the pressure losses over the fire source and obstructions, the thermal stack effects, and the hydraulic resistance induced by the tunnel walls, fire protection boards and a HGV trailer mock-up, is developed and validated using the large-scale tests data from the fire tests performed in the Runehamar tunnel with longitudinal ventilation in Norway 2003. Two large mobile fan units were used to create a longitudinal flow within the tunnel and prevent smoke backlayering upstream of the fire. One fan was located outside the entrance of the tunnel and the other inside the tunnel. The fire load consisted of a mock-up simulating a heavy goods vehicle (HGV) trailer creating a maximum heat release rates in the range of 66202MW. Two methods of calculating the mean temperature related to the thermal expansion and stack effect are proposed and compared.

Haukur Ingason; Anders Lnnermark; Ying Zhen Li

2012-01-01T23:59:59.000Z

397

Commonwealth's Energy Leasing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth's Energy Leasing Program Commonwealth&#039;s Energy Leasing Program Commonwealth's Energy Leasing Program < Back Eligibility Institutional State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Manufacturing Appliances & Electronics Commercial Lighting Lighting Insulation Bioenergy Buying & Making Electricity Energy Sources Solar Heating & Cooling Water Heating Wind Program Info State Virginia Program Type Leasing Program Provider Virginia Department of the Treasury Lease financing administered by the Department of Treasury provides funding for energy efficiency projects in state facilities operated by state agencies, authorities and institutions of the Commonwealth of Virginia. The

398

Alternative Energy Portfolio Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Energy Portfolio Standard Alternative Energy Portfolio Standard Alternative Energy Portfolio Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Other Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Energy Sources Solar Heating Water Heating Wind Program Info State Pennsylvania Program Type Renewables Portfolio Standard Provider Pennsylvania Public Utility Commission Pennsylvania's Alternative Energy Portfolio Standard (AEPS), created by S.B. 1030 on November 30, 2004, requires each electric distribution company

399

Measurement of the Sunyaev-Zel'dovich Increment in Massive Galaxy Clusters  

E-Print Network [OSTI]

We have detected the Sunyaev-Zel'dovich (SZ) increment at 850 microns in two galaxy clusters (Cl 0016+16 and MS 1054.4-0321) using SCUBA (Sub-millimetre Common User Bolometer Array) on the James Clerk Maxwell Telescope. Fits to the isothermal \\beta model yield a central Compton y parameter of (2.2 \\pm 0.7) x 10^{-4} and a central 850 micron flux of \\Delta I_{0} = 2.2 \\pm 0.7 mJy/beam in Cl 0016. This can be combined with decrement measurements to infer y = (2.38 \\pm_{0.34}^{0.36}) x 10^{-4} and v_{pec} = 400 \\pm_{1400}^{1900} km/s. In MS 1054 we find a peak 850 micron flux of \\Delta I_{0} = 2.0 \\pm 1.0 mJy/beam and y = (2.0 \\pm 1.0) x 10^{-4}. To be successful such measurements require large chop throws and non-standard data analysis techniques. In particular, the 450 micron data are used to remove atmospheric variations in the 850 micron data. An explicit annular model is fit to the SCUBA difference data in order to extract the radial profile, and separately fit to the model differences to minimize the effect of correlations induced by our scanning strategy. We have demonstrated that with sufficient care, SCUBA can be used to measure the SZ increment in massive, compact galaxy clusters.

Michael Zemcov; Mark Halpern; Colin Borys; Scott Chapman; Wayne Holland; Elena Pierpaoli; Douglas Scott

2003-10-03T23:59:59.000Z

400

Biomass Storage Options Influence Net Energy and Emissions of Cellulosic Ethanol  

Science Journals Connector (OSTI)

Incremental biomass losses during the harvest and storage of energy crops decrease the effective crop yield at ... expand the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM...) m...

Isaac Emery; Jennifer B. Dunn; Jeongwoo Han; Michael Wang

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building America Top Innovations Hall of Fame Profile … Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing  

Broader source: Energy.gov (indexed) [DOE]

Duct leakage was a key factor in moisture Duct leakage was a key factor in moisture damage in manufactured homes in humid climates. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building America diagnosed the causes and prescribed a cure that dramatically reduced moisture problems in manufactured housing in Florida. In the late 1990s, Building America researchers at the Florida Solar Energy Center (FSEC) worked with manufactured home builders to diagnose moisture problems in homes in Florida. Moisture issues were so severe that in some homes researchers could push their fingers through the saturated drywall. Using a

402

CX-004383: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

83: Categorical Exclusion Determination 83: Categorical Exclusion Determination CX-004383: Categorical Exclusion Determination Pine Hall Brick Company Energy Efficiency Improvements for Lighting, Kiln and Heating, Ventilation, and Air Conditioning Systems CX(s) Applied: B5.1 Date: 11/02/2010 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory Involves installing more efficient lighting, replacing old heating, ventilation, and air conditioning systems, upgrading kiln pressure controls, and changing operational processes, to increase energy efficiency and reduce energy needs. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-004383.pdf More Documents & Publications CX-001793: Categorical Exclusion Determination CX-000382: Categorical Exclusion Determination

403

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

101 - 14110 of 28,560 results. 101 - 14110 of 28,560 results. Download CX-008318: Categorical Exclusion Determination Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: A9 Date: 04/18/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-008318-categorical-exclusion-determination Download CX-008319: Categorical Exclusion Determination Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-008319-categorical-exclusion-determination Download CX-008320: Categorical Exclusion Determination Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for

404

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 4120 of 9,640 results. 11 - 4120 of 9,640 results. Download CX-008319: Categorical Exclusion Determination Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-008319-categorical-exclusion-determination Download CX-008320: Categorical Exclusion Determination Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): New York Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-008320-categorical-exclusion-determination Download CX-008321: Categorical Exclusion Determination Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for

405

Economic benefits of an economizer system: Energy savings and reduced sick leave  

SciTech Connect (OSTI)

This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, D.C. with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The annual financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modeling suggests that economizers are much more cost effective than currently recognized.

Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

2004-02-01T23:59:59.000Z

406

CX-000020: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0020: Categorical Exclusion Determination 0020: Categorical Exclusion Determination CX-000020: Categorical Exclusion Determination Chitimacha Tribe Energy Efficiency and Conservation Retrofits CX(s) Applied: B2.5, B5.1 Date: 11/02/2009 Location(s): Chitimacha Tribe of LA, Louisiana Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. The Chitimacha Tribe has a long-term goal of retrofitting its existing facilities with energy efficient heating, ventilating, and air conditioning systems. This will require the replacement of old energy inefficient Heating, Ventilating, and Air Conditioning equipment with modern Seasonal Energy Efficiency Rating (SEER) 14 equipment. The deliverable for this activity would be the replacement of 5 Heating, Ventilating, and Air Conditioning

407

Energy Modeling Software | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings » Energy Modeling Software Commercial Buildings » Energy Modeling Software Energy Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The

408

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network [OSTI]

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control...

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

409

Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162  

SciTech Connect (OSTI)

The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States)] [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France)] [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)] [CEA DEN/DPAD, Marcoule (France)

2013-07-01T23:59:59.000Z

410

An investigation of simplified loss formula evaluation of total and incremental power system losses  

E-Print Network [OSTI]

Program ~ a o o ~ o a o o o o e a o o 11 Incremental Transmission Loss Calculation . . . . . . o 13 The Transmission System ~ a ~ o o ~ ~ o o o o o o 14 IVa RESULTS e ~ o a ~ ~ a a ~ e a o a ~ e ~ o a o o o IQ V SUMMARY a o o o a ~ o ~ a o 0 o o o ~ 0..., 1 X II tf g tf ff tf lt 4 0o9 50/ System Load ? Per Cent of Peak 1o06 f 1. 05 0 Xo1. 04 0 e 5 1, 03 1. 02 Ir 5 F. 1o01 4 tI 1o0 III II 0. 99 5 FIGURE IVa Simplified Loss Formula Evaluation of Pen- alty Faotor ? Bus 1 All...

Malinowski, James Henry

1962-01-01T23:59:59.000Z

411

A rough set-based incremental approach for learning knowledge in dynamic incomplete information systems  

Science Journals Connector (OSTI)

Abstract With the rapid growth of data sets nowadays, the object sets in an information system may evolve in time when new information arrives. In order to deal with the missing data and incomplete information in real decision problems, this paper presents a matrix based incremental approach in dynamic incomplete information systems. Three matrices (support matrix, accuracy matrix and coverage matrix) under four different extended relations (tolerance relation, similarity relation, limited tolerance relation and characteristic relation), are introduced to incomplete information systems for inducing knowledge dynamically. An illustration shows the procedure of the proposed method for knowledge updating. Extensive experimental evaluations on nine UCI datasets and a big dataset with millions of records validate the feasibility of our proposed approach.

Dun Liu; Tianrui Li; Junbo Zhang

2014-01-01T23:59:59.000Z

412

Municipal Energy Reduction Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Energy Reduction Fund Municipal Energy Reduction Fund Municipal Energy Reduction Fund < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Buying & Making Electricity Energy Sources Maximum Rebate $400,000 Program Info Start Date 3/17/2010 State New Hampshire Program Type State Loan Program Rebate Amount $5,000 to $400,000 Provider New Hampshire Community Development Finance Authority In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's

413

Consumers Energy (Electric) - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Residential Energy Efficiency Program Electric) - Residential Energy Efficiency Program Consumers Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Home Performance Comprehensive Assessment and Installations: $3500 Insulation: $1,025 Windows: $250 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Lighting: Retailer Instant Discount Programmable Thermostat: $10 Central A/C and Heat Pumps: $150 - $250 Central A/C Tune up: $50 Ground Source Heat Pump: $200-$300

414

Enterprise Energy Fund Grants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enterprise Energy Fund Grants Enterprise Energy Fund Grants Enterprise Energy Fund Grants < Back Eligibility Commercial Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Bioenergy Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate Not specified Program Info Start Date 03/2010 State New Hampshire Program Type State Grant Program Rebate Amount Not specified Provider New Hampshire Community Development Finance Authority '''''Note: This program is fully subscribed and currently is not accepting

415

Energy Conservation Installation Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Conservation Installation Credit Energy Conservation Installation Credit Energy Conservation Installation Credit < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate 500 per individual; up to 1,000 for a married couple filing jointly Program Info State Montana Program Type Personal Tax Credit Rebate Amount 25% of cost of capital investment Provider Montana Department of Revenue Individual taxpayers may claim a credit against their tax liability for up to 25% of the costs of investment for energy conservation purposes in a

416

Local Energy Alliance Program - Home Performance with ENERGY STAR  

Broader source: Energy.gov (indexed) [DOE]

Local Energy Alliance Program - Home Performance with ENERGY STAR Local Energy Alliance Program - Home Performance with ENERGY STAR (Virginia) Local Energy Alliance Program - Home Performance with ENERGY STAR (Virginia) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate LEAP Program: $500 Rappahannock Electric Cooperative: $600 Program Info Funding Source Local Energy Alliance Program State Virginia Program Type Local Rebate Program Rebate Amount LEAP Program LEAP Home Energy Improvement Program : 20% of cost up to $500 Rappahannock Electric Cooperative Incentives Heat Pump Tune-Up: $75 Duct Sealing: $200

417

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System (Redirected from LEAP) Jump to: navigation, search Tool Summary Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

418

Flint Energies - Residential Energy Efficiency Loan Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Flint Energies - Residential Energy Efficiency Loan Program Flint Energies - Residential Energy Efficiency Loan Program Flint Energies - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heating Heat Pumps Insulation Water Heating Maximum Rebate $7,500 Program Info State Georgia Program Type Utility Loan Program Rebate Amount $1,000 - $7,500 Flint Energies has partnered with Robins Federal Credit Union to offer affordable financing options to residential customers who wish to upgrade the energy efficiency of homes and residential equipment. Loans of $1,000

419

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $80-$120 Boilers: $100 Storage Water Heater: $25-$90 Tankless Water Heater: $100 Attic/Wall Insulation, Sealing and Weatherstripping: 20% of cost Energy Audits: $60-$120 Home Performance with ENERGY STAR: average rebate amount is $710 Provider Xcel Energy Xcel Energy residential customers in Colorado can qualify for cash

420

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Long range Energy Alternatives Planning (LEAP) System | Open Energy  

Open Energy Info (EERE)

Long range Energy Alternatives Planning (LEAP) System Long range Energy Alternatives Planning (LEAP) System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Long range Energy Alternatives Planning System Agency/Company /Organization: Stockholm Environment Institute Sector: Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, - Anaerobic Digestion, - Biofuels, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, - Waste to Energy, Buildings, Economic Development, Energy Efficiency, - Central Plant, Food Supply, Forestry, Geothermal, Goods and Materials, - Embodied Energy, - Materials, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Industry, - Industrial Processes, Offsets and Certificates, People and Policy, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Transportation, Water Conservation, Water Power, Wind

422

Measuring Residential Ventilation System Airflows: Part 1 Laboratory  

E-Print Network [OSTI]

of the longest standing drivers for tighter homes are state weatherization programs that include air tightening was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, of the U.S. Department of Energy under Contract No. DE-AC02-05CH

423

Maps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Maps About Energy.gov » News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

424

Maps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Maps About Energy.gov » News & Blog » Maps Maps Map Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

425

Videos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Videos About Energy.gov » News & Blog » Videos Videos Video Title Topics - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

426

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy newsroomassetsimagesenergy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security...

427

Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow  

SciTech Connect (OSTI)

In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall than in steel ducts. Trends that were observed in steel ducts were present, but weaker, in insulated ducts.

Sippola, Mark R.; Nazaroff, William W.

2004-03-01T23:59:59.000Z

428

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

429

Software Verification & Validation Report for the 244-AR Vault Interim Stabilization Ventilation System  

SciTech Connect (OSTI)

This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent.

YEH, T.

2002-11-20T23:59:59.000Z

430

Operation of Energy Efficient Residential Buildings Under Indoor Environmental Quality Requirements  

E-Print Network [OSTI]

This paper is devoted to the influence of Indoor Environmental Quality, [IEQ] requirements associated with occupation regimes on the criterion of energy demand s for HVAC (Heating, Ventilating and Air-Conditioning) central systems that were...

Medhat, A. A.; Khalil, E. E.

2010-01-01T23:59:59.000Z

431

DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

deck, and a continuously running energy recovery ventilator. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. DOE Zero...

432

Direct Digital Control- A Tool for Energy Management of HVAC Systems  

E-Print Network [OSTI]

Direct digital control (DDC) applied to heating, ventilating, and air-conditioning (HVAC) systems corrects many of the deficiencies of conventional automatic temperature control systems. By applying new control sequences, DDC optimizes HVAC energy...

Swanson, K.

433

Continuous Commissioning and Energy Management Control Strategies at Alamo Community College District  

E-Print Network [OSTI]

This paper presents an overview of energy savings through the optimization of facility Heating, Ventilation, and Air Conditioning (HVAC) systems for the college campuses of the Alamo Community College District. This Continuous Commissioning process...

Martinez, J.; Verdict, M.; Baltazar, J.C.

434

ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980  

SciTech Connect (OSTI)

The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

Authors, Various

1981-05-01T23:59:59.000Z

435

Greenhouse Ventilation1 Dennis E . Buffington, Ray A. Bucklin, Richard W. Henley and Dennis B. McConnell2  

E-Print Network [OSTI]

high temperatures during the summer caused by the influx of solar radiation, to maintain relative VENTILATION A heating system with adequate capacity is needed in the winter to maintain environmental of the winter, when the heating system is running at full capacity, some ventilation is still required

Watson, Craig A.

436

Consideration of air jet angle in open surface tank push-pull ventilation system design  

E-Print Network [OSTI]

CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION SYSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree o... MASTER OF SCIENCE May 1983 Major Subjeot: Industrial Hygiene CONSIDERATION OF AIR JET ANGLE IN OPEN SURFACE TANK PUSH-PULL VENTILATION STSTEM DESIGN A Thesis by WAI-HUNG DAVID CHAN Approved as to style and content by: (C an of mmittee) J. Suggs...

Chan, Wai-Hung David

1983-01-01T23:59:59.000Z

437

Energy Impacts of Envelope Tightening and Mechanical  

E-Print Network [OSTI]

in energy demand for each home in a nationally representative sample of 50,000 virtual homes developed from the 2009 Residential Energy Consumption Survey. Ventilation was provided as required by 2010 and proposed airtightness of all homes at current average retrofit performance levels would decrease demand by 0.7 quads (0

438

JRipples: A Tool for Program Comprehension during Incremental Change Jonathan Buckner, Joseph Buchta, Maksym Petrenko, Vclav Rajlich  

E-Print Network [OSTI]

development, agile development, and other software processes. Highly interactive tool JRipples provides software. They include iterative development, agile development, and software evolution. An essential task, Michigan USA 48202 Jbuckner@3dcs.com, {JBuchta,max,Rajlich}@wayne.edu Abstract Incremental software change

439

Ventilated Facade Design for Hot and Humid Climates  

E-Print Network [OSTI]

of sustainable development is increasingly being recognized around the world (Behling 1996). There are basic explanations of what sustainable development is and how it is reached (SusDev). Looking at examples in European countries a strong emphasis on energy... 2003). Several paths for reducing energy consumption have been identified. One possibility is the use of energy efficient technology in the built environment (Baker 2002.; European Commission 1992.; Goulding et al. 1992; Krishan 2001.; Lee et al...

Haase, M.; Amato, A.

2006-01-01T23:59:59.000Z

440

Progress Energy Carolinas - Commercial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Program Energy Efficiency Program Progress Energy Carolinas - Commercial Energy Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State South Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually CFL Lamps (Retrofit Only): $1.50

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE ZERH Webinar: Ventilation and Filtration Strategies with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

slides below The Indoor airPLUS qualification, a prerequisite for Zero Energy Ready Homes, offers an important platform to improve the indoor air quality (IAQ) in...

442

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

443

Kitchen Ventilation Should be High Performance (Not Optional)  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

444

Energy Efficiency Fund (Electric) - Home Energy Solutions and Performance  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Home Energy Solutions and Electric) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Electric) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Funding Source Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The

445

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Broader source: Energy.gov (indexed) [DOE]

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Maximum Rebate Insulation: $5000 (each type) Sealing: $1500 Multi-Family Insulation/Sealing: $5,000 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings

446

Black Hills Energy (Gas) - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program Black Hills Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate All Incentives: $750/customer Ceiling/Wall/Foundation Insulation: $500 Infiltration Control/Caulking/Weather Stripping: $200 Duct Insulation: $150 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Qualified New Homes (Builders): Contact Black Hills Energy Evaluations: Free or reduced cost Storage Water Heater: $75 or $300 Tankless Water Heater: $300 Furnace/Boiler Maintenance: $30 or $100

447

PSNH - Residential Energy Efficiency Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » PSNH - Residential Energy Efficiency Rebate Program PSNH - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Manufacturing Heating Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Cooling Maximum Rebate Appliances must be Energy Star certified Energy Star Homes Program (with geothermal heat pump): $4,500 Home Performance with Energy Star: $4,000 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Energy Star CFL Bulbs: $1 - $7 Energy Star LED Bulbs: $5

448

Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance  

Broader source: Energy.gov (indexed) [DOE]

Gas) - Home Energy Solutions and Gas) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Ventilation Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company and The United Illuminating Company, Connecticut Natural Gas, Southern Connecticut Gas, and Yankeegas customers. The Home Energy Solutions Program provides weatherization assistance to any

449

Progress Energy Carolinas - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy Carolinas - Residential Energy Efficiency Rebate Progress Energy Carolinas - Residential Energy Efficiency Rebate Program Progress Energy Carolinas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Windows, Doors, & Skylights Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Air duct repair and replacement: Up to $190 Attic insulation upgrade and attic sealing: $500 Geothermal heat pump replacement: $300 HVAC Audit: $100 High-efficiency heat pump replacement: $300 High-efficiency central AC replacement: $300 Refrigerator/Freezer Recycling: $50/unit Provider Progress Energy Carolinas

450

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

451

UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) |  

Broader source: Energy.gov (indexed) [DOE]

UniSource Energy - Contractor Energy Efficiency Rebate Program UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) < Back Eligibility Construction Installer/Contractor Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Sealing with Attic Insulation: $800 Duct Sealing: $350 (prescriptive); $650 (performance measured) Air Sealing: $250 Shade Screens or Solar Film: $250 Program Info State Arizona Program Type Utility Rebate Program Rebate Amount BrightSave Home Energy Analysis: Discounted HVAC Replacement: $250

452

Black Hills Energy (Gas) - Commercial Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Black Hills Energy (Gas) - Commercial Energy Efficiency Program Black Hills Energy (Gas) - Commercial Energy Efficiency Program Black Hills Energy (Gas) - Commercial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate General: Contact Black Hills Energy; Rebates over $10,000 must be pre-approved Ceiling/Wall Insulation: $10,000 Infiltration Control: $1,500 Energy Evaluations: $1500 Custom: 50% of incremental cost Program Info Start Date 7/1/2010 State Colorado Program Type Utility Rebate Program

453

Energy Efficiency Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Loan Program Loan Program Energy Efficiency Loan Program < Back Eligibility Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Bioenergy Maximum Rebate 35,000 (varies by loan type) Program Info Start Date 02/23/2009 (general); 10/22/2010 (geothermal loans) State Pennsylvania Program Type State Loan Program Rebate Amount 1,000 - 35,000 (varies by loan type) Provider AFC First Financial Corporation The Keystone HELP Energy Efficiency Loan Program is designed to help homeowners improve energy efficiency with special financing for

454

Privacy | Department of Energy  

Office of Legacy Management (LM)

Search Search link to facebook link to twitter Email Signup Sign up for updates Go Search form Search Energy.gov Public Services Public Services Home Vehicles Vehicles Home Alternative Fuel Vehicles Batteries Biofuels Clean Cities Fuel Economy Hydrogen & Fuel Cells Manufacturing Energy Economy Energy Economy Home Funding Opportunities Prices & Trends State & Local Government Homes Homes Home Heating & Cooling Heating & Cooling Home Heat Pumps Home Cooling Home Heating Home Design & Remodeling Home Weatherization Home Weatherization Home Home Energy Audits Insulation Sealing Your Home Ventilation Landscaping Saving Electricity Saving Electricity Home Appliances & Electronics Buying and Making Electricity Lighting Water Heating Windows, Doors & Skylights Building Design

455

CX-000146: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6: Categorical Exclusion Determination 6: Categorical Exclusion Determination CX-000146: Categorical Exclusion Determination Galloway's Programmable Thermostats, Power Management Systems, Heating, Ventilating, and Air Conditioning Controls, Occupancy Sensors CX(s) Applied: B2.5, B5.1, B2.2 Date: 12/23/2009 Location(s): Galloway, New Jersey Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. The project proposes energy efficiency retrofits including programmable thermostats, power management systems, heating, ventilating, and air conditioning controls, occupancy sensors. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000146.pdf More Documents & Publications CX-000147: Categorical Exclusion Determination CX-009646: Categorical Exclusion Determination

456

Building ventilation : a pressure airflow model computer generation and elements of  

E-Print Network [OSTI]

Building ventilation : a pressure airflow model computer generation and elements of validation H - design #12;1- Introduction Regarding the number of airflow network models found in building publications Abstract : The calculation of airflows is of great importance for detailed building thermal simulation

Paris-Sud XI, Université de

457

Radon Mitigation in Schools Utilising Heating, Ventilating and Air Conditioning Systems  

Science Journals Connector (OSTI)

......and Air Conditioning Engineers (ASHRAE) standard Ventilation for Acceptable Indoor Air Quality...Two case studies are presented where HVAC technology was implemented for controlling...system in a two-storey building. The HVAC system's controls were restored and modified......

G. Fisher; B. Ligman; T. Brennan; R. Shaughnessy; B.H. Turk; B. Snead

1994-12-01T23:59:59.000Z

458

HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME  

E-Print Network [OSTI]

1 HEAT TRANSFERS IN A DOUBLE SKIN ROOF VENTILATED BY NATURAL CONVECTION IN SUMMER TIME P. H or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters

Boyer, Edmond

459

Experimental study on flow and ventilation behaviours over idealised urban roughness  

Science Journals Connector (OSTI)

Flows in the urban boundary layer (UBL) are strongly affected by the inhomogeneous roughness elements at the bottom surface. In particular, in the near-ground region (roughness sublayer), the effect of the surface roughness dominates that complicates the behaviours of mean flow and turbulence and subsequently the near-wall transport processes. To safeguard the health of urban inhabitants, it is crucial to develop an in-depth understanding of the correlation among near-wall fluid motions, UBL turbulence and city ventilation. However, rather limited information is available. In this study, physical modelling in a laboratory wind tunnel is employed to measure the profiles of both stream-wise and vertical velocities over an array consisting of idealised two-dimensional (2D) roughness elements. Various arrangements are adopted in attempt to cover different flow regimes to examine city ventilation problems. The ventilation performance is measured by the air exchange rate (ACH). Consistent with our previous large-eddy simulation (LES) results, the current wind tunnel measurements suggest that city ventilation is dominated by the ACH turbulent component, i.e., air masses are mainly driven by atmospheric turbulence (at least 80% of the total ACH).

Yat-Kiu Ho; Chun-Ho Liu

2014-01-01T23:59:59.000Z

460

Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation  

E-Print Network [OSTI]

of Lund et al. [2011] suggest that the waters at 2710 m were actually very poorly ventilated (i.e., 14 C-depleted reservoirs at this time. [4] Here we present new sedimentary uranium (U) con- centration data from 2393 m

Long, Bernard

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed) in Tidal  

E-Print Network [OSTI]

NOTE Inventory and Ventilation Efficiency of Nonnative and Native Phragmites australis (Common Reed: 3 July 2012 # Coastal and Estuarine Research Federation 2012 Abstract Nonnative Phragmites is among the most in- vasive plants in the U.S. Atlantic coast tidal wetlands, whereas the native Phragmites has

462

Incremental natural gas resources through infield reserve growth/secondary natural gas recovery  

SciTech Connect (OSTI)

The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

Finley, R.J.; Levey, R.A.; Hardage, B.A.

1993-12-31T23:59:59.000Z

463

Systems and methods for controlling energy use in a building management system using energy budgets  

DOE Patents [OSTI]

Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

Wenzel, Michael J; Drees, Kirk H

2014-09-23T23:59:59.000Z

464

Renewable Energy Case Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy » Renewable Energy Case Studies Energy » Renewable Energy Case Studies Renewable Energy Case Studies October 7, 2013 - 9:46am Addthis Photo of photovoltaic arrays in front of a red mountain with a blue sky backdrop. Federal agencies often turn to photovoltaics for energy, like this National Park Service deployment. These case studies and application briefs feature examples of renewable energy projects at Federal facilities. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air: The transpired solar collector on NREL's Waste handling Facility uses solar thermal technology to reduce electric heating loads. U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling: Overview of the geothermal/ground source heat pump project at the U.S. Army

465

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

466

Energy-Efficient Windows | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

467

NorthWestern Energy - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

NorthWestern Energy - Residential Energy Efficiency Rebate Program NorthWestern Energy - Residential Energy Efficiency Rebate Program NorthWestern Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Ventilation Manufacturing Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Lighting: Maximum of fifteen CFLs and five lighting fixtures per calendar year Programmable Thermostat: Two units per household Program Info Funding Source Montana natural gas and electric supply rates Start Date 1/1/2009 Expiration Date 12/31/2013 State Montana Program Type Utility Rebate Program

468

Unitil - Residential Energy Efficiency Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unitil - Residential Energy Efficiency Programs Unitil - Residential Energy Efficiency Programs Unitil - Residential Energy Efficiency Programs < Back Eligibility Construction Installer/Contractor Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Cooling Maximum Rebate Home Performance with Energy Star: $4,000 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: 50% Clothes Washer: $30 Refrigerator: $30 Room Air Conditioner: $20 Room Purifier: $15 CFLs: In-store discounts Provider Unitil Energy Systems

469

Progress Energy Carolinas - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Progress Energy Carolinas - Residential Energy Efficiency Rebate Progress Energy Carolinas - Residential Energy Efficiency Rebate Program Progress Energy Carolinas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Duct sealing and replacement: 50% of cost, up to $190 Air sealing and upgrading insulation: $0.375/Sq Ft, up to $500 Heat Pump Water Heater: $350 HVAC Audit: $100 Central Air Conditioner/Heat Pump: $300 Geothermal Replacement: $300 Room Air Conditioners: $25

470

City of Berkeley - Energy Conservation Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Conservation Ordinance Energy Conservation Ordinance City of Berkeley - Energy Conservation Ordinance < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Program Info State California Program Type Building Energy Code Provider City of Berkeley The City of Berkeley has an ordinance requiring certain energy conservation measures to be installed in residential and commercial properties upon the sale of the building or major renovations over $50,000 in valuation. The Residential Energy Conservation Ordinance (RECO) requires the ceiling

471

Black Hills Energy (Electric) - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Residential Energy Efficiency Electric) - Residential Energy Efficiency Program Black Hills Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Attic Insulation: $500 Wall Insulation: $500 Air Sealing: $300 Program Info Start Date 7/1/2010 Expiration Date 12/31/2013 State Colorado Program Type Utility Rebate Program Rebate Amount Energy Star New Home: Contact Black Hills Energy Air-Source Heat Pump Split System: $400 Central A/C: $500-$700 Ground Source Heat Pumps: $1,200

472

NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

NorthWestern Energy (Electric) - Commercial Energy Efficiency NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Lighting: Rebates will not be provided for lamps or fixtures placed in stock in excess of 5% of installed equipment Program Info Funding Source Electric default supply rates for its default supply customers. State Montana Program Type

473

DTE Energy (Gas) - Residential Energy Efficiency Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

DTE Energy (Gas) - Residential Energy Efficiency Program DTE Energy (Gas) - Residential Energy Efficiency Program DTE Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Water Heating Windows, Doors, & Skylights Cooling Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air Sealing: up to $150 Floor Insulation: $50 - $100 Bandjoist Insulation: $50 - $100 Above Grade Wall/Knee Wall Insulation: $250 Crawl Space/Wall/Band Joist Insulation: $100 Ceiling Insulation: $125 - $250 Window Replacement: $30/window; $60/picture window or sliding glass door Programmable Thermostat: $10-$20

474

DTE Energy (Electric) - Residential Energy Efficiency Program | Department  

Broader source: Energy.gov (indexed) [DOE]

DTE Energy (Electric) - Residential Energy Efficiency Program DTE Energy (Electric) - Residential Energy Efficiency Program DTE Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Ventilation Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Contact DTE Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air Sealing: up to $150 Floor Insulation: $50 - $100 Bandjoist Insulation: $50 - $100 Wall Insulation: Up to $250 Ceiling Insulation: Up to $250 Window Replacement: $30 (window); $60 (picture window/sliding glass door)

475

Detection and diagnosis of faults and energy monitoring of HVAC systems with least-intrusive power analysis  

E-Print Network [OSTI]

Faults indicate degradation or sudden failure of equipment in a system. Widely existing in heating, ventilating, and air conditioning (HVAC) systems, faults always lead to inefficient energy consumption, undesirable indoor ...

Luo, Dong, 1966-

2001-01-01T23:59:59.000Z

476

Discussion on the Energy-Saving Potential of a Hybrid System in a Large Space Building in Different Areas  

E-Print Network [OSTI]

The use of a hybrid ventilation system is promoted to decrease the annual energy consumption of air conditioning. The switch-point of temperature, which is related with weather conditions, is presented to control the hybrid system properly...

Liu, S.; Huang, C.

2006-01-01T23:59:59.000Z

477

TEP - Commercial Energy Efficiency Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TEP - Commercial Energy Efficiency Rebate Program TEP - Commercial Energy Efficiency Rebate Program TEP - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Large Business: up to 50%-75% of a measure's incremental cost New Construction: up to 50% of incremental cost of the energy efficient measures and up to $75,000 per project per year New Construction Design Work: up to 50% of the cost of the additional fees required for the energy efficient design and up to $10,000 per design team

478

Electrical energy monitoring in an industrial plant  

E-Print Network [OSTI]

INTRODUCTION PURPOSE Energy use in commercial buildings has been widely examined in the past [Claridge et al. 1992]. The energy use in commercial buildings can be classified into four categories: 1). Heating, ventilating, and air-conditioning (HVAC), 2... energy usage will be if accurate data for weather and occupancy are used. The estimation of energy use in an industrial setting does not lend itself to this type of simulation. Unlike commercial buildings, which are heavily weather dependent...

Dorhofer, Frank Joseph

2012-06-07T23:59:59.000Z

479

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2008-01-01T23:59:59.000Z

480

Energy  

Science Journals Connector (OSTI)

Energy ... Scientific Challenges in Sustainable Energy Technology, by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. ... ConfChem Conference on Educating the Next Generation: Green and Sustainable ChemistrySolar Energy: A Chemistry Course on Sustainability for General Science Education and Quantitative Reasoning ...

John W. Moore

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Adaptive control for energy conservation  

SciTech Connect (OSTI)

The objective of this project is to investigate the use of adaptive control concepts in buildings with solar-assisted heating, ventilating, and air-conditioning (HVAC) systems to maintain occupant comfort conditions while minimizing auxiliary energy use. Accomplishing this objective requires an energy management system capable of making sound tradeoffs. Optimal control theory is used along with a system identification technique to provide an adaptable stratgy. The resulting overall approach is known as adaptive optimal control (AOC).

Farris, D.R.

1980-03-01T23:59:59.000Z

482

Energy Conservation Loan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation Loan Conservation Loan Energy Conservation Loan < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Heat Pumps Windows, Doors, & Skylights Bioenergy Solar Buying & Making Electricity Water Heating Wind Maximum Rebate Single family homes (1-4 family units): $25,000 Multi-family (5 or more units): $100,000 Program Info Funding Source Connecticut Department of Economic and Community Development (DECD) State Connecticut Program Type State Loan Program Provider Connecticut Housing Investment Fund Energy Conservation Loans for single families are available through the Connecticut Housing Investment Fund, Inc. (CHIF) to owners of one- to

483

Energy conservation measures in an institutional building by dynamic simulation using designbuilder  

Science Journals Connector (OSTI)

In this study, various energy conservation measures (ECMs) on heating, ventilating and air conditioning (HVAC) and lighting systems for a 4-storied building in subtropical (hot and humid climate) Central Queensland, Australia are evaluated using the ... Keywords: designbuilder, energy conservation measures, energy efficient lighting and day light control, energy simulation, hot-humid climate, variable air volume system

M. M. Rahman; M. G. Rasul; M. M. K. Khan

2008-02-01T23:59:59.000Z

484

Policy Supporting Energy Efficiency and Heat Pump Technology  

E-Print Network [OSTI]

Development Manager November 13, 2012 #12;2 The U.S. Energy Big Picture... 28% 32% 22% 18% 40% Total U.S. Energy Consumption Buildings represent 73% of U.S. Electricity Consumption and 55% of U.S. Natural Gas) requires four data inputs: · Performance improvement: technical energy savings · Cost: incremental cost

Oak Ridge National Laboratory

485

A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.  

SciTech Connect (OSTI)

The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States (US), using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%20% and 45%24% (n=57 and n=35), respectively, and carbon emission reductions of 47%22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu). Annual energy costs were reduced $1,283$804 (n=31), from a pre-retrofit average of $2,738$1,065 to $1,588$561 post-retrofit (n=25 and n=39). The average reported incremental project cost was $40,420$30,358 (n=59). When financed on a 30-year term, the median change in net-homeownership cost was only $1.00 per month, ranging from $149 in savings to an increase of $212 (mean=$15.67$87.74; n=28), and almost half of the projects resulted in reductions in net-cost. The economic value of a DER may be much greater than is suggested by these net-costs, because DERs entail substantial non-energy benefits (NEBs), and retrofit measures may add value to a home at resale similarly to general remodeling, PV panel installation, and green/energy efficient home labels. These results provide estimates of the potential of DERs to address energy use in existing homes across climate zones that can be used in future estimates of the technical potential to reduce household energy use and greenhouse gas emissions through DERs.

Less, Brennan; Walker, Iain

2014-03-01T23:59:59.000Z

486

Local Option - Property Assessed Clean Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Local Option - Property Assessed Clean Energy Local Option - Property Assessed Clean Energy < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Other Bioenergy Solar Buying & Making Electricity Wind Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Energy Efficiency Conservation Block Grant (EECBG) Start Date 04/01/2010 State Maine Program Type PACE Financing Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed

487

Michigan Saves - Home Energy Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Michigan Saves - Home Energy Loan Program Michigan Saves - Home Energy Loan Program Michigan Saves - Home Energy Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Insulation Water Heating Solar Buying & Making Electricity Program Info State Michigan Program Type State Loan Program Rebate Amount $1,000-$20,000 Provider Michigan Saves Michigan Saves is a non-profit that offers financing options for energy efficiency improvements throughout Michigan. The Home Energy Loan Program was started with seed funding from the Michigan Public Service Commission.

488

RETScreen Clean Energy Project Analysis Software | Open Energy Information  

Open Energy Info (EERE)

RETScreen Clean Energy Project Analysis Software RETScreen Clean Energy Project Analysis Software Jump to: navigation, search Tool Summary Name: RETScreen Clean Energy Project Analysis Software Agency/Company /Organization: Natural Resources Canada Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, Buildings, Energy Efficiency, - Central Plant, Geothermal, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Water Power, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Finance, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Software/modeling tools, Workshop User Interface: Desktop Application, Spreadsheet

489

Local Option - Property Assessed Clean Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Property Assessed Clean Energy Property Assessed Clean Energy Local Option - Property Assessed Clean Energy < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Bioenergy Manufacturing Buying & Making Electricity Solar Water Heating Wind Program Info State Michigan Program Type PACE Financing Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is repaid via a special assessment on the property over a period of years.

490

Home Weatherization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Weatherization Home Weatherization A home energy audit is the first step to saving energy and money. Our Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. Explore the full infographic now. A home energy audit is the first step to saving energy and money. Our Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. Explore the full infographic now. From air sealing to improving ventilation to adding insulation, home weatherization helps consumers save money by saving energy. Weatherization

491

The Role of North Atlantic Deep Water Formation in an OGCMs Ventilation and Thermohaline Circulation  

Science Journals Connector (OSTI)

Two coarse-resolution model experiments are carried out on an OGCM to examine the effects of North Atlantic Deep Water (NADW) formation on the thermohaline circulation (THC) and ventilation timescales of the abyssal ocean. An idealized age tracer ...

Paul J. Goodman

1998-09-01T23:59:59.000Z

492

H.N. Knudsen, P. Wargocki and J. Vondruskova (2006) "Effect of ventilation on perceived quality of air polluted  

E-Print Network [OSTI]

quality of air polluted by building materials ­ a summary of reported data", Proceedings of Healthy Buildings 2006, Vol. 1, 57-62. #12;#12;Effect of ventilation on perceived quality of air polluted

493

Wind- Chimney (Integrating the Principles of a Wind-Catcher and a Solar-Chimney to Provide Natural Ventilation).  

E-Print Network [OSTI]

?? WIND-CHIMNEY Integrating the principles of a wind-catcher and a solar chimney to provide natural ventilation Fereshteh Tavakolinia Abstract This paper suggests using a wind-catcher (more)

Tavakolinia, Fereshteh

2011-01-01T23:59:59.000Z

494

Transition dynamics between the multiple steady states in natural ventilation systems : from theories to applications in optimal controls  

E-Print Network [OSTI]

In this study, we investigated the multiple steady state behavior, an important observation in numerical and experimental studies in natural ventilation systems. The-oretical models are developed and their applications in ...

Yuan, Jinchao

2007-01-01T23:59:59.000Z

495

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Photo Galleries About Energy.gov » News & Blog » Photo Galleries Photo Galleries Gallery Title Topic - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

496

Photo Galleries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » News & Blog » Photo Galleries About Energy.gov » News & Blog » Photo Galleries Photo Galleries Gallery Title Topic - Any - Tax Credits, Rebates, Savings Energy Efficiency -Homes --Heating & Cooling ---Heating ---Cooling ---Heat Pumps --Water Heating ---Swimming Pool Heaters --Home Weatherization ---Home Energy Audits ---Insulation ---Sealing Your Home ---Ventilation --Saving Electricity ---Lighting ---Appliances & Electronics ---Buying & Making Electricity --Design & Remodeling ---Windows, Doors, & Skylights --Landscaping -Vehicles --Alternative Fuel Vehicles --Fuel Economy --Batteries --Biofuels --Clean Cities -Building Design --Construction --Commercial Weatherization --Commercial Heating & Cooling --Commercial Lighting --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind --Water

497

Building Envelopes | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

498

Total analysis of cooling effects of cross-ventilation affected by microclimate around a building  

Science Journals Connector (OSTI)

This study aims to develop a simulation system for evaluating the passive cooling effects, such as cross-ventilation, solar shading by trees, etc. Since the passive cooling effects are strongly affected by the spatial distributions of airflow, air temperature and radiative heat transports around a building, the microclimate around a building should be accurately predicted for this type of simulations. In this study, convective and radiative heat transports around buildings are analyzed by CFD (computational fluid dynamics) and radiation computations. Furthermore, the heat load calculation with the program TRNSYS was carried out, using the values of the cross-ventilation rates predicted by CFD computation and incoming solar radiation onto the building walls under the shade of trees obtained by the radiation computation as boundary conditions. Indoor velocity and indoor air temperature obtained by the simulation system developed here showed generally good agreement with measured data.

Akashi Mochida; Hiroshi Yoshino; Satoshi Miyauchi; Teruaki Mitamura

2006-01-01T23:59:59.000Z

499

Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site  

SciTech Connect (OSTI)

In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

ANANTATMULA, R.P.

1999-10-20T23:59:59.000Z

500

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51 - 25160 of 28,905 results. 51 - 25160 of 28,905 results. Download 2011_INCITE_Fact_Sheets.pdf http://energy.gov/downloads/2011incitefactsheetspdf Rebate Interstate Power and Light (Alliant Energy)- Farm Equipment Energy Efficiency Incentives Alliant Energy offers prescriptive rebates for a variety of energy efficient products for agricultural customers. These include irrigation equipment, dairy equipment, ventilation systems,... http://energy.gov/savings/interstate-power-and-light-alliant-energy-farm-equipment-energy-efficiency-incentives Rebate Anaheim Public Utilities- Green Building and New Construction Rebate Program Anaheim Public Utilities (APU) offers commercial, industrial, residential, and institutional customers the Green Building Incentives Program to offset construction, installation and upgrade costs...