Powered by Deep Web Technologies
Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of an Incremental Ventilation Energy Model for Estimating  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of an Incremental Ventilation Energy Model for Estimating Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Title Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Publication Type Report LBNL Report Number LBNL-5796E Year of Publication 2012 Authors Logue, Jennifer M., William J. N. Turner, Iain S. Walker, and Brett C. Singer Date Published 06/2012 Abstract Changing the rate of airflow through a home affects the annual thermal conditioning energy.Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a well-validated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

2

Microsoft Word - Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation_Final2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 1 Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation Jennifer M. Logue, William J. N. Turner, Iain S. Walker, and Brett C. Singer Environmental Energy Technologies Division June 2012 LBNL-5796E LBNL-XXXXX | Logue et al., Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor

3

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. Controlled ventilation keeps energy-efficient homes healthy and comfortable. Learn more about ventilation. When creating an energy-efficient, airtight home through air sealing, it's very important to consider ventilation. Unless properly ventilated, an airtight home can seal in indoor air pollutants. Ventilation also helps control moisture-another important consideration for a healthy, energy-efficient home. Featured Whole-House Ventilation A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Tight, energy-efficient homes require mechanical -- usually whole-house --

4

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

5

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Ventilation May 7, 2012 - 2:49pm Addthis This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. This ventilation system in a tight, energy-efficient home ensures good indoor air quality. | Photo courtesy of ©iStockphoto.com/brebca. What does this mean for me? After you've reduced air leakage in your home, adequate ventilation is critical for health and comfort. Depending on your climate, there are a number of strategies to ventilate your home. Ventilation is very important in an energy-efficient home. Air sealing techniques can reduce air leakage to the point that contaminants with known health effects such as formaldehyde, volatile organic compounds, and radon

6

Residential Ventilation & Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Residential Ventilation & Energy Figure 1: Annual Average Ventilation Costs of the Current U.S. Single-Family Housing Stock ($/year/house). Infiltration and ventilation in dwellings is conventionally believed to account for one-third to one-half of space conditioning energy. Unfortunately, there is not a great deal of measurement data or analysis to substantiate this assumption. As energy conservation improvements to the thermal envelope continue, the fraction of energy consumed by the conditioning of air may increase. Air-tightening programs, while decreasing energy requirements, have the tendency to decrease ventilation and its associated energy penalty at the possible expense of adequate indoor air quality. Therefore, more energy may be spent on conditioning air.

7

Improving Ventilation and Saving Energy: Relocatable Classroom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report Title Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim...

8

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(often required by building codes) will help to reduce your use of air conditioning, and attic fans may also help keep cooling costs down. Learn More Whole-House Ventilation...

9

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative on-demand industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical static design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

10

Whole-House Ventilation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

air quality. There are four basic mechanical whole-house ventilation systems -- exhaust, supply, balanced, and energy recovery. Comparison of Whole-House Ventilation Systems...

11

Tax Incremental Financing (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incremental Financing (Connecticut) Incremental Financing (Connecticut) Tax Incremental Financing (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Bond Program Provider Connecticut Development Authority CDA provides Tax Incremental Financing for significant economic

12

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

13

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

14

Incremental-like Bundle Methods with Application to Energy Planning  

E-Print Network (OSTI)

Nov 18, 2008 ... Incremental-like Bundle Methods with Application to Energy Planning. Grgory Emiel (gemiel ***at*** impa.br) Claudia Sagastizbal (sagastiz...

15

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

16

Tax Increment Financing (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa) Iowa) Tax Increment Financing (Iowa) < Back Eligibility Commercial Industrial Construction Municipal/Public Utility Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Home Weatherization Water Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Industry Recruitment/Support Property Tax Incentive Provider Iowa Economic Development Authority Tax Increment Financing allows city councils or county boards of supervisors to use the property taxes resulting from the increase in taxable valuation caused by the construction of new industrial or commercial facilities to provide economic development incentives to a business or industry. Tax Increment Financing may be used to offset the cost of public improvements and utilities that will serve the new private

17

Energy Basics: Ventilation Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

building through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy efficient windows will help to reduce that heat conduction. Radiation is heat...

18

Tax Increment Financing (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana) Louisiana) Tax Increment Financing (Louisiana) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Low-Income Residential Multi-Family Residential Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Property Tax Incentive Sales Tax Incentive Louisiana law provides for two types of Tax Increment Financing mechanisms: (1) property tax, also known as ad valorem, and (2) sales tax. Either form may be utilized to enhance an economic development project. In these, it is assumed the project will create future increases in tax revenue above

19

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

20

Improving Ventilation and Saving Energy: Final Report on Indoor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Title Improving Ventilation and Saving...

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

22

RESIDENTIAL VENTILATION AND ENERGY CHARACTERISTICS*  

E-Print Network (OSTI)

while still providing ventilation for adequate indoor air quality. Various ASHRAE Standards (e.g., 62 to the ASHRAE Standard 119 levels while still providing adequate ventilation through infiltration or mechanical alternatives. Various ASHRAE Standards are used to assist us. ASHRAE Standard 119-19885 classifies the envelope

23

RESIDENTIAL INTEGRATED VENTILATION ENERGY CONTROLLER - Energy ...  

A residential controller is described which is used to manage the mechanical ventilation systems of a home, installed to meet whole-house ventilation requirements, at ...

24

AEDG Implementation Recommendations: Ventilation | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Ventilation The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on ventilation air; exhaust air; control strategies; carbon dioxide sensors; economizers. Publication Date: Wednesday, May 13, 2009 air_ventilation.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies

25

Project: Ventilation and Indoor Air Quality in Low-Energy ...  

Science Conference Proceedings (OSTI)

Ventilation and Indoor Air Quality in Low-Energy Buildings Project. Summary: NIST is developing tools and metrics to both ...

2012-12-27T23:59:59.000Z

26

Incremental Impacts of Energy Efficiency Policy Initiatives Relative to the 2009  

E-Print Network (OSTI)

Incremental Impacts of Energy Efficiency Policy Initiatives Relative to the 2009 Integrated Energy Policy Report Adopted Demand Forecast ATTACHMENT A: TECHNICAL REPORT Prepared For: California Energy;Incremental Impacts of Energy Efficiency Policy Initiatives Relative to the 2009 Integrated Energy Policy

27

Case Study 3 - Energy Impacts of Infiltration and Ventilation in ...  

Science Conference Proceedings (OSTI)

... the energy use in commercial buildings due to infiltration and ventilation airflows and to investigate the potential for energy savings that could be ...

28

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

29

Ventilation System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation System Basics Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily higher heating and cooling loads. Natural Ventilation Natural ventilation occurs when outdoor air is drawn inside through open windows or doors. Natural ventilation is created by the differences in the distribution of air pressures around a building. Air moves from areas of

30

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

5% of the total space conditioning) and the intermittentsupply lead to greater space conditioning energy use. AnnualkWh Distribution Ventilation Space Conditioning Leaky House

Sherman, Max H.; Walker, Iain S.

2007-01-01T23:59:59.000Z

31

Ventilation and Solar Heat Storage System Offers Big Energy Savings  

Ventilation and Solar Heat Storage System Offers Big Energy Savings ... Heat is either reflected away from the building with radiant barriers, or heat is absorbed

32

Minimum Energy Ventilation for Fast Food Restaurant Kitchens  

Science Conference Proceedings (OSTI)

Cooking equipment exhaust systems have a significant impact on the energy consumption of fast food restaurants. This research investigated issues that relate to the energy performance of commercial kitchen ventilation systems and demonstrated that significant energy and cost savings can be achieved by reducing ventilation rates.

1996-10-30T23:59:59.000Z

33

Tax Increment Financing (TIF) (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TIF) (Nebraska) TIF) (Nebraska) Tax Increment Financing (TIF) (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type PACE Financing Provider Economic Development Tax Increment Financing (TIF) Nebraska is primarily designed to finance the public costs associated with a private development project. Essentially,

34

Laboratory Evaluation of Energy Recovery Ventilators  

SciTech Connect

As deep retrofit measures and new construction practices are realizing lower infiltration levels in increasingly tighter envelopes, performance issues can arise with water vapor intrusion in building envelopes and the operation of exhaust only appliances in a depressurized home. Unbalancing (reducing exhaust airflows) of an energy recovery ventilator (ERV) can provide a means to supply makeup air and reduce the level of home depressurization to mitigate these issues, helping realize exhaust-only appliance rated performance, achieve safe atmospherically vented combustion, and/or improve envelope durability. ERV balanced flow operation is well documented, but there is not public domain information available that empirically establishes the effect of unbalanced flow on sensible and latent exchange, especially in the now dominant membrane type ERV used in residential applications. This laboratory evaluation focused on unbalanced flow performance of a membrane type ERV delivering 200 standard cubic feet per minute (SCFM )of supply air. The dataset generated yielded a limited set of curve fit algorithms for unbalanced flow performance that can be used to supplement current modeling approaches in simulation tools like EnergyPlus. Building America BA teams can then utilize such models to analyze whole house effects and determine best practices associated with unbalanced ERV operations.

Kosar, D.

2013-05-01T23:59:59.000Z

35

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the chairman of the International Task Force "Autovent International" focusing on environmental problems within the Automotive Industry. This Task Force was formed in 1997 to develop the "Ventilation Guide for Automotive Industry". The guide was to be seen as a building block within the EU sponsored "Industrial Ventilation Design Guide Book" project, covering both theory and applications. In his presentation, Dr. Zhivov will talk about his work with the automotive industry, describe major highlights from the "Ventilation Guide for Automotive Industry" and talk about building, process and HVAC

36

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into the house to be filtered to remove pollen and dust or dehumidified to provide humidity control Supply ventilation systems work best in hot or mixed climates. Because they...

37

Ventilation and Energy Saving in Auto Manufacturing Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation and Energy Saving in Auto Manufacturing Plants Speaker(s): Alexander M. Zhivov Date: April 3, 2002 - 12:00pm Location: Bldg. 90 Dr. Alexander Zhivov is currently the...

38

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

39

Incremental-like Bundle Methods with Application to Energy Planning  

E-Print Network (OSTI)

are further studied from a theoretical point of view in [3]. For bundle methods, ... However, because nuclear plants can be seen as equivalent energy reser- voirs

40

Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings  

Science Conference Proceedings (OSTI)

This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

Hunt, W. D.

2008-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

-264 ­ 1.278. American Council for an Energy Efficient Economy, Washington, DC. 14. Gusdorf, J., Swinton, MLBNL 62341 Energy Impact of Residential Ventilation Norms in the United States Max H. Sherman and Iain S. Walker Environmental Energy Technologies Division February 2007 This work was supported

42

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

designs of personalized ventilation, International Journal of heating, Ventilation and Refrigeration

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

43

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Low Energy Buildings: CFD Techniques for Natural Ventilation and Thermal Comfort Prediction Speaker(s): Malcolm Cook Date: February 14, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Michael Wetter Malcolm's presentation will cover both his research and consultancy activities. This will cover the work he has undertaken during his time spent working with architects on low energy building design, with a particular focus on natural ventilation and passive cooling strategies, and the role computer simulation can play in this design process. Malcolm will talk about the simulation techniques employed, as well as the innovative passive design principles that have led to some of the UK's most energy efficient buildings. In addition to UK building projects, the talk will

44

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

45

Modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation  

SciTech Connect

This paper reports on a simulation study of indoor air quality, ventilation and energy impacts of several mechanical ventilation approaches in a single-family residential building. The study focused on a fictitious two-story house in Spokane, Washington and employed the multizone airflow and contaminant dispersal model CONTAM. The model of the house included a number of factors related to airflow including exhaust fan and forced-air system operation, duct leakage and weather effects, as well as factors related to contaminant dispersal including adsorption/desorption of water vapor and volatile organic compounds, surface losses of particles and nitrogen dioxide, outdoor contaminant concentrations, and occupant activities. The contaminants studied include carbon monoxide, carbon dioxide, nitrogen dioxide, water vapor, fine and coarse particles, and volatile organic compounds. One-year simulations were performed for four different ventilation approaches: a base case of envelope infiltration only, passive inlet vents in combination with exhaust fan operation, an outdoor intake duct connected to the forced-air system return balanced by exhaust fan operation, and a continuously-operated exhaust fan. Results discussed include whole building air change rates, air distribution within the house, heating and cooling loads, contaminants concentrations, and occupant exposure to contaminants.

Persily, A.K.

1998-05-01T23:59:59.000Z

46

Improving Ventilation and Saving Energy: Laboratory Study in a Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Title Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed Publication Type Report Year of Publication 2005 Authors Apte, Michael G., Ian S. Buchanan, David Faulkner, William J. Fisk, Chi-Ming Lai, Michael Spears, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory Abstract The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms

47

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report  

E-Print Network (OSTI)

potentially enhancing the energy savings beyond the break-order to maximize the energy savings potential of the IHPACImproving Ventilation and Saving Energy Field Study Plan,

2005-01-01T23:59:59.000Z

48

Ventilation Industrielle de Bretagne VIB | Open Energy Information  

Open Energy Info (EERE)

Ventilation Industrielle de Bretagne VIB Ventilation Industrielle de Bretagne VIB Jump to: navigation, search Name Ventilation Industrielle de Bretagne (VIB) Place Ploudalmezeau, France Zip 29839 Sector Geothermal energy, Solar Product Ploudalmezeau-based company producing and marketing energy efficient and ventilation products including air source heat pumps, geothermal water source heat pumps, efficient air filtration systems and solar products. Coordinates 48.540325°, -4.657904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.540325,"lon":-4.657904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

50

Energy and Ventilation Research in Highrise Apartments  

NLE Websites -- All DOE Office Websites (Extended Search)

the percent of household income spent for energy-is several times higher for these households than for single-family households. Historically, multifamily buildings have been the...

51

Dust and Ventilation Effects on Radiant Barriers: Cooling Season Energy Measurements  

Science Conference Proceedings (OSTI)

This study on the effects of attic ventilation area and type and dust buildup on horizontal and truss radiant barriers in insulated homes can help utilities reduce cooling season electric energy requirements. Increasing the ventilation area ratio and changing ventilation types had little effect on radiant barrier performance. Dust did degrade performance, but insulated homes with radiant barriers still had lower energy requirements than those without radiant barriers.

1990-05-15T23:59:59.000Z

52

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

53

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

54

Energy Impact of Residential Ventilation Norms in the UnitedStates  

SciTech Connect

The first and only national norm for residential ventilation in the United States is Standard 62.2-2004 published by the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE). This standard does not by itself have the force of regulation, but is being considered for adoption by various jurisdictions within the U.S. as well as by various voluntary programs. The adoption of 62.2 would require mechanical ventilation systems to be installed in virtually all new homes, but allows for a wide variety of design solutions. These solutions, however, may have a different energy costs and non-energy benefits. This report uses a detailed simulation model to evaluate the energy impacts of currently popular and proposed mechanical ventilation approaches that are 62.2 compliant for a variety of climates. These results separate the energy needed to ventilate from the energy needed to condition the ventilation air, from the energy needed to distribute and/or temper the ventilation air. The results show that exhaust systems are generally the most energy efficient method of meeting the proposed requirements. Balanced and supply systems have more ventilation resulting in greater energy and their associated distribution energy use can be significant.

Sherman, Max H.; Walker, Iain S.

2007-02-01T23:59:59.000Z

55

Energy Impacts of Envelope Tightening and Mechanical Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

or absolute standards along with mechanical ventilation throughout the U.S. housing stock. We used a physics-based modeling framework to simulate the impact of envelope...

56

Analysis of Energy Recovery Ventilator Savings for Texas Buildings  

E-Print Network (OSTI)

This analysis was conducted to identify the energy cost savings from retrofitting Texas buildings with air-to-air ERV (Energy Recovery Ventilator) systems. This analysis applied ERV and psychrometric equations in a bin-type procedure to determine the energy and costs required to condition outside air to return-air conditions. This analysis does not consider interactions with the air-handling system; therefore the effects of economizers, reheat schemes, variable flow rates and other adaptive components were not considered. This analysis demonstrates that ERV cost-effectiveness is largely dependent upon the building location in Texas (i.e., climate conditions) and outside air fraction: For a typical laboratory building that requires 100% outside air, an ERV could save roughly $1.00 to $1.50 per cubic foot per minute (CFM) of outside air during a one year period. For a typical office building that only requires 10% outside air, an ERV could save up to $1.00 per CFM of outside air over the period of one year.

Christman, K. D.; Haberl, J. S.; Claridge, D. E.

2009-11-01T23:59:59.000Z

57

Energy Crossroads: Ventilation, Infiltration & Indoor Air Quality |  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, Infiltration & Indoor Air Quality Ventilation, Infiltration & Indoor Air Quality Suggest a Listing Air Infiltration and Ventilation Centre (AIVC) The AIVC fulfills its objectives by providing a range of services and facilities which include: Information, Technical Analysis, Technical Interchange, and Coordination. American Conference of Governmental Industrial Hygienists (ACGIH) The ACGIH offers high quality technical publications and learning opportunities. Americlean Services Corp. (ASC) ASC is a certified SBA 8(a) engineering/consulting firm specializing in HVAC contamination detection, abatement, and monitoring. In addition to highly professional ductwork cleaning and HVAC cleaning services, ASC offers a wide range of other engineering/ consulting/ management services

58

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

59

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

03E 03E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 Indoor Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory *Now with the California Energy Commission PIER Program, Sacramento CA. This research was sponsored by the California Energy Commission through the Public Interest Energy Research program as the Lawrence Berkeley National Laboratory Classroom HVAC: Improving Ventilation and Saving Energy research project, CEC Contract Number 500-03-041.

60

Envisioning Transmission Transition: Denmarks Incremental Shifts Towards Energy Independence  

E-Print Network (OSTI)

new businesses. Denmarks energy technologies are exportedin partnership with energy technology firms Energy E2 andand export of new energy technologies, yet it is highly

Cote, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

Related to Residential Ventilation Requirements. Rudd, A. 2005. Review of Residential Ventilationand Matson N.E. , Residential Ventilation and Energy

Sherman, Max

2008-01-01T23:59:59.000Z

62

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

Science Conference Proceedings (OSTI)

Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

2011-07-01T23:59:59.000Z

63

Energy Efficient Ventilation for Maintaining Indoor Air Quality in Large Buildings  

E-Print Network (OSTI)

this paper was presented at the 3rd International Conference on Cold Climate Heating, Ventilating and Air-conditioning, Sapporo, Japan, November 2000 C. Y. Shaw Rsum Institute for Research in Construction, National Research Council Canada Achieving good indoor air quality in large residential and commercial buildings continues to be a top priority for owners, designers, building managers and occupants alike. Large buildings present a greater challenge in this regard than do smaller buildings and houses. The challenge is greater today because there are many new materials, furnishings, products and processes used in these buildings that are potential sources of air contaminants. There are three strategies for achieving acceptable indoor air quality: ventilation (dilution), source control and air cleaning/filtration. Of the three, the most frequently used strategy, and in most cases the only one available to building operators, is ventilation. Ventilation is the process of supplying outdoor air to an enclosed space and removing stale air from this space. It can control the indoor air quality by both diluting the indoor air with less contaminated outdoor air and removing the indoor contaminants with the exhaust air. Ventilation costs money because the outdoor air needs to be heated in winter and cooled in summer. To conserve energy, care must be taken to maximize the efficiency of the ventilation system. In this regard, a number of factors come into play

C. Y. Shaw; C. Y. Shaw Rsum

2000-01-01T23:59:59.000Z

64

Envisioning Transmission Transition: Denmarks Incremental Shifts Towards Energy Independence  

E-Print Network (OSTI)

themselves consume more fossil energy than can be producedfossil fuel mandates, Denmark is still struggling to attain energy

Cote, Michael

2010-01-01T23:59:59.000Z

65

Energy saving strategies with personalized ventilation in tropics  

E-Print Network (OSTI)

Building Energy Analysis Tools, Comparative Evaluation Tests, IEAInternational Energy Agency, Solar Heating

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

66

Operating experience review - Ventilation systems at Department of Energy Facilities  

Science Conference Proceedings (OSTI)

The Office of Special Projects (DP-35), formerly Office of Self-Assessment (DP-9), analyzed occurrences caused by problems with equipment and material and recommended the following systems for an in-depth study: (1) Selective Alpha Air Monitor (SAAM), (2) Emergency Diesel Generator, (3) Ventilation System, (4) Fire Alarm System. Further, DP-35 conducted an in-depth review of the problems associated with SAAM and with diesel generators, and made several recommendations. This study focusses on ventilation system. The intent was to determine the causes for the events related to these system that were reported in the Occurrence Reporting and Processing System (ORPS), to identify components that failed, and to provide technical information from the commercial and nuclear industries on the design, operation, maintenance, and surveillance related to the system and its components. From these data, sites can develop a comprehensive program of maintenance management, including surveillance, to avoid similar occurrences, and to be in compliance with the following DOE orders.

Not Available

1994-05-01T23:59:59.000Z

67

Guide to Energy-Efficient Ventilation Methods for Acceptable Levels of Indoor Air Quality Levels in Commercial Buildings  

Science Conference Proceedings (OSTI)

Indoor air quality is important in commercial buildings to maintain employee health, well-being, and productivity and avoid employer liability. The most common method to improve indoor air quality in commercial buildings is to use outside ventilation air for dilution of the inside air. Unfortunately, the conditioning of outdoor ventilation air may result in increased energy use for cooling, dehumidification, and heating; and humid outdoor ventilation air also can degrade indoor air quality. Some commerci...

2007-12-17T23:59:59.000Z

68

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

Science Conference Proceedings (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

69

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

and Saving Energy (IVSE) Field Study Plan Glossary SpecificEnergy (IVSE) Field Study Plan Table of Contents Table of Contents.i Glossary..

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

70

Energy impacts of envelope tightening and mechanical ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASHRAE 62.2; Retrofit; WAP; Energy bills Abstract Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet...

71

System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Performance System Performance Measurement Supports Design Recommendations for Solar Ventilation Preheat System The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) sponsored the installation of a data monitoring system to analyze the efficiency and performance of a large solar ventilation preheat (SVP) system. The system was installed at a Federal installation to reduce energy consumption and costs and to help meet Federal energy goals and mandates. SVP systems draw ventilation air in through a perforated metal solar collector with a dark color on the south side of a build-

72

An incrementally deployable energy efficient 802.15.4 MAC protocol (DEEP)  

Science Conference Proceedings (OSTI)

The IEEE 802.15.4 is a standard that specifies the physical layer and media access control for low data rate wireless personal area networks (WPANs). The standard is intended to provide connectivity to mobile devices with storage, energy, and communication ... Keywords: Backward compatible, Energy efficiency, IEEE 802.15.4, MAC protocols, Sensor networks

Marco Valero; Sang Shin Jung; Anu G. Bourgeois; Raheem Beyah

2012-09-01T23:59:59.000Z

73

Project title: Natural ventilation, solar heating and integrated low-energy building design  

E-Print Network (OSTI)

of integrated low-energy building design. In Cambridge, research was conducted at the BP Institute - which was set up in 1999 with an endowment from BP to research some of the fundamental scientific challenges that the oil industry encounters. In the CMI... in building design. Summary of Intended Outcomes: The objectives of the project will be to develop designs and technologies to: reduce energy costs of maintaining a comfortable environment with buildings through use of solar power, natural ventilation...

2009-07-10T23:59:59.000Z

74

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

75

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

76

Energy saving strategies with personalized ventilation in tropics  

E-Print Network (OSTI)

Energy Agency, Solar Heating and Cooling Programme, (2003).through the IEA solar heating and cooling programme, Task

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

77

Enthalpy Wheels Come of Age: Applying Energy Recovery Ventilation to Hospitality Venues in Hot, Humid Climate  

E-Print Network (OSTI)

Energy recovery ventilation systems, including rotary heat exchangers or enthalpy wheels, utilize mature technologies that are routinely applied in commercial buildings. Energy recovery is particularly important in buildings with significant outdoor air intake requirements and has recently become widely accepted in applications such as schools and theatres. Hospitality applications including restaurants, bars, casinos and similar settings also stand to benefit from application of the technology, however, there is a lack of experience and therefore of accepted guidance in these applications. Furthermore, the unique challenges inherent in the variety of hospitality venues may limit appropriate use of the technology. Applying energy recovery ventilation to hospitality venues in hot, humid climates need not be complex. This paper proposes guidelines that can facilitate application of the technology by specifiers or other construction professionals. These guidelines address evaluation of typical projects for the suitability of energy recovery, selection of appropriate energy recovery ventilation technology, and criteria for successful application of enthalpy wheels. Examples of applications developed for different mechanical systems and building types are provided. The literature describing the opportunities and limitations associated with enthalpy wheels is summarized and referenced. Installation, operation, and maintenance insights are presented, derived from the body of industry experience with enthalpy wheels.

Wellford, B. W.

2000-01-01T23:59:59.000Z

78

Improving Ventilation and Saving Energy: Relocatable ClassroomField Study Interim Report  

Science Conference Proceedings (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This report presents an interim status update and preliminary findings from energy and indoor environmental quality (IEQ) measurements in sixteen relocatable classrooms in California. The field study includes measurements of HVAC energy use, ventilation rates, and IEQ conditions. Ten of the classrooms were equipped with a new HVAC technology and six control classrooms were equipped with a standard HVAC system. Energy use and many IEQ parameters have been monitored continuously, while unoccupied acoustic measurements were measured in one of four planned seasonal measurement campaigns. Continuously monitored data are remotely accessed via a LonWorks{reg_sign} network and stored in a relational database at LBNL. Preliminary results are presented here.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Hotchi,Toshifumi; Spears,Michael; Sullivan, Douglas P.; Wang, Duo

2005-09-01T23:59:59.000Z

79

Low Energy Ventilation and Cooling of Non-Domestic Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

of Contact: Paul Mathew Short's Cambridge University-based research group develops passive and hybrid low-energy design strategies for non-domestic buildings in different...

80

New generation of software? Modeling of energy demands for residential ventilation with HTML interface  

SciTech Connect

The paper presents an interactive on-line package for calculation of energy and cost demands for residential infiltration and ventilation, with input and output data entry through a web browser. This is a unique tool. It represents a new kind of approach to developing software employing user (client) and server (package provider) computers. The main program, servicing {open_quotes}intelligent{close_quotes} CGI (Common Gateway Interface) calls, resides on the server and dynamically handles the whole package performance and the procedure of calculations. The {open_quotes}computing engine{close_quotes} consists of two parts: RESVENT - the previously existing program for ventilation calculations and ECONOMICS - for heating and cooling system energy and cost calculations. The user interface is designed in such a way, that it allows simultaneous access by many users from all over the world.

Forowicz, T.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A field demonstration of automatic restroom ventilation control to reduce energy consumption  

SciTech Connect

This report documents the motion sensor evaluation task for the Hanford Energy Management Committee (HEMC) performed by Pacific Northwest Laboratory (PNL) to support the energy reduction mission. The study included installing automatic exhaust ventilation controls in the restrooms of the 1103 Building, 100N area. The goal of this task was to measure the benefit of automatically controlling exhaust ventilation in restrooms of an office building on the Hanford Site. The HEMC belief is that the value of controlling the fans is not limited to the power consumed by the fans, but also includes the value invested to condition (heat or cool) the makeup air. The air exhausted to the exterior of the building must ultimately be replaced by unconditioned air from the outside. This outside air must then by conditioned to maintain the comfort of building occupants. 6 figs., 1 tab.

Doggett, W.H.; Merrick, S.B.; Richman, E.E.

1989-09-01T23:59:59.000Z

82

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network (OSTI)

of Activated Carbon Fiber (ACF) filters 5 1.1VOC holding capacity of ACF . 14 1.3.2 Evaluation of VOC28 1.3.5 Energy consumption costs for using ACF filter bed

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

83

Energy and first costs analysis of displacement and mixing ventilation systems for U.S. buildings and climates  

E-Print Network (OSTI)

In the past two decades, displacement ventilation has been increasingly used in Scandinavia and Western Europe to improve indoor air quality and to save energy. By using a detailed computer simulation method, this study ...

Hu, ShiPing, 1970-

1999-01-01T23:59:59.000Z

84

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity Prices  

E-Print Network (OSTI)

This thesis compares the simple Autoregressive (AR) model against the k- Nearest Neighbor (k-NN) model to make a point forecast of five energy commodity prices. Those commodities are natural gas, heating oil, gasoline, ethanol, and crude oil. The data for the commodities are monthly and, for each commodity, two-thirds of the data are used for an in-sample forecast, and the remaining one-third of the data are used to perform an out-of-sample forecast. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are used to compare the two forecasts. The results showed that one method is superior by one measure but inferior by another. Although the differences of the two models are minimal, it is up to a decision maker as to which model to choose. The Diebold-Mariano (DM) test was performed to test the relative accuracy of the models. For all five commodities, the results failed to reject the null hypothesis indicating that both models are equally accurate.

Kudoyan, Olga

2010-12-01T23:59:59.000Z

85

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

E-Print Network (OSTI)

Literature Related to Residential Ventilation Requirements.A. 2005. Review of Residential Ventilation Technologies,M.H. and Matson N.E. , Residential Ventilation and Energy

Sherman, Max H.

2008-01-01T23:59:59.000Z

86

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

Science Conference Proceedings (OSTI)

An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang; Apte, Michael; Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

2008-04-04T23:59:59.000Z

87

Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed  

SciTech Connect

The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air supply throughout the study. Indoor CO2 levels with simulated occupancy were maintained below 1000 ppm. Finally temperature settings were met and controlled accurately. The goals of the laboratory testing phase were met and this system is ready for further study in a field test of occupied classrooms.

Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

2005-08-01T23:59:59.000Z

88

Business reasons for utilizing renewable energy applications in facilities to assist in extending the life of the heating ventilation and air conditioning systems .  

E-Print Network (OSTI)

??This research is intended to discover business reasons for utilizing renewable energy applications in buildings to help extend the life of the heating, ventilation and (more)

Thompson, Glendon Raymond

2008-01-01T23:59:59.000Z

89

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

90

Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California  

Science Conference Proceedings (OSTI)

A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

Hong, Tianzhen; Fisk, William

2010-01-01T23:59:59.000Z

91

Energy Conservation Through Improved Industrial Ventilation in Small and Medium-Sized Industrial Plants  

E-Print Network (OSTI)

This paper discusses energy conservation projects in the area of industrial ventilation that have been recommended by the Texas A&M University Energy Analysis and Diagnostic Center (EADQ to small and medium-sized industries in Texas. The projects recommended include reducing blower operating time/speed and static pressure for dust collectors, installing radiation shield on ovens, and using outside air for cooling. The projects were recommended to different kinds of industries including wood fabrication, frozen food, primary metals, plastics and insulation products. These projects are predicted to save up to 8% of the plants' utility bills with average simple payback periods of less than three years. Projects that involved blowers (fans) speed/operation time reduction resulted in most savings.

Saman, N. F.; Nutter, D. W.

1994-04-01T23:59:59.000Z

92

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

increased cost per unit of energy at times of peak demandminimizing energy costs and operation during peak timesenergy and cost impacts of ventilation vary with weather and time

Sherman, Max H.

2011-01-01T23:59:59.000Z

93

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

94

The role of the US Department of Energy in indoor air quality and building ventilation policy development  

SciTech Connect

Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration is the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.

Traynor, G.W. [Lawrence Berkeley Lab., CA (United States); Talbott, J.M.; Moses, D.O. [USDOE, Washington, DC (United States)

1993-07-01T23:59:59.000Z

95

Study on Energy Saving of the Interlayer Ventilation Walla Used in Clean Operation Rooms  

E-Print Network (OSTI)

Recovery energy of the exhaust in air conditioning is very important to clean operating rooms. In disinfected operating rooms, we often use completely fresh air conditioning system in order to maintain cleanliness. All the return air of the air conditioning must be discharged. For recovering the exhaust energy, whole heat exchangers are used, and they may bring cross-infection in clean operating rooms. Cross-infection would negatively affect cleanness. This paper puts forward an air layer inside of a building's external wall that acts as a passageway for air conditioning exhaust, and also providing a place for the thermal exchange of the air conditioning exhaust. This kind of envelope is named an interlayer ventilation wall. There are two advantages. First, it will recover and reutilize the energy that the air conditioning exhaust takes, avoid cross-infection between the fresh air and the exhaust. Second, it will lower the energy loss of the heat exchange through the envelope. The energy saving effect will be very significant in clean operating rooms.

Feng, J.; Lian, Z.; Hou, Z.

2006-01-01T23:59:59.000Z

96

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

SciTech Connect

Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

Sherman, Max H.; Walker, Iain S.

2011-04-01T23:59:59.000Z

97

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

98

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

99

Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE))

Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings....

100

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air  

Energy.gov (U.S. Department of Energy (DOE))

Revised fact sheet describes the transpired solar collector that was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Multifamily Ventilation - Best Practice?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Ventilation - Best Practice? Multifamily Ventilation - Best Practice? Dianne Griffiths April 29, 2013 Presentation Outline * Basic Objectives * Exhaust Systems * Make-up Air Systems Two Primary Ventilation Objectives 1) Providing Fresh Air - Whole-House 2) Removing Pollutants - Local Exhaust Our goal is to find the simplest solution that satisfies both objectives while minimizing cost and energy impacts. Common Solution: Align local exhaust with fresh air requirements (Ex: 25 Bath + 25 Kitchen) Exhaust-Driven Fresh Air Design * Exhaust slightly depressurizes the units * Outside air enters through leaks, cracks, or planned inlets * Widely used in the North Multifamily Ventilation Best Practice * Step 1: Understand ventilation requirements * Step 2: Select the simplest design that can

102

Forecast Technical Document Volume Increment  

E-Print Network (OSTI)

Forecast Technical Document Volume Increment Forecasts A document describing how volume increment is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Volume increment forecasts Background A volume increment forecast is a fundamental output of the forecast

103

Why We Ventilate  

NLE Websites -- All DOE Office Websites (Extended Search)

Why We Ventilate Why We Ventilate Title Why We Ventilate Publication Type Conference Paper LBNL Report Number LBNL-5093E Year of Publication 2011 Authors Logue, Jennifer M., Phillip N. Price, Max H. Sherman, and Brett C. Singer Conference Name Proceedings of the 2011 32nd AIVC Conference and 1st Tightvent Conference Date Published October 2011 Conference Location Brussels, Belgium Keywords indoor environment department, resave, ventilation and air cleaning Abstract It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of "good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

104

Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics  

SciTech Connect

This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

Fisk, William; Black, Douglas; Brunner, Gregory

2011-07-01T23:59:59.000Z

105

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

scaling the passive stack diameter with house size (floora single-story house ventilated by a passive stack with andTable 1: Passive stack diameters scaling with house size

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

106

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network (OSTI)

Airflow simulation in one ventilated room with radiant heating and natural ventilation has been carried out. Three cases are compared: the closed room, the room with full openings, and the room with small openings. The radiator heating room with small openings is recommended. The airflow and thermal comfort are discussed for the last case. It is suitable for two kinds of civil buildings, housing buildings and office buildings, which take up the largest part of all functional buildings.

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

107

Why We Ventilate  

SciTech Connect

It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

2011-09-01T23:59:59.000Z

108

Demand-Controlled Ventilation Using CO2 Sensors - Federal Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

fresh air in a building can be a problem. Over ventilation results in higher energy usage and costs than are necessary with appropriate ventilation while potentially increasing...

109

Equivalence in Ventilation and Indoor Air Quality  

SciTech Connect

We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

Sherman, Max; Walker, Iain; Logue, Jennifer

2011-08-01T23:59:59.000Z

110

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A REVIEW OF GOVERNMENTAL AND PRIVATE AGENCY ENERGY CONSERVATION INITIATIVES  

Science Conference Proceedings (OSTI)

This report presents the results of a recent research project originally concerned with review of governmental initiatives for changes to hospital design and operation standards at both the federal and state levels. However. it quickly became apparent that concern with energy conservation was not impacting hospital environmental standards, especially at the state level, irrespective of the energy implications. Consequently, the study was redirected to consider all energy conservation initiatives directed toward design and operating practices unique to the hospital environment. The scope was limited to agency programs (i.e., not undertaken at the initiative of individual hospitals), applicable to non-federal public and private hospitals.

Banks, Robert S.; Rainer, David

1980-03-01T23:59:59.000Z

111

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL-203E LBNL-203E Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms Appendix Michael G. Apte, Bourassa Norman*, David Faulkner, Alfred T. Hodgson, Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang 4 April 2008 A-1 Tables Table A-1. Thermal Comfort Results - May 2005, September 2005, November 2005 Room 13 - 9/19/2005 AM/PM Time Period Operative T and RH Acceptable (% of time) Operative T and RH, and Air Velocity acceptable (% of time) Average Indoor Air T (°C) Average Indoor Air RH (%) AM AM1 66.7 0.0 21.3 67.1 PM PM1 40.0 0.0 24.9 46.8 Room 13 - 5/16/2005 AM AM1 0.0 0.0 21.1 0.4 PM PM1 0.0 0.0 20.8 55.5 Room 13 - 12/1/2005 AM AM1 0.0% 0.0% 17.8 38.5

112

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 (1 ft{sup 2} of effective ventilation area per 300 ft{sup 2} of attic area) to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. 18 refs., 17 figs., 26 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Chattanooga, TN (USA))

1990-03-01T23:59:59.000Z

113

Dust and ventilation effects on radiant barriers: Cooling season energy measurements  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. There was essentially no difference in house cooling load reduction between either ridge/soffit or gable/soffit vent type with a truss radiant barrier, as both reduced cooling loads by about 8% when compared to no radiant barrier conditions. The attic-ventilation-type testing was done with a ventilation area ratio of 1/150.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-05-01T23:59:59.000Z

114

Ventilation Based on ASHRAE 62.2  

E-Print Network (OSTI)

Indoor Ventilation Based on ASHRAE 62.2 Arnold Schwarzenegger Governor California Energy Commission Ventilation (ASHRAE 62.2) Minimum Best Practices Guide - Exhaust-Only Ventilation Introduction: The California Energy Commission has created the following guide to provide assistance in complying with ANSI/ASHRAE

115

Ventilation Controller for Improved Indoor Air Quality  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing by 18-44% the energy spent on ventilation. The system, the Residential Integrated ...

116

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

117

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet) (Revised), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights System Size 300 ft 2 transpired solar collector Energy Production About 125 Btu/hr/ft 2 (400 W/m 2 ) of heat delivery under ideal conditions (full sun) Installation Date 1990 Motivation Provide solar-heated ventilation air to offset some of the heating with conventional electric resistance heaters Annual Savings 14,310 kWh (49 million Btu/yr) or about 26% of the energy required to heat the facility's ventilation air System Details Components Black, 300 ft 2 corrugated aluminum transpired solar collector with a porosity of 2%; bypass damper; two-speed 3000 CFM vane axial supply fan; electric duct heater; thermostat controller Storage None Loads 188 million Btu/year (55,038 kWh/year) winter average to heat 1,300 ft 2 Waste Handling Facility

118

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

119

Incremental Nanotechnology for Structural Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Incremental Nanotechnology for Structural Materials. Author(s) , Enrique J. Lavernia. On-Site Speaker (Planned), Enrique J. Lavernia. Abstract...

120

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network (OSTI)

Nonresidential ACM Manual 2.0.3OutdoorAirVentilationACM Manual 3 Table 4 Minimum Outdoor Air

Hong, Tianzhen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measure Guideline: Ventilation Cooling  

SciTech Connect

The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

Springer, D.; Dakin, B.; German, A.

2012-04-01T23:59:59.000Z

122

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification J. Chris Stratton, Iain S. Walker, Craig P. Wray Environmental Energy Technologies Division October 2012 LBNL-5982E 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any

123

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

many hospitals for energy audits and for energy-conserving1980, will include an energy audit, modifications to theannotated bibliography of energy audit source materials will

Cairns, Elton J.

2011-01-01T23:59:59.000Z

124

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. 18 refs., 18 figs., 30 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-02-01T23:59:59.000Z

125

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

126

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

E-Print Network (OSTI)

was supported by the California Energy Commission PublicStandards Report to the California Energy Commission PublicLaboratory: Berkeley, CA. California Energy Commission, 2008

Fisk, William J.

2010-01-01T23:59:59.000Z

127

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed  

E-Print Network (OSTI)

HVAC: Improving and Saving Energy (IVSE) Laboratory StudyHVAC: Improving and Saving Energy (IVSE) Laboratory StudyHVAC: Improving and Saving Energy (IVSE) Laboratory Study

2005-01-01T23:59:59.000Z

128

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

129

Development of a Residential Integrated Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Residential Integrated Ventilation Controller Development of a Residential Integrated Ventilation Controller Title Development of a Residential Integrated Ventilation Controller Publication Type Report LBNL Report Number LBNL-5554E Year of Publication 2012 Authors Walker, Iain S., Max H. Sherman, and Darryl J. Dickerhoff Keywords ashrae standard 62,2, california title 24, residential ventilation, ventilation controller Abstract The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20%, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

130

Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms  

E-Print Network (OSTI)

Prepared for the California Energy Commission by LagusEnergy Efficiency, California Energy Commission, Sacramentoand Nonresidential Buildings, California Energy Commission,

Apte, Michael; Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang

2008-01-01T23:59:59.000Z

131

Data Assimilation Using Incremental Analysis Updates  

Science Conference Proceedings (OSTI)

The IAU (incremental analysis updating) process incorporates analysis increments into a model integration in a gradual manner. It does this by using analysis increments as constant forcings in a model's prognostic equations over a 6-h period ...

S. C. Bloom; L. L. Takacs; A. M. da Silva; D. Ledvina

1996-06-01T23:59:59.000Z

132

Improving Ventilation and Saving Energy: Relocatable Classroom Field Study Interim Report  

E-Print Network (OSTI)

Energy: Relocatable Classroom Field Study Interim Report GlossaryEnergy: Relocatable Classroom Field Study Interim Report Table of Contents Table of Contents i Glossary.

2005-01-01T23:59:59.000Z

133

Improving Ventilation and Saving Energy: Laboratory Study in a Modular Classroom Test Bed  

E-Print Network (OSTI)

and Saving Energy (IVSE) Laboratory Study Glossary SpecificEnergy (IVSE) Laboratory Study Table of Contents Table of Contents i Glossary.

2005-01-01T23:59:59.000Z

134

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

third of the total space conditioning energy consumption ofventilation increased space conditioning energy use by aboutis dominated by space conditioning rather than mechanical

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

135

Development of a Residential Integrated Ventilation Controller  

SciTech Connect

The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

2011-12-01T23:59:59.000Z

136

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

Sherman, M.H. (2008). Energy Implications of Meeting ASHRAE62.2, ASHRAE Transactions, June 2008, Vol. 114, Pt. 2, pp.and Sustainable Buildings, ASHRAE. Orme, M. 1998. "Energy

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

137

INDOOR AIR QUALITY AND ENERGY EFFICIENT VENTILATION RATES AT A NEW YORK CITY ELEMENTARY SCHOOL  

E-Print Network (OSTI)

inorganic pollutants: carbon dioxide, carbon monoxide,odor perception, carbon dioxide, carbon monoxide, sulfurkeywords; pollution, carbon dioxide, carbon monoxide, energy

Young, Rodger A.

2013-01-01T23:59:59.000Z

138

ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES  

E-Print Network (OSTI)

to be changing the space configuration and usages. Computers and Lau, J. and Chen, Q. 2006. "Energy analysis climatic regions for the energy analysis. The five climatic regions represent the most typical weathers building. Fig. 5 shows the monthly energy consumption of a typical workshop in Nashville, TN and New

Chen, Qingyan "Yan"

139

Residential ventilation standards scoping study  

SciTech Connect

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

140

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network (OSTI)

heating, given the higher cost per KWh for electricity, aaverage cost of electrical energy per kilowatt-hour (kWh) is

Logue, J.M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Infiltration and Natural Ventilation Model for Whole-Building Energy Simulation of Residential Buildings: Preprint  

DOE Green Energy (OSTI)

The infiltration term in the building energy balance equation is one of the least understood and most difficult to model. For many residential buildings, which have an energy performance dominated by the envelope, it can be one of the most important terms. There are numerous airflow models; however, these are not combined with whole-building energy simulation programs that are in common use in North America. This paper describes a simple multizone nodal airflow model integrated with the SUNREL whole-building energy simulation program.

Deru, M.; Burns, P.

2003-03-01T23:59:59.000Z

142

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

143

Advanced Controls and Sustainable Systems for Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Controls and Sustainable Systems for Residential Ventilation Advanced Controls and Sustainable Systems for Residential Ventilation Title Advanced Controls and Sustainable Systems for Residential Ventilation Publication Type Report LBNL Report Number LBNL-5968E Year of Publication 2012 Authors Turner, William J. N., and Iain S. Walker Date Published 12/2012 Keywords ashrae standard 62,2, california title 24, passive ventilation, residential ventilation, ventilation controller Abstract Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health, and compliance with standards, such as ASHRAE 62.2. At the same time we wish to reduce the energy use in homes and therefore minimize the energy used to provide ventilation. This study examined several approaches to reducing the energy requirements of providing acceptable IAQ in residential buildings. Two approaches were taken. The first used RIVEC - the Residential Integrated VEntilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. The second used passive and hybrid ventilation systems, rather than mechanical systems, to provide whole-house ventilation.

144

Meeting Residential Ventilation Standards Through Dynamic Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems Title Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation...

145

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

146

Modeling buoyancy-driven airflow in ventilation shafts  

E-Print Network (OSTI)

Naturally ventilated buildings can significantly reduce the required energy for cooling and ventilating buildings by drawing in outdoor air using non-mechanical forces. Buoyancy-driven systems are common in naturally ...

Ray, Stephen D. (Stephen Douglas)

2012-01-01T23:59:59.000Z

147

A scale model study of displacement ventilation with chilled ceilings  

E-Print Network (OSTI)

Displacement ventilation is a form of air-conditioning which provides good air quality and some energy savings. The air quality is better than for a conventional mixed ventilation system. The maximum amount of cooling that ...

Holden, Katherine J. A. (Katherine Joan Adrienne)

1995-01-01T23:59:59.000Z

148

VENTILATION NEEDS DURING CONSTRUCTION  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

C.R. Gorrell

1998-07-23T23:59:59.000Z

149

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

150

Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery  

Science Conference Proceedings (OSTI)

BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the buildings wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The systems integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

None

2010-10-15T23:59:59.000Z

151

Passive ventilation for residential air quality control  

SciTech Connect

Infiltration has long served the residential ventilation needs in North America. In Northern Europe it has been augmented by purpose-provided natural ventilation systems--so-called passive ventilation systems--to better control moisture problems in dwellings smaller than their North American counterparts and in a generally wetter climate. The growing concern for energy consumption, and the environmental impacts associated with it, has however led to tighter residential construction standards on both continents and as a result problems associated with insufficient background ventilation have surfaced. Can European passive ventilation systems be adapted for use in North American dwellings to provide general background ventilation for air quality control? This paper attempts to answer this question. The configuration, specifications and performance of the preferred European passive ventilation system--the passive stack ventilation (PSV) system--will be reviewed; innovative components and system design strategies recently developed to improve the traditional PSV system performance will be outlined; and alternative system configurations will be presented that may better serve the climatic extremes and more urban contexts of North America. While these innovative and alternative passive ventilation systems hold great promise for the future, a rational method to size the components of these systems to achieve the control and precision needed to meet the conflicting constraints of new ventilation and air tightness standards has not been forthcoming. Such a method will be introduced in this paper and an application of this method will be presented.

Axley, J.

1999-07-01T23:59:59.000Z

152

On the Relationship between Incremental Analysis Updating and Incremental Digital Filtering  

Science Conference Proceedings (OSTI)

Incremental analysis updating (IAU) refers to a method of smoothly inserting instantaneous analysis increments into a numerical model by spreading the increments over a time period. In this work, this method is shown to be identical to applying a ...

Saroja Polavarapu; Shuzhan Ren; Adam M. Clayton; David Sankey; Yves Rochon

2004-10-01T23:59:59.000Z

153

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally  

NLE Websites -- All DOE Office Websites (Extended Search)

Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Review on Ventilation Rate Measuring and Modeling Techniques in Naturally Ventilated Building Speaker(s): Sezin Eren Ozcan Date: May 16, 2006 - 12:00pm Location: Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very attractive sustainable technique in building design. However, understanding of ventilation dynamics is needed to provide an efficient control. Ventilation rate has to be determined not only in terms of energy, but also for controlling indoor air quality and emissions. For these reasons, agricultural buildings (livestock houses, greenhouses, etc.), naturally ventilated industrial buildings, and residences require a reliable ventilation rate measuring technique. Measuring techniques suffer

154

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US Department of Energy's Regulatory Negotiations Convening on US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that is certified to the Department; The timing of when the certification should be made relative to distribution in commerce; and Alterations to a basic model that would impact the certification.

155

Review on Ventilation Rate Measuring and Modeling Techniques...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bldg. 90 Due to limited energy sources, countries are looking for alternative solutions to decrease energy needs. In that context, natural ventilation can be seen as a very...

156

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

157

Concept formation using incremental Gaussian mixture models  

Science Conference Proceedings (OSTI)

This paper presents a new algorithm for incremental concept formation based on a Bayesian framework. The algorithm, called IGMM (for Incremental Gaussian Mixture Model), uses a probabilistic approach for modeling the environment, and so, it can rely ... Keywords: Bayesian methods, EM algorithm, clustering, concept formation, finite mixtures, incremental learning, unsupervised learning

Paulo Martins Engel; Milton Roberto Heinen

2010-11-01T23:59:59.000Z

158

Ventilation in Multifamily Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

159

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

Science Conference Proceedings (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

160

The Ventilated Ocean  

Science Conference Proceedings (OSTI)

Adiabatic theories of ocean circulation and density structure have a long tradition, from the concept of the ventilated thermocline to the notion that deep ocean ventilation is controlled by westerly winds over the Southern Ocean. This study ...

Patrick Haertel; Alexey Fedorov

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

VENTILATION MODEL REPORT  

SciTech Connect

The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

V. Chipman

2002-10-31T23:59:59.000Z

162

Infiltration in ASHRAE's Residential Ventilation Standards  

Science Conference Proceedings (OSTI)

The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

Sherman, Max

2008-10-01T23:59:59.000Z

163

On The Valuation of Infiltration towards Meeting Residential Ventilation Needs  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. It can be provided by mechanical or natural means. In most homes, especially existing homes, infiltration provides the dominant fraction of the ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago.

Sherman, Max H.

2008-09-01T23:59:59.000Z

164

Scale model studies of displacement ventilation  

E-Print Network (OSTI)

Displacement ventilation is an air conditioning method that provides conditioned air to indoor environments with the goal to improve air quality while reducing energy consumption. This study investigates the performance ...

Okutan, Galip Mehmet

1995-01-01T23:59:59.000Z

165

Energy Efficiency Targets (Arkansas) | Open Energy Information  

Open Energy Info (EERE)

to file comprehensive energy efficiency plans for 2011, 2012, and 2013 with incremental energy savings. Incremental energy savings for electric utilities: 0.25% in 2011 compared...

166

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

167

Incremental validity of the Psychopathic Personality Inventory.  

E-Print Network (OSTI)

??The current study examined the incremental validity of the Psychopathic Personality Inventory-Revised in relation to the Psychological Inventory of Criminal Thinking Styles and Personality Assessment (more)

McCoy, Katrina.

2011-01-01T23:59:59.000Z

168

ASHRAE and residential ventilation  

E-Print Network (OSTI)

conditioning Engineers. 2001. ASHRAE, Indoor Air QualityABOUT/IAQ_papr01.htm ASHRAE. Standard 62.2-2003:Ventilation Requirements. ASHRAE Journal, pp. 51- 55, June

Sherman, Max H.

2003-01-01T23:59:59.000Z

169

Measuring Residential Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

measured. The local exhaust flows can be measured or can meet prescriptive ducting and fan labeling requirements that use ratings provided by the Home Ventilating Institute (HVI,...

170

Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California  

E-Print Network (OSTI)

resultsinhigherenergyusageandenergycostsforcoldortheenergymodels. Theenergyusagedifferencebetweentheresultsandcalculatedenergyusageandcostssavings. The

Hong, Tianzhen

2010-01-01T23:59:59.000Z

171

Carbon-dioxide-controlled ventilation study  

Science Conference Proceedings (OSTI)

The In-House Energy Management (IHEM) Program has been established by the U.S. Department of Energy to provide funds to federal laboratories to conduct research on energy-efficient technology. The Energy Sciences Department of Pacific Northwest Laboratory (PNL) was tasked by IHEM to research the energy savings potential associated with reducing outdoor-air ventilation of buildings. By monitoring carbon dioxide (CO{sub 2}) levels in a building, outdoor air provided by the heating, ventilating, and air-conditioning (HVAC) system can be reduced to the percentage required to maintain satisfactory CO{sub 2} levels rather than ventilating with a higher outdoor-air percentage based on an arbitrary minimum outdoor-air setting. During summer months, warm outdoor air brought into a building for ventilation must be cooled to meet the appropriate cooling supply-air temperature, and during winter months, cold outdoor air must be heated. By minimizing the amount of hot or cold outdoor air brought into the HVAC system, the supply air requires less cooling or heating, saving energy and money. Additionally, the CO{sub 2} levels in a building can be monitored to ensure that adequate outdoor air is supplied to a building to maintain air quality levels. The two main considerations prior to implementing CO{sub 2}-based ventilation control are its impact on energy consumption and the adequacy of indoor air quality (IAQ) and occupant comfort. To address these considerations, six portable CO{sub 2} monitors were placed in several Hanford Site buildings to estimate the adequacy of office/workspace ventilation. The monitors assessed the potential for reducing the flow of outdoor-air to the buildings. A candidate building was also identified to monitor various ventilation control strategies for use in developing a plan for implementing and assessing energy savings.

McMordie, K.L.; Carroll, D.M.

1994-05-01T23:59:59.000Z

172

Sensor-based demand controlled ventilation  

SciTech Connect

In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

173

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network (OSTI)

Results and Calculated Energy Usage and Costs Savings6 Simulation Results and Calculated Energy Usage and Costsresultsinhigherenergyusageandcostsforcoldorhot

Hong, Tianzhen

2010-01-01T23:59:59.000Z

174

Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California  

E-Print Network (OSTI)

thankBradMeisterattheCaliforniaEnergyCommissionforEngineers, Atlanta. CaliforniaEnergyCommission. work sponsored by California EnergyCommissionunder

Hong, Tianzhen

2010-01-01T23:59:59.000Z

175

Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems  

E-Print Network (OSTI)

Rudd. 2007. Review of residential ventilation technologies.2009. EISG Final Report: Residential Integrated VentilationDesign and Operation of Residential Cooling Systems. Proc.

Sherman, Max H.

2011-01-01T23:59:59.000Z

176

HOSPITAL VENTILATION STANDARDS AND ENERGY CONSERVATION: A SUMMARY OF THE LITERATURE WITH CONCLUSIONS AND RECOMMENDATIONS, FY 78 FINAL REPORT  

E-Print Network (OSTI)

use rather than peak energy use--The New Mexico Experience.of Energy Conservative Design, University of New Mexico,

DeRoos, R.L.

2011-01-01T23:59:59.000Z

177

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

178

Iterative and Incremental Development: A Brief History  

Science Conference Proceedings (OSTI)

Although many view iterative and incremental development as a modern practice, its application dates as far back as the mid-1950s. Prominent software-engineering thought leaders from each succeeding decade supported IID practices, and many large projects ...

Craig Larman; Victor R. Basili

2003-06-01T23:59:59.000Z

179

Exergy analysis of incremental sheet forming  

E-Print Network (OSTI)

Research in the last 15 years has led to die-less incremental forming processes that are close to realization in an industrial setup. Whereas many studies have been carried out with the intention of investigating technical ...

Dittrich, M. A.

180

Solar ventilation preheating: FEMP fact sheet  

DOE Green Energy (OSTI)

Installing a ''solar wall'' to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. A solar wall can be designed as an integral part of a new building or it can be added in a retrofit project.

Clyne, R.

1999-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

182

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network (OSTI)

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

183

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

184

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

185

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation  

E-Print Network (OSTI)

LBNL REPORT NUMBER 53776; OCTOBER 2003 ASHRAE &Residential Ventilation Max Sherman Energy Performance of Buildings Group IED/EETD Lawrence Berkeley Laboratory1 MHSherman@lbl.gov ASHRAE, the American of heating, ventilating, air-conditioning and refrigeration (HVAC&R). ASHRAE has recently released a new

186

Summary of human responses to ventilation  

E-Print Network (OSTI)

low ventilation rates and increase in health problems:rate. As ventilation rates increase, benefits gained fordetermined that increases in ventilation rates above 10 Ls -

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

187

Design methods for displacement ventilation: Critical review.  

E-Print Network (OSTI)

Displacement Ventilation. ASHRAE Research project-RP-949.displacement ventilation. ASHRAE Transaction, 96 (1). Ar ???due to displacement ventilation. ASHRAE Transaction, 96 (1).

Schiavon, Stefano

2006-01-01T23:59:59.000Z

188

Incremental tensor analysis: Theory and applications  

Science Conference Proceedings (OSTI)

How do we find patterns in author-keyword associations, evolving over time? Or in data cubes (tensors), with product-branchcustomer sales information? And more generally, how to summarize high-order data cubes (tensors)? How to incrementally ... Keywords: Tensor, multilinear algebra, stream mining

Jimeng Sun; Dacheng Tao; Spiros Papadimitriou; Philip S. Yu; Christos Faloutsos

2008-10-01T23:59:59.000Z

189

Kitchen Ventilation Should be High Performance (Not Optional)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Ventilation Kitchen Ventilation Should be High Performance (not Optional) Brett C. Singer Residential Building Systems & Indoor Environment Groups Lawrence Berkeley National Laboratory Building America Technical Update Denver, CO April 30, 2013 Acknowledgements PROGRAM SUPPORT *U.S. Department of Energy - Building America Program *U.S. Environmental Protection Agency - Indoor Environments Division *U.S. Department of Housing and Urban Development - Office of Healthy Homes & Lead Hazard Control *California Energy Commission - Public Interest Energy Research Program TECHNICAL CONTRIBUTIONS *Woody Delp, Tosh Hotchi, Melissa Lunden, Nasim Mullen, Chris Stratton, Doug Sullivan, Iain Walker Kitchen Ventilation Simplified PROBLEM: * Cooking burners & cooking produce odors, moisture

190

Heating, Ventilation, and Air Conditioning Renovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations Heating, Ventilation, and Air Conditioning Renovations October 16, 2013 - 4:49pm Addthis Renewable Energy Options for HVAC Renovations Geothermal Heat Pumps (GHP) Solar Water Heating (SWH) Biomass Passive Solar Heating Biomass Heating Solar Ventilation Air Preheating Federal building renovations that encompass the heating, ventilation, and air conditioning (HVAC) systems in a facility provide a range of renewable energy opportunities. The primary technology option for HVAC renovations is geothermal heat pumps (GHP). Other options include leveraging a solar water heating (SWH) system to offset heating load or using passive solar heating or a biomass-capable furnace or boiler. Some facilities may also take

191

Opaque Ventilated Facades - Performance Simulation Method and Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Opaque Ventilated Facades - Performance Simulation Method and Assessment of Opaque Ventilated Facades - Performance Simulation Method and Assessment of Simulated Performance Speaker(s): Emanuele Naboni Date: May 29, 2007 - 12:00pm Location: 90-3122 Opaque ventilated façade systems are increasingly used in buildings, even though their effects on the overall thermal performance of buildings have not yet been fully understood. The research reported in this presentation focuses on the modeling of such systems with EnergyPlus. Ventilated façade systems are modeled in EnergyPlus with module "Exterior Naturally Vented Cavity." Not all façade systems can be modeled with this module; this research defined the types of systems that can be modeled, and the limitations of such simulation. The performance of a ventilated façade

192

Development and Application of a Procedure to Estimate Overall Building and Ventilation Parameters from Monitored Commercial Building Energy Use  

E-Print Network (OSTI)

This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building are available. The validation has been performed using such data generated from a detailed building simulation program for different building geometries and building mass levels in two different climatic locations. Such a synthetic evaluation will validate the model used as well as determine the best parameter identification scheme, i.e., one likely to yield the most accurate set of parameter estimates. A multistep identification scheme has been found to yield very accurate results, and a more careful evaluation has been performed in order to evaluate its accuracy and stability with synthetic data against the effects of solar energy, HVAC system operation, internal load schedule, building thermal mass and geometry, and climatic location. This method is also evaluated using data from different time periods and when utility bill data (i.e. monthly data) only is available. The model is then applied to energy use data from two buildings being monitored under the Texas LoanSTAR Program, which are in different locations and have different HVAC systems. With parameters thus determined, two energy use indices, Energy Delivery Efficiency (EDE) and Multizone Efficiency Index (MEI), are calculated to present some insights into the benefits of retrofit from a constant volume (CV) to a variable air volume (VAV) system and of continuous commissioning (CC) work done to these two buildings, respectively. Uses and limitations of EDE and MEI are also discussed. Based on these findings, it is suggested that the multistep regression approach is an accurate and practical building physical parameter determination method, and the combined use of the EDE and MEI indices calculated from these parameters can provide insights into the HVAC system, and the potential for optimizing its operation.

Deng, Song

1997-05-01T23:59:59.000Z

193

Development and application of a procedure to estimate overall building and ventilation parameters from monitored commercial building energy use  

E-Print Network (OSTI)

This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building are available. The validation has been performed using such data generated from a detailed building simulation program for different building geometries and building mass levels in two different climatic locations. Such a synthetic evaluation will validate the model used as well as determine the best parameter identification scheme, i.e., one likely to yield the most accurate set of parameter estimates. A multistep identification scheme has been found to yield very accurate results, and a more careful evaluation has been performed in order to evaluate its accuracy and stability with synthetic data against the effects of solar energy, HVAC system operation, internal load schedule, building then-thermal mass and geometry, and climatic location. This method is also evaluated using data from different time periods and when utility bill data (i.e. monthly data) only is available. The model is then applied to energy use data from two buildings being monitored under the Texas LoanSTAR Program, which are in different locations and have different HVAC systems. With parameters thus determined, two energy use indices, Energy Delivery Efficiency (EDE) and Multizone Efficiency Index (MEI), are calculated to present some insights into the benefits of retrofit from a constant volume (CV) to a variable air volume (VAV) system and of continuous commissioning (CC) work done to these two buildings, respectively. Uses and limitations of EDE and MEI are also discussed. Based on these findings, it is suggested that the multistep regression approach is an accurate and practical building physical parameter determination method, and the combined use of the EDE and MEI indices calculated from these parameters can provide insights into the HVAC system, and the potential for optimizing its operation.

Deng, Song Jiu

1997-01-01T23:59:59.000Z

194

Alternative Fuels Data Center: Vehicle Incremental Cost Allocation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Incremental Vehicle Incremental Cost Allocation to someone by E-mail Share Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Facebook Tweet about Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Twitter Bookmark Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Google Bookmark Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Delicious Rank Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Digg Find More places to share Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the

195

A Field Study Comparison of the Energy and Moisture Performance Characteristics of Ventilated Versus Sealed Crawl Spaces in the South  

DOE Green Energy (OSTI)

This study compared the performance of closed crawl spaces, which had sealed foundation wall vents, a sealed polyethylene film liner and various insulation and drying strategies, to traditional wall-vented crawl spaces with perimeter wall vents and polyethylene film covering 100% of the ground surface. The study was conducted at 12 owner-occupied, all electric, single-family detached houses with the same floor plan located on one cul-de-sac in the southeastern United States. Using the matched pairs approach, the houses were divided into three study groups of four houses each. Comparative data was recorded for each house to evaluate sub-metered heat pump energy consumption, relative humidity, wood moisture content, duct infiltration, house infiltration, temperature, radon, and bioaerosol levels. Findings indicated that in the humid conditions of the southeastern United States, a properly closed crawl space is a robust construction measure that produces a substantially drier crawl space and significantly reduces occupied space conditioning energy use on an annual basis.

Bruce Davis; Cyrus Dastur; William E. Warren; Shawn Fitzpatrick; Christine Maurer; Rob Stevens; Terry Brennan; William Rose

2005-06-22T23:59:59.000Z

196

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels  

SciTech Connect

Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

2013-09-01T23:59:59.000Z

197

Issue #9: What are the Best Ventilation Techniques? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

do we address ventilation in all climates? What is the best compromise between occupant health and safety and energy efficiency? issue9recommendashrae.pdf issue9ashrae622vent...

198

Intelligent Control of Heating, Ventilating and Air Conditioning Systems  

Science Conference Proceedings (OSTI)

This paper proposed a simulation-optimization energy saving strategy for heating, ventilating and air conditioning (HVAC) systems' condenser water loop through intelligent control of single speed cooling towers' components. An analysis of system components ...

Patrick Low Kie; Lau Bee Theng

2009-07-01T23:59:59.000Z

199

Secondary pollutants from ozone reactions with ventilation filters and  

NLE Websites -- All DOE Office Websites (Extended Search)

Secondary pollutants from ozone reactions with ventilation filters and Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Title Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives Publication Type Journal Article Year of Publication 2011 Authors Destaillats, Hugo, Wenhao Chen, Michael G. Apte, Nuan Li, Michael Spears, Jérémie Almosni, Gregory Brunner, Jianshun(Jensen) Zhang, and William J. Fisk Journal Atmospheric Environment Volume 45 Start Page 3561 Issue 21 Pagination 3561-3568 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group

200

Ventilation Systems Operating Experience Review for Fusion Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for air ventilation systems in nuclear facilities. These experiences are applicable for magnetic and inertial fusion facilities since air ventilation systems are support systems that can be considered generic to nuclear facilities. The report contains descriptions of ventilation system components, operating experiences with these systems, component failure rates, and component repair times. Since ventilation systems have a role in mitigating accident releases in nuclear facilities, these data are useful in safety analysis and risk assessment of public safety. An effort has also been given to identifying any safety issues with personnel operating or maintaining ventilation systems. Finally, the recommended failure data were compared to an independent data set to determine the accuracy of individual values. This comparison is useful for the International Energy Agency task on fusion component failure rate data collection.

L. C. Cadwallader

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

202

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

203

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

204

Procedures and Standards for Residential Ventilation System Commissioning:  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures and Standards for Residential Ventilation System Commissioning: Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Title Procedures and Standards for Residential Ventilation System Commissioning: An Annotated Bibliography Publication Type Report LBNL Report Number LBNL-6142E Year of Publication 2013 Authors J. Chris Stratton, and Craig P. Wray Keywords ASHRAE 62.2, commissioning, procedures, residential, standards, ventilation Abstract Beginning with the 2008 version of Title 24, new homes in California must comply with ANSI/ASHRAE Standard 62.2-2007 requirements for residential ventilation. Where installed, the limited data available indicate that mechanical ventilation systems do not always perform optimally or even as many codes and forecasts predict. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and acceptable IAQ. Work funded by the California Energy Commission about a decade ago at Berkeley Lab documented procedures for residential commissioning, but did not focus on ventilation systems. Since then, standards and approaches for commissioning ventilation systems have been an active area of work in Europe. This report describes our efforts to collect new literature on commissioning procedures and to identify information that can be used to support the future development of residential-ventilation-specific procedures and standards. We recommend that a standardized commissioning process and a commissioning guide for practitioners be developed, along with a combined energy and IAQ benefit assessment standard and tool, and a diagnostic guide for estimating continuous pollutant emission rates of concern in residences (including a database that lists emission test data for commercially-available labeled products).

205

Federal Energy Management Program: New and Underutilized Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Recovery Ventilation Systems to someone by E-mail Share Federal Energy Management Program: New and Underutilized Technology: Commercial Energy Recovery Ventilation Systems...

206

Ventilation Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is important in understanding cooling strategies for homes and buildings. Principles of Heat Transfer Heat is transferred to and from objects via three processes: conduction,...

207

A database of PFT ventilation measurements  

SciTech Connect

About five years ago, a method for measuring the ventilation flows of a building was developed at Brookhaven National Laboratory (BNL). This method is based on the use of a family of compounds known as perfluorocarbon tracers or PFTs. Since 1982, BNL has measured ventilation in more than 4000 homes, comprising about 100 separate research projects throughout the world. This measurement set is unique in that it is the only set of ventilation measurements that acknowledge and measure the multizone characteristics of residences. Other large measurement sets assume that a home can be treated as a single well-mixed zone. This report describes the creation of a database of approximately half of the PFT ventilation measurements made by BNL over the last five years. The PFT database is currently available for use on any IBM PC or Apple Macintosh based personal computer system. In addition to its utility in modeling indoor pollutant dispersion, this database may also be useful to those people studying energy conservation, thermal comfort and heating system design in residential buildings. 2 refs.

D' Ottavio, T.W.; Goodrich, R.W.; Spandau, D.J.; Dietz, R.N.

1988-08-01T23:59:59.000Z

208

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

E-Print Network (OSTI)

MWh of incremental renewable energy production provides, onincremental renewable energy production exceeds 10 billion

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-01-01T23:59:59.000Z

209

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

210

Available Technologies:EnergyPlus: Energy Simulation Software ...  

EnergyPlus is a building energy simulation program for modeling building heating, cooling, lighting, ventilating, and other energy flows

211

Ventilation and Work Performance in Office Work  

E-Print Network (OSTI)

A). When ventilation rate increases from V to V\\, the ratiowork when ventilation rates increase. Field studies withper 10 L/s person increase in ventilation rate and relative

Seppanen, Olli; Fisk, William J.; Lei, Q.H.

2005-01-01T23:59:59.000Z

212

VENTILATION (HVAC) FAILURE (BUILDING WIDE)  

E-Print Network (OSTI)

VENTILATION (HVAC) FAILURE (BUILDING WIDE) A failure or shutdown of the ventilation system will be signaled by cessation of the audible background "rumbling" sound of the building's HVAC system. As building durations. NOTE: Due to unpredictable pressure differentials in and around the labs during an HVAC failure

Strynadka, Natalie

213

Why We Ventilate - Recent Advances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WHY WE VENTILATE: WHY WE VENTILATE: Recent Advances Max Sherman BA Stakeholders meeting ASHRAE BIO  Distinguished Lecturer  Exceptional Service Award  Board of Directors; TechC  Chair of committees:  62.2; Standards Committee  TC 4.3; TC 2.5  Holladay Distinguished Fellow OVERVIEW QUESTIONS  What is Ventilation? What is IAQ?  What functions does it provide?  How much do we need? Why?  How should ventilations standards be made? LBL has working on these problems Who Are You?  Engineers (ASHRAE Members & not);  architects,  contractors,  reps,  builders,  vendors,  code officials WHAT IS VENTILATION  Medicine: To Exchange Air In the Lungs  Latin: Ventilare, "to expose to the wind"  Today: To Bring In Outdoor Air And Replace

214

Infiltration as ventilation: Weather-induced dilution  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltration as ventilation: Weather-induced dilution Title Infiltration as ventilation: Weather-induced dilution Publication Type Report LBNL Report Number LBNL-5795E Year of...

215

Equivalence in Ventilation and Indoor Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing...

216

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

217

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses. Passive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."

Walker, Iain

2013-01-01T23:59:59.000Z

218

Incremental Scale Up of Isasmelt - The Key to Its Success  

Science Conference Proceedings (OSTI)

The ISASMELT top submerged lance (TSL) process is a good example of a metallurgical process that was developed using incremental scale up.

219

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Systems: A Combined Assessment of Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Title Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values Publication Type Report LBNL Report Number LBNL-5969E Year of Publication 2012 Authors Turner, William J. N., Jennifer M. Logue, and Craig P. Wray Date Published 07/2012 Keywords commissioning, energy, health, indoor air quality, residential, valuation, ventilation Abstract Due to changes in building codes, whole-house mechanical ventilation systems are being installed in new California homes. Few measurements are available, but the limited data suggest that these systems don't always perform as code and forecasts predict. Such deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems when they are installed or during subsequent building retrofits is a step towards eliminating deficiencies and optimizing the tradeoff between energy use and IAQ.

220

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Review of Residential Ventilation Technologies.  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Residential Ventilation Technologies. Review of Residential Ventilation Technologies. Title Review of Residential Ventilation Technologies. Publication Type Journal Article LBNL Report Number LBNL-57730 Year of Publication 2007 Authors Russell, Marion L., Max H. Sherman, and Armin F. Rudd Journal HVAC&R Research Volume 13 Start Page Chapter Pagination 325-348 Abstract This paper reviews current and potential ventilation technologies for residential buildings in North America and a few in Europe. The major technologies reviewed include a variety of mechanical systems, natural ventilation, and passive ventilation. Key parameters that are related to each system include operating costs, installation costs, ventilation rates, heat recovery potential. It also examines related issues such as infiltration, duct systems, filtration options, noise, and construction issues. This report describes a wide variety of systems currently on the market that can be used to meet ASHRAE Standard 62.2. While these systems generally fall into the categories of supply, exhaust or balanced, the specifics of each system are driven by concerns that extend beyond those in the standard and are discussed. Some of these systems go beyond the current standard by providing additional features (such as air distribution or pressurization control). The market will decide the immediate value of such features, but ASHRAE may wish to consider modifications to the standard in the future.

222

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

Eric Loros

2001-07-25T23:59:59.000Z

223

Subsurface Ventilation System Description Document  

Science Conference Proceedings (OSTI)

The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

NONE

2000-10-12T23:59:59.000Z

224

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST): Volume 2: Cases E300-E545.  

DOE Green Energy (OSTI)

This report documents an additional set of mechanical system test cases that are planned for inclusion in ANSI/ASHRAE STANDARD 140. The cases test a program's modeling capabilities on the working-fluid side of the coil, but in an hourly dynamic context over an expanded range of performance conditions. These cases help to scale the significance of disagreements that are less obvious in the steady-state cases. The report is Vol. 2 of HVAC BESTEST Volume 1. Volume 1 was limited to steady-state test cases that could be solved with analytical solutions. Volume 2 includes hourly dynamic effects, and other cases that cannot be solved analytically. NREL conducted this work in collaboration with the Tool Evaluation and Improvement Experts Group under the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 22.

Neymark J.; Judkoff, R.

2004-12-01T23:59:59.000Z

225

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

2009. ASHRAE Handbook of Fundamentals, Ventilation andleakage. The ASHRAE Handbook of fundamentals (ASHRAE 2009),

Sherman, Max

2011-01-01T23:59:59.000Z

226

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

227

Incremental spectral clustering by efficiently updating the eigen-system  

Science Conference Proceedings (OSTI)

In recent years, the spectral clustering method has gained attentions because of its superior performance. To the best of our knowledge, the existing spectral clustering algorithms cannot incrementally update the clustering results given a small change ... Keywords: Graph, Incidence vector/matrix, Incremental clustering, Spectral clustering, Web-blogs

Huazhong Ning; Wei Xu; Yun Chi; Yihong Gong; Thomas S. Huang

2010-01-01T23:59:59.000Z

228

Efficient Algorithms for Incremental Update of Frequent Sequences  

Science Conference Proceedings (OSTI)

Most of the works proposed so far on mining frequent sequences assume that the underlying database is static. However, in real life, the database is modified from time to time. This paper studies the problem of incremental update of frequent sequences ... Keywords: data mining, incremental update, sequence

Minghua Zhang; Ben Kao; David Wai-Lok Cheung; Chi Lap Yip

2002-05-01T23:59:59.000Z

229

CITOM: An incremental construction of multilingual topic maps  

Science Conference Proceedings (OSTI)

This paper proposes the CITOM approach for an incremental construction of multilingual Topic Maps. Our main goal is to facilitate user's navigation across documents available in different languages. Our approach takes into account three types of information ... Keywords: Incremental construction, Information retrieval, Multilingual documents, Thesaurus, Topic Map (TM)

Nebrasse Ellouze; Nadira Lammari; Elisabeth Mtais

2012-04-01T23:59:59.000Z

230

An incremental structured part model for image classification  

Science Conference Proceedings (OSTI)

The state-of-the-art image classification methods usually require many training samples to achieve good performance. To tackle this problem, we present a novel incremental method in this paper, which learns a part model to classify objects using only ... Keywords: image classification, incremental learning, semantic parts, structural relationship

Huigang Zhang; Xiao Bai; Jian Cheng; Jun Zhou; Huijie Zhao

2012-11-01T23:59:59.000Z

231

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

232

Ventilation Model and Analysis Report  

Science Conference Proceedings (OSTI)

This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

V. Chipman

2003-07-18T23:59:59.000Z

233

Modeling Sea Ice Transport Using Incremental Remapping  

Science Conference Proceedings (OSTI)

Sea ice models contain transport equations for the area, volume, and energy of ice and snow in various thickness categories. These equations typically are solved with first-order-accurate upwind schemes, which are very diffusive; with second-...

William H. Lipscomb; Elizabeth C. Hunke

2004-06-01T23:59:59.000Z

234

Public Sector New Construction and Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

235

Positive Pressure Ventilation  

Science Conference Proceedings (OSTI)

... to the fire and can increase the rate of heat and energy being released. ... of vents open were altered to examine capability and optimization of each. ...

2013-07-16T23:59:59.000Z

236

EnergyPlus: Energy Simulation Software for Buildings - Energy ...  

EnergyPlus is a building energy simulation program for modeling building heating, cooling, lighting, ventilating, and other energy flows. While it is based on the ...

237

Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation Relevant Contaminants of Ventilation Relevant Contaminants of Concern in Commercial Buildings Screening Process and Results Srinandini Parthasarathy, Thomas E. McKone, Michael G. Apte Environmental Energy Technologies Division Indoor Environment Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 April 29, 2111 Prepared for the California Energy Commission, Public Interest Energy Research Program, Energy Related Environmental Research Program Legal Notice The Lawrence Berkeley National Laboratory is a national laboratory of the DOE managed by the University of California for the U.S. Department of Energy under Contract Number DE-AC02- 05CH11231. This report was prepared as an account of work sponsored by the Sponsor and pursuant to an M&O Contract with the United States Department of Energy (DOE). Neither the

238

Understanding the Impacts of Incremental Gas Supply on the Flow Dynamics Across the North American Grid  

Reports and Publications (EIA)

The presentation "Understanding the Impacts of Incremental Gas Supply on the Flow Dynamics Across the North American Grid" was given at the Canadian Institute's BC LNG Forum on November 20, 2006. The presentation provides an overview of EIA's long-term natural gas projections under reference case and sensitivity cases from the Annual Energy Outlook 2006, with special emphasis on natural gas flows in the West Coast.

Information Center

2006-12-14T23:59:59.000Z

239

Austin Energy - Commercial Energy Management Rebate Program ...  

Open Energy Info (EERE)

Motor VFDs, Motors, Roofs, Windows, Geothermal Heat Pumps, Energy Recovery Ventilators, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

240

Midlevel Ventilations Constraint on Tropical Cyclone Intensity  

Science Conference Proceedings (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An idealized framework based ...

Brian Tang; Kerry Emanuel

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network (OSTI)

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

242

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

under Contract No. DE-AC02-05CH11231. References ASHRAE.2009. ASHRAE Handbook of Fundamentals, Ventilation andChapter. Atlanta GA: ASHRAE. ASHRAE. 2007. Ventilation and

Sherman, Max

2011-01-01T23:59:59.000Z

243

May 1999 LBNL -42975 ASHRAE'S RESIDENTIAL VENTILATION  

E-Print Network (OSTI)

May 1999 LBNL - 42975 ASHRAE'S RESIDENTIAL VENTILATION STANDARD: EXEGESIS OF PROPOSED STANDARD 62 Berkeley National Laboratory Berkeley, CA 94720 April 1999 In January 1999 ASHRAE's Standard Project, approved ASHRAE's first complete standard on residential ventilation for public review

244

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

245

Topic: Building Energy Conservation  

Science Conference Proceedings (OSTI)

... Group. Indoor Air Quality and Ventilation Group. Heat Transfer and Alternative Energy Systems Group. Instrument. Roof Photovoltaic Test Facility. ...

2012-01-19T23:59:59.000Z

246

Ventilation problems in heritage buildings  

Science Conference Proceedings (OSTI)

The control of indoor conditions in heritage buildings, such as castles or museums, is of paramount importance for the proper preservation of the artworks kept in. As heritage buildings are often not equipped with HVAC systems, it is necessary to provide ... Keywords: CO2 concentration, IAQ, heritage buildings, ventilation

S. Costanzo; A. Cusumano; C. Giaconia; S. Mazzacane

2007-05-01T23:59:59.000Z

247

Ventilation, temperature, and HVAC characteristics in small and medium  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

248

FEMP-FS--Solar Ventilation Preheating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing a "solar wall" to heat air before it enters a Installing a "solar wall" to heat air before it enters a building, called solar ventilation preheating, is one of the most efficient ways of reducing energy costs using clean and renewable energy. The system works by heating outside air with a south-facing solar collector-a dark-colored wall made of sheet metal and perforated with tiny holes. Outdoor air is drawn through the holes and heated as it absorbs the wall's warmth. The warm air rises in the space between the solar wall and the building wall and is moved into the air-duct system, usually by means of a fan, to heat the building. Any additional heating needed at night or on cloudy days is supplied by the build- ing's conventional heating system. During summer months, intake air bypasses the solar collector,

249

Incremental cost of electricity used as backup for passive heated homes  

DOE Green Energy (OSTI)

The impact of passive technologies on a north-central US utility has been studied. A method of utility cost and fuel use analysis, developed at Brookhaven National Laboratory, was used to compute the long run incremental costs and incremental fuel use required for supplementary electricity to houses with Trombe walls or with direct gain features. For comparison, a reference house with no passive features and a house with an energy conservation design were also analyzed. The results show that the total long run incremental cost to the utility of providing supplementary power to the passive houses costs no more than the cost to supply electricity to heat the reference house or the conservation house. An analysis of the annual homeowner costs for the various types of heating systems suggests that the Trombe wall technology is not promising for use in this climate. The passive technologies, as modelled in this study reduced the requirements for conventional energy by about 10% (7 to 10 kilojoules/year). For all of the house types studied, the use of electricity for heating, instead of oil or gas, reduced the overall (utility plus residential) use of oil or gas by only about 30 to 40% even out through the 1990's.

Martorella, J; Bright, R; Davitian, H

1980-08-01T23:59:59.000Z

250

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network (OSTI)

single or multi thermal plume and cooling diffusers duringconfirm how thermal loss affects cooling energy consumption,to have the highest cooling load (the thermal decay also was

Yu, Jong Keun

2010-01-01T23:59:59.000Z

251

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network (OSTI)

simulations in different climate zones for OH and UFAD.different Californian climate zones. Annual energy con-that of OH across all climate zones. UFAD has approximately

Yu, Jong Keun

2010-01-01T23:59:59.000Z

252

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Cooling Unitil Energy Systems Unitil - Residential Energy Efficiency Programs New...

253

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Cooling Unitil Energy Systems Unitil - Commercial and Industrial Energy Efficiency...

254

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Small Town Energy Program SMECO - Residential Energy Efficiency Rebate Program Maryland...

255

Energy efficient data centers  

E-Print Network (OSTI)

2 Manage airflow to reduce energy required for cooling andallocate resources 39 Create an Energy Star standard forservers a: Low Energy Ventilation and

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

256

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Singer. Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation., 2012. Hu, Tian, Brett C. Singer, and Jennifer M....

257

Study of natural ventilation design by integrating the multi-zone model with CFD simulation  

E-Print Network (OSTI)

Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately ...

Tan, Gang, 1974-

2005-01-01T23:59:59.000Z

258

Early Morning Ventilation of a Gaseous Tracer from a Mountain Valley  

Science Conference Proceedings (OSTI)

An important component of a joint Environmental Protection AgencyDepartment of Energy field experiment in Brush Creek Valley, Colorado in JulyAugust 1982, was an aircraft sampling task to help verify the early morning ventilation of a gaseous ...

Montie M. Orgill

1989-07-01T23:59:59.000Z

259

Tax Increment Financing (TIF) Guarantee Program (Pennsylvania) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TIF) Guarantee Program (Pennsylvania) TIF) Guarantee Program (Pennsylvania) Tax Increment Financing (TIF) Guarantee Program (Pennsylvania) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Commonwealth Financing Authority (CFA) State Pennsylvania Program Type Loan Program Provider Department of Community and Economic Development The Tax Increment Financing (TIF) Guarantee Program provides credit enhancement to improve market access and lower capital costs through loan guarantees to bond issuers to assist in the development and revitalization

260

Federal Energy Management Program: New and Underutilized Heating,  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating, Ventilation, and Air Conditioning Technologies to Heating, Ventilation, and Air Conditioning Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Heating, Ventilation, and Air Conditioning Technologies on Digg Find More places to share Federal Energy Management Program: New and

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

E-Print Network (OSTI)

hybrid incremental cost estimates were developed based onsizing . Final incremental cost estimates ranged from $1,786Energy Savings Estimates and Cost Benefit Calculations for

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.

2003-01-01T23:59:59.000Z

262

An Incremental and Nonbinary CSP Solver: The Hyperpolyhedron Search Algorithm  

E-Print Network (OSTI)

An Incremental and Non­binary CSP Solver: The Hyperpolyhedron Search Algorithm Miguel A. Salido and scheduling can be expressed in a natural way as a Constraint Satisfaction Problem (CSP). It is well known that a non­binary CSP can be transformed into an equivalent binary CSP using some of the actual techniques

Rossi, Francesca

263

AgentCubes: Incremental 3D end-user development  

Science Conference Proceedings (OSTI)

3D game development can be an enticing way to attract K-12 students to computer science, but designing and programming 3D games is far from trivial. Students need to achieve a certain level of 3D fluency in modeling, animation, and programming to be ... Keywords: Computational thinking, End-user development, Game design, IT fluency, Incremental 3D, Visual programming

Andri Ioannidou; Alexander Repenning; David C. Webb

2009-08-01T23:59:59.000Z

264

Raging incrementalism: harnessing change with open-source software  

Science Conference Proceedings (OSTI)

Change is a bitter fact of life for system developers and, to a large extent, conventional practices are aimed at arresting change and minimizing its effects. We take the opposite view and are exploring system engineering practices that harness the forces ... Keywords: open source, raging incrementalism, representational state transfer

John C. Georgas; Michael M. Gorlick; Richard N. Taylor

2005-07-01T23:59:59.000Z

265

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

266

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH  

E-Print Network (OSTI)

Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, cooling and ventilating commercial buildings represents 29 percent of their total onsite energy use

267

Heating, Ventilation and Air Conditioning Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presented By: WALTER E. JOHNSTON, PE Presented By: WALTER E. JOHNSTON, PE CEM, CEA, CLEP, CDSM, CPE Ventilation and Air Conditioning (HVAC) system is to provide and maintain a comfortable environment within a building for the occupants or for the process being conducted Many HVAC systems were not designed with energy efficiency as one of the design factors 3 Air Air is the major conductor of heat. Lack of heat = air conditioning OR 4 Btu - Amount of heat required to raise one pound of water 1 F = 0.252 KgCal 1 Pound of Water = About 1 Pint of Water ~ 1 Large Glass 1 Kitchen Match Basics of Air Conditioning = 1 Btu 5 = 6 Low Cost Cooling Unit 7 8 Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement

268

Energy manager design for microgrids  

E-Print Network (OSTI)

subsequent system energy costs for that time period. Figurethe incremental cost of energy at a given time will not besystem over time, including accumulated energy costs, device

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

269

Confinement Ventilation and Process Gas Treatment Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1168-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-1168-2013 INTENTIONALLY BLANK iv DOE-STD-1168-2013 TABLE OF CONTENTS ACKNOWLEDGMENT...................................................................................................................vii

270

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet)  

SciTech Connect

The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley Habitat for Humanity (MVHfH) partnered with U.S. Department of Energy Building America team Building Science Corporation (BSC) to provide high performance affordable housing for 10 families in the retrofit of an existing mass masonry building (a former convent). The original ventilation design for the project was provided by a local engineer and consisted of a single large heat recovery ventilator (HRV) located in a mechanical room in the basement with a centralized duct system providing supply air to the main living space and exhausting stale air from the single bathroom in each apartment. This design was deemed to be far too costly to install and operate for several reasons: the large central HRV was oversized and the specified flows to each apartment were much higher than the ASHRAE 62.2 rate; an extensive system of ductwork, smoke and fire dampers, and duct chases were specified; ductwork required a significant area of dropped ceilings; and the system lacked individual ventilation control in the apartments

Metzger, C.; Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-11-01T23:59:59.000Z

271

Available Technologies: Ventilation Controller for Improved Indoor ...  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing ...

272

Case Study 1 - Ventilation in Manufactured Houses  

Science Conference Proceedings (OSTI)

... Ventilation in Manufactured Houses. ... fan operation, an outdoor air intake duct installed on the forced-air return, and whole house exhaust with and ...

273

Summary of human responses to ventilation  

E-Print Network (OSTI)

coils of commercial air-conditioning systems. Proceedings ofrefrigerating and air-conditioning engineers, inc. pp 601-for ventilation and air-conditioning systems - offices and

Seppanen, Olli A.; Fisk, William J.

2004-01-01T23:59:59.000Z

274

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

275

Indoor Air Quality & Ventilation Group Staff Directory  

Science Conference Proceedings (OSTI)

Indoor Air Quality and Ventilation Group Staff. Staff Listing. Dr. Andrew K. Persily, Leader, Supervisory Mechanical Engineer, 301-975-6418. ...

2013-08-30T23:59:59.000Z

276

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

277

Does Mixing Make Residential Ventilation More Effective?  

E-Print Network (OSTI)

Does Mixing Make Residential Ventilation More Effective? Maxmanufacturer, or otherwise, does not necessarily constitutethe University of California. Does Mixing Make Residential

Sherman, Max

2011-01-01T23:59:59.000Z

278

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... The actual health, comfort, and productivity impacts of mechanical ventilation ... p strat i csp o ... in California and elsewhere is the impact of ambient air ...

2011-01-11T23:59:59.000Z

279

Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions  

E-Print Network (OSTI)

Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated microclimate. Data collected at the University of Florida Energy Park show the attic environment of asphalt shingled roofs to be typically hotter than the outdoor conditions, but when properly ventilated sustains a much lower relative humidity. The hot, humid regions of the United States can utilize this internally convective, exchanging air mass to provide stable moisture levels within attic spaces. Positioning the buildings primary boundary at the ceiling deck allows for utilization of this buffer climate to minimize moisture trapping in insulation and maximize the insulations thermal benefits. This investigation concludes the conditions in a ventilated attic are stable through seasonal changes and promotes cost effective, energy efficient climate control of unconditioned spaces in hot, humid regions.

Mooney, B. L.; Porter, W. A.

2010-08-01T23:59:59.000Z

280

Assessment of Pollutant Spread from a Building Basement with three Ventilation Systems  

E-Print Network (OSTI)

Ventilation aims at providing a sufficient air renewal for ensuring a good indoor air quality (IAQ), yet building energy policies are leading to adapting various ventilation strategies minimising energy losses through air renewal. A recent IAQ evaluation campaign in French dwellings shows important pollution of living spaces by VOCs such as formaldehyde, acetaldehyde or hexanal, particularly in buildings equipped with a garage. Besides, radon emission from soil is a subject of concern in many countries. Several studies are done to understand its release mode and deal with the spread of this carcinogen gas. This paper aims to experimentally assess a contaminant spread from a house basement using mechanical exhaust and balanced ventilation systems, and natural ventilation.

Koffi, Juslin

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Commissioning Residential Ventilation Systems: A Combined Assessment of  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Residential Ventilation Commissioning Residential Ventilation Systems: A Combined Assessment of Energy and Air Quality Potential Values William J.N. Turner, Jennifer M. Logue, Craig P. Wray Environmental Energy Technologies Division July 2012 LBNL-5969E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

282

Association of Classroom Ventilation with Reduced Illness Absence: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Association of Classroom Ventilation with Reduced Illness Absence: A Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6259E Year of Publication 2013 Authors Mendell, Mark J., Ekaterina Eliseeva, Morris G. Davies, Michael Spears, Agnes B. Lobscheid, William J. Fisk, and Michael G. Apte Journal Indoor Air Keywords carbon dioxide, Illness absence, indoor environmental quality, schools, ventilation Abstract Limited evidence associates inadequate classroom ventilation rates (VRs) with increased illness absence (IA). We investigated relationships between VRs and IA in Californiaelementary schools over two school years in 162 3rd-5th grade classrooms in 28 schools in three school districts: South Coast (SC), Bay Area (BA), and Central Valley (CV). We estimated relationships between daily IA and VR (estimated from real-time carbon dioxide) in zero-inflated negative binomial models. We also compared IA benefits and energy costs of increased VRs. All school districts had median VRs below the 7.1 L/sec-person California standard. For each additional 1 L/sec-person of VR, IA was reduced significantly (p<0.05) in models for combined districts (-1.6%) and for SC (-1.2%), and non-significantly for districts providing less data: BA (-1.5%) and CV (-1.0%). Assuming associations were causal and generalizable, increasing classroom VRs from the California average (4 L/sec-person) to the State standard would decrease IA by 3.4%, increase attendance-linked funding to schools by $33 million annually, and increase costs only $4 million. Further increasing VRs would provide additional benefits. These findings, while requiring confirmation, suggest that increasing classroom VRs above the State

283

Remote plunger removal device for small-scale incremental pressing  

SciTech Connect

Small-scale pressing of high explosives (HE) at Los Alamos National Laboratory (LANL) and elsewhere is routinely performed using pneumatic presses. Blast shields provide protection to the operator during the pressing procedure, but safety of the operator is a concern during removal of the plunger, which is currently performed manually. To minimize this risk, very high tolerances between the plunger and the die are required. These tolerances are often very costly, especially in the case of long, relatively narrow dies. The safety issue is an even greater concern with incremental pressing in which cleaning the die between increments is difficult or impossible. To better protect press operators, a device has been designed and constructed to allow remote plunger removal in a standard HE press. In this report the authors describe this modified press that allows remote removal of the plunger.

Burnside, N.J.; Son, S.F.; Asay, B.W.

1997-09-01T23:59:59.000Z

284

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

32%), and as ventilation rate increases from 10 to 25 L/s-0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

285

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

typical existing house. Designed passive ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses."House Ventilation Rates Local Exhaust Rates Air Distribution and Duct Leakage Infiltration Windows and Passive

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

286

Microsoft Word - Draft Pier Final Report DCV and Classroom ventilation 05-11-12  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Controlled Ventilation and Classroom Ventilation William J. Fisk, Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, Douglas P. Sullivan Indoor Environment Group Energy Analysis and Environmental Impacts Department Lawrence Berkeley National Laboratory Berkeley, CA 94720 May 2012 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02- 05CH11231. LBNL-6258E Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither

287

Commissioning Ventilated Containment Systems in the Laboratory  

SciTech Connect

This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

Not Available

2008-08-01T23:59:59.000Z

288

Preoperational test report, primary ventilation system  

SciTech Connect

This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

289

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

290

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work  

NLE Websites -- All DOE Office Websites (Extended Search)

Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Title Changing Ventilation Rates in U.S. Offices: Implications for Health, Work Performance, Energy, and Associated Economics Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-5035E Year of Publication 2012 Authors Fisk, William J., Douglas R. Black, and Gregory Brunner Journal Building and Environment Volume 47 Pagination 368-372 Date Published 01/2012 Keywords cost-benefit analysis, economizer, health, office, ventilation rate, work performance Abstract This paper provides quantitative estimates of benefits and costs of providing different amounts of outdoor air ventilation in U.S. offices. For four scenarios that modify ventilation rates, we estimated changes in sick building syndrome (SBS) symptoms, work performance, short-term absence, and building energy consumption. The estimated annual economic benefits were $13 billion from increasing minimum ventilation rates (VRs) from 8 to 10 L/s per person, $38 billion from increasing minimum VRs from 8 to 15 L/s per person, and $33 billion from increasing VRs by adding outdoor air economizers for the 50% of the office floor area that currently lacks economizers. The estimated $0.04 billion in annual energy-related benefits of decreasing minimum VRs from 8 to 6.5 L/s per person are very small compared to the projected annual costs of $12 billion. Benefits of increasing minimum VRs far exceeded energy costs while adding economizers yielded health, performance, and absence benefits with energy savings.

291

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

292

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

293

Association of Classroom Ventilation with Reduced Illness Absence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools Title Association of Classroom Ventilation with Reduced Illness Absence: A...

294

Why We Ventilate Our Houses - An Historical Look  

NLE Websites -- All DOE Office Websites (Extended Search)

The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and...

295

Measuring Residential Ventilation System Airflows: Part 2 - Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Residential Ventilation System Airflows: Part 2 - Field Evaluation of Airflow Meter Devices and System Flow Verification Title Measuring Residential Ventilation System...

296

Modeling indoor exposures to VOCs and SVOCs as ventilation rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Title Modeling indoor exposures to VOCs and SVOCs as ventilation rates vary Publication Type Conference Paper...

297

Report on Applicability of Residential Ventilation Standards in California  

E-Print Network (OSTI)

but also because passive, whole-house ventilation systemsPassive Ventilation by Constant Area Vents to Maintain Indoor Air Quality in Houses",

Sherman, Max H.; McWilliam, Jennifer A.

2005-01-01T23:59:59.000Z

298

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... Incremental costs of higher efficiency can vary by appliance

299

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

300

The Potential for Wind Induced Ventilation to Meet Occupant Comfort Conditions  

E-Print Network (OSTI)

This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available wind speed can be used to meet occupant comfort conditions. By calculating the change in enthalpy produced by a typical residential air conditioner during those hours when an occupant is uncomfortable, we were able to estimate the impact of natural ventilation on building cooling load. The graphic presentation of the results allows a designer to determine the potential energy savings of increasing the ventilation air flow rate as well as the orientation of building openings that will maximize ventilation cooling of the building occupants.

Byrne, S. J.; Huang, Y. J.; Ritschard, R. L.; Foley, D. M.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural ventilation: it's as easy as opening the windows, or is it  

DOE Green Energy (OSTI)

The research consisted of an evaluation of the existing technologies available for passive cooling with an emphasis on strategies related to the use of natural ventilation. A preliminary data base for the study was established by three major efforts: 1. An extensive literature search of the architectural press was undertaken to ascertain the degree to which passive cooling strategies in general and natural ventilation in particular are designed into buildings at the present time. 2. An investigation of existing building stock profiles was undertaken to identify the existing and potential obstacles or advantages to the implementation of natural ventilation as a passive cooling strategy. The EIA Nonresidential Buildings Energy Consumption Survey and two previous PNL studies were reviewed. 3. Components 1 and 2 were followed up with telephone interviews and site visits with the architects, building owners and operators of selected buildings from 1 and 2 above to gain more specific insights into the problems and pleasures typically associated with natural ventilation.

Siebein, G.W.

1984-10-01T23:59:59.000Z

302

ASHRAE's Residential Ventilation Standard: Exegesis of Proposed Standard 62.2  

E-Print Network (OSTI)

In February 2000, ASHRAE's Standard Project Committee on "Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings", SPC 62.2P7 recommended ASHRAE's first complete standard on residential ventilation for public review. The standard is an attempt by the Society to address concerns over indoor air quality in dwellings and to set minimum standards that would allow for energy efficiency measures to be evaluated. The standard has requirements for whole-house ventilation, local exhaust ventilation, and source control. In addition to code-intended requirements, the standard also contains guidance information for the designer and/or user of the standard. This report summarizes the draft standard and attempts to address questions and concerns that those potentially affected by the standard might have. This report may also be of use to those considering public review comments on the draft standard.

Sherman, M.

2000-01-01T23:59:59.000Z

303

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Max Sherman (THIS SEMINAR TO BE RESCHEDULED.) Sustainability of the built-environment must be achieved in parallel with the sustenance of occupants' health and comfort. Actions to conserve energy and resources require much forethought and careful consideration due to possible consequences on the human aspects. Thus, many extensive works in the recent decades have focused on identifying the associations between indoor environment and human responses. Results have shown moderate to strong implications of thermal and indoor air quality factors on the prevalence and intensity of sick

304

Generation of pornographic blacklist and its incremental update using an inverse chi-square based method  

Science Conference Proceedings (OSTI)

This study presented an inverse chi-square based web content classification system that works along with an incremental update mechanism for incremental generation of pornographic blacklist. The proposed system, as indicated from the experimental results, ... Keywords: Incremental update, Inverse chi-square function, Pornographic blacklist, Web content classification

Lung-Hao Lee; Cheng-Jye Luh

2008-09-01T23:59:59.000Z

305

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Windows, Doors, & Skylights Idaho Tax Commission Residential Alternative Energy Tax Deduction...

306

Residential ventilation standards scoping study  

E-Print Network (OSTI)

of new residences. The Hawaii Model Energy Code (HMEC) is aHawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Residential Energy Code

McKone, Thomas E.; Sherman, Max H.

2003-01-01T23:59:59.000Z

307

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

Science Conference Proceedings (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

308

Floor-supply displacement ventilation system  

E-Print Network (OSTI)

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

309

Midlevel Ventilation's Constraint on Tropical Cyclone Intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclones intensity. An ...

Tang, Brian Hong-An

310

A Ventilation Index for Tropical Cyclones  

E-Print Network (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of ...

Tang, Brian

311

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.of Ventilation and Air Conditioning: Is CERN up to Date With

Walker, Iain

2013-01-01T23:59:59.000Z

312

Cooling airflow design tool for displacement ventilation.  

E-Print Network (OSTI)

withEquation 7.4oftheASHRAEDesignGuidelinesforefficiency air diffusers. The ASHRAE method does not takeVentilation Atlanta: ASHRAE. Jiang, Z. , Chen, Q. , and

Schiavon, Stefano; Bauman, Fred

2009-01-01T23:59:59.000Z

313

Ventilation of the Subtropical North Pacific  

Science Conference Proceedings (OSTI)

The ventilation of the subtropical North Pacific is studied using a simple analytical model. The model is forced by winter mixed layer density and depth calculated from the Levitus climatology and wind stress curl from the Hellerman and ...

Rui Xin Huang; Sarah Russell

1994-12-01T23:59:59.000Z

314

Midlevel ventilation's constraint on tropical cyclone intensity  

E-Print Network (OSTI)

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a TC's intensity. An idealized ...

Tang, Brian Hong-An

2010-01-01T23:59:59.000Z

315

Chlorofluorocarbon Constraints on North Atlantic Ventilation  

Science Conference Proceedings (OSTI)

The North Atlantic Ocean vigorously ventilates the ocean interior. Thermocline and deep water masses are exposed to atmospheric contact there and are sequestered in two principal classes: Subtropical Mode Water (STMW: 26.5 ? ?? ? 26.8) and ...

Thomas W. N. Haine; Kelvin J. Richards; Yanli Jia

2003-08-01T23:59:59.000Z

316

Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions  

E-Print Network (OSTI)

As new equipment, the channel wheel fresh air ventilator has become increasingly popular in recent years. However, when such equipment is operated under low ambient temperature in the freezing area in winter, the formation of frost on the outdoor waste air surface becomes problematic, leading to the degradation of the channel wheel fresh air ventilator's performance or even the shutdown of equipment. Therefore, it is necessary to have a detailed investigation on the operational characteristics of the channel wheel fresh air ventilator under frosting in order to guide its application. This paper first reports on the development of a detailed model for the channel wheel heat exchanger, which is the core part of the channel wheel fresh air ventilator under frosting conditions. The model developed, first seen in open literature, consists of a frosting sub-model and a channel wheel heat exchanger sub-model. This is followed by reporting an evaluation of the operational characteristics of a frosted channel wheel heat exchanger under different ambient conditions using the model developed. These include frost formation on the surface of the channel wheel heat exchanger, and impacts on the operational performance of the channel wheel fresh air ventilator. Furthermore, the interval of defrosting is obtained, which provides the basis for the adoption of effective defrosting measures, and thus increasing the channel wheel fresh air ventilator's energy efficiency and operating reliability.

Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

2006-01-01T23:59:59.000Z

317

ACT sup 2 project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building's performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building's performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

318

ACT{sup 2} project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building`s performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building`s performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

319

Shut-off mechanism for ventilation hose  

DOE Patents (OSTI)

A shut-off mechanism to provide automatic closure of a ventilation hose when the operation of drawing air through the hose is terminated. The mechanism includes a tube of light gauge metal inside of which are mounted a plurality of louver doors positioned in the closed position due to gravity when the ventilation unit is not operational. When the unit is operational, air flowing into the unit maintains the doors in the open position. 5 figs.

Huyett, J.D.; Meskanick, G.R.

1989-12-07T23:59:59.000Z

320

Tracer dating and ocean ventilation  

E-Print Network (OSTI)

The interpretation of transient tracer observations depends on difcult to obtain information on the evolution in time of the tracer boundary conditions and interior distributions. Recent studies have attempted to circumvent this problem by making use of a derived quantity, age, based on the simultaneous distribution of two complementary tracers, such as tritium and its daughter, helium 3. The age is defined with reference to the surface such that the boundary condition takes on a constant value of zero. We use a two-dimensional model to explore the circumstances under which such a combination of conservation equations for two complementary tracers can lead to a cancellation of the time derivative terms. An interesting aspect of this approach is that mixing can serve as a source or sink of tracer based age. We define an idealized "ventilation age tracer " that is conservative with respect to mixing, and we explore how its behavior compares with that of the tracer-based ages over a range of advective and diffusive parameters. 1.

G. Thiele; J. L. Sarmiento

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Pretest Predictions for Phase II Ventilation Tests  

SciTech Connect

The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M&O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M&O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M&O 2000a).

Yiming Sun

2001-09-19T23:59:59.000Z

322

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

infrastructure and lower maintenance costs; for example, through improved heating and cooling systems, energy-efficient windows and roofs, and better ventilation. These energy...

323

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Energy Efficiency and Conservation Block Grant: Electric and Hybrid Vehicle Incremental Cost Recovery CX(s) Applied: B5.1 Date: 03222011 Location(s):...

324

Heating, ventilation and air conditioning systems  

DOE Green Energy (OSTI)

A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

Kyle, D.M. [Oak Ridge National Lab., TN (United States); Sullivan, R.A. [Dept. of Energy, Washington, DC (United States)

1993-02-01T23:59:59.000Z

325

Formadehyde in New Homes: Ventilation vs. Source Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at at Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Austin, Texas Formaldehyde in New Homes --- Ventilation vs. Source Control Brett C. Singer and Henry Willem Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Acknowledgments * Funding - U.S. Department of Energy - Building America Program - U.S. EPA - Indoor Environments Division - U.S. HUD - Office of Healthy Homes and Lead Hazard Control - Cal. Energy Commission Public Interest Environmental Research * Technical Contributions - Fraunhofer - Ibacos - IEE-SF * LBNL Team - Sherman, Hotchi, Russell, Stratton, and Others Background 1  Formaldehyde is an irritant and a carcinogen  Odor threshold: about 800 ppb  Widely varying health standards  US HUD (8-h): 400 ppb

326

A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

This paper focuses on the use of multi-objective evolutionary algorithms to develop smartly tuned fuzzy logic controllers dedicated to the control of heating, ventilating and air conditioning systems, energy performance, stability and indoor comfort ... Keywords: Fuzzy logic controllers, Genetic tuning, HVAC systems, Heating, ventilating, and air conditioning systems, Linguistic 2-tuples representation, Multi-objective evolutionary algorithms, Rule selection

Mara Jos Gacto; Rafael Alcal; Francisco Herrera

2012-03-01T23:59:59.000Z

327

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the building, and improvements to thermal envelope, power, heating, ventilation and cooling systems, lighting, and energy efficiency HVAC equipment are generally eligible....

328

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

329

WASTE TREATMENT BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Treatment Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Treatment Building (WTB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for personnel comfort and equipment operation, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WTB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement area ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination with the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WTB. The Waste Treatment Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits, The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Treatment Building Ventilation System interfaces with the Waste Treatment Building System by being located in the WTB, and by maintaining specific pressure, temperature, and humidity environments within the building. The system also depends on the WTB for normal electric power supply and the required supply of water for heating, cooling, and humidification. Interface with the Waste Treatment Building System includes the WTB fire protection subsystem for detection of fire and smoke. The Waste Treatment Building Ventilation System interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air and key areas within the WTB, the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of system operations, and the Site Generated Radiological Waste Handling System and Site Generated Hazardous, Non-Hazardous & Sanitary Waste Disposal System for routing of pretreated toxic, corrosive, and radiologically contaminated effluent from process equipment to the HEPA filter exhaust ductwork and air-cleaning unit.

P.A. Kumar

2000-06-22T23:59:59.000Z

330

Evaluation of Methodologies for Real-Time Incremental Heat Rate Determination  

Science Conference Proceedings (OSTI)

Reduced staffing, tighter budgets, ISOs, and increased competition have created the need for maintaining up-to-date incremental heat rate information. Combining recent advances in analytics with modern performance monitoring packages and data historians may provide the capability for closer-to-real-time incremental heat rate determination. Many power generating companies either rely on historic data or slow and labor intensive testing to establish incremental heat rate curves. Those curves are ...

2013-11-26T23:59:59.000Z

331

Commercial Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey ... space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The market segment ...

332

Building Energy Software Tools Directory: DesignBuilder  

NLE Websites -- All DOE Office Websites (Extended Search)

naturally ventilated buildings, buildings with daylighting control, double facades, advanced solar shading strategies etc. Screen Shots Keywords Building energy simulation,...

333

A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems  

Science Conference Proceedings (OSTI)

In this paper, we propose the use of weighted linguistic fuzzy rules in combination with a rule selection process to develop accurate fuzzy logic controllers dedicated to the intelligent control of heating, ventilating and air conditioning systems concerning ... Keywords: BEMS, building energy management system, FLC, fuzzy logic controller, Fuzzy logic controllers, GA, genetic algorithm, Genetic algorithms, HVAC systems, HVAC, heating, ventilating, and air conditioning, KB, knowledge base, PMV, predicted mean vote index for thermal comfort, Rule selection, Weighted fuzzy rules

Rafael Alcal; Jorge Casillas; Oscar Cordn; Antonio Gonzlez; Francisco Herrera

2005-04-01T23:59:59.000Z

334

Quantitative troubleshooting of industrial exhaust ventilation systems  

SciTech Connect

This article proposes two troubleshooting tools that may allow precise and accurate assessment of changes to ventilation systems of any type. Both are useful in discovering and quantifying most modifications that affect the distribution of airflows among the branches and static pressures throughout the system. The approaches are derived from energy balance considerations, using power loss coefficients (X) computed for any contiguous section of the system from the duct velocities and static pressures measured at that section`s inlets and outlets. The value of X for a given portion of the system should be nearly constant with changes in airflow and with modifications to other portions of the system. Responsiveness to local modifications and insensitivity to changes elsewhere in the system - including gross changes in fan performance - make X coefficients a valuable troubleshooting tool. Static pressure ratios within a given branch are functionally related to ratios of X coefficients. Therefore, they vary with modifications to the branch and are highly insensitive to changes outside that branch. Unlike X coefficients, determination of static pressure ratios does not require velocity traverses, making them faster and easier to determine than X values. On the other hand, values of X are more universally applicable and have direct physical significance. Use of both static pressure ratios and X coefficients are described in a suggested troubleshooting procedure. Systematic measurement errors have surprisingly little impact on the usefulness of values of X or static pressure ratios. The major impediment to using either tool is the necessity for {open_quotes}baseline{close_quotes} measurements, which are often unavailable. On the other hand, a baseline for future comparisons can be created piecemeal, beginning at any time and extending over any period of time. 11 refs., 8 figs., 8 tabs.

Guffey, S.E. [Univ. of Washington, Seattle, WA (United States)

1994-04-01T23:59:59.000Z

335

Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs  

E-Print Network (OSTI)

incremental cost of energy efficiency projects. Availabilitywere acquiring cost-effective energy efficiency resources or2008. Understanding Cost-Effectiveness of Energy Efficiency

Goldman, Charles A.

2011-01-01T23:59:59.000Z

336

Controllability and invariance of monotone systems for robust ventilation automation in buildings  

E-Print Network (OSTI)

[2] and control [3] of Heating, Ventilating and Air Conditioning (HVAC) systems leads to an improved on these matters [4]. Various paths have already been explored for the control of HVAC systems in intelligent and energy saving [7], a model-predictive strategy [8], or a fuzzy logic controller [9]. The notion of Robust

337

Breathing HRV by the Concept of AC Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

Breathing HRV by the Concept of AC Ventilation Breathing HRV by the Concept of AC Ventilation Speaker(s): Hwataik Han Date: July 10, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Thomas McKone Heat recovery ventilators are frequently used to save heating/cooling loads of buildings for ventilation. There are several types of HRV's, including a parallel plate type, a rotary type, a capillary type, and a heat pipe type. The breathing HRV is a heat recovery ventilator of a new kind using the concept of alternating-current ventilation. The AC ventilation is the ventilation with the airflow directions reversed periodically. It has an advantage of using a single duct system, for both supply and exhaust purposes. In order to develop a breathing HRV system, the thermal recovery performance should be investigated depending on many parameters, such as

338

Natural ventilation : design for suburban houses in Thailand  

E-Print Network (OSTI)

Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such ...

Tantasavasdi, Chalermwat, 1971-

1998-01-01T23:59:59.000Z

339

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

at two outdoor air supply rates." Indoor Air 14 Suppl 8: 7-Miettinen (1995). "Ventilation rate in office buildings andAssociation of ventilation rates and CO 2 concentrations

Fisk, William J.

2009-01-01T23:59:59.000Z

340

Spot Ventilation: Source Control to Improve Indoor Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Whole-House Ventilation Systems: Improved Control of Air Quality  

SciTech Connect

Fact sheet for homeowners and contractors on how to employ spot ventilation in the home for comfort and safety.

2002-12-01T23:59:59.000Z

342

An improved incremental training algorithm for support vector machines using active query  

Science Conference Proceedings (OSTI)

In this paper, we present an improved incremental training algorithm for support vector machines (SVMs). Instead of selecting training samples randomly, we divide them into groups and apply the k-means clustering algorithm to collect the initial set ... Keywords: Active learning, Clustering algorithm, Incremental training, Pattern classification, Support vector machine

Shouxian Cheng; Frank Y. Shih

2007-03-01T23:59:59.000Z

343

Bi-parameter incremental unknowns ADI iterative methods for elliptic problems  

Science Conference Proceedings (OSTI)

Bi-parameter incremental unknowns (IU) alternating directional implicit (ADI) iterative methods are proposed for solving elliptic problems. Condition numbers of the coefficient matrices for these iterative schemes are carefully estimated. Theoretical ... Keywords: Bi-parameter ADI iterative method, Condition number, Convergence analysis, Incremental unknowns

Aili Yang; Yujiang Wu; Yongqing Wu; Dawei Ren

2012-07-01T23:59:59.000Z

344

Fuzzy incremental control algorithm of loop heat pipe cooling system for spacecraft applications  

Science Conference Proceedings (OSTI)

Reliable and high precision thermal control technologies are essential for the safe flight of advanced spacecraft. A fuzzy incremental control strategy is proposed for control of an LHP space cooling system comprising a loop heat pipe and a variable ... Keywords: Fuzzy incremental control, Loop heat pipe, Modeling and simulation, Space cooling system

Su-Jun Dong; Yun-Ze Li; Jin Wang; Jun Wang

2012-09-01T23:59:59.000Z

345

Incorporating site-level knowledge for incremental crawling of web forums: a list-wise strategy  

Science Conference Proceedings (OSTI)

We study in this paper the problem of incremental crawling of web forums, which is a very fundamental yet challenging step in many web applications. Traditional approaches mainly focus on scheduling the revisiting strategy of each individual page. However, ... Keywords: incremental crawling, sitemap, web forum

Jiang-Ming Yang; Rui Cai; Chunsong Wang; Hua Huang; Lei Zhang; Wei-Ying Ma

2009-06-01T23:59:59.000Z

346

An incremental deployment algorithm for wireless sensor networks using one or multiple autonomous agents  

Science Conference Proceedings (OSTI)

The paper studies the deployment problem of wireless sensor networks using one or multiple autonomous agents. An online incremental algorithm based on Voronoi partition is proposed to solve the problem, for which each agent deploys sensors one-at-a-time ... Keywords: Autonomous agent, Incremental deployment, Sensor network

Zhiyun Lin; Sijian Zhang; Gangfeng Yan

2013-01-01T23:59:59.000Z

347

Building Energy Software Tools Directory: Be06  

NLE Websites -- All DOE Office Websites (Extended Search)

ventilation system, heating installation and energy supply including alternatives as solar heating, solar power and heat pumps. The energy supply needed to the building is...

348

A New Ventilation System Integrates Total Energy Recovery, Conventional Cooling and a Novel 'Passive' Dehumidification Wheel to Mitigate the Energy, Humidity Control and First Cost Concerns Often Raised when Designing for ASHRAE Standard 62-1999 Compliance  

E-Print Network (OSTI)

This paper introduces a novel, ''passive" desiccant based outdoor air preconditioning system (PDH) that is shown to be significantly more energy-efficient than all known alternatives, and has the unique ability to dehumidify outdoor air streams to very low dewpoints unattainable with conventional cooling approaches. The system allows for precise control of the indoor space humidity while delivering high quantities of outdoor air, at both peak and part load conditions, and during both occupied and unoccupied modes. Low operating cost, reasonable first cost and a significant reduction in cooling plant capacity requirements provide a life cycle cost that is substantially less than that of more conventional system approaches.

Fischer, J. C.

2000-01-01T23:59:59.000Z

349

A Ventilation Index for Tropical Cyclones  

Science Conference Proceedings (OSTI)

An important environmental control of both tropical cyclone intensity and genesis is vertical wind shear. One hypothesized pathway by which vertical shear affects tropical cyclones is midlevel ventilationor the flux of low-entropy air into the center of ...

Brian Tang; Kerry Emanuel

2012-12-01T23:59:59.000Z

350

Hysteresis effects in hybrid building ventilation  

E-Print Network (OSTI)

radiation, external wind forcing and internal heat gains e.g. due to electrical equipment or building chloride, etc. Developing world: By-products of cooking or heating fires Ghiaus & Allard (2005) · Exposure-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filled

Flynn, Morris R.

351

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network (OSTI)

Radiant cooling is credited with improving energy efficiency and enhancing the comfort level as an alternative method of space cooling in mild and dry climates, according to recent research. Since radiant cooling panels lack the capability to remove latent heat, they normally are used in conjunction with an independent ventilation system, which is capable of decoupling the space sensible and latent loads. Condensation concerns limit the application of radiant cooling. This paper studies the dehumidification processes of solid desiccant systems and investigates the factors that affect the humidity levels of a radiantly cooled space. Hourly indoor humidity is simulated at eight different operating conditions in a radiantly cooled test-bed office. The simulation results show that infiltration and ventilation flow rates are the main factors affecting indoor humidity level and energy consumption in a radiantly cooled space with relatively constant occupancy. It is found that condensation is hard to control in a leaky office operated with the required ventilation rate. Slightly pressurizing the space is recommended for radiant cooling. The energy consumption simulation shows that a passive desiccant wheel can recover about 50% of the ventilation load.

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

352

SY Tank Farm ventilation isolation option risk assessment report  

DOE Green Energy (OSTI)

The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

Powers, T.B.; Morales, S.D.

1994-03-01T23:59:59.000Z

353

Incremental cost analysis of advanced concept CAES systems  

SciTech Connect

The costs of compressed air energy storage (CAES) systems using thermal energy storage (TES) are compared to the costs of CAES systems without TES and simple cycle gas turbine systems. Comparisons are made in terms of the system energy costs levelized over the operating life of the systems. These are in 1985 price levels which is the assumed first year of operation for the systems.

Knutsen, C.A.

1979-09-01T23:59:59.000Z

354

Incremental costs of higher efficiency can vary by appliance ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... consumers can also enter cost and performance attributes of specific models they are considering.

355

Incremental costs of higher efficiency can vary by ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... consumers can also enter cost and performance attributes of specific models they are ...

356

Street as structure : an approach to the incremental development of Fort Point Channel  

E-Print Network (OSTI)

This work seeks to create an approach to the incremental development of a warehouse district in the City of Boston. The focus of the thesis is on the generation of rules and an implementation process that will organize the ...

Powers, Darleen D

1980-01-01T23:59:59.000Z

357

Dynamic Rotor Deformation and Vibration Monitoring Using a Non-Incremental Laser Doppler Distance Sensor  

Science Conference Proceedings (OSTI)

Monitoring rotor deformations and vibrations dynamically is an important task for improving the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently a high measurement rate and high accuracy, which can not be fulfilled by most commercially available sensors. To solve this problem, we developed a non-incremental laser Doppler distance sensor (LDDS), which is able to measure simultaneously the in-plane velocity and the out-of-plane position of moving rough solid objects with micrometer precision. In addition, this sensor concurrently offers a high temporal resolution in the microsecond range, because its position uncertainty is in principle independent of the object velocity in contrast to conventional distance sensors, which is a unique feature of the LDDS. Consequently, this novel sensor enables precise and dynamic in-process deformation and vibration measurements on rotating objects, such as turbo machine rotors, even at very high speed. In order to evidence the capability of the LDDS, measurements of rotor deformations (radial expansion), vibrations and wobbling motions are presented at up to 50,000 rpm rotor speed.

Pfister, Thorsten; Guenther, Philipp; Dreier, Florian; Czarske, Juergen [Technische Universitaet Dresden, Faculty of Electrical Engineering and Information Technology, Laboratory for Measurement and Testing Techniques, Helmholtzstrasse 18, D-01062 Dresden (Germany)

2010-05-28T23:59:59.000Z

358

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

359

Residential pollutants and ventilation strategies: Moisture and combustion products  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, moisture and combustion pollutants, are examined. A companion paper examines volatile organic compounds and radon. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. Moisture control puts significant restrictions on a ventilation system. The system should function continuously (averaged over days) and distribute ventilation throughout the habitable space. Combustion sources require task ventilation that functions reliably.

Hadlich, D.E.; Grimsrud, D.T.

1999-07-01T23:59:59.000Z

360

Transpired Collectors (Solar Preheaters for Outdoor Ventilation Air)--023385m FTA collectors  

Energy.gov (U.S. Department of Energy (DOE))

Federal Technology Alert describes transpired collectors or solar preheaters for outdoor ventilation air. The President's Million Solar Roofs Initiative aims to install 1 million solar energy systems on residential, commercial, and public-sector buildings by 2010. In support of the Initiative, and as part of a continual effort to ensure U.S. buildings are energy efficient and environmentally sustainable, the U.S. Department of Energy's Federal Energy Management Program (FEMP) will help install those solar systems targeted for the federal sector.

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Effect of Ventilation Strategies on Residential Ozone Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ventilation Strategies on Residential Ozone Levels Effect of Ventilation Strategies on Residential Ozone Levels Title Effect of Ventilation Strategies on Residential Ozone Levels Publication Type Journal Article LBNL Report Number LBNL-5889E Year of Publication 2012 Authors Walker, Iain S., and Max H. Sherman Journal Building and Environment Volume 59 Start Page 456 Pagination 456-465 Date Published 01/2013 Keywords ashrae standard 62,2, filtration, infiltration, mechanical ventilation, ozone, simulation Abstract Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone---associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reduce concentrations of indoor---generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air---exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.

362

Final Report: Balancing energy conservation and occupant needs...  

NLE Websites -- All DOE Office Websites (Extended Search)

for "Big Box" stores in California: predicted indoor air quality and energy consumption using a matrix of ventilation scenarios Title Final Report: Balancing energy...

363

Evaluating Opportunities For Increased HVAC Energy Efficiency For A Ryerson University Building With eQuest Energy Modeling.  

E-Print Network (OSTI)

??Energy used by primary and secondary Heating Ventilation and Air Conditioning systems in post-secondary schools can account for a significant share of the total energy (more)

Khemet, Bomani A.

2012-01-01T23:59:59.000Z

364

Summer Infiltration/Ventilation Test Results from the FRTF Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer InfiltrationVentilation Test Results from the FRTF Laboratory Building America Technical Review Meeting April 29-30, 2013 A Research Institute of the University of Central...

365

New and Underutilized Heating, Ventilation, and Air Conditioning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 - 2:56pm Addthis The following heating, ventilation, and air conditioning (HVAC) technologies are underutilized within the Federal sector. These technologies have been...

366

Section 4.1.3 Natural Ventilation: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

in and through build- ings. These airflows may be used both for ventilation air and for passive cooling strategies. Natural ventila- tion is often strongly preferred by building...

367

Review of Literature Related to Residential Ventilation Requirements  

E-Print Network (OSTI)

Refrigerating, and Air -Conditioning Engineers, Atlanta, GRefrigerat ing, and Air-Conditioning Engineers, Atlanta, Gof Ventilation and Air Conditioning: Is C E R N up to Date

McWilliams, Jennifer; Sherman, Max

2005-01-01T23:59:59.000Z

368

Critical Question #2: What are the Best Practices for Ventilation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Specific to Multifamily Buildings? What is the best practice to address ASHRAE 62.2 Addendum J (multifamily)? Why is exhaust only (with supply in hallway) the...

369

Characterization of air recirculation in multiple fan ventilation systems.  

E-Print Network (OSTI)

??Booster fans, large underground fans, can increase the volumetric efficiency of ventilation systems by helping to balance the pressure and quantity distribution throughout a mine, (more)

Wempen, Jessica Michelle

2012-01-01T23:59:59.000Z

370

The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory  

E-Print Network (OSTI)

different renewable energy potential and cost assumptions.and negative impacts and costs of renewable energy on otherany incremental cost of renewable energy (relative to

Bolinger, Mark A

2009-01-01T23:59:59.000Z

371

Commonwealth Hydropower Program (Massachusetts) | Open Energy...  

Open Energy Info (EERE)

Category Renewable Energy Incentive Programs Amount Design & Construction: 50% of costs or 1.00 per incremental kWh per year Feasibility study: 80% of costs Equipment...

372

FEMP Renewable Energy Project Assistance Application  

NLE Websites -- All DOE Office Websites (Extended Search)

considered (select all that apply) Solar PV Solar (other) Wind Biomass Incremental Hydro Hydrokinetic Ocean Geothermal Waste-to-energy Other: ...

373

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

October 1991). Energy Consumption Guide 19, Bordass, W.programme. Energy Consumption Guide 19, Energy W. 1991. Energy Efficiency in Offices: A Technical Guide for

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

374

Guide to Closing and Conditioning Ventilated Crawlspaces  

SciTech Connect

This how-to guide explains the issues and concerns with conventional ventilated crawlspaces and provides prescriptive measures for improvements that will create healthier and more durable spaces. The methods described in this guide are not the only acceptable ways to treat a crawlspace but represent a proven strategy that works in many areas of the United States. The designs discussed in this guide may or may not meet the local building codes and as such will need to be researched before beginning the project.

Dickson, B.

2013-01-01T23:59:59.000Z

375

ELECTRIC POWER AND VENTILATION SYSTEM OF SILOE  

SciTech Connect

The 15-kv electric power of Siloe is supplied from a central substation, which serves all the laboratories in the Center. The substation transforms primary 3-phase power from 15 kv to 380 to 220 v. Control installations are supplied from sets of rectifiers and batteries with 127 and 48 v direct current. If the normal electric power supply fails, a 12000 kva diesel driven generator is automatically started and in a very short time supplies power. The ventilation system supplies the whole building with conditioned air, holds the shell in negative pressure, and exhausts radioactive effluents. (auth)

Mitault, G.; Faudou, J.-C.

1963-12-01T23:59:59.000Z

376

Residential Attic Ventilation In A Hot And Humid Climate: Effects Of Increased Ventilation On Thermal Performance And Moisture Control.  

E-Print Network (OSTI)

?? The reality of the effect of natural ventilation in a residential attic cavity has been the topic of many debates and scholarly reports since (more)

Atherton, Stanley Arthur

2011-01-01T23:59:59.000Z

377

Automated CO2 and VOC-Based Control of Ventilation Systems Under Real-Time Pricing  

Science Conference Proceedings (OSTI)

The potential for shedding or shifting building electric loads in response to real-time prices (RTP) can be significant. Such a strategy provides cost reduction opportunities for commercial building customers as well as load reduction opportunities for electric utilities. This report describes the successful demonstration of an integrated RTP sensor/control system designed to increase the energy efficiency of building ventilation systems, while maintaining indoor air quality via CO2 and volatile organic ...

1998-11-02T23:59:59.000Z

378

A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators  

E-Print Network (OSTI)

. Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators Arnaud W. Thille,1 MD; Aissam Lyazidi,1 Biomed Eng MS; Jean-Christophe M

Paris-Sud XI, Université de

379

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

E-Print Network (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation ...

Tang, Brian

380

Quantification of the association of ventilation rates with sick building syndrome symptoms  

E-Print Network (OSTI)

42%) as ventilation rate increases from 10 to 25 L/s-person.0.85) as ventilation rate increases from 10 to 25 L/s-29% as ventilation rate increases from 10 to 25 L/s-person.

Fisk, William J.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sensitivity of Tropical Cyclone Intensity to Ventilation in an Axisymmetric Model  

Science Conference Proceedings (OSTI)

The sensitivity of tropical cyclone intensity to ventilation of cooler, drier air into the inner core is examined using an axisymmetric tropical cyclone model with parameterized ventilation. Sufficiently strong ventilation induces cooling of the ...

Brian Tang; Kerry Emanuel

2012-08-01T23:59:59.000Z

382

Categorical Exclusion Determinations: Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 CX-004383: Categorical Exclusion Determination Pine Hall Brick Company Energy Efficiency Improvements for Lighting, Kiln and Heating, Ventilation, and Air Conditioning...

383

Georgia Environmental Finance Authority - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

apply for funding to carry out a variety of upgrades and improvement measures, including air sealing and insulating their homes; installing energy-efficient heating, ventilation...

384

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Ventilation Heat Pumps Windows, Doors, & Skylights Bioenergy Solar Buying & Making Electricity Water Heating Wind Connecticut Housing Investment Fund Energy Efficiency Fund...

385

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating HomeBase Programs Small-Scale Renewable Energy...

386

Central Hudson Gas & Electric (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electric customers who upgrade heating, cooling or ventilation systems with specific types of energy efficient equipment. These rebates include efficient central air...

387

Building Energy Software Tools Directory: IWRAPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pollution Energy Economics Indoor Air Quality Multibuilding Facilities SolarClimate Analysis Training Utility Evaluation Validation Tools VentilationAirflow...

388

Blooming Prairie Public Utilities - Commercial & Industrial Energy...  

Open Energy Info (EERE)

150 - 400 Dishwashers: 300 - 1,000 Ventilation Hood Controllers: 165HP Low-Flow Spray Valve: 50% of installed cost Equipment Requirements Appliances must be Energy Star...

389

Absolute Glovebox Ventilation Filtration System with Unique Filter Replacement Feature  

SciTech Connect

A glovebox ventilation system was designed for a new plutonium-238 processing facility that provided 1) downdraft ventilation, 2) a leak tight seal around the High Efficiency Particulate Air (HEPA) filters, and 3) a method for changing the filters internally without risk of contaminating the laboratory.

Freeman, S. S.; Slusher, W. A.

1975-12-31T23:59:59.000Z

390

Independent Oversight Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope and Approach .............................................................................................................................. 2

391

Residential pollutants and ventilation strategies: Volatile organic compounds and radon  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, volatile organic compounds and radon, are examined. A companion paper examines moisture and combustion pollutants. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. They should have the extra capacity available to reduce short bursts of pollution, be located close to the expected source of the contamination, and be inexpensive. Mitigation of radon is technically a major success using a form of task ventilation. Whole-house ventilation is, at best, a secondary form of control of excess radon in residences.

Grimsrud, D.T.; Hadlich, D.E.

1999-07-01T23:59:59.000Z

392

Buoyancy-Driven Ventilation of Hydrogen from Buildings: Laboratory Test and Model Validation  

DOE Green Energy (OSTI)

Passive, buoyancy-driven ventilation is one approach to limiting hydrogen concentration. We explored the relationship between leak rate, ventilation design, and hydrogen concentrations.

Barley, C. D.; Gawlik, K.

2009-05-01T23:59:59.000Z

393

The impact of ventilation rate on the emission rates of volatile...  

NLE Websites -- All DOE Office Websites (Extended Search)

impact of ventilation rate on the emission rates of volatile organic compounds in residences Title The impact of ventilation rate on the emission rates of volatile organic...

394

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

weightavg_rates.html California Energy Commission. 2005. of Regulations: California's Energy Efficiency Standards forBuildings. California Energy Commission, Sacramento, CA.

Walker, Iain

2013-01-01T23:59:59.000Z

395

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network (OSTI)

clean energy funds with buy-down programs have offered higher incentivesClean Energy or Green Buildings Projects Table 3. Incremental Buy-Down Incentives

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

396

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

397

Fire protection countermeasures for containment ventilation systems  

SciTech Connect

The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

1980-08-25T23:59:59.000Z

398

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

399

E cient Incremental Algorithms for the Sparse Resultant and the Mixed Volume  

E-Print Network (OSTI)

of the algorithm is presented and empirical results are reported which suggest that it is the fastest mixed volumeE cient Incremental Algorithms for the Sparse Resultant and the Mixed Volume IOANNIS Z. EMIRISzAND JOHN F. CANNYx zProjet SAFIR, I.N.R.I.A., B.P. 93, 06902 Sophia-Antipolis, France. emiris

O'Brien, James F.

400

Deferred incremental refresh of XML materialized views: algorithms and performance evaluation  

Science Conference Proceedings (OSTI)

The view mechanism can provide the user with an appropriate portion of database through data filtering and integration. Views are often materialized for query performance improvement, and in that case, their consistency needs to be maintained against ... Keywords: XML, deferred incremental view refresh, materialized view, semistructured data

Hyunchul Kang; Hosang Sung; ChanHo Moon

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Simplified and Regular Physical Parameterizations for Incremental Four-Dimensional Variational Assimilation  

Science Conference Proceedings (OSTI)

A set of physical parameterizations has been developed for inclusion in incremental four-dimensional variational assimilation (4D-Var). The goal for this physical package is that it be simple, regular (for the efficiency of the minimization in 4D-...

Marta Janiskov; Jean-Nol Thpaut; Jean-Franois Geleyn

1999-01-01T23:59:59.000Z

402

Variance Optimal Hedging for continuous time processes with independent increments and applications  

E-Print Network (OSTI)

For a large class of vanilla contingent claims, we establish an explicit F\\"ollmer-Schweizer decomposition when the underlying is a process with independent increments (PII) and an exponential of a PII process. This allows to provide an efficient algorithm for solving the mean variance hedging problem. Applications to models derived from the electricity market are performed.

Goutte, Stphane; Russo, Francesco

2009-01-01T23:59:59.000Z

403

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 29310 of 29,416 results. 01 - 29310 of 29,416 results. Download Western Interconnection 2006 Congestion Assessment Study http://energy.gov/oe/downloads/western-interconnection-2006-congestion-assessment-study Download Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions? Why ventilate? What are the ultimate goals of ventilation requirements in codes and standards? What are the characteristics of an effective ventilation system in new vs. existing construction? What are the risks and solutions associated with ventilation in hot-humid climates? http://energy.gov/eere/downloads/critical-question-7-what-are-best-practices-single-family-ventilation-all-climate Download Financial and Activity Report- June 5, 2009 http://energy.gov/downloads/financial-and-activity-report-june-5-2009

404

Development of a Residential Integrated Ventilation Controller  

E-Print Network (OSTI)

Assessments on Noise. Energy and Buildings. Vol. 27. pp.Distribution Systems. Energy and Buildings. Vol. 20. pp.W.J. Fisk. 1994. Energy and Buildings vol. 21 (1). pp.15-22.

Walker, Iain

2013-01-01T23:59:59.000Z

405

Natural ventilation possibilities for buildings in the United States  

E-Print Network (OSTI)

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

406

Ventilation Rates Estimated from Tracers in the Presence of Mixing  

Science Conference Proceedings (OSTI)

The intimate relationship among ventilation, transit-time distributions, and transient tracer budgets is analyzed. To characterize the advectivediffusive transport from the mixed layer to the interior ocean in terms of flux we employ a ...

Timothy M. Hall; Thomas W. N. Haine; Darryn W. Waugh; Mark Holzer; Francesca Terenzi; Deborah A. LeBel

2007-11-01T23:59:59.000Z

407

Evaluation of Existing Technologies for Meeting Residential Ventilation  

E-Print Network (OSTI)

) ........................................................................... 9 5. Central Fan Integrated (CFI) Supply with air inlet in return and continuously operating exhaust................................................................................................ 10 7. CFI with 7% Outside Air (OA), without continuous exhaust ­ not 62.2 compliant Ventilation from ACM........................................................................ 11

408

Simulations of Indoor Air Quality and Ventilation Impacts of ...  

Science Conference Proceedings (OSTI)

... lighting load from ASHRAE Standard 90.1 (ANSI/ASHRAE ... with a nonzero base ventilation rate, such ... and C-T24, will help to temper such exposure. ...

2006-10-03T23:59:59.000Z

409

CANCELLED: Mechanism of Human Responses to Ventilation Rates...  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELLED: Mechanism of Human Responses to Ventilation Rates and Air Temperature Speaker(s): Henry Willem Date: July 2, 2010 - 12:00pm Location: 90-3122 Seminar HostPoint of...

410

Formaldehyde as a basis for residential ventilation rates  

E-Print Network (OSTI)

large numbers of houses using passive monitoring techniques.rates by passive techniques in 61 occupied houses, half ofhouses in the U.S. have been ventilated by passive

Sherman, M.H.; Hodgson, A.T.

2002-01-01T23:59:59.000Z

411

Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories  

Science Conference Proceedings (OSTI)

Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm ... Keywords: Bayesian model, Categorization, Generative model, Incremental learning, Object recognition

Li Fei-Fei; Rob Fergus; Pietro Perona

2007-04-01T23:59:59.000Z

412

The effect of moving from a plan-driven to an incremental software development approach with agile practices  

Science Conference Proceedings (OSTI)

So far, only few in-depth studies focused on the direct comparison of process models in general, and between plan-driven and incremental/agile approaches in particular. That is, it is not made explicit what the effect is of moving from one model to another ... Keywords: Agile, Case study, Incremental, Migration, Plan-driven

Kai Petersen; Claes Wohlin

2010-12-01T23:59:59.000Z

413

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network (OSTI)

difference in national energy consumption between the baseand Energy Consumption .. 7 Product Prices and the Incremental Costs of Standards 10 Average Energy Savings per Unit .. 10 Nationaland Energy Consumption 14 Product Prices and the Incremental Costs of Standards 14 Average Energy Savings per Unit .. 15 National

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

414

Key Factors in Displacement Ventilation Systems for Better IAQ  

E-Print Network (OSTI)

This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect air-quality in rooms of multi-polluting heat sources. Results show that it is very important to determine the suitable air-intemperature , air-inflow, and heat source quantity and dispersion, to obtain better displacement ventilation results.

Wang, X.; Chen, J.; Li, Y.; Wang, Z.

2006-01-01T23:59:59.000Z

415

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

416

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Siting Your Solar Water Heating System Have you decided to install a solar water heater? Learn how to correctly orient and tilt the heater. May 30, 2012 A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Whole-House Ventilation Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment. May 30, 2012 Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar Water Heating System Maintenance and Repair Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Learn how to maintain your solar water

417

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar water heaters should be placed facing due south. Solar water heaters should be placed facing due south. Siting Your Solar Water Heating System Have you decided to install a solar water heater? Learn how to correctly orient and tilt the heater. May 30, 2012 A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. Whole-House Ventilation Tight, energy-efficient homes require mechanical -- usually whole-house -- ventilation to maintain a healthy, comfortable indoor environment. May 30, 2012 Rooftop solar water heaters need regular maintenance to operate at peak efficiency. | Photo from iStockphoto.com Solar Water Heating System Maintenance and Repair Solar energy systems require periodic inspections and routine maintenance to keep them operating efficiently. Learn how to maintain your solar water

418

Handbook of energy engineering  

Science Conference Proceedings (OSTI)

This book covers the following topics: Fundamentals of energy engineering; Energy economic analysis; Energy auditing and accounting; Electrical system optimization; Waste heat recovery; Utility system optimization; Heating, ventilation, air conditioning, and building system optimization; HVAC equipment; Cogeneration: theory and practice; Control systems; Computer applications; Thermal storage; Passive solar energy systems; and Energy management.

Mehta, D.P.; Thumann, A.

1989-01-01T23:59:59.000Z

419

Figure 60. Energy intensity of selected commercial end uses ...  

U.S. Energy Information Administration (EIA)

Refrigeration Lighting Heating, cooling, and ventilation Other 2040.00 2011.00 ... Energy intensity of selected commercial end uses, 2011 and 2040 ...

420

Energy and indoor environmental quality in relocatable classrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

the IDEC include continuous outside air ventilation at ?7.5 L s-1 per person, 70% less cooling energy and efficient particle filtration. Measurements include: carbon dioxide,...

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1....

422

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and...

423

Healthy Zero Energy Buildings (HZEB) Program- Interim Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Healthy Zero Energy Buildings (HZEB) Program- Interim Report on Cross-Sectional Study of Contaminant Levels, Source Strengths, and Ventilation Rates in Retail Stores Title Healthy...

424

Connecticut Natural Gas - Energy Conservation Program for State...  

Open Energy Info (EERE)

Technologies Water Heaters, Furnaces, Boilers, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, CustomOthers pending approval, Ventilation Active...

425

Building Energy Software Tools Directory: Tools by Country -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Free software. DesignBuilder Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation,...

426

Building Energy Software Tools Directory: Weather Data Viewer  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pollution Energy Economics Indoor Air Quality Multibuilding Facilities SolarClimate Analysis Training Utility Evaluation Validation Tools VentilationAirflow...

427

Building Energy Software Tools Directory: Tools by Subject -...  

NLE Websites -- All DOE Office Websites (Extended Search)

has been updated. DesignBuilder Building energy simulation, visualisation, CO2 emissions, solar shading, natural ventilation, daylighting, comfort studies, CFD, HVAC simulation,...

428

On undrained test using Rowe's relation and Incremental Modelling: Generalisation of the notion of Characteristic State  

E-Print Network (OSTI)

It is recalled that stress-strain incremental modelling is a common feature of most theoretical description of the mechanical behaviour of granular material. An other commonly accepted characteristics of the mechanical behaviour of granular material is the Rowe's relation which links the dilatancy K to the ratio B of vertical-to-lateral stress during a test at constant lateral stress, i.e. B =(1+M)(1+K). Using an incremental modelling, this law shall be interpreted as a pseudo-Poisson coefficient. We combine these two features to solve the problem of an axial compression under undrained condition. We demonstrate that the sample is submitted to a bifurcation of the transcritical type when it reaches the q=Mp line. This allows extending the notion of the characteristic state introduced by Luong to other situations and to anisotropic systems. We show also that these undrained tests are quite appropriate to study the characteristic-state behaviour.

P. Evesque

2005-06-14T23:59:59.000Z

429

Envisioning Transmission Transition: Denmarks Incremental Shifts Towards Energy Independence  

E-Print Network (OSTI)

fuel types such as wood pellets, natural gas, straw, andof natural gas, straw, wood pellets, and other bio fuels.

Cote, Michael

2010-01-01T23:59:59.000Z

430

POEM: power-efficient occupancy-based energy management system  

Science Conference Proceedings (OSTI)

Buildings account for 40% of US primary energy consumption and 72% of electricity. Of this total, 50% of the energy consumed in buildings is used for Heating Ventilation and Air-Conditioning (HVAC) systems. Current HVAC systems only condition based on ... Keywords: HVAC, energy savings, occupancy, ventilation

Varick L. Erickson; Stefan Achleitner; Alberto E. Cerpa

2013-04-01T23:59:59.000Z

431

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

NLE Websites -- All DOE Office Websites (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

432

Analysis of Demand Controlled Ventilation Technology and ...  

Science Conference Proceedings (OSTI)

... the adoption of the Alaska Building Energy Efficiency Standard ... the methanol-fueled vehicle until warm, then parking it in the garage and shutting ...

2005-10-07T23:59:59.000Z

433

Energy Performance Assessment of Ventilation Systems in Korean...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating: Final Report Publication Type Report Year of Publication 2011 Authors Wray, Craig P., Max H. Sherman, Damien Gondre, and Yun-Gyu Lee Date Published 2011 Publisher...

434

Low Energy Buildings: CFD Techniques for Natural Ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

projects, the talk will include work Malcolm completed as part of the design of the LEED Gold award winning Harm A. Weber Academic Center at Judson University, in Elgin, near...

435

Energy Impact of Residential Ventilation Norms in the United States  

E-Print Network (OSTI)

Refrigerating and Air Conditioning Engineers, Atlanta, GA.for Residential Winter and Summer Air Conditioning.Air Conditioning Contractors of America, Washington, DC. 10.

Sherman, Max H.; Walker, Iain S.

2007-01-01T23:59:59.000Z

436

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network (OSTI)

compound by activated carbon fiber." Carbon 42(14): 2949-regeneration of an activated carbon fiber cloth adsorber."indoor VOCs activated carbon fibers." Proceedings of IAQ

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

437

Energy saving strategies with personalized ventilation in tropics  

E-Print Network (OSTI)

C) and 2 heat load and occupancy profiles (see Figure 2 andof the heat load and occupancy profiles (A for the profileequipment heat load followed, the profile shown in Figure 2.

Schiavon, Stefano; Melikov, Arsen; Chandra Sekhar, Chandra Sekhar

2010-01-01T23:59:59.000Z

438

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network (OSTI)

carbon dioxide estimation tests were executed at a concentration higher than the indoor levels of formaldehyde by a factor

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

439

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network (OSTI)

method NIST-traceable RTD system with 0.02 o C ratedcheck against precision RTD sensors in the laboratory. Any

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

440

Energy-saving strategies with personalized ventilation in cold climates  

E-Print Network (OSTI)

quality of the building (wall thermal insulation, type of16C). The building has a good insulation and air tightness

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Case Study 2 - Ventilation, IAQ and Energy Impacts of ...  

Science Conference Proceedings (OSTI)

... approaches: a base case of envelope infiltration only, passive inlet vents in ... building air change rates, air distribution within the house, heating and ...

442

Energy and air quality implications of passive stack ventilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required...

443

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

444

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

445

Formaldehyde emissions from ventilation filters under different relative  

NLE Websites -- All DOE Office Websites (Extended Search)

Formaldehyde emissions from ventilation filters under different relative Formaldehyde emissions from ventilation filters under different relative humidity conditions Title Formaldehyde emissions from ventilation filters under different relative humidity conditions Publication Type Journal Article Refereed Designation Refereed Year of Publication 2013 Authors Sidheswaran, Meera A., Wenhao Chen, Agatha Chang, Robert Miller, Sebastian Cohn, Douglas P. Sullivan, William J. Fisk, Kazukiyo Kumagai, and Hugo Destaillats Journal Environmental Science and Technology Date Published 04/18/2013 Abstract A method combining life cycle assessment (LCA) and real options analyses is developed to predict project environmental and financial performance over time, under market uncertainties and decision-making flexibility. The method is applied to examine alternative uses for oil sands coke, a carbonaceous byproduct of processing the unconventional petroleum found in northern Alberta, Canada. Under uncertainties in natural gas price and the imposition of a carbon price, our method identifies that selling the coke to China for electricity generation by integrated gasification combined cycle is

446

Ventilation/Perfusion Mismatch Caused by Positive Pressure Ventilatory Support  

E-Print Network (OSTI)

In a patient with lobar atelectasis who was on positive pressure ventilatorysupport, ventilationand perfusion images showed absent ventilationand normal perfusion (reverse mismatch) in the region of the atelectasis and normal ventilation and decreased perfusion (true mismatch) not caused by pulmonaryembolism in another lung zone. We report this case to emphasize that the lung scan findingsin patients on positive pressure ventilatorySUppOrt be carefullyinterpreted for the diagnosis of pulmonaryemboli. J NuciMed30:1268—1270, 1989 ulmonary embolism (PE) is often difficult to diag nose because the symptoms and signs can be nonspe cific or subtle. Lung ventilation/perfusion (V/P) scm tigraphy is the principal noninvasive imaging modality for its diagnosis. We report a case demonstrating both classical V/P mismatch (false positive for PE in this case) and reverse V/P mismatch (absent ventilation and normal perfusion, therefore negative for PE) in a patient

Chun K. Kim; Sydney Heyman

1988-01-01T23:59:59.000Z

447

Air Distribution Effectiveness for Different MechanicalVentilation Systems  

SciTech Connect

The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix conditions between zones. Different types of ventilation systems will provide different amounts of dilution depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on work being done to both model the impact of different systems and measurements using a new multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The ultimate objective of this project is to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max H.; Walker, Iain S.

2007-08-01T23:59:59.000Z

448

An Examination of the Incremental Balance in a Global Ensemble-Based 3D-Var Data Assimilation System  

Science Conference Proceedings (OSTI)

This study examines the modification to the balance properties of the analysis increments in a global three-dimensional variational data assimilation scheme when using flow-dependent background-error covariances derived from an operational ...

Jean-Franois Caron; Luc Fillion

2010-10-01T23:59:59.000Z

449

Incremental reference resolution: the task, metrics for evaluation, and a Bayesian filtering model that is sensitive to disfluencies  

Science Conference Proceedings (OSTI)

In this paper we do two things: a) we discuss in general terms the task of incremental reference resolution (IRR), in particular resolution of exophoric reference, and specify metrics for measuring the performance of dialogue system components tackling ...

David Schlangen; Timo Baumann; Michaela Atterer

2009-09-01T23:59:59.000Z

450

The Oceans Memory of the Atmosphere: Residence-Time and Ventilation-Rate Distributions of Water Masses  

Science Conference Proceedings (OSTI)

A conceptually new approach to diagnosing tracer-independent ventilation rates is developed. Tracer Green functions are exploited to partition ventilation rates according to the ventilated fluids residence time in the ocean interior and ...

Franois W. Primeau; Mark Holzer

2006-07-01T23:59:59.000Z

451

Measurements of waste tank passive ventilation rates using tracer gases  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.

Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

1997-09-01T23:59:59.000Z

452

Water spray ventilator system for continuous mining machines  

DOE Patents (OSTI)

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

453

Massive sulfide deposits and hydrothermal solutions: incremental reaction modeling of mineral precipitation and sulfur isotopic evolution  

DOE Green Energy (OSTI)

Incremental reaction path modeling of chemical and sulfur isotopic reactions occurring in active hydrothermal vents on the seafloor, in combination with chemical and petrographic data from sulfide samples from the seafloor and massive sulfide ore deposits, allows a detailed examination of the processes involved. This paper presents theoretical models of reactions of two types: (1) adiabatic mixing between hydrothermal solution and seawater, and (2) reaction of hydrothermal solution with sulfide deposit materials. In addition, reaction of hydrothermal solution with sulfide deposit minerals and basalt in feeder zones is discussed.

Janecky, D.R.

1986-01-01T23:59:59.000Z

454

How to Fit simply Soil Mechanics Behaviour with Incremental Modelling and to Describe Drained Cyclic Behaviours  

E-Print Network (OSTI)

It has been proposed recently a new incremental modelling to describe the mechanics of soil. It is based on two parameters called the pseudo Young modulus E=1/Co and the pseudo Poisson coefficient n, which both evolve during compression. Evolution of n is known since it shall fit the Rowe's law of dilatancy, but Co has to be evaluated from experiment. In this paper we proposed a way to evaluate the Co variation from other mechanical modelling. The way cyclic behaviour of drained sample can be modelled is also described.

P. Evesque

2005-07-04T23:59:59.000Z

455

Skylights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skylights Skylights Skylights June 18, 2012 - 8:54am Addthis A skylight can provide lighting, ventilation, views, and sometimes emergency egress. | Photo courtesy of ©iStockphoto/PaulaConnelly A skylight can provide lighting, ventilation, views, and sometimes emergency egress. | Photo courtesy of ©iStockphoto/PaulaConnelly What does this mean for me? You can brighten your home and provide ventilation by installing a skylight. Proper installation is important to a skylight's energy performance. A skylight can provide your home with daylighting and ventilation. When properly selected and installed, an energy-efficient skylight can help minimize your heating, cooling, and lighting costs. Skylight Design Considerations Before selecting a skylight for your home, determine what type of skylight

456

Beyond blue and red arrows : optimizing natural ventilation in large buildings  

E-Print Network (OSTI)

Our growing understanding of technology and environment has expanded the complexities of producing large naturally ventilated buildings. While it may be argued that designing for natural ventilation is a straightforward, ...

Meguro, Wendy (Wendy Kei)

2005-01-01T23:59:59.000Z

457

An Overview of Residential Ventilation Activities in the Building America Program (Phase I)  

DOE Green Energy (OSTI)

This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

Barley, D.

2001-05-21T23:59:59.000Z

458

Benefits and costs of increasing ventilation rates in U.S. offices  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits and costs of increasing ventilation rates in U.S. offices Title Benefits and costs of increasing ventilation rates in U.S. offices Publication Type Conference Paper Year...

459

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

460

Infiltration in ASHRAE's Residential Ventilation Standards  

E-Print Network (OSTI)

AssessingIndoorAirQuality,ASHRAETrans. 97(2),pp896?IndoorAirQuality ASHRAETrans. pp93?101Vol. 111(I)Energy Characteristics, ASHRAE Transactions,Vol.103(

Sherman, Max

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A thermal comfort levels investigation of a naturally ventilated and air-conditioned office  

Science Conference Proceedings (OSTI)

The purpose of this study is to investigate thermal comfort levels of a naturally ventilated and air-conditioner office. Field experiments conducted in an office room in Universiti Putra Malaysia (UPM) used survey questionnaires and physical measurements. ... Keywords: PMV, mechanically ventilation, naturally ventilated, neutral temperature, objective study, subjective approach, thermal comfort

R. Daghigh; N. M. Adam; K. Sopian; A. Zaharim; B. B. Sahari

2008-09-01T23:59:59.000Z

462

SURVEY OF THE EXISTING APPROACHES TO ASSESS AND DESIGN NATURAL VENTILATION AND NEED FOR FURTHER DEVELOPMENTS  

E-Print Network (OSTI)

ventilation CIBSE (1986) proposes two analytical expressions for the calculation of the airflow rate for wind-sided ventilation: o Warren (1985) o Phaff & De Gids (1982) o Larsen (2006) Cross ventilation: o CIBSE (1986 and handbooks, as Allard (1996) and CIBSE (2005). Etheridge (2001) proposes the use of graphs and non

Paris-Sud XI, Université de

463

Operational test report integrated system test (ventilation upgrade)  

Science Conference Proceedings (OSTI)

Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

HARTY, W.M.

1999-10-05T23:59:59.000Z

464

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22T23:59:59.000Z

465

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

SciTech Connect

The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

Sherman, Max; Sherman, Max H.; Walker, Iain S.

2008-05-01T23:59:59.000Z

466

Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn  

SciTech Connect

A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

Heard, F.J.

1995-11-01T23:59:59.000Z

467

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

468

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network (OSTI)

incentive GHG greenhouse gas HVAC heating, ventilation, and air conditioning kW kilowatt kWh kilowatt hour PACE property-assessed clean energy

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

469

A Potential Path to Emissions-Free Fossil EnergyA Potential Path...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Difference Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one...

470

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network (OSTI)

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

471

Energy Saving System to Remove Volatile Organic Compounds (VOCs) from Indoor Air  

Scientists at Berkeley Lab have developed a catalyst and deployment devices to improve indoor air quality and reduce ventilation energy needs.

472

Development of an integrated building energy simulation with optimal central plant control.  

E-Print Network (OSTI)

??The purpose of computer-based building energy analysis programs is to assist heating, ventilation, and air conditioning (HVAC) engineers in the design process and to help (more)

Taylor, Russell Derek

1996-01-01T23:59:59.000Z

473

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network (OSTI)

Mixed Mode Ventilation - CIBSE Applications Manual AM13:Comit Eurpoen de Normalization. CIBSE, A. (2005). Natural2000; Heiselberg 2002; CIBSE 2005). The main EnergyPlus

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

474

A Hybrid Forming System: Electrical-Assisted Double Side Incremental Forming (EADSIF) Process for Enhanced Formability and Geometrical Flexibility  

Science Conference Proceedings (OSTI)

The objectives of this project are to establish the scientific bases, engineering technologies and energy/emission impact of a novel dieless forming process, Double side Incremental Forming (DSIF), and to explore the effectiveness of its hybrid variation, Electrical-Assisted Double Side Incremental Forming (EADSIF), on increasing the formability of metallic sheets. The scope of this project includes: (1) the analysis of environmental performance of the proposed new process as compared to conventional sheet metal forming processes; (2) the experimental investigation of the process capabilities of DSIF and EADSIF via the self-designed and newly established lab-scale EADSIF equipment; (3) the development of the essential software in executing the new proposed process, i.e., the toolpath generation algorithms; and finally (4) the exploration of the electricity effect on material deformation. The major accomplishments, findings and conclusions obtained through this one and a half years exploratory project are: (1) The first industrial medium-size-scale DSIF machine using two hexapods, capable of handling a sheet area up to 675 mm x 675 mm, was successfully completed at Ford. (2) The lab-scale of the DSIF machine was designed, fabricated and assembled to form a workpiece up to 250 mm x 250 mm. (3) Parts with arbitrary freeform double-curvatures using the genetic, not geometric-specific tooling were successfully formed using both machines. (4) The methodology of the life cycle analysis of DSIF was developed and energy consumption was measured and compared to conventional forming processes. It was found that the DSIF process can achieve 40% to 90% saving when the number of parts produced is less than 50. Sensitivity analysis was performed and showed that even at very large number of produced parts (greater than 2000), incremental forming saves at least 5% of the energy used in conventional forming. (5) It was proposed to use the offset between the two universal tools in DSIF to actively create a squeezing effect on sheet metal and therefore, increase the geometric accuracy. The idea was confirmed through both experimental and numerical validations. (6) A novel toolpath strategy, i.e., the so-called In-to-out toolpath or accumulative toolpath, was proposed to further increase formability and geometric accuracy compared to the SPIF configuration. A dimensional form accuracy of 1 mm can be achieved using the new strategy. (7) The effect of electricity on magnesium alloy was experimentally investigated. It was found that the formability has a ridge with respect to the applied current density and pulse duration. This finding implies that there are multiple choices of process parameters that are workable depending on the desired microstructure. The above results demonstrated that DSIF/EADSIF is a promising forming technology that can create impacts in revolutionizing how the prototyping and small volume production of sheet metals will be fabricated, i.e., it can (1) eliminate the need of casting and machining of drawing dies; (2) tailor material utilization to function requirement therefore achieving a light weight product; (3) reduce the amount of sheet metal scraps; and (4) shorten the engineering and manufacturing time for sheet metal parts from the current 8 {approx} 25 weeks to less than 1 week after the technology is fully developed. DSIF/EADSIF can be implemented in aerospace, automotive and appliance industries, or be used for producing personalized and point-of-use products in medical industry. Our analysis has shown that once developed, verified and demonstrated, the implementation and growth of DSIF will increase U.S. manufacturing competitiveness, advance machine tool and software industries, and create opportunities for emerging clean energy and low-carbon economy with estimated energy savings of 11 TBtu and CO2 reduction of 1 million tons per year. The work has been disseminated into three (3) journal articles and two (2) provisional patent submissions. A new company has been spun off from this research group aiming to c

Jian Cao; Z. Cedric Xia; Timothy G. Gutowski; John Roth

2012-04-28T23:59:59.000Z

475

An Experimental and Numerical Investigation of the Steady State Forces in Single Incremental Sheet Forming  

E-Print Network (OSTI)

Incremental sheet forming process is a relatively new method of forming which is increasingly being used in the industry. Complex shapes can be manufactured using this method and the forming operation doesn't require any dies. High strains of over 300 % can also be achieved. Incremental sheet forming method is used to manufacture many different components presently. Prototype examples include car headlights, tubs, train body panels and medical products. The work done in the thesis deals with the prediction of the steady state forces acting on the tool during forming. Prediction of forces generated would help to design the machine against excessive vibrations. It would help the user to protect the tool and the material blank from failure. An efficient design ensures that the tool would not get deflected out of its path while forming, improving the accuracy of the finished part. To study the forces, experiments were conducted by forming pyramid and cone shapes. An experimental arrangement was set up and experimental data was collected using a data acquisition system. The effect that the various process parameters, like the thickness of the sheet, wall angle of the part and tool diameter had on the steady state force were studied. A three dimensional model was developed using commercial finite element software ABAQUS using a new modeling technique to simulate the deformation of the sheet metal blank during incremental sheet forming. The steady state forces generated for any shape, with any set of parameters used, could be predicted using the numerical model. The advantage of having a numerical model is that the forces can be predicted without doing experiments. The model was used to predict the steady state forces developed during forming of pyramid and cone shapes. The results were compared and were seen to be reasonably close to the experimental results. Later, the numerical model was validated by forming arbitrary shapes and comparing the value obtained from simulations to the value of the measured steady state forces. The results obtained from the numerical model were seen to match very well with the experimental forces for the new shapes. The numerical model developed using the new technique was seen to predict forces to a reasonable extent with less computational time as compared to the models currently available.

Nair, Mahesh

2011-08-01T23:59:59.000Z

476

Numerical study of a ventilated facade panel  

Science Conference Proceedings (OSTI)

An energy-saving facade panel for non-residential buildings has been numerically investigated. Structured like a composite Trombe-Michel wall, the panel consists of a glazing, an absorber plate and insulation and contains a dead air space between glazing and absorber, as well as a convection channel between absorber and insulation. The influence of convection channel spacing on both recovery of solar energy during sunshine periods and on heat losses during night hours has been assessed. Two different options have been considered. First, the total panel thickness was maintained, which involves an increase of channel spacing having to be compensated by a corresponding decrease of the insulation thickness. Then, this constraint was removed so that an increase in channel spacing was allowed to entail an equivalent increase of the total panel thickness. The results indicate that large spacing favors energy recovery during sunshine periods for both options and reduces, although only slightly, heat losses during night hours for the second option. In the case of the first option, however, these losses tend to grow when channel spacing increases. 15 refs., 5 figs.

Mootz, F.; Bezian, J.J. [Centre d`Energetique de l`Ecole des Mines de Paris (France)

1996-07-01T23:59:59.000Z

477

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

478

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

479

Dry Transfer Facility #1 - Ventilation Confinement Zoning Analysis  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department.

K.D. Draper

2005-03-23T23:59:59.000Z

480

Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities  

Science Conference Proceedings (OSTI)

Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "incremental ventilation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mobile zone, spray booth ventilation system. Final report  

SciTech Connect

This concept endeavors to reduce the volume of air (to be treated) from spray paint booths, thereby increasing efficiency and improving air pollution abatement (VOC emissions especially). Most of the ventilation air is recycled through the booth to maintain laminar flow; the machinery is located on the supply side of the booth rather than on the exhaust side. 60 to 95% reduction in spray booth exhaust rate should result. Although engineering and production prototypes have been made, demand is low.

1994-04-26T23:59:59.000Z

482

Effect of attic ventilation on the performance of radiant barriers  

Science Conference Proceedings (OSTI)

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m[sup 2] (nominal) test houses are presented in this paper. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2 [degrees] C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (1/sec)/m[sup 2] of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m[sup 2]K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Medina, M.A.; O'Neal, D.L. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering); Turner, W.D. (Texas A and M Univ., College Station, TX (United States). Coll. of Engineering)

1992-11-01T23:59:59.000Z

483

Evaluation of China's Energy Strategy Options  

NLE Websites -- All DOE Office Websites (Extended Search)

the past three years (Figure 1), andover two thirds of the increment in primary energy supply has been coal. Meanwhile, oil use is rising rapidly, with nearly all new demand...

484

THE POLITICS OF NON-INCREMENTAL SCHOOL FINANCE REFORM: A CASE STUDY ANALYSIS OF VERMONT'S ACT 60 AS A TEST OF MAZZONI'S ARENA MODEL.  

E-Print Network (OSTI)

??This research, grounded in political theory, had two major purposes: 1) to explain a case of non-incremental policy change within the realm of school finance (more)

Curtis, Kimberly Anne

2011-01-01T23:59:59.000Z

485

Central Hudson Gas & Electric (Gas)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Home Energy SavingsCentral Program offers customers rebates of up to $700 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

486

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

SciTech Connect

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

487

Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences  

Science Conference Proceedings (OSTI)

The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the reheat coil adds additional heat to maintain the supply air temperature close to the return air temperature (100% latent cooling). Project Outcomes Key Phase II objectives were to develop a pre-production version of the system and to demonstrate its performance in an actual house. The system was first tested in the laboratory and subsequently underwent field-testing at a new house in Gainesville, Florida. Field testing began in 2006 with monitoring of a 'conventional best practices' system that included a two stage air conditioner and Energy Star dehumidifier. In September 2007, the I-HVCD components were installed for testing. Both systems maintained uniform indoor temperatures, but indoor RH control was considerably better with the I-HVCD system. The daily variation from average indoor humidity conditions was less than 2% for the I-HVCD vs. 5-7% for the base case system. Data showed that the energy use of the two systems was comparable. Preliminary installed cost estimates suggest that production costs for the current I-HVCD integrated design would likely be lower than for competing systems that include a high efficiency air conditioner, dehumidifier, and fresh air ventilation system. Project Benefits This project verified that the I-HVCD refrigeration compacts are compact (for easy installation and retrofit) and can be installed with air conditioning equipment from a variety of manufacturers. Project results confirmed that the system can provide precise indoor temperature and RH control under a variety of climate conditions. The I-HVCD integrated approach offers numerous benefits including integrated control, easier installation, and reduced equipment maintenance needs. Work completed under this project represents a significant step towards product commercialization. Improved indoor RH control and fresh air ventilation are system attributes that will become increasingly important in the years ahead as building envelopes improve and sensible cooling loads continue to fall. Technologies like I-HVCD will be instrumental in meeting goals set by Building America

Hoeschele, M.A.; D.A. Springer

2008-06-18T23:59:59.000Z

488

An incremental learning algorithm based on the K-associated graph for non-stationary data classification  

Science Conference Proceedings (OSTI)

Non-stationary classification problems concern the changes on data distribution over a classifier lifetime. To face this problem, learning algorithms must conciliate essential, but difficult to gather, attributes like good classification performance, ... Keywords: Concept drift, Graph-based learning, Incremental learning, K-associated graph, Non-stationary classification, Purity measure

JoO Roberto Bertini, Jr, Liang Zhao, Alneu A. Lopes

2013-10-01T23:59:59.000Z

489

Taxonomic knowledge structure discovery from imagery-based data using the neural associative incremental learning (NAIL) algorithm  

Science Conference Proceedings (OSTI)

An important component of higher level fusion is knowledge discovery. One form of knowledge is a set of relationships between concepts. This paper addresses the automated discovery of ontological knowledge representations such as taxonomies/thesauri ... Keywords: Associative learning, Incremental learning, Information fusion, Knowledge structure, Multi-target classification, Ontology learning, Taxonomy

Bradley J. Rhodes

2007-07-01T23:59:59.000Z

490

Ventilation for an enclosure of a gas turbine and related method  

SciTech Connect

A ventilation scheme for a rotary machine supported on pedestals within an enclosure having a roof, end walls and side walls with the machine arranged parallel to the side walls, includes ventilation air inlets located in a first end wall of the enclosure; a barrier wall located within the enclosure, proximate the first end wall to thereby create a plenum chamber. The barrier wall is constructed to provide a substantially annular gap between the barrier wall and a casing of the turbine to thereby direct ventilation air axially along the turbine; one or more ventilation air outlets located proximate a second, opposite end wall on the roof of the enclosure. In addition, one or more fans are provided for pulling ventilating air into said plenum chamber via the ventilation air inlets.

Schroeder, Troy Joseph (Mauldin, SC); Leach, David (Simpsonville, SC); O' Toole, Michael Anthony (Greenfield Center, NY)

2002-01-01T23:59:59.000Z

491

Impact of incremental changes in meteorology on thermal compliance and power system operations  

Science Conference Proceedings (OSTI)

The sensitivity of the TVA reservoir and power supply systems to extreme meteorology was evaluated using a series of mathematical models to simulate the relationship between incremental changes in meteorology, associated changes in water temperature, and power plant generation. Single variable analysis techniques were applied at selected TVA facilities for representative average and extreme weather conditions. In the analysis, base case simulations were first conducted for each representative year using observed meteorology (i.e., the no change condition). The impacts of changes in meteorology were subsequently analyzed by uniformly constant at their respective base case values. Project results are generally presented in terms of deviations from base case conditions for each representative year. Based on an analysis of natural flow and air temperature patterns at Chickamauga Dam, 1974 was selected to represent extreme cold-wet conditions; 1965 as reflecting average conditions; and 1986 as an example of an extremely hot-dry year. The extreme years (i.e., 1974 and 1986) were used to illustrate sensitivities beyond historical conditions; while the average year provided a basis for comparison. Observed reservoir conditions, such as inflows, dam releases, and reservoir elevations for each representative year, were used in the analysis and were assumed to remain constant in all simulations. Therefore, the Lake Improvement Plan (which was implemented in 1991) and its consequent effects on reservoir operations were not incorporated in the assessment. In the model simulations, computed water temperatures were based on vertically well-mixed conditions in the reservoirs.

Miller, B.A.; Alavian, V.; Bender, M.D. [and others

1992-02-01T23:59:59.000Z

492

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

493

Design of a ventilation system for carbon dioxide reduction in two gym rooms.  

E-Print Network (OSTI)

?? This project is mainly focused on the improving and design of the ventilation system of two rooms at different levels of a gym (Friskis (more)

Barroeta, Ander

2013-01-01T23:59:59.000Z

494

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents (OSTI)

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

495