Sample records for increased fuel efficiency

  1. Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency

    E-Print Network [OSTI]

    Kroll, Douglas M. (Douglas Michael)

    2010-01-01T23:59:59.000Z

    An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel. Operational restrictions limiting fuel use are temporary and cannot ...

  2. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  3. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program 

    E-Print Network [OSTI]

    Jackson, D.

    1997-01-01T23:59:59.000Z

    on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period....

  4. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11T23:59:59.000Z

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  5. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program

    E-Print Network [OSTI]

    Jackson, D.

    A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency...

  6. Report: Efficiency, Alternative Fuels to Impact Market Through...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel efficiency improvements and increased use of alternative fuels will shrink gasoline's share of the liquid fuel market share by 14% through 2040, according to a new report...

  7. If Cars Were More Efficient Would We Use Less Fuel?

    E-Print Network [OSTI]

    Small, Kenneth A.; Dender, Kurt Van

    2007-01-01T23:59:59.000Z

    Efficient, Would We Use Less Fuel? B Y K E N N E T H A . S Mtask: just increase vehicle fuel efficiency, also known asexisting Corporate Average Fuel Economy (CAFE) standards.

  8. Prospects for and problems of using light-water supercritical-pressure coolant in nuclear reactors in order to increase the efficiency of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Alekseev, P. N.; Semchenkov, Yu. M.; Sedov, A. A., E-mail: sedov@dhtp.kial.ru; Subbotin, S. A.; Chibinyaev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2011-12-15T23:59:59.000Z

    Trends in the development of the power sector of the Russian and world power industries both at present time and in the near future are analyzed. Trends in the rise of prices for reserves of fossil and nuclear fuels used for electricity production are compared. An analysis of the competitiveness of electricity production at nuclear power plants as compared to the competitiveness of electricity produced at coal-fired and natural-gas-fired thermal power plants is performed. The efficiency of the open nuclear fuel cycle and various versions of the closed nuclear fuel cycle is discussed. The requirements on light-water reactors under the scenario of dynamic development of the nuclear power industry in Russia are determined. Results of analyzing the efficiency of fuel utilization for various versions of vessel-type light-water reactors with supercritical coolant are given. Advantages and problems of reactors with supercritical-pressure water are listed.

  9. Sandia National Laboratories: increased photovoltaic efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increased photovoltaic efficiency Combining 'Tinkertoy' Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News,...

  10. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11T23:59:59.000Z

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

  11. Fuel Efficiency Automobile Test Quality Assurance Narrative

    E-Print Network [OSTI]

    Denver, University of

    Fuel Efficiency Automobile Test Quality Assurance Narrative Standard Operating Procedures Help ........................................................................................................... 3 FEAT Standard Operating Procedures...................................................................................................................24 Maintenance Items

  12. New Sensor Network Technology Increases Manufacturing Efficiency...

    Energy Savers [EERE]

    Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton Corporation in the development and successful deployment of an electric motor...

  13. Sandia National Laboratories: fuel-efficient engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel-efficient engine Sandia Maps Multiple Paths to Cleaner, Low-Temp Diesels On October 22, 2013, in CRF, Energy, Facilities, News, News & Events, Partnership, Sensors & Optical...

  14. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Fuel-Efficient Distributed Control for

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Fuel-Efficient Distributed Control for Heavy Duty Vehicle Platooning ASSAD ALAM Licentiate Thesis in Automatic Control Stockholm, Sweden 2011 #12;Fuel-Efficient Distributed Control for Heavy Duty Vehicle, vehicles can semi-autonomously travel at short intermediate spacings, effectively reducing congestion

  16. Increasing thermoelectric efficiency towards the Carnot limit

    E-Print Network [OSTI]

    Giulio Casati; Carlos Mejia-Monasterio; Tomaz Prosen

    2008-02-27T23:59:59.000Z

    We study the problem of thermoelectricity and propose a simple microscopic mechanism for the increase of thermoelectric efficiency. We consider the cross transport of particles and energy in open classical ergodic billiards. We show that, in the linear response regime, where we find exact expressions for all transport coefficients, the thermoelectric efficiency of ideal ergodic gases can approach Carnot efficiency for sufficiently complex charge carrier molecules. Our results are clearly demonstrated with a simple numerical simulation of a Lorentz gas of particles with internal rotational degrees of freedom.

  17. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects...

  18. Fueling efficiency of pellet injection on DIII-D

    SciTech Connect (OSTI)

    Baylor, L.R.; Jernigan, T.C.; Maingi, R. [Oak Ridge National Lab., TN (United States); Lasnier, C.J. [Lawrence Livermore National Lab., CA (United States); Ali Mahdavi, M. [General Atomics, San Diego, CA (United States)

    1998-05-01T23:59:59.000Z

    Pellet injection has been used on the DIII-D tokamak to study density limits and particle transport in H-mode and inner wall limited L-mode plasmas. These experiments have provided a variety of conditions in which to examine the fueling efficiency of pellets injected into DIII-D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel atoms, is determined by measurements of density profiles before and just after pellet injection. The authors have found that there is a decrease in the pellet fueling efficiency with increased neutral beam injection power. The pellet penetration depth also decreases with increased neutral beam injection power so that, in general, fueling efficiency increases with penetration depth. The fueling efficiency is generally 25% lower in ELMing H-mode discharges than in L-mode due to an expulsion of particles with a pellet triggered ELM. A comparison with fueling efficiency data from other tokamaks shows similar behavior.

  19. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Environmental Management (EM)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  20. Fueling efficiency of pellet injection on DIIID* L.R. Baylora

    E-Print Network [OSTI]

    Fueling efficiency of pellet injection on DIII­D* L.R. Baylora , T.C. Jernigana , C.J. Lasnierb , R of conditions in which to examine the fueling efficiency of pellets injected into DIII- D plasmas. The fueling efficiency defined as the total increase in number of plasma electrons divided by the number of pellet fuel

  1. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine 2004 Diesel...

  2. The Role of Lubricant Additives in Fuel Efficiency and Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

  3. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working...

  4. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2...

  5. Increasing the Efficiency of Energy Scavengers

    E-Print Network [OSTI]

    Shahram M. Shahruz

    2007-09-26T23:59:59.000Z

    In this paper, a methodology for designing efficient energy scavengers is proposed. The scavenger consists of a cantilever beam on which piezoelectric films and a mass are mounted. The mass at the tip of the beam is known as the proof mass and the device is called either an energy scavenger or a beam-mass system. The proof mass is a permanent magnet, where in its vicinity attracting permanent magnets are placed. It is shown that when the magnets have appropriate strengths and are placed appropriately, the vibration of the beam-mass system can be amplified, thereby the scavenged energy is increased. Examples are given throughout the paper.

  6. California: Energy-Efficient Glass Saves Energy Costs, Increases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort California: Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort April 18, 2013 - 12:00am...

  7. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

  8. Energy Department Invests $6 Million to Increase Energy Efficiency...

    Office of Environmental Management (EM)

    6 Million to Increase Energy Efficiency of Schools, Offices, Stores and other U.S. Buildings Energy Department Invests 6 Million to Increase Energy Efficiency of Schools, Offices,...

  9. Effective Fouling Minimization Increases the Efficiency and Productivi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective Fouling Minimization Increases the Efficiency and Productivity of Refineries Effective Fouling Minimization Increases the Efficiency and Productivity of Refineries This...

  10. Multi-Fuel Boiler Efficiency Calculations

    E-Print Network [OSTI]

    Likins, M. R., Jr.

    1984-01-01T23:59:59.000Z

    With increasing energy costs, the use of waste fuels has become commonplace in the petroleum and petrochemical industries. The American Society of Mechanical Engineers Power Test Codes date back to 1915, but do not directly approach the subject...

  11. Multi-Fuel Boiler Efficiency Calculations 

    E-Print Network [OSTI]

    Likins, M. R., Jr.

    1984-01-01T23:59:59.000Z

    With increasing energy costs, the use of waste fuels has become commonplace in the petroleum and petrochemical industries. The American Society of Mechanical Engineers Power Test Codes date back to 1915, but do not directly approach the subject...

  12. Catalytic autothermal reforming increases fuel cell flexibility

    SciTech Connect (OSTI)

    Flytzani-Stephanopoulos, M.; Voecks, G.E.

    1981-12-01T23:59:59.000Z

    To give a better understanding of autothermal reforming (ATR), a process which offers an advantageous alternative to steam reforming for H/sub 2/ production for fuel cells because of the wider range of fuels which can be converted, the conversion of individual fuel components was studied. Attempts have been made to characterize the chemical reactions of light and heavy paraffins and aromatics in ATR. Results of studies to determine the effects of operating parameters on the carbon-forming tendency of each hydrocarbon type are reported. The catalyst used for the ATR process was three-layers of supported nickel catalysts, Norton NC-100 spheres in the top zone, cylindrical G-56B tablets in the bottom one, and either ICI 46-I or ICI 46-4 Raschig rings in the middle zone. A summary of the experimental studies of the ATR of n-hexane, n-tetradecane, benzene, and benzene solutions of naphthalene is presented. (BLM)

  13. New Sensor Network Technology Increases Manufacturing Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013 V-237:MultimediaConsumers' UtilityPenetrationsofDepartment

  14. HP replacement program increases efficiency, protection

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    For more than 50 years, compression equipment along the 2,000-mile Tennessee Gas Pipeline has been helping to supply natural gas needs for the Northeast. But increasing demand and a need for more environmentally safe equipment mean a major replacement program for the compressor stations that make the natural gas transmission possible. Today it is one of the longest gas pipelines in the world, carrying more than 1 Bcf/d of natural gas. New compression equipment is being installed to boost efficiency and meet more stringent environmental standards. In 1993, Tenneco Energy, purchased by El Paso Energy in December 1996, initiated a Horsepower Replacement Program intended to replace older, inefficient technology with more advanced equipment. A major objective was to improve operational effectiveness and to reduce harmful nitrogen oxide and carbon monoxide emissions by converting much of the machinery to electric-driven compression equipment.

  15. Catalytic autothermal reforming increases fuel cell flexibility

    SciTech Connect (OSTI)

    Flytzani-Stephanopoulos, M.; Voecks, G.E.

    1981-12-01T23:59:59.000Z

    Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.

  16. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell...

  17. Increased performance of single-chamber microbial fuel cells using an improved cathode structure

    E-Print Network [OSTI]

    Increased performance of single-chamber microbial fuel cells using an improved cathode structure Maximum power densities by air-driven microbial fuel cells (MFCs) are considerably influenced by cathode reserved. Keywords: Microbial fuel cell; Air cathode; Diffusion layer; PTFE coating; Coulombic efficiency 1

  18. Energy conservationists locate alternatives for fuel efficiency

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    A report is given of International Maritime Industry's energy conservation workshop. At the workshop, which was conducted by Argonne National Laboratory, about 40 alternatives were discussed for saving shipping energy. Most of those judged most effective involved modification, conversion or installation of thoroughly tested equipment. However, the alternative selected by participants as having the greatest savings potential was a management program aimed at developing crew understanding of efficient operation of the ship and any new fuel-saving equipment. The results of the workshop will be used to refine a chart developed by Argonne that summarizes information available on alternatives for saving fuel aboard ship. To encourage maritime industry efforts to improve energy-use efficiency, the Department of Energy will distribute the revised chart to U.S. and foreign flag operators engaged in U.S. foreign trade.

  19. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Technologies Session Introduction Demonstrating and Validating a Next Generation Model-Based Controller for Fuel Efficient, Low Emissions Diesel Engines Super...

  20. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections:HAZARD ANALYSES

  1. New Sensor Network Technology Increases Manufacturing Efficiency |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverview | Departmentof Energy FullyAdvanced StagesatDepartment of

  2. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01T23:59:59.000Z

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

  3. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Broader source: Energy.gov (indexed) [DOE]

    COMBUSTION, EFFICIENCY, AND FUEL EFFECTS IN A SPARK- ASSISTED HCCI GASOLINE ENGINE Bruce G. Bunting Fuels, Engines, and Emissions Research Center Oak Ridge National Laboratory...

  4. Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency of Legacy Fleet Vehicles Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and...

  5. A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator

    E-Print Network [OSTI]

    Luskin, Paul (Paul L.)

    2010-01-01T23:59:59.000Z

    The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

  6. The potential for reducing carbon emissions from increased efficiency : a general equilibrium methodology

    E-Print Network [OSTI]

    Blitzer, Charles R.

    1990-01-01T23:59:59.000Z

    This paper presents a methodology for analyzing the potential for reduction in carbon emissions through increased fuel efficiency and provides an illustration of the method. The methodology employed is a multisectoral, ...

  7. U.S. Diesel Fuel Price Continues to Increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAllDiesel Fuel Price Continues to Increase

  8. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from to produce electricity from fuels. To speed the search for why fuel cell performance decreases over time fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

  9. Increased efficiency of topping cycle PCFB power plants

    SciTech Connect (OSTI)

    Robertson, A.; Domeracki, W.; Horazak, D. [and others

    1996-05-01T23:59:59.000Z

    Pressurized circulating fluidized bed (PCFB) power plants offer the power industry significantly increased efficiencies with reduced costs of electricity and lower emissions. When topping combustion is incorporated in the plant, these advantages are enhanced. In the plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and ceramic barrier filter to remove gas-entrained particulates and a packed bed of emathelite pellets to remove alkali vapors. the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator combustor, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the PCFB and the exhaust gas passes through its own cyclone, ceramic barrier filter, and alkali getter and supports combustion of the fuel gas in the topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the PCFB drives the steam turbine generator that furnishes the balance of electric power delivered by the plant.

  10. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06T23:59:59.000Z

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

  11. EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE | Department...

    Broader source: Energy.gov (indexed) [DOE]

    EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE Although Maine has one of the United States' highest homeownership rates, more than one-third of the state's residents...

  12. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe| Department ofAir Ducts Tips: AirDepartment

  13. Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversions toSchool BusAlternativeStaples

  14. Energy Department Invests $6 Million to Increase Energy Efficiency of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Department ofNoticesMaterialsEfficiencyAbengoaClean Energy

  15. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiency - Q &

  16. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiency - Q &Groups

  17. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiency - Q

  18. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNews & Solar Solar HowDuctsDepartment

  19. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | BlandineNatural GasBiodiesel

  20. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...

    Office of Environmental Management (EM)

    Engine Fluids Technologies: Durable, Fuel-Efficient, and Emissions-Friendly 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  1. BPA, public utilities fueling the energy efficiency powerhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public-utilities-fueling-the-energy-efficiency-powerhouse Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

  2. Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

  3. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Increasing LTC Engine Efficiency by Reducing Pressure-Oscillation-Related

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public IncreasingHeat

  5. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS

    E-Print Network [OSTI]

    ) · Solar (Solar thermal, Photovoltaic) · Renewables (Hydropower, Geothermal, Wind, Biomass) Nuclear power power generation ­ Electrolysis · Overall efficiency approximately 25-30% (efficiency of electric power · Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis) · Plant efficiencies

  6. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect (OSTI)

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31T23:59:59.000Z

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  7. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    whenever possible. If you need a vehicle for towing or heavy use, consider a clean diesel vehicle. Diesel engines are more powerful and 30%-35% more efficient than...

  8. fuel efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel's Home Kyoung'sandreas Home

  9. OpenEI Community - fuel efficiency

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff<div/0 en The Energybegun!

  10. Alternative Fuels Data Center: Transportation System Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies |HydrogenPublicationsStateTools

  11. Upconversion as a Viable Route to Increased Efficiency Solar Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    Upconversion as a Viable Route to Increased Efficiency Solar Energy Conversion Joshua Zide, Matt University of Delaware Energy Institute #12;Efficiency drives reduced $/W.... http://www.nrel.gov/ncpv/! Shockley-Queisser Limit! *adopted from http://www.lbl.gov/Science-Articles/Archive/MSD-full-spectrum-solar

  12. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market Type TermIncrease

  13. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoal FiredIncrease

  14. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoalIncrease Natural

  15. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoalIncrease

  16. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoalIncreasePower

  17. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncrease Natural Gas

  18. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncrease Natural

  19. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncrease NaturalSize Type

  20. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncrease NaturalSize

  1. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncrease

  2. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncreaseGlobal

  3. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncreaseGlobalCoal Fired

  4. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas MarketIncreaseGlobalCoal

  5. Increasing Creel Interview Efficiency Through Early Survey Termination

    E-Print Network [OSTI]

    Increasing Creel Interview Efficiency Through Early Survey Termination HAL R. OSBURN and MIKE G were terminated early when no angler interviews were con ducted by a specified time. Using this method, terminating

  6. National Fuel (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    All measures must be installed by a licensed contractor. New construction is not eligible for rebates. Low-income customers may be eligible for free weatherization assistance, and National Fuel...

  7. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    None

    2013-08-30T23:59:59.000Z

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  8. Advanced proton-exchange materials for energy efficient fuel cells.

    SciTech Connect (OSTI)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01T23:59:59.000Z

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  9. Testimonials- Partnerships in Fuel Efficiency- Cummins Inc.

    Broader source: Energy.gov [DOE]

    Wayne Eckerle, VP of Corporate Research and Technology at Cummins Inc., talks about how its partnership with EERE has helped move waste heat recovery advances for vehicles into production and will help them reach fuel consumption reductions of 20-30% over the next decade.

  10. FuelEff&PhysicsAutosSanders FUEL EFFICIENCY AND THE PHYSICS OF AUTOMOBILES1

    E-Print Network [OSTI]

    Edwards, Paul N.

    FuelEff&PhysicsAutosSanders 1 FUEL EFFICIENCY AND THE PHYSICS OF AUTOMOBILES1 Marc Ross, Physics in the operation of a modern automobile are expressed in terms of simple algebraic approximations. One purpose-engine thermodynamic efficiency, and engine and transmission frictions. The analysis applies to today's automobiles

  11. Make Your Next Road Trip Fuel Efficient | Department of Energy

    Energy Savers [EERE]

    Efficient June 29, 2015 - 3:02pm Addthis Enjoy the open road while keeping your fuel costs low | Photo courtesy of istockphoto.comlisegagne Enjoy the open road while keeping...

  12. Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security Overview Tanzanians living near the Udzungwa Mountains National Park have 100,000 villagers without an available fuel source. One possible solution to alleviate this crisis

  13. Make Your Next Road Trip Fuel Efficient | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road Trip Fuel Efficient Make Your Next Road

  14. The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2007-01-01T23:59:59.000Z

    The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 88. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant equivalence ratio conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50. The increase in efficiency with higher CR was fuel-dependent, so that the fuels requiring a higher CR to achieve ignition did not gain a proportionate efficiency increase. For example, n-heptane achieved an indicated thermal efficiency (ITE) of 38% at a CR of 9:1, whereas a 50 wt% blend of toluene with n-heptane required a CR of 12:1 to achieve the same ITE. A simple heat balance around the engine showed that higher toluene content fuels had higher cooling losses. The high toluene fuels exhibited higher rates of maximum pressure rise than the lower octane fuels. The increased cooling losses can be attributed to the higher pressure rise rates, which are a driving force for heat transfer.

  15. Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines

    E-Print Network [OSTI]

    Minnesota, University of

    Increasing efficiency, reducing emissions with hydrous ethanol in diesel engines Ethanol continuedOber 2013 Catalystcts.umn.edu Nearly all corn-based ethanol produced in the United States is anhydrous processes required to remove the water from ethanol consume a great deal of energy. Researchers from

  16. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

    1996-07-01T23:59:59.000Z

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  17. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells...

  18. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    to Enhancing Engine System Efficiency A MultiAir MultiFuel Approach to Enhancing Engine System Efficiency 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  19. Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

    SciTech Connect (OSTI)

    Splitter, Derek A [ORNL; Reitz, Rolf [University of Wisconsin; Wissink, martin [University of Wisconsin; DelVescovo, Dan [University of Wisconsin

    2014-01-01T23:59:59.000Z

    The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5 CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition. This allowed for the investigation of several combinations of intake temperature, intake pressure, and charge stratification at otherwise constant thermodynamic conditions. The results show that sources of engine inefficiency compete as functions of premixed and global equivalence ratios. Losses are minimized through proper balancing of intake pressure and temperature, such that the global equivalence ratio ( global) is as lean as possible without overly lean regions of the stratified charge causing an increase in incomplete combustion. The explored speed-load-phasing combination shows that losses are minimized at conditions where approximately 2/3 of the fuel is fully premixed. The results exhibit a pathway for achieving simultaneous increases in combustion and fuel efficiency through proper fuel reactivity and initial condition management.

  20. Pellet fueling technology development leading to efficient fueling of ITER burning plasmas

    SciTech Connect (OSTI)

    Baylor, L.R.; Combs, S.K.; Jernigan, T.C.; Houlberg, W.A.; Owen, L.W.; Rasmussen, D.A.; Maruyama, S.; Parks, P.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2005-05-15T23:59:59.000Z

    Pellet injection is the primary fueling technique planned for core fueling of ITER [ITER Technical Basis 2002 ITER EDA Documentation Series (Vienna: IAEA)] burning plasmas. Efficient core plasma fueling with deuterium and tritium D-T is a requirement for achieving high fusion gain and it cannot be achieved with gas fueling. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER. Modeling of the fueling deposition from inner wall pellet injection using the Parks ExB drift model indicates that pellets have the capability to fuel well inside the separatrix. Gas fueling calculations show very poor neutral penetration due to the high density and wide scrape off layer. Isotopically mixed D-T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing. Currently the performance of the ITER inner wall guide tube design is under test with initial results indicating that pellet speeds in excess of 300 m/s will lead to fragmented pellets. The ITER pellet injection technology requirements and remaining development issues are discussed along with a plan to reach the design goal for employment on ITER.

  1. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  2. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJulyIncandescent

  3. U.S. diesel fuel price continues to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. East Coastdieseldiesel fuel

  4. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S.diesel fuel0,diesel2,

  5. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S.diesel fuel0,diesel2,diesel

  6. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S.dieseldiesel fuel prices

  7. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public

  8. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to PublicHydrogen Energy

  9. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05T23:59:59.000Z

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  10. Thermoelectric Research Takes Spotlight Improvements in Efficiency Help Fuel Results

    E-Print Network [OSTI]

    Thermoelectric Research Takes Spotlight Improvements in Efficiency Help Fuel Results m i c h i g of alternative energy sources, thermoelectrics may not immediately come to mind, but MSU and the College interest in alternative energy sources certainly has helped to bring thermoelectrics into the limelight

  11. Northwest home buyers' fuel and energy-efficiency preferences

    SciTech Connect (OSTI)

    Lee, A.D.; Harkreader, S.A.; Bruneau, C.L.; Volke, S.M.

    1990-11-01T23:59:59.000Z

    This study for the Bonneville Power Administration (Bonneville) investigated home buyers' heating fuel and energy-efficiency preferences, and the influence of incentives on their choices. The study was conducted in four regions of Washington State: Spokane and Pierce Counties, where the Model Conservation Standards (MCS) for new electrically heated homes have been adopted as local code, and King and Clark Counties, where the MCS has been implemented only through a voluntary marketing program. The results of this study provide useful information about energy-efficiency, space heating fuel type, and alternative incentive programs. They provide initial evidence that fuel-specific energy-efficiency standards may significantly affect the shares of different heating fuels in the new home market. They also suggest that cash rebates and utility rate incentives may have a modest effect on the shares for different heating fuels. Because these results are based on a technique relying on hypothetical choices and because they reflect only four metropolitan areas, further study must be conducted to determine whether the results apply to other locations and whether other analytic approaches produce similar findings. 3 refs.

  12. Pellet Fueling Technology Development Leading to Efficient Fueling of ITER Burning Plasmas

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, Thomas C [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Owen, Larry W [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

    2005-01-01T23:59:59.000Z

    Pellet injection is the primary fueling technique planned for central fueling of the ITER burning plasma, which is a requirement for achieving high fusion gain. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER [1,2]. Significant development of pellet fueling technology has occurred as a result of the ITER R&D process. Extrusion rates with batch extruders have reached more than 1/2 of the ITER design specification of 1.3 cm3/s [3] and the ability to fuel efficiently from the inner wall by injecting through curved guide tubes has been demonstrated on several fusion devices. Modeling of the fueling deposition from inner wall pellet injection has been done using the Parks et al. ExB drift model [4] shows that inside launched pellets of 3mm size and speeds of 300 m/s have the capability to fuel well inside the separatrix. Gas fueling on the other hand is calculated to have very poor fueling efficiency due to the high density and wide scrape off layer compared to current machines. Isotopically mixed D/T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing of tritium. In addition, the use of pellets as an ELM trigger has been demonstrated and continues to be investigated as an ELM mitigation technique. During the ITER CDA and EDA the U.S. was responsible for ITER fueling system design and R&D and is in good position to resume this role for the ITER pellet fueling system. Currently the performance of the ITER guide tube design is under investigation. A mockup is being built that will allow tests with different pellet sizes and repetition rates. The results of these tests and their implication for fueling efficiency and central fueling will be discussed. The ITER pellet injection technology developments to date, specified requirements, and remaining development issues will be presented along with a plan to reach the design goal in time for employment on ITER.

  13. Method of increasing the deterrent to proliferation of nuclear fuels

    DOE Patents [OSTI]

    Rampolla, Donald S. (Pittsburgh, PA)

    1982-01-01T23:59:59.000Z

    A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

  14. DOE Announces $14 Million Industry Partnership Projects to Increase Fuel

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment ofNuclear Energy for Clean

  15. U.S. diesel fuel price continues to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. East Coastdieseldiesel

  16. U.S. diesel fuel price continues to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. East

  17. U.S. diesel fuel prices continue to increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S.diesel

  18. California: Energy-Efficient Glass Saves Energy Costs, Increases Personal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building America UpdateCX-001638:6Breakthrough in

  19. Energy Department Invests $6 Million to Increase Energy Efficiency of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog2013 |Workshop at the UpcomingSchools,

  20. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect (OSTI)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08T23:59:59.000Z

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  1. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30T23:59:59.000Z

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  2. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on...

  3. A strategy for increasing energy efficiency in federal facilities

    SciTech Connect (OSTI)

    Salthouse, R.W.

    1994-12-31T23:59:59.000Z

    The issues of energy efficiency in federal facilities is discussed. Resource problems and recommendations pertaining to energy efficiency technologies are described.

  4. Sipping fuel and saving lives: increasing fuel economy without sacrificing safety

    E-Print Network [OSTI]

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2008-01-01T23:59:59.000Z

    Ford delays plans to boost fuel economy of its SUVs. WallImproving safety without impacting fuel economy. Honda MotorCompany, October 4. SIPPING FUEL AND SAVING LIVES / 24

  5. HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS

    SciTech Connect (OSTI)

    Sara Ward; Michael A. Petrik

    2004-07-28T23:59:59.000Z

    Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

  6. Pellet Fueling Technology Development for Efficient Fueling of Burning Plasmas in ITER

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Parks, P. B. [General Atomics; Jernigan, Thomas C [ORNL; Caughman, John B [ORNL; Combs, Stephen Kirk [ORNL; Foust, Charles R [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Rasmussen, David A [ORNL

    2007-01-01T23:59:59.000Z

    Pellet injection from the inner wall is planned for use on ITER as the primary core fueling system since gas fueling is expected to be highly inefficient in burning plasmas. Tests of the inner wall guide tube have shown that 5mm pellets with up to 300 m/s speeds can survive intact and provide the necessary core fueling rate. Modeling and extrapolation of the inner wall pellet injection experiments from today's smaller tokamaks leads to the prediction that this method will provide efficient core fueling beyond the pedestal region. Using pellets for triggering of frequent small edge localized modes is an attractive additional benefit that the pellet injection system can provide. A description of the ITER pellet injection system capabilities for fueling and ELM triggering are presented and performance expectations are discussed.

  7. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35...

  8. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30T23:59:59.000Z

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  9. Weatherization Assistance Program: Spurring Innovation, Increasing Home Energy Efficiency

    Broader source: Energy.gov [DOE]

    Weatherization services are cost-effective, energy efficiency emasures for existing residential and multifamily housing with income-eligible residents.

  10. Fume Hood Sash Stickers Increases Laboratory Safety and Efficiency at

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion Study CommentsStolar,NEAC FuelFederalDECEMBER 2009

  11. California: Energy-Efficient Glass Saves Energy Costs, Increases Personal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -September 16,DOE ZERHEnergyof

  12. Retro-Commissioning Increases Data Center Efficiency at Low Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuringNinth Single-Shell Achieved

  13. Role of Thermoelectrics in Vehicle Efficiency Increase | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c e L iEnergy

  14. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014FundsOpti-MN Impact HouseDepartment

  15. DOE Increases Energy Efficiency Standards for Residential Furnaces &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment of Energy Identifies its

  16. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * October 2006Optimizing Blast

  17. Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8 * October 2006Optimizing

  18. Retro-Commissioning Increases Data Center Efficiency at Low Cost |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of EnvironmentalRetiring ProcurementDepartment of

  19. Effective Fouling Minimization Increases the Efficiency and Productivity of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries | Department of Energy

  20. Alcoa: C-Suite Participation in Energy Efficiency Increases Accountability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaskaDepartmentand Staff

  1. Increased Efficiency with Model Based Calibration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public CommentsofFilters -

  2. Increased Engine Efficiency via Advancements in Engine Combustion Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public CommentsofFilters

  3. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnicalMeetingand NorthernMessaging Strategiesin Process

  4. Sipping fuel and saving lives: increasing fuel economy without sacrificing safety

    E-Print Network [OSTI]

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2008-01-01T23:59:59.000Z

    impacting fuel economy. Honda Motor Company, October 4.some automakers—VW and Honda, for example—are designinga 37 percent fuel savings; Honda Civic DX (29 mpg) to the

  5. SuperTruck ? Development and Demonstration of a Fuel-Efficient...

    Energy Savers [EERE]

    and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  6. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Office of Environmental Management (EM)

    and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  7. EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJulySavannah RiverSustainabilityEnergyDownload4FYofAugust

  8. DOE Announces 12 Projects To Increase Vehicle Efficiency | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact UsDepartment ofNuclearDepartmentDepartment

  9. DOE Increases Energy Efficiency Standards for Residential Furnaces &

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) GoDOE IDIQ ESPCBoilers

  10. "Increasing Solar Panel Efficiency And Reliability By Evaporative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfiresImpurity Transport,12,TopEnergy"GeekCooling"

  11. Rule to Support Increased Energy Measurement and Efficient Building Design

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -DepartmentRetailEnergy Role of Modeling| Department of

  12. High Efficiency Microturbine Leads to Increased Market Share | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmploymentHealth,Help

  13. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,InformationIncomuni Incubator

  14. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,InformationIncomuni

  15. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation,InformationIncomuniMicroturbine

  16. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:

  17. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market Type Term Title Author

  18. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market Type Term Title

  19. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market Type Term TitleGlobal

  20. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market Type Term

  1. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market Type

  2. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoal Fired Power

  3. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoal Fired

  4. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market TypeCoal

  5. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to:Unconventional Gas Market

  6. Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUMEWORKFORCE

  7. Better Buildings Expanding to Help Increase Efficiency in Homes |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRAM-04-07 Audit Report:Field Experiment | DepartmentBestBBSCFeet

  8. Department of Energy Finalizes Regulations to Increase Energy Efficiency in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof a Second Early Site PermitGroup

  9. Using Transportation Technology to Increase Efficiencies in Shipping: Real

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-India EnergyUnlockingDepartment ofOwners |UsingControlLife

  10. Public Finance Mechanisms to Increase Investment in Energy Efficiency |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolumeInformationpeopleOpen

  11. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua New EnergyIT PowerImagine Energy

  12. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    SciTech Connect (OSTI)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01T23:59:59.000Z

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  13. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single...

  14. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Natural Gas Energy Efficiency Content Group Activity By term Q & A Feeds Term: Global Coal Fired Power Generation Market Type Term Title Author Replies Last Post sort icon Blog...

  15. Parabolic trough solar collectors : design for increasing efficiency

    E-Print Network [OSTI]

    Figueredo, Stacy L. (Stacy Lee), 1981-

    2011-01-01T23:59:59.000Z

    Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

  16. Efficiency alone as a solution to increasing energy consumption

    E-Print Network [OSTI]

    Haidorfer, Luke

    2005-01-01T23:59:59.000Z

    A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

  17. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    abnormal combustion (knock) limits the geometric compression ratio, thereby limiting engine efficiency * EGR improves engine efficiency, but increases in EGR (and efficiency) are...

  18. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  19. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  20. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  1. Gas Turbines Increase the Energy Efficiency of Industrial Processes 

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

  2. Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

  3. Using Plate Heat Exchangers to Increase Energy Efficiency

    E-Print Network [OSTI]

    Bailey, K.

    result in a heat exchanger that is extremely economical and efficient, especially in energy recovery applications where low LMTD's are common. This paper will review PHE design and construction and show how PHE's can be used to recover energy in many...

  4. Gas Turbines Increase the Energy Efficiency of Industrial Processes

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed...

  5. Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel

    E-Print Network [OSTI]

    Pacheco, Jose Rafael

    Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel Himanshu Tyagi, Patrick April 2, 2008 ABSTRACT The present study attempts to improve the ignition properties of diesel fuel, droplet ignition experiments were carried out atop a heated hot plate. Different types of fuel mixtures

  6. High Efficiency Microturbine Leads to Increased Market Share...

    Energy Savers [EERE]

    to Increased Market Share April 18, 2013 - 12:00am Addthis Partnering with Capstone Turbine Corporation of Chatsworth, EERE supported microturbine research and development for a...

  7. Increasing energy efficiency of grinding media through microscale comminution studies

    SciTech Connect (OSTI)

    Lo, Y.C.; Goller, G.A. [GS Technologies/Control International Inc., Salt Lake City, UT (United States)

    1995-12-31T23:59:59.000Z

    Microscale studies involving an ultrafast load cell have been shown to provide direct and accurate measurements of particle strength, particle fracture energy and particle breakage functions under different loading geometry conditions. The effect of grinding media size, shape, density and surface properties on the energy efficiency can be quantitatively determined for different materials to be ground. The applications of microscale comminution studies have been demonstrated to provide good predictions of grinding mill performance with different grinding media.

  8. Increased Efficiencies in the INEEL SAR/TSR/USQ Process

    SciTech Connect (OSTI)

    Cole, N.E.

    2002-05-16T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) has implemented a number of efficiencies to reduce the time and cost of preparing safety basis documents. The INEEL is continuing to look at other aspects of the safety basis process to identify other efficiencies that can be implemented and remain in compliance with Title 10 Code of Federal Regulations (CFR) Part 830. A six-sigma approach is used to identify areas to improve efficiencies and develop the action plan for implementation of the new process, as applicable. Three improvement processes have been implemented: The first was the development of standardized Documented Safety Analysis (DSA) and technical safety requirement (TSR) documents that all nuclear facilities use, by adding facility-specific details. The second is a material procurement process, which is based on safety systems specified in the individual safety basis documents. The third is a restructuring of the entire safety basis preparation and approval process. Significant savings in time to prepare safety basis document, cost of materials, and total cost of the documents are currently being realized.

  9. Increased Efficiencies in the INEEL SAR/TSR/USQ Process

    SciTech Connect (OSTI)

    Cole, Norman Edward

    2002-06-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) has implemented a number of efficiencies to reduce the time and cost of preparing safety basis documents. The INEEL is continuing to look at other aspects of the safety basis process to identify other efficiencies that can be implemented and remain in compliance with Title 10 Code of Federal Regulations (CFR) Part 830. A six-sigma approach is used to identify areas to improve efficiencies and develop the action plan for implementation of the new process, as applicable. Three improvement processes have been implemented: The first was the development of standardized Documented Safety Analysis (DSA) and technical safety requirement (TSR) documents that all nuclear facilities use, by adding facility-specific details. The second is a material procurement process, which is based on safety systems specified in the individual safety basis documents. The third is a restructuring of the entire safety basis preparation and approval process. Significant savings in time to prepare safety basis document, cost of materials, and total cost of the documents are currently being realized.

  10. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System...

  11. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient of ethanol? A flex-fuel SUV has a 25 gallon tank. Its sustainably-minded owner has decided to use E85 ethanol? 1 yr/person/450pounds of corn * 461 pounds of corn = 1.02 yrs #12;Electric Vehicle Problems 1

  12. reliable, efficient, ultra-clean Fuel Cell Power Plant Experience

    E-Print Network [OSTI]

    of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 #12;Fuel FuelCell and "DFC" are all registered trademarks (ź) of FuelCell Energy, Inc. High electrical and CHP Multiple fuels 29 Palms Marine Corps Base Naval Station Groton (Planned) DFC Naval Facilities Applications

  13. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect (OSTI)

    Davis, Robert

    2010-09-30T23:59:59.000Z

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. I-4 Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. I-9 Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. II-37 Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. II-52 Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films. I

  14. Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement

    SciTech Connect (OSTI)

    Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31T23:59:59.000Z

    It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

  15. The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19

    E-Print Network [OSTI]

    Babu, M. Madan

    The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 mtROS and contribute to longevity. This increased mitochondrial efficiency (i.e. low mtROS generated the observed higher mito- chondrial efficiency in the long-lived mrg19 mutant of Saccharomyces cerevisiae

  16. Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieve

  17. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research Project

  18. High-temperature microfluidic systems for thermally-efficient fuel processing

    E-Print Network [OSTI]

    Arana, Leonel R

    2003-01-01T23:59:59.000Z

    Miniaturized fuel cell systems have the potential to outperform batteries in powering a variety of portable electronics. The key to this technology is the ability to efficiently process an easily-stored, energy-dense fuel. ...

  19. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect (OSTI)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01T23:59:59.000Z

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  20. Energy Department Offers $50 Million to Advance Fuel Efficient Autos |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and Fuel Cellof EnergyDepartmentDepartment of

  1. Fuel-Efficient Stove Programs in Humanitarian Settings | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight BestFuel Cell ControlCellsFuel

  2. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    tools for understanding fuel-property effects on - Combustion - Engine efficiency optimization - Emissions Partners Project lead: Sandia - C.J. Mueller (PI); C.J. Polonowski...

  3. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  4. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL...

  5. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  6. Woodfuel scoping study Increasing the use of woodfuel as a substitute for fossil fuels is important

    E-Print Network [OSTI]

    Woodfuel scoping study Increasing the use of woodfuel as a substitute for fossil fuels is important tonnes of material a year from currently UMW in England by 2020. New government subsidies for heat

  7. Increasing the CO tolerance of PEM fuel cells via current pulsing and self-oxidation 

    E-Print Network [OSTI]

    Thomason, Arthur Hugh

    2004-09-30T23:59:59.000Z

    An investigation was conducted to determine and compare the effect of cell current pulsing and "self-oxidation" in increasing the CO tolerance of a PEM fuel cell. The most effective pulsing parameter values were also ...

  8. Increasing the CO tolerance of PEM fuel cells via current pulsing and self-oxidation

    E-Print Network [OSTI]

    Thomason, Arthur Hugh

    2004-09-30T23:59:59.000Z

    An investigation was conducted to determine and compare the effect of cell current pulsing and "self-oxidation" in increasing the CO tolerance of a PEM fuel cell. The most effective pulsing parameter values were also determined. Current pulsing...

  9. A Materials Approach to Fuel-Efficient Tires

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Fuel Efficiency Potential of Hydrogen Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h yDepartment

  12. Fuel Efficiency of New European HD Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h yDepartmentusingof New

  13. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSE DOE/IG-480 I N S

  14. Gasoline Ultra Fuel Efficient Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSE DOE/IG-480 I N S2 DOE

  15. Gasoline Ultra Fuel Efficient Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 IntellectualSE DOE/IG-480 I N S2 DOE1 DOE

  16. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rthe Nationof

  17. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rthe

  18. #AskEnergySaver: Fuel Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNewsEnergy Answering YourFuel

  19. Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O| Department of

  20. #AskEnergySaver: Fuel Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2UraniumEnergy City ofiManage-85(1).pdf9-8-2010 -#AskEnergySaver: Fuel

  1. Matching Government Needs with Energy Efficient Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications »of Energy WisconsinMatch

  2. Matching National Laboratory Needs with Energy Efficient Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications »of Energy

  3. Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| Department of Energy -

  4. Matching Federal Government Energy Needs with Energy Efficient Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Hydrogenis Winding6 * October

  5. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of| Department of Energy

  6. Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,DepartmentFebruary 19,TopProcess | Department of

  7. Tradeoff Between Powertrain Complexity and Fuel Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,DepartmentFebruary 19,TopProcessProgram

  8. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets PeopleTransmissionModeling Working GroupCell

  9. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New

  10. Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions,Department of EnergyofDiesel

  11. Alternative Fuels Data Center: College Students Engineer Efficient Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities Reflects on 20 Years ofDeliveryin

  12. Air Force Achieves Fuel Efficiency through Industry Best Practices |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2 (April 2012)theDepartment

  13. HD Truck and Engine Fuel Efficiency Opportunities and Challenges Post

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1HAWAI'I CLEANDepartment ofEPA2010 |

  14. High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnology ValidationCombustionTechnologies|

  15. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e pShade Your Home in the Summer?

  16. Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieve SteamHighTier

  17. Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieveMilestones |

  18. Impact of Battery Management on Fuel Efficiency Validity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImaging Ahead ofinEnergy

  19. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling andProgramEdition

  20. Report: Efficiency, Alternative Fuels to Impact Market Through 2040 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReport on SeparateAbout ThisSECOND

  1. Increase Natural Gas Energy Efficiency - Q & A | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR Jump to:Efficiency - Q & A

  2. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  3. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with...

  4. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  5. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Broader source: Energy.gov [DOE]

    Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These...

  6. Future Engine Fluids Technologies: Durable, Fuel-Efficient, and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text GlossaryEmissions-Friendly |

  7. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy1904-AC19CommunicationWIPP |

  8. Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | Department ofValue

  9. BPA, public utilities fueling the energy efficiency powerhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade Later: AreAugust 19,1B O NMayB

  10. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37EnergySubmit ait'sII. GENERALOffshore WindThe

  11. Air Force Achieves Fuel Efficiency through Industry Best Practices |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACTAgenda: TheAof Energy

  12. Sandia Energy - More Efficient Fuel Cells under Development by Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery MesaMonitoring HomeMore

  13. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy ThisStandardsSeptember 7,Media Contact Cameron Salony,6

  14. Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearchTransportationDepartment

  15. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at IowaSecretary Chu SecretaryRemarksDepartmentPhotoToMira,INDEXThis

  16. Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles to LivingPortal

  17. Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Lean DI Engines Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement...

  18. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Broader source: Energy.gov (indexed) [DOE]

    turbocharger 2200 bar Common Rail 2-stage EGR cooling DPF Bottoming Cycles Electric Turbo-compound Rankine Cycle, Thermo-electrics Variable Valve Actuation High Efficiency...

  19. LOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS

    E-Print Network [OSTI]

    Boulevard Cleveland, Ohio 44108 216-541-1000 Abstract Fuel cell technologies are described in the 2001 DOE. In electrolyzer mode, the reversible system uses electricity and thermal energy to convert pure water into fuel (hydrogen and oxygen). TMI's reversible system uses the waste thermal energy produced during electricity

  20. Plasma-assisted nitrogen doping of graphene-encapsulated Pt nanocrystals as efficient fuel cell

    E-Print Network [OSTI]

    Tan, Weihong

    Plasma-assisted nitrogen doping of graphene- encapsulated Pt nanocrystals as efficient fuel cell, their ability to act as a relatively good fuel cell catalyst was confirmed. Furthermore, to further improve with hydrogen and oxygen intermediates to form the nal products,10 explaining their broad use in fuel cell

  1. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  2. Engineering a 70-percent efficient, indirect-fired fuel-cell bottomed turbine cycle

    SciTech Connect (OSTI)

    Williams, M.C.; Micheli, P.L.; Parsons, E.L. Jr.

    1996-08-01T23:59:59.000Z

    The authors introduce the natural gas, indirect-fired fuel-cell bottomed turbine cycle (NG-IFFC) as a novel power plant system for the distributed power and on-site markets in the 20 to 200 megawatt (MW) size range. The NG-IFFC system is a new METC-patented system. This power-plant system links the ambient pressure, carbonate fuel cell in tandem with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations based on Advanced System for Process Engineering (ASPEN) simulations show material and energy balances with expected power output. Early results indicated efficiencies and heat rates for the NG-IFFC are comparable to conventionally bottomed, carbonate fuel-cell steam-bottomed cycles. More recent calculations extended the in-tandem concept to produce near-stoichiometric usage of the oxygen. This is made possible by reforming the anode stream to completion and using all hydrogen fuel in what will need to be a special combustor. The performance increases dramatically to 70%.

  3. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    of Wisconsin-Madison completed an EERE-supported project to develop high-efficiency combustion engines for light- and heavy-duty vehicles. By combining a number of different...

  4. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap - Timeline I 2010 II 2011 III 2012 IV 2013 V 2014 42 46 50 54 Electrical Turbo Compounding Break Thermal Efficiency (target A75) 58 VVA Friction Currently...

  5. Increasing the power density when using inert matrix fuels to reduce production of transuranics

    SciTech Connect (OSTI)

    Recktenwald, G.D.; Deinert, M.R. [University of Texas, 1 University Station C2200, Austin TX 78715-0162 (United States)

    2013-07-01T23:59:59.000Z

    Reducing the production of transuranics is a goal of most advanced nuclear fuel cycles. One way to do this is to recycle the transuranics into the same reactors that are currently producing them using an inert matrix fuel. In previous work we have modeled such a reactor where 72%, of the core is comprised of standard enriched uranium fuel pins, with the remaining 28% fuel made from Yttria stabilized zirconium, in which transuranics are loaded. A key feature of this core is that all of the transuranics produced by the uranium fuel assemblies are later burned in inert matrix fuel assemblies. It has been shown that this system can achieve reductions in transuranic waste of more than 86%. The disadvantage of such a system is that the core power rating must be significantly lower than a standard pressurized water reactor. One reason for the lower power is that high burnup of the uranium fuel precludes a critical level of reactivity at the end of the campaign. Increasing the uranium enrichment and changing the pin pitch are two ways to increase burnup while maintaining criticality. In this paper we use MCNPX and a linear reactivity model to quantify the effect of these two parameters on the end of campaign reactivity. Importantly, we show that in the region of our proposed reactor, enrichment increases core reactivity by 0.02 per percent uranium 235 and pin pitch increases reactivity by 0.02 per mm. Reactivity is lost at a rate of 0.005 per MWd/kgIHM uranium burnup. (authors)

  6. Opportunities to increase the productivity of spent fuel shipping casks in the United States

    SciTech Connect (OSTI)

    Winsor, G.H.; Faletti, D.W.; DeSteese, J.G.

    1980-03-01T23:59:59.000Z

    Trends indicate that future transportation requirements for spent fuel will be different from those anticipated when the current generation of casks and vehicles was designed. Increased storage capacity at most reactors will increase the average post irradiation age of the spent fuel to be transported. A scenario is presented which shows the 18 casks currently available should be sufficient until approximately 1983. Beyond this time, it appears that an adequate transportation system can be maintained by acquiring, as needed, casks of current designs and new casks currently under development. Spent fuel transportation requirements in the post-1990 period can be met by a new generation of casks specifically designed to transport long-cooled fuel. In terms of the number of casks needed, productivity may be increased by 19% if rail cask turnaround time is reduced to 4 days from the current range of 6.5 to 8.5 days. Productivity defined as payloads per cask year could be increased 62% if the turnaround time for legal weight truck casks were reduced from 12 hours to 4 hours. On a similar basis, overweight truck casks show a 28% increase in productivity.

  7. METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS

    E-Print Network [OSTI]

    Peale, Robert E.

    METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

  8. Efficiency of incentives to jointly increase carbon sequestration and species conservation

    E-Print Network [OSTI]

    Weiblen, George D

    Efficiency of incentives to jointly increase carbon sequestration and species conservation the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under

  9. Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"

    SciTech Connect (OSTI)

    Dr. Andrew Myers

    2005-12-30T23:59:59.000Z

    Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

  10. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01T23:59:59.000Z

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

  11. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success StoriesInvestigations and OversightVehicle |

  12. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial EnergyEnergy

  13. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOE Patents [OSTI]

    George, Thomas J. (Star City, WV); Meacham, G. B. Kirby (Shaker Heights, OH)

    2002-03-26T23:59:59.000Z

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  14. A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

    SciTech Connect (OSTI)

    Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

    2000-08-04T23:59:59.000Z

    (OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

  15. Development and Demonstration of a Fuel-Efficient HD Engine

    Broader source: Energy.gov (indexed) [DOE]

    Turbocompounding Rankine Cycle Low Friction components Lube system Cooling system VVA + turbo match VVA Turbo optimization 2900bar capability Comb match Increased PCP Optimum...

  16. The impact of aircraft design reference mission on fuel efficiency in the air transportation system

    E-Print Network [OSTI]

    Yutko, Brian M. (Brian Matthew)

    2014-01-01T23:59:59.000Z

    Existing commercial aircraft are designed for high mission flexibility, which results in decreased fuel efficiency throughout the operational life of an aircraft. The objective of this research is to quantify the impact ...

  17. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department...

    Office of Environmental Management (EM)

    standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. fuel-efficiency">Click here to...

  18. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems R. Dalla Betta, J. Cizeron, D. Sheridan, T. Davis Catalytica Energy Systems...

  19. Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency

    E-Print Network [OSTI]

    Baumann, Philip Douglas

    1974-01-01T23:59:59.000Z

    CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

  20. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

    2013-12-31T23:59:59.000Z

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  1. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15T23:59:59.000Z

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  2. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

    1991-01-01T23:59:59.000Z

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  3. Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling Efficient Cooling in EnginesEnergy 0of

  4. When is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon?

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    research field for the vehicle industry. By establishing a platoon of heavy duty vehicles, the fuelWhen is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon? Kuo-Yun Liang Jonas study the problem of when it is beneficial for a heavy duty vehicle to drive faster in order to catch up

  5. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  6. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  7. Increased

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections:HAZARD ANALYSES OF GLINT

  8. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Efficiency increase and environmental benefits of using a gas turbine hybrid cycle in Mount Amiata geothermal area

    SciTech Connect (OSTI)

    Baldacci, A.; Papale, R.; Sabatelli, F. [Enel Spa Geothermal Generation Dept., Pisa (Italy); Bidini, G. [Universita di Perugia (Italy)

    1997-12-31T23:59:59.000Z

    A hybrid cycle scheme is described, integrating a gas turbine unit firing natural gas and a geothermal power plant. Gas turbine exhaust is used to superheat geothermal steam and, possibly, to feed a bottoming binary unit. The proposed cycle can retrofit existing geothermal plants and displays efficiencies (referred to fossil fuel use) comparable to those typical of large-size combined cycle plants. In the situation of Mount Amiata deep geothermal fields, other favorable features of this scheme include the possibility to take advantage of the water separated at wellhead. Of foremost importance, however, is the option of using the noncondensable gas discharged by the geothermal plant, mixed with the inlet air, to feed the gas turbine. Oxidation of hydrogen sulfide to sulfur dioxide can thus be cheaply accomplished, with an added efficiency increase. Technical aspects arising from the proposed scheme are discussed, and preliminary economic evaluations are presented.

  10. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

    2012-07-01T23:59:59.000Z

    The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

  11. Increased Efficiency in SI Engine with Air Replaced by Oxygen in Argon Mixture

    SciTech Connect (OSTI)

    Killingsworth, N J; Rapp, V H; Flowers, D L; Aceves, S M; Chen, J; Dibble, R

    2010-01-13T23:59:59.000Z

    Basic engine thermodynamics predicts that spark ignited engine efficiency is a function of both the compression ratio of the engine and the specific heat ratio of the working fluid. In practice the compression ratio of the engine is often limited due to knock. Both higher specific heat ratio and higher compression ratio lead to higher end gas temperatures and increase the likelihood of knock. In actual engine cycles, heat transfer losses increase at higher compression ratios and limit efficiency even when the knock limit is not reached. In this paper we investigate the role of both the compression ratio and the specific heat ratio on engine efficiency by conducting experiments comparing operation of a single-cylinder variable-compression-ratio engine with both hydrogen-air and hydrogen-oxygen-argon mixtures. For low load operation it is found that the hydrogen-oxygen-argon mixtures result in higher indicated thermal efficiencies. Peak efficiency for the hydrogen-oxygen-argon mixtures is found at compression ratio 5.5 whereas for the hydrogen-air mixture with an equivalence ratio of 0.24 the peak efficiency is found at compression ratio 13. We apply a three-zone model to help explain the effects of specific heat ratio and compression ratio on efficiency. Operation with hydrogen-oxygen-argon mixtures at low loads is more efficient because the lower compression ratio results in a substantially larger portion of the gas to reside in the adiabatic core rather than in the boundary layer and in the crevices, leading to less heat transfer and more complete combustion.

  12. Recently, a new Dynamic Voltage Scaling (DVS) scheme has been proposed that increases energy efficiency

    E-Print Network [OSTI]

    Austin, Todd M.

    energy efficiency significantly by allowing the processor to operate at or slightly below the minimum the point of timing failure can yield significant energy sav- ings. Razor [1] is one such example padding in the operating voltage, which in turn increases the energy consumption of designs. Since

  13. Nonlinear harmonic modeling of phemt devices for increased power amplifier efficiencies

    E-Print Network [OSTI]

    Strassner, Bernd Herbert

    1997-01-01T23:59:59.000Z

    This thesis is a comprehensive study of how harmonic terminations can greatly increase a power amplifier's efficiency (PAE). To show this improvement, the PHEMT amplifier is biased in the low noise region of operation (L, = 20 mA, Vd, = 3 V...

  14. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  15. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  16. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    developed an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves...

  17. Prospects for increased low-grade bio-fuels use in home and commercial heating applications

    E-Print Network [OSTI]

    Pendray, John Robert

    2007-01-01T23:59:59.000Z

    Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

  18. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    E-Print Network [OSTI]

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01T23:59:59.000Z

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  19. Demonstration of Energy Efficient Steam Reforming in Microchannels for Automotive Fuel Processing

    SciTech Connect (OSTI)

    Whyatt, Greg A.; TeGrotenhuis, Ward E.; Geeting, John GH; Davis, James M.; Wegeng, Robert S.; Pederson, Larry R.

    2002-01-01T23:59:59.000Z

    A compact, energy efficient microchannel steam reforming system has been demonstrated. The unit generates sufficient reformate to provide H2 to a 10 kWe PEM fuel cell (when coupled with a water-gas shift and CO cleanup reactors). The overall volume of the reactor is 4.9 liters while that of the supporting network of heat exchangers is 1.7 liters . Use of a microchannel configuration in the steam reforming reactor produces rapid heat and mass transport which enables fast kinetics for the highly endothermic reaction. Heat is provided to the reactor by a combustion gas flowing in interleaved microchannels in cross flow with the reaction channels. A network of microchannel heat exchangers allows recovery of heat in the reformate product and combustion exhaust streams for use in vaporizing water and fuel, preheating reactants to reactor temperature and preheating combustion air. The microchannel architecture enables very compact and highly effective heat exchangers to be constructed. As a result of the heat exchange network, the system exhaust temperatures are typically ~50?C for the combustion gas and ~130?C for the reformate product while the reactor is operated at 750?C. While reforming isooctane at a rate sufficient to supply a 13.7 kWe fuel cell the system achieved 98.6% conversion with an estimated overall system efficiency after integration with WGS and PEM fuel cell of 44% (electrical output / LHV fuel). The efficiency estimate assumes integration with a WGS reactor (90% conversion CO to CO2 with 100% selectivity) and a PEM fuel cell (64% power conversion effectiveness with 85% H2 utilization for an overall 54% efficiency) and does not include parasitic losses for compression of combustion air. Acknowledgement The work described here was funded by the U.S. Department of Energy, Office of Transportation Technology as part of the OTT Fuel Cells Program.

  20. INCREASE

    ScienceCinema (OSTI)

    None

    2013-07-22T23:59:59.000Z

    The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

  1. Making more efficient fuel cells 08.09.2009 -Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide

    E-Print Network [OSTI]

    Lovley, Derek

    Making more efficient fuel cells 08.09.2009 - Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste power in fuel cells than bacteria with a smooth surface. The team's findings were reported

  2. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  3. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  4. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

    1990-07-01T23:59:59.000Z

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  5. Background Energy efficiency has become a growing concern in a world driven by a fossil fuel economy. To this end,

    E-Print Network [OSTI]

    Dawson, Jeff W.

    Background Energy efficiency has become a growing concern in a world driven by a fossil fuel have been developed at Brayton Energy Canada, but several difficulties are encountered

  6. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    SciTech Connect (OSTI)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China) [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)] [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15T23:59:59.000Z

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-?) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 ?m (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-? and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ? Effect of chronic biomass smoke exposure on cardiovascular health was investigated. ? Serum markers of systemic inflammation and oxidative stress were studied. ? Biomass using women had increased systemic inflammation and oxidative stress. ? Indoor air pollution and observed changes were positively associated.

  7. Advanced method for increasing the efficiency of white light quantum dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01T23:59:59.000Z

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which, respectively, diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal processing (PTP), reduces the number of point defects while maintaining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of theQD nanoparticles. The current research uses a thermal model to predict annealing temperatures during PTP and demonstrates up to a 300% increase in photoluminescence for QDs on passive substrates.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    their fleets' petroleum consumption by increasing vehicle fuel economy and operating efficiency and reducing the number of miles driven by each employee. Agencies must also give...

  9. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS Letter -SeptemberWorkshopby: AlanCasa

  10. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of EnergyEnergyWesternof Energy 6:

  11. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered Increased in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment of EnergyVehicle?Energy2011 |

  12. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF +

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergy studiesEnergy

  13. U.S. Diesel Fuel Price Increases for First Time Since June

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAllDiesel Fuel Price Continues to

  14. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists, tap- pingLiquid

  15. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergy Lube-oil PhosphorusImpacts of IPv6

  16. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  17. Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

    SciTech Connect (OSTI)

    Nalwa, Kanwar

    2012-11-03T23:59:59.000Z

    Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 ?m), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. Thus it becomes imperative to understand the effect of processing conditions such as spin coating speed and drying rate on defect density and hence induced carrier recombination mechanism. In this study, It is shown that slow growth (longer drying time) of the active-layer leads to reduction of sub-bandgap traps by an order of magnitude as compared to fast grown active-layer. By coupling the experimental results with simulations, it is demonstrated that at one sun condition, slow grown device has bimolecular recombination as the major loss mechanism while in the fast grown device with high trap density, the trap assisted recombination dominates. It has been estimated that non-radiative recombination accounts nearly 50% of efficiency loss in modern OPVs. Generally, an external bias (electric field) is required to collect all the photogenerated charges and thus prevent their recombination. The motivation is to induce additional electric field in otherwise low mobility conjugated polymer based active layer by incorporating ferroelectric dipoles. This is expected to facilitate singlet exciton dissociation in polymer matrix and impede charge transfer exciton (CTE) recombination at polymer:fullerene interface. For the first time, it is shown that the addition of ferroelectric dipoles to modern bulk heterojunction (BHJ) can significantly improve exciton dissociation, resulting in a ~50% enhancement of overall solar cell efficiency. The devices also exhibit the unique ferroelectric-photovoltaic effect with polarization-controlled power conversion efficiency.

  18. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect (OSTI)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31T23:59:59.000Z

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  19. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha

    Fuel Cell Technologies Publication and Product Library (EERE)

    A case study of the First National Bank of Omaha fuel cell system, covering 1999 through October 2009. The system reduced heating bills by more than $1 million.

  20. U.S. diesel fuel price increase for first time since November

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. Eastdieseldieseldiesel

  1. U.S. diesel fuel price increases for first time in 6 weeks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S.

  2. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  3. Revolutionary Method for Increasing the Efficiency of White Light Quantum Dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01T23:59:59.000Z

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which respec-tively diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal proc-essing (PTP), reduces the number of point defects while main-taining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of the quantum dot nanoparticles. The cur-rent research uses a thermal model to predict annealing tempera-tures during PTP and demonstrates up to a 300% increase in pho-toluminescence for QDs on passive substrates

  4. Location Based Challenges on Mobile Devices for a Fuel Efficient Driving Behavior

    E-Print Network [OSTI]

    while driving. 1 Introduction Global warming and rising oil prices have led to a state of increased task in real-time. On the other hand interfaces for giving feedback about the driver's historic fuel concept of location based challenges allows the combination of the idea of historic competitive systems

  5. Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL] [ORNL; Knee, Helmut E [ORNL] [ORNL; Slezak, Lee [U.S. Department of Energy] [U.S. Department of Energy

    2010-01-01T23:59:59.000Z

    In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

  6. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Curran, Scott [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL] [ORNL; Sluder, Scott [ORNL] [ORNL; Kokjohn, Sage [University of Wisconsin, Madison] [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin] [University of Wisconsin

    2010-01-01T23:59:59.000Z

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  7. Testimony to the United States Senate Committee on Energy and Natural Resources POLICIES TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL

    E-Print Network [OSTI]

    TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL ECONOMY 2:30 pm, Tuesday, January 30, 2007 Dirksen Senate to formulate effective policies to significantly increase motor vehicle fuel economy. The views I express today to supply the world's growing demand for liquid fuels. Why do we need fuel economy policy? For too long we

  8. Small Businesses Save Big: A Borrower's Guide To Increase the Bottom Line Using Energy Efficiency (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    Dollars saved through energy efficiency can directly impact your bottom line. Whether you are planning for a major renovation or upgrading individual pieces of building equipment, these improvements can help reduce operating costs, save on utility bills, and boost profits. This fact sheet provides a guide for small businesses to find the resources to increase the energy efficiency of their buildings.

  9. INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS

    E-Print Network [OSTI]

    Atwater, Harry

    INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap materials in series- connected tandem cells to access the full solar spectrum. Researchers focused

  10. Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals

    E-Print Network [OSTI]

    The mechanism of enhancing the light harvesting efficiency of dye-sensitized TiO2 solar cells by coupling TiO2Increasing the Conversion Efficiency of Dye-Sensitized TiO2 Photoelectrochemical Cells by Coupling to conventional single-crystal solar cells. In this cell, an optically excited dye injects electrons

  11. Fume Hood Sash Stickers Increases Laboratory Safety and Efficiency at Minimal Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCREnginesFullconfused by

  12. Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarch 4; RSVP byof EnergyofProjectinGasoline

  13. Alcoa: C-Suite Participation in Energy Efficiency Increases Accountability and Staff Engagement Throughout the Organization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S.EnergyEnergyAlcoa:

  14. Development of an efficient off-grid pumping system and evaporation reduction strategies to increase access to irrigation for smallholder farmers in India

    E-Print Network [OSTI]

    Gorbaty, Emily

    2013-01-01T23:59:59.000Z

    Due to the unavailability of electricity, about 85% of groundwater irrigation in eastern India employs fuel-powered surface pumps, which can have system efficiencies as low as 5%. As fuel prices continue to rise, impoverished ...

  15. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect (OSTI)

    Brown, L.C.

    2002-11-01T23:59:59.000Z

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

  16. DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | DepartmentCoal Plantfor|

  17. DOE Steps Lead to Significant Increase in Compliance with Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29, 2013Savannah River Site2-94 March

  18. U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| DepartmentEnergyFeed Families"Inputin the

  19. U.S. and China Continue to Increase Cooperation on Vehicle Efficiency |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference |Energy Road

  20. U.S. and China Sign Agreement to Increase Industrial Energy Efficiency |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference |Energy RoadDepartment of

  1. U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& ForumVersion: JuneDiscussionwithin the

  2. U.S. Department of Energy and SuperPower, Inc. Increase Energy Efficiency

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& ForumVersion: JuneDiscussionwithin thein

  3. Using Transportation Technology to Increase Efficiencies in Shipping: Real Life Experience in Oak Ridge

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads intoMansoor GhassemUse of Bullet Under the

  4. Recent content in Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJump to:ReachingDatabus Home NameRecent

  5. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    analyzed to study cyclic variability (CV) and its influence on dual-fuel efficiency and emissions. Factors causing or influencing CV were identified. The CV in dual-fuel operation is more serious than that in diesel operation, in terms of magnitude. Most...

  6. Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Broader source: Energy.gov [DOE]

    A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

  7. Game theory analysis of aircraft manufacturer innovation strategies in the face of increasing airline fuel costs

    E-Print Network [OSTI]

    Morrison, James K. D. (James Kelley Douglas)

    2011-01-01T23:59:59.000Z

    The air transportation system is a vital infrastructure that enables economic growth and provides significant social benefits. Future increases and volatility in crude oil prices, as well as environmental charges, are ...

  8. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30T23:59:59.000Z

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  9. Chemical Kinetic Modeling of Fuels

    Broader source: Energy.gov (indexed) [DOE]

    optimization of fuel formulations and engine design: * Potential for replacement of petroleum, greater than 5% by 2018 * Increase heavy duty engine thermal efficiency to 55% by...

  10. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect (OSTI)

    Kirby S. Chapman; Amar Patil

    2007-06-30T23:59:59.000Z

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  11. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01T23:59:59.000Z

    to between 2.5-3%, boiler efficiency improvements would saveand hog fuel, the efficiencies of boilers that combust theserecovery boiler, which can increase the efficiency of steam

  12. Supplemental feeding of lactating does increased body condition and circulating leptin but fails to improve reproductive efficiency 

    E-Print Network [OSTI]

    Candler, Kimberly Carol

    2013-02-22T23:59:59.000Z

    SUPPLEMENTAL FEEDING OF LACTATING DOES INCREASED BODY CONDITION ANIl CIRCULATING LEPTIN BUT FAILS TO IMPROVE REPRODUCTIVE EFFICIENCY A Senior Honors Thesis by KIMBERLY CAROL CANDLER Submitted to the OIIIce of Honors Programs 4 Academic... Scholarships Texas AdtM University in partial fulSlment of the requirements of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2001 Group: Biomedical Sciences SUPPLEMENTAL FEEDING OF LACTAT&lG DOES INCREASED BODY CONDITION AND CIRCULATING LEPTIN...

  13. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0 Cleanr Clean C

  14. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 4, JULY 2007 1437 A Ripple-Mitigating and Energy-Efficient Fuel Cell

    E-Print Network [OSTI]

    Mazumder, Sudip K.

    in the current drawn from the fuel-cell stack and can potentially meet the $40/kW cost target. The PCS consists-Mitigating and Energy-Efficient Fuel Cell Power-Conditioning System Sudip K. Mazumder, Senior Member, IEEE, Rajni K-efficient, fuel-cell power-con- ditioning system (PCS) for stationary application, which reduces the variations

  15. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Increasing the Efficiency of a Thermionic Engine Using a Negative Electron Affinity Collector

    E-Print Network [OSTI]

    Joshua Ryan Smith

    2013-07-18T23:59:59.000Z

    Most attention to improving vacuum thermionic energy conversion device (TEC) technology has been on improving electron emission with little attention to collector optimization. A model was developed to characterize the output characteristics of a TEC where the collector features negative electron affinity (NEA). According to the model, there are certain conditions for which the space charge limitation can be reduced or eliminated. The model is applied to devices comprised of materials reported in the literature, and predictions of output power and efficiency are made, targeting the sub-1000K hot-side regime. By slightly lowering the collector barrier height, an output power of around $1kW$, at $\\geq 20%$ efficiency for a reasonably sized device ($\\sim 0.1m^{2}$ emission area) can be achieved.

  17. GLOBAL CHANGE ECOLOGY -ORIGINAL PAPER Increase in water-use efficiency and underlying processes in pine

    E-Print Network [OSTI]

    Alon, Angert

    water limitations typical of the main seasonal growth period, regulation was directed at increasing Ci Sciences and Energy Research, Weizmann Institute of Science, 76100 Rehovot, Israel e-mail: dan as an increased incidence of widespread drought for regions such as Europe (Burke et al. 2006), are expected

  18. Modified vector control algorithm for increasing partial-load efficiency of fractional-slot concentrated-winding surface PM machines

    SciTech Connect (OSTI)

    El-Refaie, Ayman M [ORNL; Jahns, Thomas M [ORNL; Reddy, Patel [University of Wisconsin; McKeever, John W [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents a modified vector control algorithm for a fractional-slot concentrated-winding surface permanent magnet (SPM) machine that has been developed to maximize the machine's partial-load efficiency over a wide range of operating conditions. By increasing the amplitude of the negative d-axis current, the resulting increase in the stator copper losses can be more than offset by the reduction in the iron core losses achieved by lowering the stator d-axis flux amplitude. The effectiveness of this technique has been demonstrated using both analytical models and finite element analysis for a 55-kW (peak) SPM machine design developed for a demanding set of traction drive performance requirements. For this example, the modified control strategy increases the partial-load efficiency at 20% of rated torque by > 6% at 2000 r/min compared to the maximum torque/ampere algorithm, making the machine much more attractive for its intended application.

  19. Developing a low-cost, systematic approach to increase an existing data center's Energy Efficiency

    E-Print Network [OSTI]

    Stewart, Jeremy M. (Jeremy Matthew)

    2010-01-01T23:59:59.000Z

    Data centers consume approximately 1.5% of total US electricity and 0.8% of the total world electricity, and this percentage will increase with the integration of technology into daily lives. In typical data centers, valued ...

  20. The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, January 2000 |TheReemploymentTheViscosity

  1. Alternative Fuels Used in Transportation: Science Projects in Renewable Energy and Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About

  2. Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy

  3. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  4. Increased efficiency of ion acceleration by using femtosecond laser pulses at higher harmonic frequency

    SciTech Connect (OSTI)

    Psikal, J., E-mail: jan.psikal@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Klimo, O. [FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); ELI-Beamlines Project, Institute of Physics of the ASCR, 18221 Prague (Czech Republic); Weber, S.; Margarone, D. [ELI-Beamlines Project, Institute of Physics of the ASCR, 18221 Prague (Czech Republic)

    2014-07-15T23:59:59.000Z

    The influence of laser frequency on laser-driven ion acceleration is investigated by means of two-dimensional particle-in-cell simulations. When ultrashort intense laser pulse at higher harmonic frequency irradiates a thin solid foil, the target may become re lativistically transparent for significantly lower laser pulse intensity compared with irradiation at fundamental laser frequency. The relativistically induced transparency results in an enhanced heating of hot electrons as well as increased maximum energies of accelerated ions and their numbers. Our simulation results have shown the increase in maximum proton energy and increase in the number of high-energy protons by a factor of 2 after the interaction of an ultrashort laser pulse of maximum intensity 7?Ś?10{sup 21?}W/cm{sup 2} with a fully ionized plastic foil of realistic density and of optimal thickness between 100?nm and 200?nm when switching from the fundamental frequency to the third harmonics.

  5. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01T23:59:59.000Z

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  6. 2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010 1Fuel

  7. Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control

    SciTech Connect (OSTI)

    Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

    2006-08-01T23:59:59.000Z

    The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

  8. Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Benefits and costs of brine extraction for increasing injection efficiency in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-01-01T23:59:59.000Z

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  12. EM Safely and Efficiently Manages Spent Nuclear Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013MeetingEM SSAB Local1

  13. Table 5.5. U.S. Vehicle Fuel Efficiency by Model Year, 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle Fuel Consumption. U.S..

  14. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h yDepartmentusing

  15. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfitted with SCREngines | Department of

  16. #AskEnergySaver: Answering Your Fuel Efficiency Questions | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1 TNewsEnergy Answering Your Fuel

  17. #AskEnergySaver: Answering Your Fuel Efficiency Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are our bestPolicies Act of 1978What's

  18. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices for Consumers | Department of

  19. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergyDepartment of Energy Energy Federal

  20. 2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies PlenaryEnergy 09 Federal

  1. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"DepartmentToward Targets of

  2. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721Energy 3_adv_battery.pdf More Fact14,EnergyFinanceTechnologies |

  3. Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJuly 2012| Department ofStratification

  4. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy Aaandwith

  5. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy AaandwithDepartment

  6. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy

  7. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergyProgram) |

  8. Development and Demonstration of a Fuel-Efficient HD Engine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergyProgram) |Energy

  9. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries withAbstractSystem | Department of

  10. Development of an ORC system to improve HD truck fuel efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries1000: Development of aan

  11. Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartment ofPotentialYieldin Vehicle

  12. U.S. HDV GHG and Fuel Efficiency Final Rule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarchC.DepartmentTexas to CallDepartmentHDV GHG and

  13. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact Sheet UraniumThroughSingle Leg NOx

  14. University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 MillionPresidentandof EnergyDepartment

  15. Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18UnrevisedCoolUsingDepartmentProject |Advanced

  16. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartment ofVisitsDeterminations and|DepartmentMicrochannel

  17. Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2 (April 2012)the

  18. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety GoalsEnergy Begins ExtendedSummitBowl CityWi-Fi

  19. Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety GoalsEnergy BeginsSupercomputingTractor & Trailer |

  20. Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety GoalsEnergy BeginsSupercomputingTractor & Trailer

  1. The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentThe DoDSmallManagementTechnology onThe

  2. A Materials Approach to Fuel-Efficient Tires | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewA LIMITEDA LittleLookofA

  3. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewA LIMITEDA|A

  4. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewA LIMITEDA|ADepartment of

  5. Step change in Fuel Efficiency:Eaton's perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideosSpringoutAPBF-DEC4: Project Implementation

  6. Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam CastingStratification with

  7. Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam CastingStratification

  8. A Rolling Horizon Framework for Intermodal Loading Assignment to Improve Fuel Efficiency

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    . Index Terms: intermodal transportation, energy efficiency NOTATION AND UNITS i index referring does it ensure, that intermodal cars are loaded to maximize the energy efficiency of intermodal trains train resistances [7]. Consequently, there is a gap between slot utilization and energy efficiency

  9. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  10. Improved Design of Motors for Increased Efficiency in Residential Commercial Buildings

    SciTech Connect (OSTI)

    Pragasen Pillay

    2008-12-31T23:59:59.000Z

    Research progress on understanding magnetic steel core losses is presented in this report. Three major aspects have been thoroughly investigated: 1, experimental characterization of core losses, 2, fundamental physical understanding of core losses and development of core loss formulas, and 3, design of more efficient machine based on the new formulations. Considerable progress has been achieved during the four years of research and the main achievements are summarized in the following: For the experimental characterization, a specially designed advanced commercial test bench was commissioned in addition to the development of a laboratory system with advanced capabilities. The measured properties are core losses at low and higher frequencies, with sinusoidal and non-sinusoidal excitations, at different temperatures, with different measurement apparatus (Toroids, Epstein etc). An engineering-based core loss formula has been developed which considers skin effect. The formula can predict core losses for both sinusoidal and non-sinusoidal flux densities and frequencies up to 4000 Hz. The formula is further tested in electric machines. The formula error range is 1.1% - 7.6% while the standard formulas can have % errors between -8.5% {-+} 44.7%. Two general core loss formulas, valid for different frequencies and thickness, have been developed by analytically and numerically solving Maxwell's equations based on a physical investigation of the dynamic hysteresis effects of magnetic materials. To our knowledge, they are the first models that can offer accurate core loss prediction over a wide range of operating frequencies and lamination thicknesses without a massive experimental database of core losses. The engineering core loss formula has been used with commercial software. The formula performs better than the modified Steinmetz and Bertotti's model used in Cedrat/Magsoft Flux 2D/3D. The new formula shows good correlation with measured results under both sinusoidal and non-sinusoidal excitations. A permanent magnet synchronous motor has been designed with the use of the engineering formula with Flux2D. There was acceptable agreement between predictions and measurements. This was further tested on an induction motor with toroid results.

  11. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21T23:59:59.000Z

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  12. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    SciTech Connect (OSTI)

    Wally, Karl

    2006-05-01T23:59:59.000Z

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

  13. Vehicle Technologies Office Merit Review 2015: A Novel Lubricant Formulation Scheme for 2% Fuel Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Northwestern University at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about a novel lubricant...

  14. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05T23:59:59.000Z

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  15. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace062reese2011...

  16. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Savers [EERE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss081amar2012o.pdf More Documents & Publications...

  17. StationaryEnvironment ResidentialTransportation Premium Power Advanced High Efficiency, Quick Start Fuel

    E-Print Network [OSTI]

    Premium Power Agenda STARTM (1999-2003) ­ Substrate based Transportation application Autothermal ReformerEnvironment Residential Stationary Premium Power STAR Fuel Processor · Autothermal reformer · Substrate-based catalysts

  18. EcoCAR 3: Collegiate Teams to Pump up Fuel Efficiency of Iconic American

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics4DimitriJune 30, 2015Vehicles|EcoCAR

  19. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State Glossary HomeCapacityNatural1998,

  20. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State GlossaryEnergy ) for

  1. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhatProposed - FINAL 30at the

  2. Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | Department ofEnergyof Energy2014DiverseRita

  3. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummary SpecialFactories | DepartmentSunshot

  4. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document details the frequently1MetLifePedestrians

  5. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThis document details the

  6. DOEs Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone | DepartmentEA - 0942 E NSeptember653197 This

  7. Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNewsfuelNotes andPlastics |

  8. Veolia and Johnson Controls Get the Job Done with Clean, Fuel Efficient

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy MicrosoftVOLUME I ATheJune 23, 2015Photo ofFleets |

  9. Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysisRichardRisk

  10. Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment-of Energy

  11. Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenITLaboratory inImproving ConvectiveSurface

  12. Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The

    E-Print Network [OSTI]

    Demirel, Melik C.

    Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle Overview The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The vehicle was designed to conform possible fuel efficiency. Finally, the team transported the vehicle to Houston, Texas and successfully

  13. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »Energy PonemanPlasma PhysicsArup

  14. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31T23:59:59.000Z

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  15. From jet fuel to electric power using a mesoscale, efficient Stirling cycle

    E-Print Network [OSTI]

    Gomez, Alessandro

    combustor coupled with a free-piston Stirling engine. The design and development of a catalytic combustor and efficiently, and a recuperator to improve the system thermodynamic efficiency. The combustor/recuperator unit ratios varying in the 0.35­0.70 range. The combustor is interfaced with a free-piston Stirling engine

  16. Potential Impact of Interfacial Bonding Efficiency on High-Burnup Spent Nuclear Fuel Vibration Integrity during Normal Transportation

    SciTech Connect (OSTI)

    Jiang, Hao [ORNL; Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2014-01-01T23:59:59.000Z

    Finite element analysis (FEA) was used to investigate the impacts of interfacial bonding efficiency at pellet pellet and pellet clad interfaces on spent nuclear fuel (SNF) vibration integrity. The FEA simulation results were also validated and benchmarked with reverse bending fatigue test results on surrogate rods consisting of stainless steel (SS) tubes with alumina-pellet inserts. Bending moments (M) are applied to the FEA models to evaluate the system responses of the surrogate rods. From the induced curvature, , the flexural rigidity EI can be estimated as EI=M/ . The impacts of interfacial bonding efficiency on SNF vibration integrity include the moment carrying capacity distribution between pellets and clad and the impact of cohesion on the flexural rigidity of the surrogate rod system. The result also indicates that the immediate consequences of interfacial de-bonding are a load carrying capacity shift from the fuel pellets to the clad and a reduction of the composite rod flexural rigidity. Therefore, the flexural rigidity of the surrogate rod and the bending moment bearing capacity between the clad and fuel pellets are strongly dependent on the efficiency of interfacial bonding at the pellet pellet and pellet clad interfaces. The above-noted phenomenon was calibrated and validated by reverse bending fatigue testing using a surrogate rod system.

  17. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    DOE Patents [OSTI]

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06T23:59:59.000Z

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  18. A REPORT ON INCREASING 'l'HE l'HRUSX OF A :.I:URBOJEl' ENGINE BY COHBUSXION OF FUEL IN IHE XAIL PIPE

    E-Print Network [OSTI]

    Winfree, Erik

    ·· 17. Specific Fuel Combustion ·· 18. 19. 20. Test Data: G.E. I-14 Engine No. 3b, Thrust vs EPMA REPORT ON INCREASING 'l'HE l'HRUSX OF A :.I:URBOJEl' ENGINE BY COHBUSXION OF FUEL IN IHE XAIL. Combustion Problems.~. V. Equipment. · · . . . . VI. Tail Pipe Combustion System.· VII. Experimental

  19. A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    at Chrysler * Test the multi-fuel engine at ANL, first with the surrogate engine (wo optics), then with the Alpha 1 engine (w optics) * Begin the design of the Alpha 2 engine 17...

  20. Beryllium Impregnation of Uranium Fuel: Thermal Modeling of Cylindrical Objects for Efficiency Evaluation

    E-Print Network [OSTI]

    Lynn, Nicholas

    2011-08-04T23:59:59.000Z

    With active research projects related to nuclear waste immobilization and high conductivity nuclear fuels, a thermal model has been developed to simulate the temperature profile within a heat generating cylinder in order to imitate the behavior...

  1. Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975

    E-Print Network [OSTI]

    MacKenzie, Donald Warren

    2013-01-01T23:59:59.000Z

    Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

  2. Beryllium Impregnation of Uranium Fuel: Thermal Modeling of Cylindrical Objects for Efficiency Evaluation 

    E-Print Network [OSTI]

    Lynn, Nicholas

    2011-08-04T23:59:59.000Z

    With active research projects related to nuclear waste immobilization and high conductivity nuclear fuels, a thermal model has been developed to simulate the temperature profile within a heat generating cylinder in order to imitate the behavior...

  3. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  4. Final Technical Report for Alternative Fuel Source Study - An Energy Efficient and Environmentally Friendly Approach

    SciTech Connect (OSTI)

    Zee, Ralph [Auburn University; Schindler, Anton [Auburn University; Duke, Steve [Auburn University; Burch, Thom [Auburn University; Bransby, David [Auburn University; Stafford, Don [Lafarge North America

    2010-08-31T23:59:59.000Z

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  5. Turbocharged engine operations using knock resistant fuel blends for engine efficiency improvements

    E-Print Network [OSTI]

    Jo, Young Suk

    2013-01-01T23:59:59.000Z

    Engine downsizing with a turbocharger has become popular these days in automotive industries. Downsizing the engine lets the engine operate in a more efficient region, and the engine boosting compensates for the power loss ...

  6. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    transfer in boiler Boiler efficiency Heat used in boiler *hr. Assuming boiler heat recovery efficiency of 90%, totalEfficiency Improvement An analysis of the performance of the heat recovery components (boilers,

  7. Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency

    E-Print Network [OSTI]

    Mody, Pritesh (Pritesh Chetan)

    2010-01-01T23:59:59.000Z

    This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

  8. A Rolling Horizon Framework for Intermodal Loading Assignment to Improve Fuel Efficiency

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    based on empirical data show significant aerodynamic efficiency benefits from these optimization models to counterbalance the effect of uncertainty. Appropriate weights are determined by simulations based on real data between Chicago and Los Angeles (LA). About 80% of the IM trains on this route are loaded or unloaded only

  9. Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling

    E-Print Network [OSTI]

    Mattson, Jonathan Michael Stearns

    2013-08-31T23:59:59.000Z

    The increasing dependency of the global economy on mineral fuels necessitates the investigation and future implementation of renewable fuels. Within the spectrum of compression ignition engines, this requires an understanding of the differences...

  10. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building better understanding of product performance by the entire construction materials industry. INNOVATIONSFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  11. The concept of the use of recycled uranium for increasing the degree of security of export deliveries of fuel for light-water reactors

    SciTech Connect (OSTI)

    Alekseev, P. N.; Ivanov, E. A.; Nevinitsa, V. A.; Ponomarev-Stepnoi, N. N.; Rumyantsev, A. N.; Shmelev, V. M. [Russian Research Center Kurchatov Institute (Russian Federation); Borisevich, V. D.; Smirnov, A. Yu.; Sulaberidze, G. A. [National Nuclear Research University MEPhI (Russian Federation)

    2010-12-15T23:59:59.000Z

    The present paper deals with investigation of the possibilities for reducing the risk of proliferation of fissionable materials by means of increasing the degree of protection of fresh fuel intended for light-water reactors against unsanctioned use in the case of withdrawal of a recipient country of deliveries from IAEA safeguards. It is shown that the use of recycled uranium for manufacturing export nuclear fuel makes transfer of nuclear material removed from the fuel assemblies for weapons purposes difficult because of the presence of isotope {sup 232}U, whose content increases when one attempts to enrich uranium extracted from fresh fuel. In combination with restricted access to technologies for isotope separation by means of establishing international centers for uranium enrichment, this technical measure can significantly reduce the risk of proliferation associated with export deliveries of fuel made of low-enriched uranium. The assessment of a maximum level of contamination of nuclear material being transferred by isotope {sup 232}U for the given isotope composition of the initial fuel is obtained. The concept of further investigations of the degree of security of export deliveries of fuel assemblies with recycled uranium intended for light-water reactors is suggested.

  12. Thin fuel film reactor testing for characterization of diesel fuel deposit formation

    E-Print Network [OSTI]

    Welling, Orian (Orian Z.)

    2009-01-01T23:59:59.000Z

    The need for specialized diesel fuel injectors is growing with increased efficiency and emissions regulation. These specialized fuel injectors have nozzle diameters of 150-200[mu]m which are susceptible to clogging from ...

  13. Increasing vehicle fuel efficiency and decreasing de-pendence on foreign oil are priorities of the U.S. De-

    E-Print Network [OSTI]

    Pennycook, Steve

    these challenges by exploring the use of low-cost carbon fiber composite materials in automotive production is then typically packaged by spooling. Carbon Fiber to Composite Material With world class facilities at their dis, and low-cost composite design and manufacturing capabilities. Precursor to Filament About half of carbon

  14. Uniform Methods for Determining Energy Efficiency Savings and Increasing Electric Utility Confidence in Reported Savings Now Available

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) has published protocols for estimating energy savings for residential and commercial energy efficiency programs and measures through the recently released “The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures.”

  15. Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology

    E-Print Network [OSTI]

    Hardin, Christopher William

    2004-01-01T23:59:59.000Z

    There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

  16. Approaches to representing aircraft fuel efficiency performance for the purpose of a commercial aircraft certification standard

    E-Print Network [OSTI]

    Yutko, Brian M. (Brian Matthew)

    2011-01-01T23:59:59.000Z

    Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft C02 emissions and ...

  17. Approaches to Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard

    E-Print Network [OSTI]

    Yutko, Brian

    2011-06-27T23:59:59.000Z

    Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft CO2 emissions and ...

  18. Work demonstrates that smaller can be better: quantum confinement can lead to increased PV efficiency and could

    E-Print Network [OSTI]

    efficiency and could lead to a doubling of third-generation solar cell efficiencies. Tiny quantum dots the first all-quantum-dot photovoltaic cell, which was based on lead sulfide and demonstrated reasonable quantum dot solar cell performance for an initial efficiency measurement along with good stability

  19. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect (OSTI)

    Cerio, Frank

    2013-09-14T23:59:59.000Z

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  20. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building materials industry. INNOVATIONS IN BUILDINGS Contact ORNL 2012-G00695/tcc Ensuring Affordable, EfficientFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  1. Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile

    E-Print Network [OSTI]

    Mauzerall, Denise

    Achieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political efficiency as part of a greater effort to promote sustainable development. This paper uses China to demonstrate the challenges faced by developing countries and also studies the particular opportunities China

  2. High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News

    E-Print Network [OSTI]

    South Bohemia, University of

    's Residential Energy Consumption Survey (RECS), which provides data on how Americans heat their homes. According of the 2009 RECS show that wood is a significant source of heat in many U.S. homes, and wood consumption is almost as much as heating oil consumption," Berry said. Sometimes-Forgotten Fuel Ackerly

  3. Fuel Efficient Stoves for Darfur Camps of Internally DisplacedPersons - Report of Field Trip to North and South Darfur, Nov. 16 -Dec.17, 2005

    SciTech Connect (OSTI)

    Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark; Lee, Yoo-Mi

    2006-02-01T23:59:59.000Z

    Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG'' stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire, this stove can save 50% fuel for the IDPs. The stove costs less than $10 (US) to produce in Darfur, and saves fuelwood worth $160 annually at local market prices. For programmatic and administrative reasons, the LBNL mission do not recommend a mud-and-dung stove, for which control of quality and dimensional accuracy is expensive and cumbersome to administer, particularly in a rapid large rollout effort. A light metal stove, on the other hand, can be rapidly produced in large numbers locally in Darfur, with good quality control exercised on the material and dimensions of the stoves right at the workshop where it is produced. LBNL mission also recommends immediate trials of 50 Tara stoves in a pilot technical rollout, 500 Tara stoves in a pilot social rollout, in parallel with a technical effort to modify the Tara design to make it better suited for Darfur camp conditions. The mission also recommends a program for manufacturing, disseminating the metal stoves, and educating the IDPs in fuel-efficient cooking practices. Monitoring of the stove quality, dissemination effort and training should be an integral part of the program, with systematic summaries planned with 10,000, 50,000 and 100,000 stoves have been disseminated. In the above pilot rollouts as well as in the final implementation, it is important to continue to pay attention to training of the cooks in tending the cooking fire in the stoves, and offer continued social reinforcement to this training (e.g., through periodic competitions to cook normal meals with the least fuelwood use.)

  4. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29T23:59:59.000Z

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  5. Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite

    E-Print Network [OSTI]

    Li, Mo

    Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite materials for aerospace and transportation applications. Polymer composites are inherited lighter than their metallic counterparts resulting in significant weight reduction

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Driving Training Commonwealth-approved driver education programs must include fuel-efficient driving practices as a curriculum component. (Reference Virginia Code...

  7. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    E-Print Network [OSTI]

    Phadke, Amol

    2014-01-01T23:59:59.000Z

    Efficiency of Room Air Conditioners in India: OpportunitiesStar Labeled room Air Conditioners. ” Ministry of Power (of Superefficient Room Air Conditioners,” Lawrence Berkeley

  8. DIESEL FUEL LUBRICATION

    SciTech Connect (OSTI)

    Qu, Jun [ORNL

    2012-01-01T23:59:59.000Z

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  9. Krakow clean fossil fuels and energy efficiency program. Phase 1 report

    SciTech Connect (OSTI)

    Butcher, T.; Pierce, B. [eds.

    1995-06-01T23:59:59.000Z

    Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

  10. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  11. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel and Advanced Vehicle Acquisition Requirements Renewable Fuel Standard Biofuels Feedstock Requirements Fuel-Efficient Vehicle Acquisition Requirement Low-Speed...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement Washington state agencies must consider purchasing low carbon fuel vehicles or converting conventional vehicles...

  14. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    E-Print Network [OSTI]

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-01-01T23:59:59.000Z

    EIA). 1999. Annual Energy Outlook 2000. DOE/EIA-0383 (2000).Energy-Efficient Economy Annual Energy Outlook annual fuelprices from EIA’s Annual Energy Outlook (AEO) 2004; 4) a

  15. Avoiding 100 new power plants by increasing efficiency of room air conditioners in India: opportunities and challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar; [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15T23:59:59.000Z

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  16. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, Nikit; Shah, Nihar

    2014-06-19T23:59:59.000Z

    Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Room AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.

  17. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine 

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  18. Impact of Policy on Fuels RD&D (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-12-01T23:59:59.000Z

    This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

  19. Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

    2011-12-22T23:59:59.000Z

    The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

  20. Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration

    E-Print Network [OSTI]

    Kammen, Daniel M.

    1 Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration analyses suggest that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB

  1. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  2. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  3. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    None

    2010-07-12T23:59:59.000Z

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  4. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01T23:59:59.000Z

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

  5. A G E N D A Fuel Economy &

    E-Print Network [OSTI]

    Tennessee, University of

    A G E N D A Fuel Economy & Idle Reduction Seminar SPEAKERS Rich Cregar, Wake Technical Program Jonathan Overly 8:4510:15 ­ Fuel Economy & Idle Reduction Technologies & Practices Rich Cregar 10:1510:30 ­ Break 10:3010:55 ­ FuelEconomy.gov & increasing Fuel Efficiency Robert

  6. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10T23:59:59.000Z

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  7. Fuel efficient train operations: A preliminary investigation with the locomotive data acquisition package on the Union Pacific Railroad. Interim report Jun-Nov 80

    SciTech Connect (OSTI)

    Larsen, K.W.

    1981-12-01T23:59:59.000Z

    The Locomotive Data Acquisition Package (LDAP) is a research data acquisition system designed for use on board diesel locomotives. Between June 1980 and November 1980, a fuel efficient train operations experiment was conducted in cooperation with the Union Pacific Railroad using the LDAP. The experiment served both as a checkout of the LDAP unit, and as a preliminary study of the relationship between train handling and fuel consumption. The LDAP unit was operated on a Union Pacific Locomotive for 127 days during which data were collected for 53,936 miles of locomotive operation.

  8. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect (OSTI)

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27T23:59:59.000Z

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  9. Genetically Enhanced Sorghum and Sugarcane: Engineering Hydrocarbon Biosynthesis and Storage together with Increased Photosynthetic Efficiency into the Saccharinae

    SciTech Connect (OSTI)

    None

    2012-02-15T23:59:59.000Z

    PETRO Project: UIUC is working to convert sugarcane and sorghum—already 2 of the most productive crops in the world—into dedicated bio-oil crop systems. Three components will be engineered to produce new crops that have a 50% higher yield, produce easily extractable oils, and have a wider growing range across the U.S. This will be achieved by modifying the crop canopy to better distribute sunlight and increase its cold tolerance. By directly producing oil in the shoots of these plants, these biofuels could be easily extracted with the conventional crushing techniques used today to extract sugar.

  10. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  11. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important Trinity / NERSC-8Improvedin

  12. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic WeeklyStores Catalog TheaSVO

  13. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware aPowering commercial

  14. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish Version) (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA,PortalComplianceUtilizar

  15. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  16. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy...

    Office of Environmental Management (EM)

    weight. Increasing electric drive vehicles' efficiency allows them to have longer all-electric ranges with smaller batteries -- reducing cost, decreasing fuel use and improving...

  17. Advanced Combustion and Fuels

    Broader source: Energy.gov (indexed) [DOE]

    and predictive tools for fuel property effects on combustion and engine efficiency optimization (Fuels & Lubricants Technologies) * Lack of modeling capability for combustion and...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    vehicles with energy-efficient vehicles including hybrid electric, advanced lean burn, fuel cell, and alternative fuel vehicles. The Cabinet must also develop a strategy to...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and emissions by using alternative fuels and improving vehicle fleet fuel efficiency. State agencies and other affected entities may substitute the use of 450 gallons of...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    college, and local government fleets must select the vehicles with the greatest fuel efficiency available for a given use class, when fuel economy data is available. Exceptions may...